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Abstract

Motivated by queueing systems with heterogeneous parallel servers, we consider a class
of structured multi-dimensional Markov processes whose state space can be partitioned
into two parts: a finite set of boundary states and a structured multi-dimensional set of
states, exactly one dimension of which is infinite. Using separation of variables, we show
that the equilibrium distribution, typically of the queue length, can be represented as a
linear combination of product forms. For an important subclass of queueing systems, we
characterize explicitly the waiting time distribution in terms of mixtures of exponentials.

1 Introduction

Motivated by queueing systems with heterogeneous parallel servers, we introduce a class of
structured multi-dimensional Markov processes with one infinite dimension. While most re-
search on multi-server queueing systems focuses on identical, or homogeneous servers, our class
includes multi-server queueing systems with nonidentical, or heterogeneous servers.

Among the key examples of queueing systems included in this class are heterogeneous
parallel servers with batch arrivals and service times consisting of two exponential phases
(e.g. Erlang-2 [17], Coxian-2 [7], hyperexponential-2 [18, 19]), multi-server queueing systems
with service interruptions [15], setup times [6, 11] or batch service [4], and a single exponential
server fed by a superposition of independent, interrupted Poisson processes. Such queueing
systems naturally arise in manufacturing, where jobs may arrive in batches, to be subsequently
processed on multiple parallel batch machines. These machines can be nonidentical, differing in
processing speed and processing variability and may require setup time after having been idle.
For an overview of stochastic models, and queueing models in particular, for manufacturing
systems we refer to [8].

The class of structured multi-dimensional Markov processes presented in this paper is an
extension of the one in [3]. Whereas [3] deals with identical parallel servers, we allow for
nonidentical parallel servers and batch arrivals. For this extended class we will determine the
equilibrium distribution using a separation of variables technique. This technique allows us to
express the equilibrium distribution, typically of the queue length, as a linear combination of
product forms (in terms of eigenvalues, and eigenvectors of the finite dimensions). Alternative
methods to determine the equilibrium distribution for structured multi-dimensional Markov
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processes are the matrix-geometric method [16] and the spectral expansion method [14]. The
matrix-geometric method expresses the equilibrium distribution in terms of the rate matrix
R, which is the minimal nonnegative solution of a nonlinear matrix equation. When R is
diagonalizable, the parameters of the product forms of the separation of variables technique
are the eigenvalues and left eigenvectors of R. The spectral expansion method treats the
equilibrium equations as a homogeneous vector difference equation with constant coefficients,
and by substituting product forms, reduces to a single characteristic matrix polynomial for all
eigenvalues.

By employing separation of variables, however, the single equation for all eigenvalues can be
decomposed into a system of equations for (much) fewer eigenvalues. Further, we can express
the equilibrium distribution as a linear combination of product forms, the parameters of which
can be obtained explicitly. Moreover, for an important subclass of queueing systems, we are
able to obtain explicitly the waiting time distribution in terms of mixtures of exponentials.

1.1 Motivating examples

We present three motivating examples that fall within the class of processes considered in this
paper. The first two examples are extensions of examples in [3]. The third example serves as
a running example throughout the paper.

Example 1.1. (Parallel heterogeneous servers with Erlang-2 services) This example is an
extension of the class of Markov processes presented in [3] by allowing different service behavior
for each server. Jobs arrive according to a Poisson process with rate λ. Jobs are served FCFS
by c heterogeneous servers. The service time of server i consists of two exponential phases,
both with mean 1/µi.

Example 1.2. (The MX/M/c queue with service interruptions) This example considers the
same class as in [3], but now allowing for batch arrivals. Jobs arrive in batches of sizes that
range from 1 to K. Batches of size k arrive according to a Poisson process with rate λk. Jobs
are served FCFS by c identical parallel servers. Each server, when operative, serves jobs with
rate µ. However, servers are subject to breakdowns. The times that servers are operative are
exponentially distributed with parameter θ. The repair times are exponentially distributed
with parameter ν.

Example 1.3. (Parallel heterogeneous servers with hypoexponential-2 service times and Pois-
son batch arrivals) This example serves as a running example throughout the paper. We
consider a queueing model that incorporates both extensions mentioned above. Jobs arrive in
batches of sizes that range from 1 to K. Batches of size k arrive according to a Poisson process
with rate λk. Jobs are served FCFS by c parallel heterogeneous servers. The service time of
server i consists of two exponential phases with mean 1/µ1,i and 1/µ2,i, respectively.

1.2 Description of the class of processes

We consider a class of irreducible multi-dimensional Markov processes on the state space V ∪W
with V a finite set and W defined by all states n = (n0, n1, . . . , nc) with n0 ∈ N0 and ni ∈
{0, 1}, i = 1, . . . , c. The set V serves to describe possibly less structured boundary behavior.
For all three motivating examples of Section 1.1, the set V consists of the states with one or
more idle servers. In this paper we primarily focus on the analysis of the structured infinite set
of states W . The determination of the probabilities in the finite set V is of minor importance
and not discussed here.
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Figure 1: Transition rate diagram of the process in the (n0, ni)-plane.

In the n0-dimension, we allow for jumps in the negative direction of any size, whereas jumps
in the positive direction are of maximum size K with K some finite positive integer. We call
the states in V and the states with n0 < K the boundary states. For the states in V we assume
that no transitions to states n with n0 ≥ K are possible, i.e., the only way to enter the states
n with n0 ≥ K from the set V is via the states n with n0 < K.

Transitions in the (n0, ni)-plane with n0 ≥ 0 are assumed to be independent of transitions
in other (n0, nj)-planes, j 6= i. This allows us to describe in isolation the transition structure on
this two-dimensional (n0, ni)-plane. More specifically, for the states with n0 ≥ 0, the following
transitions in the (n0, ni)-plane are possible, with k = −n0,−n0 + 1, . . . ,K:

• From (n0, 0) to (n0 + k, 1) with rate ak,i.

• From (n0, 0) to (n0 + k, 0) with rate bk,i.

• From (n0, 1) to (n0 + k, 1) with rate ck,i.

• From (n0, 1) to (n0 + k, 0) with rate dk,i.

• From (n0, ni) to the states in V with total rate
∑−n0−1

k=−∞
(
(1−ni)(ak,i+bk,i)+ni(ck,i+dk,i)

)
.

Hence, transitions from (n0, ·) are only possible to states (n, ·) with n ≤ n0+K. The transition
rate diagram of the (n0, ni)-plane is shown in Figure 1.

