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Abstract

The paper is devoted to determine necessary and sufficient conditions for existence of solutions

to the problem inf

{

ess sup
x∈Ω

f(∇u(x)) : u ∈ u0 +W
1,∞
0

(Ω)

}

, when the supremand f is not necessarily

level convex. These conditions are obtained through a comparison with the related level convex
problem and are written in terms of a differential inclusion involving the boundary datum. Several
conditions of convexity for the supremand f are also investigated.

Résumé

Dans cet article on étudie des conditions nécessaires et suffisantes pour l’existence de solutions

pour le problème de minimisation inf

{

ess sup
x∈Ω

f(∇u(x)) : u ∈ u0 +W
1,∞
0

(Ω)

}

lorsque la fonction f

n’est pas une fonction convexe par niveaux. La stratégie utilisée pour obtenir ces conditions est
celle de comparer ce problème avec son problème relaxé. On obtient comme condition nécessaire et
suffisante une inclusion différentielle sur la donnée au bord. On étudie aussi plusieurs conditions de
convexité.

Keywords: Supremal functionals, differential inclusions, convexity.
MSC2010 classification: 49K21, 49J45, 26B25, 46N10.

1 Introduction

The direct method of the calculus of variations requires some lower semicontinuity of the functional to
minimize, which, in general, is related to some notion of convexity. In the lack of this ‘convexity’, the usual
procedure is to consider the relaxed problem, related to the original one, obtained by ‘convexification’ of
the ‘non-convex’ function. This leads in many problems to an understanding of the minimizing sequences
and of the infimum to the original problem, but it doesn’t ensure the problem has a solution.

In this paper we will investigate necessary and sufficient conditions for existence of solutions to

(P ) inf

{

ess sup
x∈Ω

f (∇u (x)) : u ∈ u0 +W 1,∞
0 (Ω)

}

,

when f lacks of the appropriate convexity notion. We restrict our attention to the so-called scalar case,
that is u is a scalar function, u : Ω ⊂ R

n −→ R, n ≥ 1, u0 ∈ W 1,∞(Ω). It is also possible to have u0
Lipschitz only defined on ∂Ω, u0 : ∂Ω −→ R. In this case, u0 shall be extended to Ω as a Lipschitz
function and the study of problem (P ) can be done according to the choice of the Lipschitz extension.

Functionals in the L∞ form, as above, provide a realistic setting to many physical problems in a
variety of contexts like nonlinear elasticity, chemotherapy or imaging. For a more detailed description
see [15] due to Barron-Jensen-Wang.
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Minimizing the functional in problem (P ) appears also as a generalization of the Lipschitz extension
problem (this is the case when f = | · | and u0 is a given Lipschitz function defined on ∂Ω) and was inten-
sively studied by Aronsson in the 1960’s, cf. [4, 5, 6, 7], also developing a theory on absolute minimizers,
see also the monograph of Aronsson-Crandall-Juutinen [8] and the references therein. The problem of
existence and uniqueness of Lipschitz extension has been addressed by many authors with different tools,
cf. for instance [32, 2, 3] among a wide literature. In recent years also other questions of the calculus
of variations, like lower semicontinuity, relaxation, homogenization, Lp approximations, dimensional re-
duction, Γ-convergence and supremal representation, have been addressed for L∞ functionals by several
authors: Barron-Liu [16], Barron-Jensen-Wang [14], Acerbi-Buttazzo-Prinari [1], Briani-Garroni-Prinari
[18], Bocea-Nesi [17], Prinari [36], [37], Cardialaguet-Prinari [20], Babadjian-Prinari-Zappale [9], Zappale
[40].

The functional defined in problem (P ) is known to be lower semicontinuous with respect to the weak*
topology of W 1,∞ (cf. [14] and [13], see also Theorems 3.1 and 3.2), if and only if f is a level convex
function, that is the level sets of f are convex (see Definition 2.3). This notion is usually known in areas
like convex analysis, optimization or economics as quasiconvexity. However, since quasiconvexity has a
different meaning in the calculus of variations, we prefer to use the present terminology.

Our main interest is the case in which f is not necessarily a level convex function. In this context
we establish necessary and sufficient conditions for existence of solutions to (P ). This is done through a
differential inclusion which is obtained in turn relating the original problem (P ) and the relaxed one

(P lc) inf

{

ess sup
x∈Ω

f lc (∇u (x)) : u ∈ u0 +W 1,∞
0 (Ω)

}

,

where f lc denotes the level convex envelope of f (cf. Definition 2.3). This was the procedure applied to
problems in the integral form

inf

{
∫

Ω

f (∇u (x)) dx : u ∈ u0 +W 1,∞
0 (Ω)

}

,

and we refer to Cellina [21], [22] and Friesecke [31] in the scalar case and to Dacorogna-Marcellini [26]
and Dacorogna-Pisante-Ribeiro [27] in the vectorial one. For further references, see also [24, Chapter 11].

In the present context of L∞ functionals, to our knowledge very few is known, and although our
problem is a scalar one, our approach is close to the one used in the vectorial case by Dacorogna-
Marcellini [26] and Dacorogna-Pisante-Ribeiro [27] for integral functionals. Moreover, our results are
sharp since differential inclusions in the scalar case are better understood than in the vectorial one. In
particular, we characterize existence of solutions to problem (P ) when the boundary datum is affine, say
u0 := uξ0 , with gradient ξ0 ∈ R

n , in terms of suitable ‘level convexity’ properties of the relaxed density
f lc around ξ0.

The paper is organized as follows. Section 2 is devoted to the study of the properties of a level

convex function and the level convex envelope of a function. This includes supremal Jensen’s inequality,
Carathéodory type results and several notions of strict level convexity, which are explored in view of
uniqueness results for the minimizing problems with affine boundary data. Moreover, this may also have
an independent interest for optimization purposes. Some prerequisites concerning differential inclusions
are also recalled in this section.

In Section 3 we state the relaxation result which will be one of the key results to achieve our necessary
and sufficient condition for existence. In particular, under suitable hypothesis, we show in Corollary 3.5
that

inf(P ) = inf(P lc).

Necessary and sufficient conditions for the existence of solutions to problem (P ) are provided and
discussed in Section 4. Our main general result is stated as Theorem 4.2 and it establishes that a
necessary and sufficient condition for existence of solutions to (P ) is

∃ u ∈ u0 +W 1,∞
0 (Ω) : f(∇u(x)) ≤ inf(P lc), a.e. x ∈ Ω.

2



Moreover, making use of well known results on differential inclusions, a sufficient condition to this last
one can be written as

∇u0(x) ∈ Linf(P lc)(f) ∪ intLinf(P lc)(f
lc), a.e. x ∈ Ω,

where Lc(g) denotes the set of level c of the function g, that is

Lc(g) := {ξ ∈ R
n : g(ξ) ≤ c} .