We assume that the Markov process is ergodic and denote by p(n) the equilibrium prob-
ability of being in state n. One of the main results obtained in this paper is the following
expression for the equilibrium distribution in terms of a linear combination of 2cK product
forms:

p(n) =

2cK∑
j=1

αjβ
n0
0,jβ

n1
1,j · · ·β

nc
c,j , n ∈W, (1.1)

where βi,j and αj are possibly complex-valued constants. We are able to establish (1.1) for
the case K = 1, and also for K ≥ 1 provided the Markov process is symmetric, by which we
mean that the transition rate diagram of each (n0, ni)-plane is identical. More specifically,
by symmetry we mean that, for given k all ak,i, i = 1, . . . , c, are equal and similarly for the
other rates. For K ≥ 2 and nonsymmetric Markov processes (all Markov processes that are
not symmetric), the proposed method might still work, as is supported by numerical evidence
(not shown in this paper). However, proving that (1.1) is valid in this case is much more
involved. In order to establish (1.1), we employ a separation of variables technique, which is
well known from the theory of partial differential equations [12] and has been applied before
to an Ek/Er/c queueing model [5]. Using this technique, a relation between βi,j , i = 1, . . . , c,
and β0,j is derived. Instrumental for this technique is to identify the constants β0,j as the roots
within the unit circle of a certain equation.
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For symmetric Markov processes we can use an aggregated state space described by (n0,m)
with m =

∑c
i=1 ni, and which forms a semi-infinite strip of states for which the equilibrium

probabilities can be expressed as

p(n0,m) =

K(c+1)∑
j=1

γjβ
n0
0,jωj(m), n0 ∈ N0, m = 0, . . . , c, (1.2)

where γj are possibly complex-valued constants and ωj is a row vector, the entries of which are
given by ωj(m) =

∑
n1+···+nc=m β

n1
1,j · · ·β

nc
c,j with βi,j as in (1.1).

In [3] the same class of symmetric Markov processes is studied for the special case K = 1,
and a generating function technique is used to determine the equilibrium distribution. This
generating function technique, however, does not seem applicable to the nonsymmetric pro-
cesses studied in the this paper, which is why we use separation of variables instead.

We do use a generating function technique, together with (1.2) to describe the distribution
of the first passage time to the set V , given that at time t = 0, the process starts in state
(n0,m) and there are no transitions ak, . . . , dk with k > 0 for t ≥ 0. For queueing systems,
this first passage time is typically tantamount to the waiting time distribution (see e.g. [1, 9]),
which is also the case in this paper.

1.3 Parameters of the motivating examples

We now briefly indicate how the motivating examples of Section 1.1 fit in the class of Markov
processes.

Example 1.1. (Continued) Here, n0 represents the number of jobs waiting in the queue and
ni, i = 1, . . . , c is the number of finished phases at server i. We have a0,i = µi, b1,i = c1,i = λi
with

∑
i λi = λ, d−1,i = µi and all other rates are equal to zero. Note that the rates λi > 0

can be chosen arbitrarily as long as they add up to λ.

Example 1.2. (Continued) In this case, n0 represents the number of jobs waiting in the queue
and ni, i = 1, . . . , c states whether server i is operative. As the servers are identical we can
omit the index i to obtain the rates a0 = ν, c−1 = µ, bk = ck = λk/c, (k = 1, . . . ,K), d0 = θ
and all other rates are equal to zero.

Example 1.3. (Continued) For this model, n0 represents the number of jobs waiting in the
queue and ni, i = 1, . . . , c is the number of finished phases at server i. We have a0,i = µ1,i,
bk,i = ck,i = λk,i (k = 1, . . . ,K) with

∑
i λk,i = λk the arrival rate of batches of size k,

d−1,i = µ2,i and all other rates are equal to zero.

1.4 Structure of the paper

The remainder of the paper is organized as follows. In Section 2 we introduce some further
modeling assumptions and derive the ergodicity condition of the multi-dimensional Markov
process. Section 3 concerns the analysis of the equilibrium equations to find the equilibrium
distribution for jumps of maximum size K = 1. Symmetric processes with K ≥ 1 are studied
in Section 4. The aggregated state concept is introduced in Section 5. In Section 6 we study
the first passage time to the set V . Finally, in Section 7 we present some conclusions and
directions for further research.
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2 Modeling assumptions

In this section we impose some conditions on the rates of the Markov process introduced in
Section 1 and we determine the ergodicity condition of the process. First, let us introduce the
generating functions

Ai(z) :=
K∑

k=−∞
ak,iz

K−k, Bi(z) :=
K∑

k=−∞
bk,iz

K−k,

Ci(z) :=
K∑

k=−∞
ck,iz

K−k, Di(z) :=
K∑

k=−∞
dk,iz

K−k.

(2.1)

We impose the following assumptions on the rates of the Markov process:

Assumption 2.1. For i = 1, 2, . . . , c,

(i) Ai(1), Bi(1), Ci(1), Di(1) <∞.

(ii) Ai(1), Di(1) > 0.

(iii) A′i(1), B′i(1), C ′i(1), D′i(1) <∞.

(iv) aK,i = 0 or dK,i = 0.

(v) bK,i = cK,i 6= 0.

The assumptions (i) and (iii) are intuitively clear: both the total outgoing rate and expected
jump size should be finite. Assumption (ii) is imposed to exclude cases in which vertical
transitions in the (n0, ni)-plane are only possible in one direction. Finally, assumptions (iv)
and (v) are used to exclude exceptional cases. In Section 3 we show how these assumptions are
used. Note that assumptions (iv) and (v) are satisfied for the motivating examples presented
in Section 1.1.

We next present the ergodicity condition.

Lemma 2.2. The Markov process is ergodic if and only if

0 <
c∑
i=1

1

Ai(1) +Di(1)

(
Di(1)(A′i(1)−KAi(1) +B′i(1)−KBi(1))

+Ai(1)(C ′i(1)−KCi(1) +D′i(1)−KDi(1))
)
. (2.2)

Proof. We require that the mean aggregate drift in the negative n0-direction is larger than the
mean aggregate drift in the positive n0-direction; see Neuts’ mean drift condition [16]. This
gives

c∑
i=1

−1∑
k=−∞

kπi

(
bk,i ak,i
dk,i ck,i

)
1 >

c∑
i=1

K∑
k=1

kπi

(
bk,i ak,i
dk,i ck,i

)
1, (2.3)

where 1 =
(
1 1

)T
and πi =

(
πi(0) πi(1)

)
is the equilibrium distribution of the ni-dimension

in the (n0, ni)-plane, which is the solution to

πi

(
−Ai(1) Ai(1)
Di(1) −Di(1)

)
= 0. (2.4)
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Clearly, πi =
(

Di(1)
Ai(1)+Di(1)

Ai(1)
Ai(1)+Di(1)

)
, and rewriting (2.3) gives

c∑
i=1

1

Ai(1) +Di(1)

(
Di(1)

K∑
k=−∞

k(ak,i + bk,i) +Ai(1)
K∑

k=−∞
k(ck,i + dk,i)

)
< 0. (2.5)

Substituting
∑K

k=−∞ kak,i = KAi(1) − A′i(1) and similarly for the sums of bk,i, ck,i and dk,i
yields (2.2).

We henceforth assume that condition (2.2) holds.

Remark 2.3. (Ergodicity condition for symmetric processes) For Markov process with iden-
tical rates in each (n0, ni)-plane, we can omit the index i in (2.2), so that (2.2) simplifies
to

0 < D(1)(A′(1)−KA(1) +B′(1)−KB(1)) +A(1)(C ′(1)−KC(1) +D′(1)−KD(1)). (2.6)

3 Analysis of the equilibrium equations

We now derive the equilibrium distribution p(n) of the Markov process described in Section 1.2.
We use a separation of variables technique and exploit the structure of the equilibrium equations
for (non-boundary) states in the interior of the state space W .

Let ei denote a row vector of zeros of length c+ 1 with a 1 at position i with 0 ≤ i ≤ c. By
equating the rate out of and the rate into state n we obtain

c∑
i=1

K∑
k=−∞

(
(1− ni)(ak,i + bk,i) + ni(ck,i + dk,i)

)
p(n)

=

c∑
i=1

K∑
k=−∞

(
(1− ni)

(
bk,ip(n− ke0) + dk,ip(n− ke0 + ei)

)
+ ni

(
ak,ip(n− ke0 − ei) + ck,ip(n− ke0)

))
, (3.1)

which is valid for all states n with n0 ≥ K and ni ∈ {0, 1}, i = 1, . . . , c. The equations (3.1)
form the inner equations, while the equilibrium equations for states with n0 < K and the set
V form the boundary equations. As it turns out, the precise form of the boundary equations is
not relevant for the first part of the analysis and these equations are therefore not presented.
The boundary equations will be used to determine coefficients of the linear combination in
Theorems 3.6, 4.8 and 5.1. Note that the number of boundary equations is equal to |V |+ 2cK.

We search for linearly independent candidate solutions p(n) of (3.1) for which
∑

n p(n)
absolutely converges. We have the following lemma.

Lemma 3.1. If there are 2cK linearly independent and absolutely convergent solutions of
(3.1), labeled pj(n), j = 1, . . . , 2cK, then the equilibrium distribution p(n) can be expressed as

p(n) =
2cK∑
j=1

αjpj(n), n ∈W, (3.2)

where the (possibly complex-valued) constants αj are uniquely determined from the boundary
equations and the normalization condition.
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Proof. The proof is along similar lines as the proof of [5, Theorem 4.1]. For each choice of
αj , the sequence p(n) given by (3.2) satisfies the equations (3.1). The remaining equations are
the boundary equations. These equations form a linear, homogeneous system for the unknown
constants αj and the boundary probabilities in V . The number of equations is equal to the
number of unknowns, namely |V | + 2cK. By first omitting the equilibrium equation in state
n = 0, say, the reduced homogeneous system of equilibrium equations obviously has a nonzero
solution. The equilibrium equation in n = 0 is automatically satisfied, since inserting p(n)
in the equations in all the other states and changing summations exactly yields the desired
equation. Change of summations is allowed, since the sum of p(n) over all states converges
absolutely. It remains to show that p(n) is a nonzero solution. This readily follows if at
least one of the boundary probabilities is nonzero. If all these probabilities are zero, then at
least one of the constants αj must be nonzero. In this case, the property that the solutions
pj(n), j = 1, . . . , 2cK are linearly independent implies that p(n) is a nonzero solution. Linear

independence means that a linear combination of the solutions
∑2cK

j=1 αjpj(n) is equal to zero
if and only if αj = 0 for all j. Using [10, Theorem 1], we can conclude that the Markov process
is ergodic and that a normalized version of p(n) produces the equilibrium distribution. The
uniqueness of the constants αj follows from the uniqueness of the equilibrium distribution and
the independence of the solutions pj(n), j = 1, . . . , 2cK.

From Lemma 3.1 and the uniqueness of the equilibrium distribution we obtain the following
result.

Corollary 3.2. The dimension of the space of absolutely convergent solutions of (3.1) is at
most 2cK.

Proof. Say we find 2cK + 1 linearly independent, absolutely convergent solutions. Let us label
these solutions as pj(n), j = 1, . . . , 2cK+ 1. According to Lemma 3.1 we can express p(n) as a
linear combination of the first 2cK products. We know that at least one of the coefficients αj
has to be nonzero (since p(n) > 0). Without loss of generality we assume that α1 6= 0. Let us
now construct p(n) with the last 2cK solutions and label the coefficients as ξj , thus ignoring
the first product. As both sets of 2cK linearly independent, absolutely convergent solutions
represent the same equilibrium probability, taking the difference yields

α1p1(n) +

2cK∑
j=2

(αj − ξj)pj(n)− ξ2cK+1 p2cK+1(n) = 0. (3.3)

The solutions pj(n), j = 1, . . . , 2cK + 1 are linearly independent and therefore the only way
to construct the zero solution is by settings all coefficients equal to 0. As α1 6= 0, we get a
contradiction, which implies that the corollary holds.

Lemma 3.1 reduces the problem of determining the equilibrium distribution to that of
finding 2cK linearly independent solutions of (3.1). We next seek solutions satisfying the inner
conditions (3.1) of the special form

p(n) = βn0
0 βn1

1 · · ·β
nc
c . (3.4)

Clearly, only products that can be normalized, i.e. for which the sum over all states converges
absolutely, are useful. This implies that |β0| < 1.
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Substituting (3.4) into the equilibrium equations, dividing by βn0−K
0 βn1

1 · · ·βncc and bringing
all terms to one side, gives

0 =
c∑
i=1

(
(1− ni)

(
Bi(β0) +Di(β0)βi

)
+ ni

(
Ai(β0)

1

βi
+ Ci(β0)

))
− βK0

c∑
i=1

(
(1− ni)(Ai(1) +Bi(1)) + ni(Ci(1) +Di(1))

)
. (3.5)

Since the above equation holds for all states n with n0 ≥ K and the right-hand side of this
equation must be zero, we require that the coefficients of ni vanish, which amounts to

0 = Ai(β0)
1

βi
−Bi(β0) + Ci(β0)−Di(β0)βi + βK0 (Ai(1) +Bi(1)− Ci(1)−Di(1)). (3.6)

This is a quadratic equation in βi, with solutions

βi =
Fi(β0)

2Di(β0)
+ xi

√
Fi(β0)2 + 4Ai(β0)Di(β0)

2Di(β0)
, i = 1, . . . , c, (3.7)

where Fi(β0) = βK0 (Ai(1) + Bi(1) − Ci(1) − Di(1)) − Bi(β0) + Ci(β0) and x2i = 1, so that xi
is either −1 or 1. As we cannot divide by zero, we need Di(β0) > 0, which is always valid if
β0 ∈ (0, 1) by Assumption 2.1(ii). If β0 ∈ (0, 1), then Fi(β0)

2 + 4Ai(β0)Di(β0) > 0 and (3.7)
depends on xi. Note that β0 is still to be determined.

We can now substitute (3.7) into (3.5) to find that

0 =

c∑
i=1

(
xi
√
Fi(β0)2 + 4Ai(β0)Di(β0) + (Bi(β0) + Ci(β0))

− βK0 (Ai(1) +Bi(1) + Ci(1) +Di(1))
)
. (3.8)

This leads to 2c equations for β0 due to all possible combinations of xi’s.

Lemma 3.3. For each combination of xi’s, and K = 1, equation (3.8) has at least one root
β0 ∈ (0, 1).

Proof. Let hi(β0) denote the function inside the summation in (3.8). Assumptions 2.1(iv) and
(v) imply that Fi(β0)

2 + 4Ai(β0)Di(β0) is equal to zero for β0 = 0, so that

hi(0) = Bi(0) + Ci(0), hi(1) = (xi − 1)(Ai(1) +Di(1)). (3.9)

Thus,
c∑
i=1

hi(0) > 0,

c∑
i=1

hi(1) ≤ 0. (3.10)

Note that
∑c

i=1 hi(1) = 0 only occurs for xi = 1, i = 1, . . . , c, in which case the derivative∑c
i=1 h

′
i(1) is equal to the right-hand side of (2.2) and is positive. This proves that there is

at least one zero in (0, 1). For all other combinations of xi’s, we conclude there is at least one
zero as well, since

∑c
i=1 hi(β0) is continuous.