Then, with this characterization in mind, we explore both sufficient and necessary conditions. Regarding
sufficient conditions we consider both the cases u0 is an affine function or not. In particular, we can
always get existence of solutions in dimension n = 1, cf. Corollary 4.4, and for arbitrary dimension
n, and arbitrary data u0, if we require some regularity on the solution of the relaxed problem (P lc),
together with some constant properties on f lc, we can ensure existence of solutions to (P ), see Theorem
4.5. The constant hypothesis on f lc will be clarified later on Theorem 4.15, where necessary and sufficient
conditions to have a solution to (P ) with affine boundary datum u0(x) =< ξ0, x > +c, ξ0 ∈ R

n, will be
explored in terms of the set {ξ ∈ R

n : f lc(ξ) = f lc(ξ0)}.
Concerning necessary conditions we follow the ideas of Marcellini [34], Dacorogna-Marcellini [26],

and Dacorogna-Pisante-Ribeiro [27]. Our approach is done through uniqueness of solutions to a level
convex problem of type (P ). This can be achieved if the function f is strictly level convex (cf. Definition
2.12). However, as we observe, it is not reasonable to assume f lc to satisfy such property and, mimicking
Dacorogna-Marcellini [26], we introduce the notion of strict level convexity of a function f at a point
ξ0 ∈ R

n in at least one direction as: for some α ∈ R
n \ {0}

ξ0 = tγ + (1 − t)η, t ∈ (0, 1)

f(ξ0) = max{f(γ), f(η)}

}

=⇒ < γ − η, α >= 0.

This condition turns out to be a sufficient one for uniqueness of solution to level convex problems with
affine boundary datum, see Theorem 4.11. As a consequence, in Corollary 4.13, if f lc(ξ0) < f(ξ0), we
prove that f lc satisfies the above condition if and only if the original problem (P ) does not admit any
solution.

Finally, in the Appendix, we briefly address convexity notions in the supremal setting for the vectorial
case. In [14], it was investigated the right notion to ensure lower semicontinuity of the supremal functionals
in the vectorial case, together with supremal notions of polyconvexity and rank one convexity. Our goal
here is to clarify the relations between these notions.

2 Level Convexity and Differential Inclusions

All through the paper we will use the following notation for affine functions. Given a vector ξ0 ∈ R
n, by

uξ0Ω ⊂ R
n −→ R we denote a function such that ∇uξ0(x) = ξ0, a.e. x ∈ Ω, or equivalently uξ0(x) :=<

ξ0, x > +c, for some c ∈ R.

2.1 Properties of level convex functions and level convex envelopes

In this section we establish some results on level convex functions and level convex envelopes which are
well known in the usual convexity setting. The main reason to consider level convex functions here is
that it is, together with the lower semicontinuity of the function, a sufficient and necessary condition to
sequential weak* lower semicontinuity in W 1,∞(Ω) for functionals in the supremal form (see Theorem 3.1
below due to Barron-Jensen-Wang [14] and Theorem 3.2).

We first recall definitions and properties on lower semicontinuity. We refer to [19, Chapter 1], [30,
Chapter 3], [38, Section 7].

Definition 2.1. (i) A function f : Rn → [−∞,+∞] is said to be lower semicontinuous if the level sets
Lc(f) := {ξ ∈ R

n : f(ξ) ≤ c} are closed for every c ∈ R. Equivalently, f is lower semicontinuous if it is
sequentially lower semicontinuous, that is, if

f(ξ) ≤ lim inf f(ξn), for every ξn → ξ.

3



(ii) The lower semicontinuous envelope of a function f : Rn → [−∞,+∞] is the function lscf : Rn →
[−∞,+∞] defined by

lscf(ξ) = sup {g(ξ) : g : Rn → [−∞,+∞], g lower semicontinuous, g ≤ f} .

Proposition 2.2. Let f : Rn → [−∞,+∞], the lower semicontinuous envelope of f is a lower semicon-
tinuous function and

lscf(ξ) = inf {lim inf f(ξn) : ξn → ξ} , ∀ ξ ∈ R
n.

Moreover, for every ξ ∈ R
n there exists a sequence ξn converging to ξ, such that lscf(ξ) = lim f(ξn).

Now we recall the notion of level convexity and the related envelope. We observe that, in Convex
Analysis and Operational Research, level convexity is usually referred as quasiconvexity. We avoid here
this designation because, in the Calculus of Variations, quasiconvexity is known as a different concept.
For a reference in Operational Research, see [33].

Definition 2.3. (i) A function f : Rn → [−∞,+∞] is said to be level convex if the level sets of f ,
Lc(f), are convex for each c ∈ R. Equivalently a function f : Rn → [−∞,+∞] is level convex if and only
if for every ξ, η ∈ R

n and t ∈ [0, 1]

f(tξ + (1 − t)η) ≤ max{f(ξ), f(η)}.

(ii) The level convex envelope of a function f : Rn → [−∞,+∞] is the function f lc : Rn → [−∞,+∞]
defined by

f lc(ξ) = sup {g(ξ) : g : Rn → [−∞,+∞], g level convex, g ≤ f} .

(iii) The lower semicontinuous level convex envelope of a function f : Rn → [−∞,+∞] is the function
f lslc : Rn → [−∞,+∞] defined by

f lslc(ξ) = sup {g(ξ) : g : Rn → [−∞,+∞], g lower semicontinuous and

level convex, g ≤ f} .

Remark 2.4. (i) It is easily seen that f lc is a level convex function and that f lslc is a lower semicon-
tinuous and level convex function. Therefore, we can call these envelopes respectively the greatest level
convex function below f and the greatest lower semicontinuous level convex function below f .

(ii) It is easy to verify that f lslc ≤ f lc ≤ f and f lslc ≤ lscf ≤ f .
(iii) The function f(ξ) = −ξ2 defined in R provides an example of a function whose envelopes take

the −∞ value, indeed f lc ≡ f lslc ≡ −∞.
(iv) In general, f lc and f lslc don’t coincide. Indeed the characteristic function of R \ (0, 1) is a level

convex function, but it is not lower semicontinuous.
(v) In general a level convex function defined in R

n, with n > 1, may not be Borel measurable, in
fact one may consider the characteristic function of the complement of a convex set which is not Borel
measurable.

(vi) An equivalent formulation for f lslc is given by Volle’s envelope, f cγ, introduced in [39].

We establish some preliminary properties.

Proposition 2.5. Let f : Rn → [−∞,+∞].
(i) If f is a level convex function, then the lower semicontinuous envelope of f is still level convex,

that is lscf is level convex.
(ii) The following identity holds: f lslc = lsc(f lc).

Proof. To obtain condition (i) we consider ξ, η ∈ R
n such that lscf(ξ) ≤ c and lscf(η) ≤ c for some fixed

c ∈ R and we need to show that lscf(λξ + (1 − λ)η) ≤ c for every λ ∈ [0, 1]. Using Proposition 2.2 and
the level convexity of f we get, for certain sequences ξn → ξ and ηn → η,

lscf(λξ + (1− λ)η) ≤ lim inf f(λξn + (1− λ)ηn) ≤ lim inf max{f(ξn), f(ηn)}

≤ max{lscf(ξ), lscf(η)} ≤ c,

4



as desired.
To prove condition (ii) we start noticing that, since f lslc ≤ f lc, one has f lslc = lsc(f lslc) ≤ lsc(f lc),

where we have used the fact that f lslc is lower semicontinuous. On the other hand, by condition (i), lsc(f lc)
is level convex and since it is also lower semicontinuous and below f it follows that lsc(f lc) ≤ f lslc.