By combining Lemma 3.3 and (3.7) we then find the product βn0
0 · · ·βncc for each feasible

combination of xi’s, so we obtain at least 2c products. Let us select one root β0 obtained
from each equation and label these products as βn0

0,j · · ·β
nc
c,j , j = 1, . . . , 2c. In this way we have

characterized the product forms satisfying the equilibrium equations (3.1).
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Lemma 3.4. The products βn0
0,j · · ·β

nc
c,j , j = 1, . . . , 2c are linearly independent on n ∈W .

Proof. The proof is based on a property of the Vandermonde matrix. Let the numbers
y1, . . . , yM satisfy yi 6= yj , i 6= j. Then

M∑
j=1

φjy
n
j = 0, n = 0, 1, . . . ,M − 1 ⇐⇒ φj = 0, j = 1, . . . ,M. (3.11)

To prove this property, note that the left-hand side of the if and only if relation in (3.11) can

be written as Y Φ = 0 with Φ =
(
φ1 · · · φM

)T
and

Y =


1 1 · · · 1
y1 y2 · · · yM
y21 y22 · · · y2M
...

...
...

yM−11 yM−12 · · · yM−1M

 . (3.12)

Since Y is a Vandermonde matrix, its determinant is given by
∏

1≤i<j≤M (yi − yj), which is
nonzero, since yi 6= yj , if i 6= j. Thus property (3.11) holds.

We want to show that the following property holds to prove linear independence:

2c∑
j=1

αjβ
n0
0,jβ

n1
1,j · · ·β

nc
c,j = 0, n ∈W ⇐⇒ αj = 0, j = 1, . . . , 2c. (3.13)

Suppose the number of different β0,j ’s is M . For any (fixed) choice of ni, i = 1, . . . , c, we then
rewrite the left-hand side of (3.13) as∑

i

βn0
0,i

∑
β0,j=β0,i

αjβ
n1
1,j · · ·β

nc
c,j = 0, n0 = 0, 1, . . . ,M − 1. (3.14)

Hence, by (3.11), ∑
β0,j=β0,i

αjβ
n1
1,j · · ·β

nc
c,j = 0, ni ∈ {0, 1}, i = 1, . . . , c. (3.15)

For n1 ∈ {0, 1} and any choice of ni, i = 2, . . . , c, we rewrite the above equation as∑
β0,j=β0,i
x1=−1

αjβ
n2
2,j · · ·β

nc
c,j

( F1(β0,i)

2D1(β0,i)
−
√
F1(β0,i)2 + 4A1(β0,i)D1(β0,i)

2D1(β0,i)

)n1

+
∑

β0,j=β0,i
x1=1

αjβ
n2
2,j · · ·β

nc
c,j

( F1(β0,i)

2D1(β0,i)
+

√
F1(β0,i)2 + 4A1(β0,i)D1(β0,i)

2D1(β0,i)

)n1

= 0. (3.16)

Therefore, again by (3.11), for ni ∈ {0, 1}, i = 2, . . . , c,∑
β0,j=β0,i
x1=−1

αjβ
n2
2,j · · ·β

nc
c,j = 0, and

∑
β0,j=β0,i
x1=1

αjβ
n2
2,j · · ·β

nc
c,j = 0. (3.17)

Repeating the steps in (3.16) and (3.17) for n2, n3, . . . , nc, we finally get αj = 0 for all j in
accordance with (3.13) and thus we conclude that the products are linearly independent.
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Suppose we could find an additional root β0 in one of the equations in (3.8), leading to
2c + 1 roots. Then we could use the same strategy as for the proof of Lemma 3.4 to prove that
these 2c + 1 products are linearly independent. From Corollary 3.2 we deduce that finding an
additional root is not possible and we formulate the following corollary.

Corollary 3.5. For each combination of xi’s, and K = 1, equation (3.8) has exactly one root
β0 ∈ (0, 1), leading to a total of 2c roots.

The following theorem states that the equilibrium distribution p(n), n ∈ W for the case
K = 1 can be expressed as a linear combination of product forms.

Theorem 3.6. For the multi-dimensional Markov processes with K = 1, the equilibrium dis-
tribution takes the form

p(n) =

2c∑
j=1

αjβ
n0
0,jβ

n1
1,j · · ·β

nc
c,j , n ∈W, (3.18)

where β0,j are the roots of (3.8) in the interval (0, 1) for each combination of xi’s and βi,j , i =
1, . . . , c are the corresponding constants found from (3.7). The real-valued constants αj are
determined from the boundary equations and the normalization condition.

Proof. Corollary 3.5 says that we find exactly 2c solutions β0. Using (3.7) we find 2c products
βn0
0,j · · ·β

nc
c,j , j = 1, . . . , 2c. These products are absolutely convergent, as |β0| < 1, and linearly

independent, according to Lemma 3.4. Then, Lemma 3.1 shows that the 2c linearly independent
and absolutely convergent solutions can be used to express the equilibrium distribution as a
linear combination of these solutions.

Corollary 3.7. For the case K = 1, the maximal root β0,j, which governs the tail behavior of
the distribution, is always attained for all xi = 1.

Proof. This proof uses the notation of the proof of Lemma 3.3. Let ĥi(β0), i = 1, . . . , c be the
functions with all xi = 1. Let β̂0 be the root of

∑c
i=1 ĥi(β0) = 0. Then, for x1, . . . , xc with at

least one xi = −1, we have that
∑c

i=1 hi(0) > 0 and
∑c

i=1 hi(β̂0) <
∑c

i=1 ĥi(β̂0) = 0. Hence,

together with Corollary 3.5, we conclude that the root of
∑c

i=1 hi(β0) = 0 is in (0, β̂0).

Let us show how to obtain the equilibrium distribution for an example.

Example 3.8. Consider Example 1.3 with K = 1 and 2 heterogeneous servers. There are four
different combinations of x1 and x2. For each combination we can solve (3.8) to obtain one
root β0 ∈ (0, 1). This leads to four roots β0. For each root and corresponding combination of
x1 and x2 we obtain β1 and β2 from (3.7) to finally find four product forms. The coefficients
of the linear combination αj can be found from the boundary equations and normalization
condition. In doing so, we have uniquely determined the equilibrium distribution p(n) as
shown in Theorem 3.6.

Processes with larger jumps in the positive n0-direction (K ≥ 2) are harder to study
than their counterparts K = 1. The number of roots of (3.8) may not be the same for each
combination of xi’s as is the case for the Markov processes that are skip-free in the positive n0-
direction. The proposed method might still work for processes with K ≥ 2, which is supported
by numerical experiments (not shown here). However, proving that there are 2cK roots is
much more involved. We will show this in the next section, where we study symmetric Markov
processes with K ≥ 1.
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4 Symmetric processes

Remember that we refer by symmetric processes to the processes described in Section 1.2 with
the additional assumption that the rates in the (n0, ni)-planes are identical. The queueing
systems mentioned in Section 1.1 give rise to symmetric processes when the servers are identical
(homogeneous). We exploit this symmetry to prove that (3.8) has 2cK roots with |β0| < 1.
For symmetric processes we omit the indices i of the rates ak,i, . . . , dk,i.

With ηc := −1
c

∑c
i=1 xi ∈ [−1, 1], equation (3.8) simplifies to

ηc
√
F (β0)2 + 4A(β0)D(β0) = B(β0) + C(β0)− βK0 (A(1) +B(1) + C(1) +D(1)). (4.1)

Note that if there exists a root β0 of (4.1) with |β0| < 1 such that

0 = F (β0)
2 + 4A(β0)D(β0), (4.2)

then this root β0 is a solution of (4.1) for all combinations of xi’s. This is not desired, because
if (4.2) holds for some β0, the corresponding βi, i = 1, . . . , c, found from (3.7) do not depend
on xi and thus we obtain dependent solutions. We therefore make the following assumption.

Assumption 4.1. For all roots β0 of (4.1) with |β0| < 1, assume that F (β0)
2+4A(β0)D(β0) 6=

0.

Note that Assumption 4.1 is satisfied for the case K = 1, because β0 ∈ (0, 1) and thus
the right-hand side of (4.2) is strictly positive, due to Assumptions 2.1(iv) and (v). Using
Assumption 4.1 we should mention that the linear independence of the product forms derived
in Lemma 3.4 is also applicable for K ≥ 2, where the number of products is now 2cK. In the
following example we show that for certain models Assumption 4.1 always holds.

Example 4.2. Consider Example 1.3, but now with µ := µ1,i = µ2,i, i.e. parallel identical
servers with Erlang-2 service times. The right-hand side of (4.2) then equals 4µ2β2K+1

0 , thus
(4.2) does not hold for feasible values of β0 as β0 = 0 is not a solution of (4.1).

However, we can construct situations for which Assumption 4.1 is violated. We do so in
the following example.

Example 4.3. Consider again Example 1.3, now with 2 parallel identical servers, where
batches of size two arrive with rate λ and there are no other arrivals. The ergodicity con-
dition for this system is given by λ < µ1µ2

µ1+µ2
. Denote a root of (4.2) by β0,a and a root for

which the right-hand side of (4.1) vanishes by β0,b, so that

β0,a = −(µ1 − µ2)2

4µ1µ2
, β0,b = −

√
λ

λ+ µ1 + µ2
. (4.3)

For λ = 1, µ1 = 6 and µ2 = 2, we find that β0,a = β0,b = −1/3 and the ergodicity condition
holds. Consequently, we find β0 = −1/3 as a root of (4.1) for all combinations of xi’s, and by
(3.7) we find that the products corresponding to this root are identical and thus dependent.
It is interesting to see what type of products we find from (4.1) for these parameter settings.
This is summarized in Table 1. We see that there are only six different products. This is
problematic as we require 2cK = 8 solutions. A possible solution to obtain the required
number of independent solutions, is to try and find products of the form (an0 + b)βn0

0 βn1
1 βn2

2

with β0 = −1/3, and to select a and b values such that the inner conditions (3.1) are satisfied.
We leave this for future research.
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x1 x2 β0 β1 β2
1 1 0.74 3.77 3.77

−0.33 −3 −3

−1 1 0.33 −1.24 7.24
−0.33 −3 −3

1 −1 0.33 7.24 −1.24
−0.33 −3 −3

−1 −1 −0.32 −2.48 −2.48
0.26 −1.28 −1.28
−0.33 −3 −3

Table 1: Solutions of (4.1) and corresponding βi’s for Example 4.3.

Recall that in (3.7) we need D(β0) 6= 0. As the roots are no longer restricted to the interval
(0, 1), but more generally should lie within the unit circle, it is possible that D(β0) = 0 for
some root β0. We therefore make the following assumption.

Assumption 4.4. For all roots β0 of (4.1) with |β0| < 1, assume that D(β0) 6= 0.

We now take squares of both sides of (4.1), thus eliminating the square root, and we will
prove, under the ergodicity condition (2.6), the following result.

Lemma 4.5. Let ηc := −1
c

∑c
i=1 xi. For each combination of xi’s, the equation

η2c
(
F (β0)

2 + 4A(β0)D(β0)
)

=
(
B(β0) + C(β0)− βK0 (A(1) +B(1) + C(1) +D(1))

)2
, (4.4)

has 2K solutions β0 in the unit circle.

Proof. We bring all terms in (4.4) to one side to obtain(
B(β0) +C(β0)− βK0 (A(1) +B(1) +C(1) +D(1))

)2 − η2cF (β0)
2 − 4η2cA(β0)D(β0) = 0. (4.5)

To determine the number of roots of (4.5) within the unit circle, we will use Rouché’s theorem
(see e.g. Theorem 9.2.3 in [13], or more recent work in [2]) twice. For now, let us ignore the
−4η2cA(β0)D(β0) term. This leaves us with a difference of two squares, which we factor into
its two terms. After some rearranging, these two terms can be written as

B(β0)(1− ηc) + C(β0)(1 + ηc)− βK0
(
(A(1) +B(1))(1− ηc) + (C(1) +D(1))(1 + ηc)

)
(4.6)

and

B(β0)(1 + ηc) + C(β0)(1− ηc)− βK0
(
(A(1) +B(1))(1 + ηc) + (C(1) +D(1))(1− ηc)

)
. (4.7)

Let us first focus on (4.6). We define

f1(z) := −zK
(
(A(1) +B(1))(1− ηc) + (C(1) +D(1))(1 + ηc)

)
, (4.8)

g1(z) := B(z)(1− ηc) + C(z)(1 + ηc). (4.9)

Let L ⊂ C denote the closed unit disc and ∂L the unit circle. Clearly, f1(z) has only one root
z = 0 in L of multiplicity K. We shall now show that

|f1(z)| > |g1(z)|, z ∈ ∂L, (4.10)

so that it follows from Rouché’s theorem that f1(z) + g1(z) also has K zeros in L.
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Using that (1− ηc) and (1 + ηc) are both nonnegative and evaluating f1(z) and g1(z) along
∂L, gives

|f1(z)| = | − zK
(
(A(1) +B(1))(1− ηc) + (C(1) +D(1))(1 + ηc)

)
|

= (A(1) +B(1))(1− ηc) + (C(1) +D(1))(1 + ηc)

> B(1)(1− ηc) + C(1)(1 + ηc) = B(|z|)(1− ηc) + C(|z|)(1 + ηc)

≥ |B(z)(1− ηc) + C(z)(1 + ηc)| = |g1(z)|. (4.11)

Thus, (4.6) has K roots in L and using a similar argument, (4.7) also has K roots in L.
Therefore, the product of (4.6) and (4.7) yields 2K solutions within the unit circle.