Next we relate the level convexity of a function with a generalization of Jensen’s inequality for the
supremal setting. The proof can be found in Barron [12, Theorem 30], (see also [14, Theorem 1.2], where
the theorem is stated under a lower semicontinuity hypothesis).

Theorem 2.6. A Borel measurable function f : Rn → R is level convex if and only if it verifies the
supremal Jensen’s inequality:

f

(
∫

Ω

ϕdµ

)

≤ µ− ess sup
x∈Ω

f(ϕ(x))

for every probability measure µ on R
d supported on the open set Ω ⊆ R

d, and every ϕ ∈ L1
µ(Ω;R

n).
In particular, considering the Lebesgue measure, if Ω is a set with finite Lebesgue measure,

f

(

1

|Ω|

∫

Ω

ϕ(x) dx

)

≤ ess sup
x∈Ω

f(ϕ(x)), ∀ ϕ ∈ L1(Ω;Rn).

From Carathéodory’s theorem, it follows the next characterization of the level convex envelope of a
function. For this characterization, under slightly different assumptions, we refer to [16, Theorem 5.5].

Theorem 2.7. Let f : Rn → (−∞,+∞] be a function such that f lc > −∞. Then

f lc(ξ) = inf

{

max
1≤i≤n+1

f(ξi) : ξ =

n+1
∑

i=1

λiξi, λi ≥ 0,

n+1
∑

i=1

λi = 1

}

, ∀ ξ ∈ R
n.

Moreover, if f is continuous and lim
|ξ|→+∞

f(ξ) = +∞, then the infimum above is indeed a minimum and

f lc is a continuous function. In particular, in this case, f lslc = f lc.

Proof. Let

h(ξ) := inf

{

max
1≤i≤I

f(ξi) : ξ =

I
∑

i=1

λiξi, λi ≥ 0,

I
∑

i=1

λi = 1, I ∈ N

}

, ∀ ξ ∈ R
n.

We start showing that f lc = h.

Observe that, since f lc is level convex and f lc ≤ f , if ξ =
I

∑

i=1

λiξi for some λi ≥ 0 such that
I

∑

i=1

λi = 1,

then f lc(ξ) ≤ max
1≤i≤I

f(ξi). From this we conclude that −∞ < f lc ≤ h.

Now we prove that h is level convex. Once this is proved, we achieve the identity f lc = h by definition
of f lc and because h ≤ f . Let c ∈ R, we need to show that Lc(h) is convex. Let ξ, η ∈ Lc(h) and
λ ∈ (0, 1), we have to show that h(λξ + (1 − λ)η) ≤ c. Since h > −∞ we just need to show that, given

ε > 0, we can find I ∈ N, λi ≥ 0, with
I

∑

i=1

λi = 1 and zi ∈ R
n such that λξ + (1 − λ)η =

I
∑

i=1

λizi and

max
1≤i≤I

f(zi) ≤ c+ ε. This follows easily from the fact that ξ, η ∈ Lc(h) and thus we have that f lc = h.

Next we show that I can be reduced to n+1 achieving the first assertion of the theorem. This follows

from Carathéodory’s theorem. Indeed, let ξ ∈ R
n and assume ξ =

I
∑

i=1

λiξi for some I > n+ 1, ξi ∈ R
n

and λi ≥ 0, with

I
∑

i=1

λi = 1. In particular, ξ ∈ co{ξ1, ξ2, ..., ξI} ⊂ R
n and, by Carathéodory’s theorem,

5



we can write ξ =

n+1
∑

j=1

µjξγ(j) for some µj ≥ 0, with

n+1
∑

i=1

µj = 1 and γ : {1, 2, ..., n+ 1} → {1, 2, ..., I} an

into function. Defining ηj = ξγ(j) we obviously have max
1≤j≤n+1

f(ηj) ≤ max
1≤i≤I

f(ξi) which shows our goal.

Now we show the assertion of the theorem saying that the infimum is attained as a minimum. Let ξ ∈

R
n and let λνi ≥ 0, with

n+1
∑

i=1

λνi = 1, and ξνi ∈ R
n be such that ξ =

n+1
∑

i=1

λνi ξ
ν
i , f

lc(ξ) = lim
ν→∞

max
1≤i≤n+1

f(ξνi ).

Without loss of generality we can assume max
1≤i≤n+1

f(ξνi ) = f(ξν1 ). By the assumption on the limit of f

at infinity we can reduce to the case where the sequences ξνi are bounded otherwise f lc(ξ) = +∞, thus
f(ξ) = +∞ and the minimum is attained through the trivial convex combination of ξ: ξ = 1 · ξ. In the
case where the sequences ξνi are bounded, we have, up to a subsequence, lim

ν→∞
ξνi = ξi and lim

ν→∞
λνi = λi,

for every i = 1, . . . , n+ 1. Clearly

n+1
∑

i=1

λi = 1 and

n+1
∑

i=1

λiξi = ξ. Using the continuity hypothesis on f , we

get f(ξ1) = lim
ν→∞

f(ξν1 ) ≥ lim
ν→∞

f(ξνi ) = f(ξi) for every i = 1, ..., n+ 1 and f lc(ξ) = f(ξ1).

Finally we show that f lc is continuous, under the continuity assumption on f and its behavior at
infinity. Let ξ, ξν ∈ R

n be such that lim
ν→∞

ξν = ξ. First we show that f lc(ξ) ≤ lim inf f lc(ξν). Without

loss of generality assume lim inf f lc(ξν) = lim f lc(ξν). From what was already proved, we can consider,

for each ν, λνi ≥ 0, with

n+1
∑

i=1

λνi = 1, and ξνi ∈ R
n such that ξν =

n+1
∑

i=1

λνi ξ
ν
i and f lc(ξν) = max

1≤i≤n+1
f(ξνi ).

Re-ordering if necessary the elements ξνi , we can assume max
1≤i≤n+1

f(ξνi ) = f(ξν1 ) and thus f lc(ξν) = f(ξν1 ).

We consider two cases. If, up to a subsequence, for some i, lim
ν→∞

|ξνi | = +∞ then the desired inequality

follows from the assumption that lim
|z|→∞

f(z) = +∞. Otherwise we can write, up to a subsequence, that

lim
ν→∞

ξνi = ξi and lim
ν→∞

λνi = λi. Observe that, the continuity of f implies that max1≤i≤n+1 f(ξi) = f(ξ1)

and thus
lim f lc(ξν) = lim f(ξν1 ) = f(ξ1) = max

1≤i≤n+1
f(ξi) ≥ f lc(ξ)

this last inequality following from the fact that ξ =

n+1
∑

i=1

λiξi and the first assertion of the present theorem.