Now we wish to once again use Rouché’s theorem, this time on the complete equation (4.5).
Let us define

f2(z) :=
(
B(z) + C(z)− zK(A(1) +B(1) + C(1) +D(1))

)2 − η2cF (z)2, (4.12)

g2(z) := 4η2cA(z)D(z), (4.13)

where f2(z) is the product of (4.6) and (4.7) and note that (4.5) can be expressed as f2(z) −
g2(z) = 0. We have already determined that f2(z) has 2K zeros in L. We will now work
towards the proof that each equation of (4.4) has 2K solutions. For readability, we introduce

τ1(ηc) := (A(1) +B(1))(1− ηc) + (C(1) +D(1))(1 + ηc), (4.14)

τ2(ηc) := (A(1) +B(1))(1 + ηc) + (C(1) +D(1))(1− ηc). (4.15)

Let us first establish a relation between |f2(z)| and f2(|z|):

|f2(z)| = |
(
B(z) + C(z)− zK(A(1) +B(1) + C(1) +D(1))

)2 − η2cF (z)2|
= |B(z)(1− ηc) + C(z)(1 + ηc)− zKτ1(ηc)|
× |B(z)(1 + ηc) + C(z)(1− ηc)− zKτ2(ηc)|

= | −B(z)(1− ηc)− C(z)(1 + ηc) + zKτ1(ηc)|
× | −B(z)(1 + ηc)− C(z)(1− ηc) + zKτ2(ηc)|
≥
(
−B(|z|)(1− ηc)− C(|z|)(1 + ηc) + |z|Kτ1(ηc)

)
×
(
−B(|z|)(1 + ηc)− C(|z|)(1− ηc) + |z|Kτ2(ηc)

)
= f2(|z|). (4.16)

Also, because of the triangle inequality, g2(|z|) ≥ |g2(z)|. It thus suffices to show that

f2(|z|) > g2(|z|), z ∈ ∂L, (4.17)

to prove that (4.5) has 2K roots for each combination of xi’s.
Let us now evaluate f2(|z|) along ∂L, so |z| = 1, and

f2(1) = (−A(1)−D(1))2 − η2c (A(1)−D(1))2

= A(1)2 + 2A(1)B(1) +B(1)2 − η2c (A(1)2 − 2A(1)B(1) +D(1)2)

= (1− η2c )(A(1)2 +D(1)2) + 2(1 + η2c )A(1)D(1)

≥ 4η2cA(1)D(1) = g2(1). (4.18)

Equality between f2(1) and g2(1) occurs only when η2c = 1. We can apply Rouché’s theorem
for all η2c < 1.
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In order to use the theorem when η2c = 1, we will essentially evaluate f2(|z|) and g2(|z|)
along the circle |z| = 1 − ε. To accomplish this, we use the Taylor expansion, f(1 − ε) =
f(1)− εf ′(1) + o(ε). We want to show that f2(1− ε) > g2(1− ε) for ε sufficiently small. As we
have already determined that f2(1) = g2(1), this leaves us to prove that

f ′2(1) < g′2(1). (4.19)

Using η2c = 1,

f ′2(1) = −4A(1)
(
C ′(1)−K(C(1) +D(1))

)
− 4D(1)

(
B′(1)−K(A(1) +B(1))

)
(4.20)

and
g′2(1) = 4(A(1)D′(1) +D(1)A′(1)). (4.21)

From the ergodicity condition (2.6) we then know that f ′2(1) < g′2(1). Therefore, Rouché’s
theorem is applicable and (4.5) has 2K roots for each combination of xi’s.

Remark 4.6. (Duplicate roots) We still need to resolve the issue of having twice as many
roots as needed, namely 2c+1K roots, which is a result of squaring (4.1). For every possible
value of ηc, say η∗c , −η∗c is also one of the values of ηc. Using η∗c or −η∗c will yield the same
roots β0, thus half of our roots are duplicates. If ηc = 0 we find 2K roots of which half are
duplicates as well. This leaves us with 2cK useful roots within the unit circle.

Remark 4.7. (Number of unique solutions) The sum
∑c

i=1 xi can take c + 1 unique values,
and using Lemma 4.5 and Remark 4.6 we see that there are K(c+ 1) unique roots β0. Notice,
however, that this still gives 2cK unique solutions in the form of βn0

0,j · · ·β
nc
c,j , as different values

of xi lead to different products, even though β0,j is the same. Here we have used Assumption 4.1
to make sure that the coefficient of xi in (3.7) is nonzero.

Let us now formulate the following theorem.

Theorem 4.8. For the symmetric multi-dimensional Markov processes with K ≥ 1, the equi-
librium distribution takes the form

p(n) =

2cK∑
j=1

αjβ
n0
0,jβ

n1
1,j · · ·β

nc
c,j , n ∈W, (4.22)

where β0,j are the roots of (4.1) within the unit circle and βi,j , i = 1, . . . , c are the corresponding
constants found from (3.7). The (possibly complex-valued) constants αj are determined from
the boundary equations and the normalization condition.

Proof. The proof is similar to the proof of Theorem 3.6. Lemma 4.5 together with Re-
mark 4.6 describe that we find exactly 2cK solutions β0. Using (3.7) we find 2cK products
βn0
0,j · · ·β

nc
c,j , j = 1, . . . , 2cK. These products are absolutely convergent, as |β0| < 1, and linearly

independent, according to Lemma 3.4. Then, Lemma 3.1 shows that the 2cK linearly indepen-
dent and absolutely convergent solutions can be used to express the equilibrium distribution
as a linear combination of these solutions.

5 Aggregated state concept

We now show how the results from the symmetric multi-dimensional Markov process are related
to a Markov process on a semi-infinite strip.
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m

n0

c

b2(c−m) + c2m

d0m

a1(c−m)

d−2m

a−3(c−m)

V

Figure 2: Transition rate diagram for a symmetric Markov process on the aggregated state
space.

For symmetric Markov processes, we can exploit the symmetry and transform the Markov
process to an aggregated state space characterized by (n0,m), where m =

∑c
i=1 ni. This state

space is a semi-infinite strip of states. The transition structure induced by the structure of the
multi-dimensional Markov process is as follows. For n0 ≥ K and k = −n0,−n0 + 1, . . . ,K:

• From (n0,m) to (n0 + k,m+ 1) with rate ak(c−m).

• From (n0,m) to (n0 + k,m) with rate bk(c−m) + ckm.

• From (n0,m) to (n0 + k,m− 1) with rate dkm.

• From (n0,m) to the states in V with total rate
∑−n0−1

k=−∞
(
(ak + bk)(c−m) + (ck + dk)m

)
.

Transitions from (n0,m) are only possible to states (n, l) with n ≤ n0 + K and l ∈ {m −
1,m,m+ 1}. Further, the rates ak and bk are scaled by a factor c−m, and the rates ck and dk
are scaled by a factor m. Observe the linear structure due to the symmetry in the transitions
in the dimensions ni, i = 1, . . . , c. The transition rate diagram is shown in Figure 2.

Note that the ergodicity condition of the model on the aggregated state space is identical
to the one derived for the symmetric multi-dimensional model, i.e. (2.6).

We are interested in the equilibrium distribution of this aggregated state space. We obtain
this distribution by using the basis of solutions of the multi-dimensional symmetric Markov pro-
cess. Translation of the basis solutions pj(n) = βn0

0,j · · ·β
nc
c,j to the aggregated state description

yields pj(n0,m) = βn0
0,jωj(m), where ωj(m) is given by

ωj(m) =
∑

n1+···+nc=m
βn1
1,j · · ·β

nc
c,j . (5.1)

Basis solutions that are equal up to a permutation of the last c factors are translated to exactly
the same basis solutions in the new state space description. Hence, we relabel the basis solutions
βn0
0,j · · ·β

nc
c,j , j = 1, . . . , 2cK such that the first K(c+ 1) solutions cannot be obtained from one

another by permuting the last c factors. Alternatively, one can only use the c+1 unique values
of ηc in (4.1) to obtain K(c+ 1) basis solutions. Hence, we obtain the reduced set of solutions
βn0
0,jωj(m), j = 1, . . . ,K(c+ 1). Then, Theorem 5.1 is a translation of Theorem 4.8 in terms of

the aggregated state space.
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Theorem 5.1. For symmetric multi-dimensional Markov processes with the aggregated state
space (n0,m), where m =

∑c
i=1 ni, the equilibrium distribution is of the form

p(n0,m) =

K(c+1)∑
j=1

γjβ
n0
0,jωj(m), n0 ∈ N0, m = 0, . . . , c, (5.2)

where β0,j are the unique roots of (4.1) within the unit circle and ωj(m) is given by (5.1).
The (possibly complex-valued) constants γj are determined from the boundary equations and
normalization condition.