To establish the continuity of f lc on ξ, it remains to show that f lc(ξ) ≥ lim sup f lc(ξν). Again, let’s assume

lim sup f lc(ξν) = lim f lc(ξν). Then, as before, we have ξ =
n+1
∑

i=1

λiξi for some λi ≥ 0, with
n+1
∑

i=1

λi = 1,

n+1
∑

i=1

λi = 1, ξi ∈ R
n and f lc(ξ) = max

1≤i≤n+1
f(ξi). Defining ξνi = ξi+ ξν − ξ, we have ξν =

n+1
∑

i=1

λiξ
ν
i and thus

f lc(ξν) ≤ max
1≤i≤n+1

f(ξνi ). Since lim
ν→∞

ξνi = ξi, the continuity of f implies that lim
ν→∞

f(ξνi ) = f(ξi) and thus

lim f lc(ξν) ≤ lim sup max
1≤i≤n+1

f(ξνi ) = max
1≤i≤n+1

f(ξi) = f lc(ξ),

as desired.

In particular, we get the following characterization of the convex hulls of the level sets of a function.

Corollary 2.8. Let f : Rn → (−∞,+∞] be a continuous function such that f lc > −∞ and lim
|ξ|→+∞

f(ξ) =

+∞, then
co {ξ ∈ R

n : f(ξ) ≤ c} =
{

ξ ∈ R
n : f lc(ξ) ≤ c

}

, ∀ c ∈ R.
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Remark 2.9. We can get the same assertion of the corollary if we assume f lower semicontinuous,

bounded from below and such that lim
|ξ|→∞

f(ξ)

|ξ|
= +∞. This is achieved by mimicking the proof but using

Theorem 2.10 below, instead of Theorem 2.7.

Proof. Of course the first set in the equality is included in the second one. Now let ξ ∈ R
n be such that

f lc(ξ) ≤ c. Then, by Theorem 2.7, there exist, for 1 ≤ i ≤ n+ 1, λi ≥ 0, ξi ∈ R
n, such that ξ =

n+1
∑

i=1

λiξi,

n+1
∑

i=1

λi = 1 and f lc(ξ) = max
1≤i≤n+1

f(ξi). Therefore ξ ∈ co {ξ1, ..., ξn+1} and max
1≤i≤n+1

f(ξi) ≤ c and thus

ξ ∈ co {η ∈ R
n : f(η) ≤ c} .

In the same spirit of [30, Theorem 4.98] for the convex setting, we can also get the following result
which provides in particular a characterization of f lslc. The proof is omitted.

Theorem 2.10. Let f : Rn → (−∞,+∞] be a function bounded from below such that lim
|ξ|→∞

f(ξ)

|ξ|
= +∞.

(i) If f is lower semicontinuous, then the level convex envelope of f is still lower semicontinuous, that
is f lc is lower semicontinuous.

(ii) The following identities hold:

f lslc(ξ) = lsc(f lc)(ξ) = (lscf)lc(ξ) =

= min

{

max
1≤i≤n+1

lscf(ξi) : ξ =

n+1
∑

i=1

λiξi, λi ≥ 0,

n+1
∑

i=1

λi = 1

}

, ∀ ξ ∈ R
n.

Remark 2.11. We observe that, in comparison with Theorem 2.7, there is no continuity hypothesis in
Theorem 2.10, but the growth hypothesis at infinity is stronger than the one considered in Theorem 2.7.

2.2 Strict level convexity

Next we introduce the notion of strict level convexity that we will relate later with uniqueness of solutions
to minimum problems.

Definition 2.12. A level convex function f : Rn → [−∞; +∞] is said to be strictly level convex if

f(tξ + (1 − t)η) < max{f(ξ), f(η)},

for every t ∈ (0, 1) and every ξ, η ∈ R
n, ξ 6= η.

The above definition can be given also if f is defined on a convex subset of Rn.
Clearly Definition 2.12 is more stringent than level convexity. In the remaining part of this subsection

we give a characterization of strict level convexity, known in Convex Analysis, and that will be exploited
in the sequel. We also introduce weaker conditions than strict level convexity.

We begin recalling some definitions and some results.

Definition 2.13. (i) A set C is said to be strictly convex if for every x, y ∈ ∂C with x 6= y, for every
z := tx+ (1− t)y, t ∈ (0, 1), z ∈ int(C).

(ii) A point x in a convex set C ⊂ R
n is an extreme point of C if and only if there exists no points

y, z ∈ C, both distinct from x such that x = (1 − t)y + tz for some t ∈ (0, 1). The set of extreme points
of C is called the profile of C and is denoted by Ext(C).

(iii) A point x in a convex set C ⊂ R
n is an exposed point of C if and only if there exists a supporting

hyperplane H, such that H ∩C = {x}. The set of exposed points of a convex set C is denoted by Exp(C).
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Remark 2.14. (i) Of course Exp(C) ⊂ Ext(C) for any convex set C ⊂ R
n. We observe however that

there may exist extreme points which are not exposed, even if, cf. [38, Theorem 18.6], the set Exp(C) is
dense in Ext(C). Consider, for example, the set

{

(x, y) ∈ R
2 : x2 + y2 ≤ 1

}

∪ ([0, 1]× [−1, 1]) .

(ii) When a convex set C is closed, strict convexity of C is equivalent to the condition that every
boundary point of C is an extreme point of C.

Proposition 2.15. Let C ⊂ R
n be a strictly convex set, then Ext(C) = Exp(C).

Remark 2.16. The converse of Proposition 2.15 is false as one can easily see considering the set Q =
[0, 1]2 in R

2, where Ext(Q) = {(0, 0), (0, 1), (1, 0), (1, 1)} = Exp(Q) and Q is not strictly convex.

Proof. Let x ∈ Ext(C), and assume by contradiction that x is not exposed. Since x is not exposed, for
every supporting hyperplane H at x, it results that there exists y 6= x, y ∈ H ∩ C. Clearly y ∈ ∂C, and
ty + (1 − t)x ∈ H ∩ C ⊂ ∂C, t ∈ (0, 1) (see for instance [38, Corollary 18.1.3]) and this contradicts the
strict convexity of C.

Now we introduce a notation.

Notation 2.17. Let f : Rn → [−∞,+∞] and c ∈ [−∞,+∞]. We define the set

Rc(f) := {x ∈ R
n : f(x) = c}.

The proof of the following result can be found in [29, Theorem 4.3].

Theorem 2.18. Let f be a real valued function defined on a convex set C in R
n. The function f is

strictly level convex if and only if for every c in the range of f the following conditions are verified:

(i) Lc(f) is convex,

(ii) Rc(f) ⊆ Ext(Lc(f)).

The previous characterization doesn’t ensure the strict convexity of Lc(f). To get this property we
need to assume the continuity of f .

Proposition 2.19. Let f be a real valued function defined on a convex set C in R
n. If f is strictly level

convex and continuous then for every c in the range of f , Lc(f) is closed and strictly convex for every
c ∈ R.

Proof. The closedness of Lc(f) is a consequence of the lower semicontinuity of f . By the level convexity
of f follows that Lc(f) is convex. It remains to prove its strict convexity.

To this end, by Remark 2.14 (ii), it will be enough to show that ∂Lc(f) ⊆ Ext(Lc(f)). By Theorem
2.18 it is known that Rc(f) ⊆ Ext(Lc(f)). Thus it will suffice to prove that ∂Lc(f) ⊆ Rc(f).

Let y ∈ ∂Lc(f). Then, by the continuity of f , f(y) ≤ c. Assume y /∈ Rc(f), that is f(y) < c. Again,
the continuity of f would imply that y ∈ int(Lc(f)) which is clearly a contradiction. That concludes the
proof.

Next we give several different characterizations of strict level convexity.

Proposition 2.20. Let f : Rn → (−∞,+∞] be a level convex function. Then f is strictly level convex
if and only if one of the following conditions is satisfied.

(i) f(tξ + (1− t)η) = max{f(ξ), f(η)} for some t ∈ (0, 1) implies ξ = η.

(ii) f

(

ξ +
1

2
η

)

= max {f(ξ), f(ξ + η)} implies η = 0.

(iii) In the case f is a Borel measurable and finite function,

f

(
∫

Ω

ϕdµ

)

< µ− ess sup
x∈Ω

f(ϕ(x)),

for every probability measure µ on R
n supported in the open set Ω ⊂ R

d and every nonconstant ϕ ∈
L1
µ(Ω;R

n).
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Remark 2.21. (i) In condition (ii), the value 1/2 can be replaced by any t ∈ (0, 1).
(ii) By Proposition 2.20 (iii), we observe that if a Borel measurable function f is strictly level convex

then whenever
ess sup
x∈Ω

f(ξ0 +Dϕ(x)) = f(ξ0), (2.1)

for some ϕ ∈ W 1,∞
0 (Ω;Rm), ϕ is necessarily 0. Notice that we include both the scalar and the vectorial

case in this assertion.

Proof. It is clear that strict level convexity is equivalent to (i). Now we prove that (i) and (ii) are
also equivalent. If we assume (i) is true, then it suffices to consider vectors ξ and ξ + η, the convex
combination 1

2ξ +
1
2 (ξ + η) and apply (i) with t = 1

2 . Conversely, assume (ii) and let ξ and η be such
that f(tξ + (1 − t)η) = max{f(ξ), f(η)} for some t ∈ (0, 1). Suppose, by contradiction, that ξ 6= η. If
f(ξ) = f(η) then, since f is level convex, either f ≡ f(ξ) in the segment [ξ, tξ + (1 − t)η] or in the
segment [tξ + (1 − t)η, η]. But this contradicts (ii). If f(ξ) 6= f(η), without loss of generality, we can
assume f(η) < f(ξ). Then f ≡ f(ξ) in the segment [ξ, tξ + (1 − t)η]. Indeed, if f(ζ) < f(ξ) for some
ζ ∈ (ξ, tξ + (1− t)η) then,

f(tξ + (1− t)η) ≤ max{f(ζ), f(η)} < max{f(ξ), f(η)}

which is a contradiction. But f ≡ f(ξ) in [ξ, tξ + (1 − t)η] also contradicts (ii). This finishes the proof
of the equivalence between (i) and (ii).

Concerning condition (iii) first we observe that if f satisfies (iii), then for every t ∈ (0, 1) we can take
a function ϕ with value ξ on a set of µ-measure t and η (η 6= ξ) on a set of µ-measure (1 − t) to get
f(tξ + (1 − t)η) < max{f(ξ), f(η)}.

To prove the viceversa, we argue by contradiction. Assume f is strictly level convex and there exists
a nonconstant function ϕ ∈ L1

µ(Ω;R
n) such that

f

(
∫

Ω

ϕdµ

)

= µ− ess sup
x∈Ω

f(ϕ(x)) = c.

If K = {ζ : f(ζ) ≤ c}, i.e. K = Lc(f), the level convexity of f guarantees that K is convex and in
particular f(ϕ(x)) ≤ c for µ-a.e. x ∈ Ω, i.e. ϕ(x) ∈ K for µ-a.e. x ∈ Ω. Observe that by Theorem 2.18,
since

∫

Ω ϕdµ ∈ Rc(f),
∫

Ω ϕdµ ∈ ExtLc(f).
Now if E = {x : ϕ(x) 6=

∫

Ω
ϕdµ}, since ϕ is assumed nonconstant, µ(E) > 0. Moreover, observe that

1
µ(E)

∫

E
ϕdµ =

∫

Ω
ϕdµ. Clearly for a.e. x ∈ E : ϕ(x) ∈ K ′ := Lc(f) \ {

∫

Ω
ϕdµ}, which is still a convex

set (because it is a convex without an extreme point of it, cf. Theorem 2.18). Since K ′ is convex and
ϕ(x) ∈ K ′ for a.e. x ∈ E, it results that 1

µ(E)

∫

E
ϕdµ ∈ K ′, and this is obviously a contradiction.

In the remainder of this section we will investigate weaker conditions than strict level convexity.

Definition 2.22. A level convex function f : Rn → R is said to be strictly level convex at ξ0 ∈ R
n if for

every t ∈ (0, 1) and for every ξ 6= η: ξ0 = tξ + (1− t)η =⇒ f(ξ0) < max{f(ξ), f(η)}.

With the following result, we introduce a stronger notion than the one in Definition 2.22.

Proposition 2.23. Let f : Rn → R be a level convex function and let ξ0 ∈ R
n. Assume that

for every t ∈ (0, 1) and for every ξ 6= ξ0, f(tξ0 + (1− t)ξ) < max{f(ξ0), f(ξ)}. (2.2)

Then f is strictly level convex at ξ0.

Remark 2.24. The reverse implication of Proposition 2.23 is not true, to this end it is enough to consider
the function

ξ ∈ R → f(ξ) :=

{

−ξ if ξ ≤ 0,
0 if ξ > 0,

which is strictly level convex at 0, but it doesn’t satisfy condition (2.2) with ξ0 = 0.
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Proof. Let ξ0 = tξ+(1− t)η for t ∈ (0, 1) and ξ, η ∈ R
n. Let θ and ζ be in the segments (ξ, ξ0) and (ξ0, η)

respectively. By (2.2) f(θ) < max{f(ξ0), f(ξ)} and f(ζ) < max{f(ξ0), f(η)}. Observe that ξ0 ∈ (θ, ζ).
From the level convexity of f and the previous inequalities it results

f(ξ0) ≤ max{f(θ), f(ζ)} < max{f(ξ), f(η), f(ξ0)}.

Therefore max{f(ξ), f(η), f(ξ0)} = max{f(ξ), f(η)} and thus

f(ξ0) < max{f(η), f(ξ)}

which concludes the proof.

Proposition 2.25. A level convex function f : R
n → R is strictly level convex at ξ0 if and only if

ξ0 ∈ ExtLf(ξ0)(f).

Proof. Arguing by contraddiction, assume that f is strictly level convex at ξ0 but ξ0 6∈ ExtLf(ξ0)(f),
namely there exist ξ and η ∈ Lf(ξ0)(f) such that ξ0 = tξ + (1 − t)η, t ∈ (0, 1) and ξ 6= η, then
max{f(ξ), f(η)} > f(ξ0), and this contradicts the fact that ξ, η ∈ Lf(ξ0)(f).

Now we want to prove that if ξ0 ∈ ExtLf(ξ0)(f), then f is strict level convex at ξ0. If this was not
the case, there would exist ξ, η ∈ R

n, with ξ, η 6= ξ0 and t ∈ (0, 1) such that ξ0 = tξ + (1 − t)η and
f(ξ0) = max{f(ξ), f(η)} and so ξ, η ∈ Lf(ξ0)(f), which is a contradiction.