Remark 5.2. (Generating function technique) In [3], a generating function technique is used
to obtain the equilibrium distribution for the same symmetric class of processes with K = 1,
where the generating function is over the finite index m. This technique can also be used
to obtain the equilibrium distribution for the symmetric case K ≥ 2, and in fact, leads to
equations for β0 that are the same as (4.1).

6 First passage times

In this section we study, for symmetric processes on the aggregated state space, the time until
first passage to the set V , given that at time t = 0, the process starts in state (n0,m) and
for t ≥ 0 transitions in the positive n0-direction are not possible (so no transitions with rate
ak, . . . , dk, k > 0 for t ≥ 0). The motivation for studying the first passage time is that for
many queueing systems, this time is exactly the waiting time of a customer arriving in state
(n0,m). Note that this equality holds due to the fact that we only consider the FCFS policy
for these queueing systems.

Let Fn0,m(t) denote the probability that the first passage time to the set V exceeds t, given
that the process starts in state (n0,m) at time t = 0.

Example 6.1. Consider Example 1.3 with c parallel identical servers and batch arrivals of
maximum size K. Let W denote the waiting time of a customer. By conditioning on the state
seen on arrival and using that Poisson arrivals see time averages (PASTA, see [20]), we obtain

P(W > t) =

∞∑
n0=0

c∑
m=0

p(n0,m)Fn0,m(t) =

K(c+1)∑
j=1

γj

∞∑
n0=0

c∑
m=0

βn0
0,jωj(m)Fn0,m(t) =: F (t). (6.1)

Hence, once Fn0,m(t) is known, we can determine the waiting time distribution.

Let level n0 denote the set of states {(n0, 0), . . . , (n0, c)}. We introduce a matrix notation
Λi, i = −n0,−n0 + 1, . . . ,K for the jumps from level n0 to level n0 + i, where n0 ≥ 0.
To exemplify, the (a, b)-th entry of Λi describes the rate of going from state (n0, a) to state
(n0 + i, b). By assuming a structure on the matrices Λi, i = 1, . . . ,K we are able to explicitly
derive the first passage time to the set V .

Assumption 6.2. Jumps in the positive n0-direction are of the form

Λi = λiI, i = 1, . . . ,K, (6.2)

for some λi ≥ 0 and I the identity matrix.

Note that for queueing systems, λiI, i = 1, . . . ,K, models the Poisson arrival rate of a
batch of size i. For the examples presented in Section 1.1 the above assumption holds. Note
that the assumption of Poisson arrivals is a natural assumption to make, otherwise (6.1) would
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not hold. By introducing a supplementary variable we are still able to analyze the waiting time
distribution if there are no Poisson arrivals, see Remark 6.5.

Using the above assumption, we are now able to express F (t) explicitly in terms of a finite
sum.

Theorem 6.3. The function F (t) defined by the right-hand side of (6.1) is explicitly given by

F (t) =

K(c+1)∑
j=1

γjωj1

1− β0,j
e
t
∑K
i=1(1−

1

βi
0,j

)λi
, t ≥ 0, (6.3)

with ωj =
(
ωj(0) ωj(1) · · · ωj(c)

)
.

Proof. We first derive a set of differential equations for the probabilities Fn0,m(t). For small
∆t ≥ 0 it holds that

Fn0(t+ ∆t) = Fn0(t) + ∆t

K∑
i=0

ΛiFn0(t) + ∆t

n0∑
k=1

Λ−kFn0−k(t) + o(∆t), (6.4)

where Fn0(t) =
(
Fn0,0(t) Fn0,1(t) · · · Fn0,c(t)

)T
. Dividing these equations by ∆t and letting

∆t tend to zero yields the backward Kolmogorov equations

F ′n0
(t) =

K∑
i=0

ΛiFn0(t) +

n0∑
k=1

Λ−kFn0−k(t), n0 ∈ N0 (6.5)

with initial condition Fn0(0) = 1, where 1 is column vector of size c+ 1 with all ones. To solve
these differential equations we use Laplace transforms. Let

F ∗n0
(s) =

∫ ∞
0

Fn0(t)e−st dt, s ≥ 0. (6.6)

Transforming the differential equations (6.5) for Fn0(t) gives

(
sI −

K∑
i=0

Λi

)
F ∗n0

(s) = 1 +

n0∑
k=1

Λ−kF
∗
n0−k(s). (6.7)

From these equations, the Laplace transforms F ∗n0
(s) can be solved recursively. Guided by

Example 6.1, we define

F (t) =

K(c+1)∑
j=1

γjωj

∞∑
n0=0

βn0
0,jFn0(t), t ≥ 0, (6.8)

and the Laplace transforms, for s ≥ 0,

G∗j (s) =
∞∑

n0=0

βn0
0,jF

∗
n0

(s), j = 1, . . . ,K(c+ 1), (6.9)

F ∗(s) =

∫ ∞
0

F (t)e−st dt =

K(c+1)∑
j=1

γjωjG
∗
j (s). (6.10)
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Multiplying (6.7) by βn0
0,jωj and summing over all n0 leads to

ωj

(
sI −

K∑
i=0

Λi

)
G∗j (s) =

ωj1

1− β0,j
+
∞∑

n0=0

n0∑
k=1

βn0
0,jωjΛ−kF

∗
n0−k(s)

=
ωj1

1− β0,j
+

∞∑
k=1

βk0,jωjΛ−k

∞∑
l=0

βl0,jF
∗
l (s). (6.11)

Since

0 =
∞∑

n0=0

βn0
0,jωjΛK−n0 = ωj

K∑
n0=0

βn0
0,jΛK−n0 + βK0,jωj

∞∑
n0=1

βn0
0,jΛ−n0 , (6.12)

we get

ωj

(
sI −

K∑
i=0

Λi

)
G∗j (s) =

ωj1

1− β0,j
− ωj

K∑
i=0

1

βi0,j
ΛiG

∗
j (s), (6.13)

and thus

ωj

(
sI −

K∑
i=1

(
1− 1

βi0,j

)
Λi

)
G∗j (s) =

ωj1

1− β0,j
. (6.14)

We now use Assumption 6.2 to simplify the above expression as

ωjG
∗
j (s) =

ωj1

1− β0,j

(
s−

K∑
i=1

(
1− 1

βi0,j

)
λi

)−1
. (6.15)

Multiplying by γj and summing over all j finally yields

F ∗(s) =

K(c+1)∑
j=1

γjωj1

1− β0,j

(
s−

K∑
i=1

(
1− 1

βi0,j

)
λi

)−1
. (6.16)

The inverse of the Laplace transform is readily obtained as (6.3).