We finish this section with a notion, weaker than the strict level convexity at a point either in the
sense of Definition 2.22 or in the sense of (2.2). This will be useful to deal with the minimizing problems
in Section 4.

Definition 2.26. A level convex function f : Rn → R is said to be strictly level convex at ξ0 ∈ R
n in at

least one direction if there exists α ∈ R
n \ {0} such that: if for some γ and η ∈ R

n

{

ξ0 = tγ + (1− t)η, t ∈ (0, 1)

f(ξ0) = max{f(γ), f(η)}

then
< γ − η, α >= 0.

Remark 2.27. One could also give a definition of strict level convexity in at least one direction in the
spirit of (2.2). Precisely given ξ0 ∈ R

n there exists α ∈ R
n \ {0} such that: if for some η ∈ R

n

{

ξ = tξ0 + (1− t)η, t ∈ (0, 1)

f(ξ) = max{f(ξ0), f(η)}
(2.3)

then
< ξ0 − η, α >= 0.

Then an argument very similar to that employed to prove Proposition 2.23 and the fact that ξ0, γ and
η of Definition 2.26 are in the same line, guarantee that if f satisfies (2.3) at ξ0 then it is also strictly
level convex at ξ0 in at least one direction.

On the other hand, the opposite implication is false, that is, there are strictly level convex functions
at ξ0 in at least one direction but not in the sense of (2.3). To this end consider the function f(ξ) =
dist(ξ,R+ × R) defined for ξ ∈ R

2 and take ξ0 = (0, 0). Notice also that, this function, although being
strictly level convex at ξ0 in at least one direction, it is not strictly level convex at ξ0.

We have the following characterization of strict level convexity at a point in at least one direction.

Proposition 2.28. A lower semicontinuous and level convex function f : Rn → R is strictly level convex
at ξ0 in at least one direction if and only if ξ0 ∈ ∂Lf(ξ0)(f).

Remark 2.29. Actually, the lower semicontinuity hypothesis is only required to show that ξ0 ∈ ∂Lf(ξ0)(f)
is a sufficient condition for strict level convexity of f at ξ0 in at least one direction.

10



Proof. Assume f is strictly level convex at ξ0 in at least one direction. We will show that ξ0 ∈ ∂Lf(ξ0)(f).
Of course ξ0 ∈ Lf(ξ0)(f). Assume, by contradiction, that ξ0 ∈ intLf(ξ0)(f). Then f(ξ) ≤ f(ξ0) in
a neighborhood of ξ0. Let α be the direction given by Definition 2.26 and let η1, η2 be of the form
ηi = ξ0 + εiα for some εi ∈ R such that ηi belong to the neighborhood referred above. Then, by the level
convexity of f , f(ξ0) = max{f(η1), f(η2)}. But < η1 − η2, α > 6= 0 which contradicts the hypothesis.

Next we show the opposite implication. Assume that ξ0 ∈ ∂Lf(ξ0)(f). The lower semicontinuity of
f ensures that Lf(ξ0)(f) is closed. Notice that, since ξ0 ∈ ∂Lf(ξ0)(f), Lf(ξ0)(f) 6= R

n. Moreover, since
Lf(ξ0)(f) is also convex, there is α ∈ R

n \ {0}, such that < α, ξ0 >≥< α, ξ > for all ξ ∈ Lf(ξ0)(f). We
will show that f is strictly level convex at ξ0 in the direction α. Assume ξ0 = λξ + (1 − λ)η for some
λ ∈ (0, 1) and η 6= ξ such that η − ξ is collinear with α. Then at least one of ξ and η is not in the
set Lf(ξ0)(f), let’s say it is η. Then f(η) > f(ξ0) and thus f(ξ0) < max{f(η), f(ξ)}, showing that f is
strictly level convex at ξ0 in at least the direction α.

2.3 Differential inclusions

We recall that W 1,∞
0 (Ω) is the closure of C∞

0 (Ω) in W 1,1(Ω) intersected with W 1,∞(Ω).
In the sequel we recall two classical results stating necessary and sufficient conditions for existence of

solutions to differential inclusions for scalar valued functions. The results are due to Cellina [21], [22],
Friesecke [31]. See also Bandyopadhyay-Barroso-Dacorogna-Matias [11]. We observe that int coE stands
for the interior of the convex hull of the set E and we refer respectively to [24, Theorem 10.24] and [25,
Theorem 2.10] for the proofs.

Theorem 2.30. Let Ω ⊂ Rn be a bounded open set, E ⊂ R
n, ξ0 ∈ R

n and denote by uξ0 an affine

function such that ∇uξ0 = ξ0. If u ∈ uξ0 +W 1,∞
0 (Ω) is such that

∇u(x) ∈ E, a.e. x ∈ Ω,

then
ξ0 ∈ E ∪ int coE.

Theorem 2.31. Let Ω ⊂ R
n be a bounded open set and E ⊂ R

n. Let ϕ ∈ W 1,∞(Ω) satisfying

∇ϕ(x) ∈ E ∪ int coE, a.e. x ∈ Ω.

Then there exists u ∈ ϕ+W 1,∞
0 (Ω) such that

∇u(x) ∈ E, a.e. x ∈ Ω.

Moreover, given ε > 0, u can be chosen such that ||u− ϕ||L∞(Ω) ≤ ε.

Remark 2.32. The last assertion of the previous theorem follows from a more careful pyramidal con-
struction than the one present in [25, Theorem 2.10].

3 Relaxation Theorem

Consider the following two minimum problems

(P ) inf

{

ess sup
x∈Ω

f (∇u (x)) : u ∈ u0 +W 1,∞
0 (Ω)

}

(3.1)

and

(P lc) inf

{

ess sup
x∈Ω

f lslc (∇u (x)) : u ∈ u0 +W 1,∞
0 (Ω)

}

, (3.2)

where f is given, f lslc is the lower semicontinuous and level convex envelope of f , introduced in (iii)
of Definition 2.3, and u0 ∈ W 1,∞(Ω) is the boundary data. Notice that, if u0 is only defined on the
boundary of Ω, u0 : ∂Ω −→ R, and it is a Lipschitz function, we can extend it to all Ω and get a W 1,∞
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function. In this case, and in view of Theorem 4.2 below, the existence of solutions to problem (P ) can
be ensured depending on the choice of the extension.

The goal of this section is to show that

inf(P ) = inf(P lc).

This will result as a consequence of the relaxation Theorem 3.3 below.
Before that we recall that level convexity, together with lower semicontinuity is a necessary and

sufficient condition for sequential weak* lower semicontinuity in W 1,∞(Ω) for functionals in the supremal
form. The sufficient part is due to Barron-Jensen-Wang cf. [14, Theorem 3.3].

Theorem 3.1. Let f : Rn −→ R be a level convex and lower semicontinuous function and let Ω ⊂ R
n

be a bounded open set. Then the functional F (u) = ess sup
x∈Ω

f(∇u(x)) defined in W 1,∞(Ω) is sequential

weak* lower semicontinuous.

The necessary condition follows from [13, Theorem 3.5] (see also [1, Theorem 4.1]).

Theorem 3.2. Let f : Rn −→ R be a Borel function and let Ω ⊂ R
n be a bounded open set. If the

functional F (u) = ess sup
x∈Ω

f(∇u(x)) defined in W 1,∞(Ω) is sequentially weak* lower semicontinuous, then

f is lower semicontinuous and level convex.

Now we establish the relaxation theorem.

Theorem 3.3. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let f : Rn → R be a

continuous function satisfying
f(ξ) ≥ γ(|ξ|), ∀ ξ ∈ R

n, (3.3)

with γ : R+ → R
+ a continuous and increasing function such that lim

t→+∞
γ(t) = +∞. Let u0 ∈W 1,∞(Ω).

Define the functional F : u ∈ u0 +W 1,∞
0 (Ω) → ess sup

x∈Ω
f(∇u(x)), and let F be the relaxed functional of

F with respect to the weak ∗ convergence in W 1,∞(Ω), namely for every u ∈ u0 +W 1,∞
0 (Ω),

F (u) = inf

{

lim inf
h→+∞

F (uh) : uh ∈ u0 +W 1,∞
0 (Ω), uh ⇀ uweakly ∗ in W 1,∞(Ω)

}

.

Then
F (u) = ess sup

x∈Ω
f lslc(∇u(x)), ∀ u ∈ u0 +W 1,∞

0 (Ω).

Remark 3.4. A result similar to Theorem 3.3 was proved by Prinari [37, Theorem 2.6], with no boundary
condition. Our arguments are very similar so we omit them.

In the integral context, this type of results can be proved directly thanks to piecewise affine approxima-
tion arguments. In the supremal setting, sets of arbitrarily small measure are determinant to the value of
the functional and this kind of arguments is not well fitted. To show the relaxation Theorem 3.3 we need
to pass through the sequential weak ∗ lower semicontinuous envelope of the functional involved in problem
(P ), and we extended first this functional to C(Ω), as +∞ in the complement of u0 +W 1,∞

0 (Ω). For
the reader’s convenience we recall that a result devoted to this extension can be found in [36, Proposition
3.1], see also [28, Theorem 8.10 and Corollary 8.12]. We also observe that our setting entails that the
sequentially weak ∗ lower semicontinuous envelope of f coincides with the lower semicontinuous envelope
of the extended functional in C(Ω), with respect to the uniform tolopology.

Now we achieve the desired condition

inf(P ) = inf(P lc).

Corollary 3.5. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let f : Rn → R be a

continuous function satisfying condition (3.3). Let u0 ∈ W 1,∞(Ω) and let (P ) and (P lc) be the problems
(3.1) and (3.2), respectively. Then

inf(P ) = inf(P lc).
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Moreover, if the boundary condition is affine, say u0(x) = uξ0(x) for some ξ0 ∈ R
n, then

inf(P ) = f lslc(ξ0).

Remark 3.6. From this result we obtain that, for every ξ0 ∈ R
n,

f lslc(ξ0) = inf

{

ess sup
x∈Ω

f (∇u (x)) : u ∈ uξ0 +W 1,∞
0 (Ω)

}

. (3.4)

This formula represents an alternative and equivalent formulation for the lower semicontinuous and level
convex envelope of f , when f : Rn → R is continuous and satisfies suitable coerciveness assumptions.

On the other hand (3.4) is known as weak Morrey quasiconvexity (see [14, Definition 2.2] when Ω
is a cube). We observe that Corollary 3.5 entails that, at least in the scalar case, (5.1) holds in any
open set Ω, not necessarily a cube. Moreover, we observe that we don’t expect formula (3.4) to provide
a characterization to f lslc in the vectorial case. Indeed, the notions of level convexity and weak Morrey
quasiconvexity, in general, don’t coincide and we don’t expect them to coincide even under coercivity
assumptions.

Proof. We start proving the first equality. Clearly inf(P ) ≥ inf(P lc). To prove the converse inequality,
let F be the functional introduced in Theorem 3.3 and observe that the same theorem entails that
F (u) = ess sup

Ω
f lslc(∇u). Therefore, by the direct method of the calculus of variations, the infimum

appearing in (P lc) is indeed a minimum, since (3.3) entails the required coercivity condition and since F
is sequential weak ∗ lower semicontinuous. Thus we can write

min(P lc) = F (u),

for some u ∈ u0 +W 1,∞
0 (Ω).

By definition of F , we also have that there exists a sequence {un} ⊂ u0 +W 1,∞
0 (Ω), such that

F (u) = lim inf
n→+∞

F (un) ≥ inf(P ),

and that proves the first equality in the claim.
To prove the last assertion of the corollary we only need to observe that, if the boundary condition is

affine then the supremal Jensen’s inequality in Theorem 2.6 guarantees that uξ0 is a solution to problem
(P lc).

4 Necessary and Sufficient Conditions

In this section we will investigate necessary and sufficient conditions for existence of solutions to the
non-level convex problem (P ) introduced in Section 3, see equation (3.1). Before that we start with some
considerations on level convex problems.

Observe that, if f is a level convex function, then the solutions u to the related problem (P ) are
completely characterized by the following condition

{

u ∈ u0 +W 1,∞
0 (Ω)

f(∇u(x)) ≤ inf(P ), a.e. x ∈ Ω.
(4.1)

This characterization shall be compared with Theorem 1 in [21]. In the present supremal context and
for affine boundary condition u0 = uξ0 , the analogous result we should obtain is that for any solution u to
problem (P ), one has ∇u(x) ∈ F, a.e. x ∈ Ω if F is a face of the convex set Lf(ξ0)(f) containing ξ0 in its
relative interior. Since the relative interiors of the faces are disjoint, cf. [38, Theorem 18.2], Proposition
4.1 below, shows that Lf(ξ0)(f) is the only possible face containing ξ0 in its relative interior. Therefore
the analogous result to [21, Theorem 1] doesn’t give more information than what was stated in condition
(4.1).

The already mentioned Proposition 4.1, concerns uniqueness of solution to a level convex problem.
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Proposition 4.1. Let f : Rn −→ R be a Borel measurable level convex function and let (P ) be the related
problem defined in (3.1) with an affine boundary condition u0 = uξ0 , ξ0 ∈ R

n.
If (P ) admits a solution u 6= uξ0 , then ξ0 ∈ intLf(ξ0)(f).

Proof. Since f is a level convex function, by the supremal Jensen’s inequality inf(P ) = f(ξ0). Therefore,
if u is a solution to (P ), u 6= uξ0 , then, by (4.1), f(∇u(x)) ≤ f(ξ0), ∀ x ∈ Ω \ A, where A is a null
measure subset of Ω. Thus

S := {∇u(x) : x ∈ Ω \A} ⊂ {ξ : f(ξ) ≤ f(ξ0)},

this last set being convex. On the other hand, since

ξ0 =
1

|Ω|

∫

Ω

∇u(x) dx,

we get ξ0 ∈ coS. Repeating the argument of Theorem 10.24 in [24], we get ξ0 ∈ int coS = int coS ⊂
int{ξ : f(ξ) ≤ f(ξ0)}.