Example 6.4. Again consider Example 1.3 with parallel identical servers with K = 2. Let λ1
be the arrival rate of single jobs and λ2 the arrival rate of jobs in batches of size two. Since
the first passage time to the set V is equal to the waiting time, we have that F (t) = P(W > t).
From Theorem 6.3 we may immediately conclude that the waiting time distribution is the
mixture of exponentials

P(W > t) =

K(c+1)∑
j=1

γjωj1

1− β0,j
e
t
(
(1− 1

β0,j
)λ1+(1− 1

β2
0,j

)λ2
)
, t ≥ 0. (6.17)

Remark 6.5. (
∑
IPP/M/1 queuing systems) We consider a single exponential server fed by a

superposition of independent, interrupted Poisson processes with rate λ, labeled
∑
IPP/M/1.

For an
∑
IPP/M/1 queueing system Assumption 2.1 does not hold. However, we can obtain

the waiting time distribution explicitly. This suggest that the class of models with an explicit
first passage time distribution in the form of mixtures of exponentials can possibly be extended
beyond the class satisfying Assumption 2.1. Let us denote the probability that an arriving
job sees the system in state (n0,m) by a(n0,m), where m now reflects the number of ‘active’
Poisson processes. For the

∑
IPP/M/1 queuing system this is equal to

a(n0,m) = Np(n0,m)mλ, (6.18)
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where N is a normalizing constant, given by N−1 =
∑

n,k p(n, k)kλ. Hence, by Theorem 5.1,
we get that

a(n0,m) = N

K(c+1)∑
j=1

γjβ
n0
0,jωj(m)mλ, (6.19)

where

N−1 =

K(c+1)∑
j=1

c∑
k=0

ωj(k)kλ

1− β0,j
. (6.20)

The waiting time distribution can then be expressed as

P(W > t) =

∞∑
n0=1

c∑
m=0

a(n0,m)Fn0,m(t), (6.21)

where Fn0,m(t) is an Erlang-n0 distribution with parameter µ. Note that for this specific
model, Fn0,m(t) does not depend on m and the set V is level 0. Substituting expression (6.19)
for a(n0,m) and the expression for the Erlang-distribution then yields

P(W > t) = N

K(c+1)∑
j=1

γj

c∑
m=0

ωj(m)mλ
β0,je

−(1−β0,j)µt

1− β0,j
, (6.22)

which is a sum of exponentials, similar to (6.3).

7 Conclusion

We have introduced and analyzed a class of structured multi-dimensional Markov processes
with one infinite dimension. By employing a separation of variables technique we showed that
the equilibrium distribution can be represented as a linear combination of product forms (in
terms of eigenvalues, and eigenvectors of the finite dimensions). We have presented an efficient
approach to compute the product forms. Using the separation of variables technique, we were
able to decompose the single equation for 2cK eigenvalues that arises from the classical spectral
expansion method to 2c equations for fewer eigenvalues per equation, yet still obtaining 2cK
eigenvalues. The eigenvectors are then found from the corresponding eigenvalues. The weights
of the linear combination were determined by a system of linear equations originating from
the boundary equations and normalization condition. For symmetric processes we were able
to aggregate the Markov process in terms of a process on a semi-infinite strip of states. The
equilibrium distribution of this aggregated process can be expressed in terms of the param-
eters of the equilibrium distribution of the multi-dimensional Markov process. We have also
shown that for these symmetric processes the first passage time to the set V is a mixture of
exponentials. For relevant queueing systems this gives the waiting time distribution.

There are at least two extensions of the class presented in this paper that seem worthwhile
to explore. The first extension concerns the case of nonsymmetric processes with K ≥ 2. It
is presently unclear how to prove that one obtains 2cK roots from 2c equations. The other
extension is to allow larger finite dimensions, i.e., letting ni ∈ {0, 1, . . . , r}, i = 1, . . . , c with
r > 1. Due to tractability of the results it was opted not to do this for this paper. We believe
that similar results can be obtained for these processes, however, one might need to move away
from the power terms βnii of the finite dimensions, or impose additional structure, such as, for
example, present in the Ek/Er/c queue [5].
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Rouché’s theorem in queueing theory. Operations Research Letters, 34(3):355–360, 2006.

[3] I.J.B.F. Adan and J.A.C. Resing. A class of Markov processes on a semi-infinite strip. In
B. Plateau, W.J. Stewart, and M. Silva, editors, Numerical Solution of Markov Chains,
pages 41–57, 1999.

[4] I.J.B.F. Adan and J.A.C. Resing. Multi-server batch-service systems. Statistica Neer-
landica, 54(2):202–220, 2000.

[5] I.J.B.F. Adan, W.A. Van De Waarsenburg, and J. Wessels. Analyzing Ek/Er/c queues.
European Journal of Operational Research, 92(1):112–124, 1996.

[6] J.R. Artalejo, A. Economou, and M. Lopez-Herrero. Analysis of a multiserver queue with
setup times. Queueing Systems, 51(1-2):53–76, 2005.

[7] D. Bertsimas and X.A. Papaconstantinou. Analysis of the stationary Ek/C2/s queueing
system. European Journal of Operational Research, 37(2):272–287, 1988.

[8] J.A. Buzacott and J.G. Shanthikumar. Stochastic Models of Manufacturing Systems, vol-
ume 4. Prentice Hall Englewood Cliffs, NJ, 1993.

[9] Bertsimas D. An exact FCFS waiting time analysis for a general class of G/G/s queueing
systems. Queueing Systems, 3(4):305–320, 1988.

[10] F.G. Foster. On the stochastic matrices associated with certain queuing processes. The
Annals of Mathematical Statistics, 24(3):355–360, 1953.

[11] A. Gandhi, M. Harchol-Balter, and I.J.B.F. Adan. Server farms with setup costs. Perfor-
mance Evaluation, 67(11):1123–1138, 2010.

[12] P.R. Garabedian. Partial Differential Equations. Wiley, 1967.

[13] E. Hille. Analytic Function Theory, volume 1. Ginn, 1959.

[14] I. Mitrani and R. Chakka. Spectral expansion solution for a class of Markov models:
Application and comparison with the matrix-geometric method. Performance Evaluation,
23(3):241–260, 1995.

[15] I.L. Mitrany and B. Avi-Itzhak. A many-server queue with service interruptions. Opera-
tions Research, 16(3):628–638, 1968.

[16] M.F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach.
Courier Dover Publications, 1981.

20



[17] S. Shapiro. The M -server queue with Poisson input and Gamma-distributed service of
order two. Operations Research, 14(4):685–694, 1966.

[18] J.H.A. De Smit. A numerical solution for the multi-server queue with hyper-exponential
service times. Operations Research Letters, 2(5):217–224, 1983.

[19] J.H.A. De Smit. The queue GI/M/s with customers of different types or the queue
GI/Hm/s. Advances in Applied Probability, 15(2):392–419, 1983.

[20] R.W. Wolff. Poisson arrivals see time averages. Operations Research, 30(2):223–231, 1982.

21


	1 Introduction
	1.1 Motivating examples
	1.2 Description of the class of processes
	1.3 Parameters of the motivating examples
	1.4 Structure of the paper

	2 Modeling assumptions
	3 Analysis of the equilibrium equations
	4 Symmetric processes
	5 Aggregated state concept
	6 First passage times
	7 Conclusion