Now, we pass to the case of non-level convex problems. In the same spirit as before, we have the
following result. We observe that, in this case, we need to assume the continuity of the function in order
to apply the relaxation theorem of the previous section.

Theorem 4.2. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let f : Rn → R be a

continuous function satisfying (3.3). Let u0 ∈W 1,∞(Ω) and let (P ) and (P lc) be the problems (3.1) and
(3.2), respectively.

Then problem (P ) has a solution if and only if there exists u ∈ u0 +W 1,∞
0 (Ω) such that

f(∇u (x)) ≤ inf(P lc), a.e. x ∈ Ω. (4.2)

Moreover, if
∇u0(x) ∈ Linf(P lc)(f) ∪ intLinf(P lc)(f

lslc), a.e. x ∈ Ω (4.3)

then (P ) has a solution.
In particular, if u0 is affine, say u0 = uξ0 with ∇uξ0(x) = ξ0 ∈ R

n, then condition (4.2) reads

f(∇u (x)) ≤ f lslc(ξ0), a.e. x ∈ Ω. (4.4)

Moreover, still under the assumption that u0 = uξ0 is affine, problem (P) admits a solution if and only if

ξ0 ∈ Lf lslc(ξ0)(f) ∪ intLf lslc(ξ0)(f
lslc). (4.5)

Remark 4.3. (i) By the supremal Jensen’s inequality, the existence of u ∈ u0+W
1,∞
0 (Ω) satisfying (4.4)

is equivalent to the existence of u ∈ u0 +W 1,∞
0 (Ω) such that

ess sup
x∈Ω

f (∇u (x)) = f lslc(ξ0).

(ii) Observe that, for general u0, (4.3) is only a sufficient condition, while, for affine functions u0 it
is necessary and sufficient (cf. (4.5)).

(iii) If u0 is a Lipschitz function only defined on the boundary of Ω, u0 : ∂Ω −→ R, then condition
(4.3) can be replaced by condition (2.62) in [25, Theorem 2.17] to get a sufficient condition. Notice that,
from (4.2), we need to solve the differential inclusion ∇u ∈ E where E = {ξ ∈ R

n : f(ξ) ≤ inf(P lc)}.

Proof. We start proving the first equivalence stated in the theorem. Let u ∈ u0 +W 1,∞
0 (Ω) be a solution

to problem (P ). Then, by Corollary 3.5, it results that

ess sup
x∈Ω

f (∇u (x)) = inf(P lc),

hence f(∇u(x)) ≤ inf(P lc) for a.e. x ∈ Ω.
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To prove the reverse implication, it is enough to observe that

inf(P lc) ≤ inf(P ).

Then, that condition (4.3) is sufficient for existence of solutions to (P ), follows from (4.2), Theorem
2.31, and from Corollary 2.8, where the set E is given by Linf(P lc)(f).

Regarding condition (4.4), it suffices to observe that, by the supremal Jensen’s inequality, cf. Theorem
2.6, f lslc(ξ0) = inf(P lc).

For what concerns the last statement, condition (4.5), we observe that it follows from Theorems 2.30
and 2.31 and from Corollary 2.8, where the set E is given by Lf lslc(ξ0)(f).

As we will see in the next result, in dimension n = 1, for sufficiently regular f , problem (P ) with an
affine boundary condition, always admits a solution. This is not true for n > 1 as Example 4.7 shows.

Corollary 4.4. Let Ω ⊂ R be a bounded open set and let f : R → R be a continuous function satisfying
(3.3). Then problem (P ) introduced in (3.1) admits a solution for every u0 : ∂Ω −→ R.

Proof. Let u0 : ∂Ω −→ R. Since Ω ⊂ R, we can write Ω = ∪i∈NΩi with Ωi disjoint open intervals. In
each of these intervals consider the affine functions uξi , for some ξi ∈ R, such that uξi = u0 on ∂Ωi. Once
proved the existence of solution to each problem

(Pi) inf

{

ess sup
x∈Ωi

f (u′(x)) : u ∈ uξi +W 1,∞
0 (Ωi)

}

,

say ui ∈ uξi +W 1,∞
0 (Ωi), one gets the existence of solution to (P ) patching together the functions ui in

each interval Ωi.
It remains to prove the existence of solution to each problem (Pi). To achieve this it will be enough to

show that every ξi ∈ R verifies (4.5) with ξ0 replaced by ξi. Of course, ξi ∈ Lf lslc(ξi)(f
lslc) = coLf lslc(ξi)(f),

by Corollary 2.8. If ξi ∈ Lf lslc(ξi)(f), the existence is proven. So, without loss of generality, we may assume
that ξi ∈ coLf lslc(ξi)(f) \ Lf lslc(ξi)(f). Since we are working on the real line, we immediately conclude

that ξi ∈ intLf lslc(ξi)(f
lslc) = int coLf lslc(ξi)(f): in R, the elements of the boundary of a convex hull

belong either to the original set or to the complement of the convex hull. Thus we proved (4.5) and the
proof is finished.

The following result provides a sufficient condition for existence of solutions to a non-level convex
problem with more general boundary data.

Theorem 4.5. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let f : Rn → R be a

continuous function satisfying (3.3). Let u0 ∈W 1,∞(Ω) and let (P ) and (P lc) be the problems (3.1) and
(3.2), respectively. Assume that problem (P lc) admits a solution u ∈ C1

piec(Ω).

Then, if f lslc is constant in each connected component of the set where f lslc < f , problem (P ) has a
solution.

Remark 4.6. The same assertion can be proved under the weaker assumption that f lslc is constant in
the connected components of {ξ : f lslc(ξ) < f(ξ)} whose intersection with {∇u(x) : x ∈ Ω′} is nonempty
for some Ω′ ⊂ Ω with positive measure.

Proof. By the continuity hypothesis on f and the coercivity condition (3.3), Theorem 2.7 implies that
f lslc is also continuous and thus the set

A :=
{

ξ ∈ R
n : f lslc(ξ) < f(ξ)

}

is open. Therefore we can split A in a disjoint countable union of open sets Ai, i ∈ N. By hypothesis,
in each of these sets Ai, the function f lslc is constant. Since the function ξ 7→ γ(|ξ|) is level convex
and continuous, f lslc ≥ γ(| · |). Thus lim

|ξ|→+∞
f lslc(ξ) = +∞ and this, together with the fact that f lslc is

constant in Ai implies that the sets Ai are bounded.
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Now, we split the set Ω in several parts:

Ω0 := {x ∈ Ω : ∇u(x) /∈ ∪i∈NAi}

Ωi := {x ∈ Ω : ∇u(x) ∈ Ai} , i ∈ N

and we construct the solution in the following way. For each i ∈ N consider vi ∈ u+W 1,∞
0 (Ωi) such that

∇vi ∈ ∂Ai, this exists by Theorem 2.31 and since Ai being open and bounded, is contained in int co ∂Ai.
Define

u(x) :=

{

u(x), if x ∈ Ω0,

vi(x), if x ∈ Ωi, i ∈ N.

One has u ∈ u0 +W 1,∞
0 (Ω). Moreover, since f lslc is constant on each Ai, by the continuity of f lslc,

it is constant on Ai. On the other hand, since Ai are open, on their boundary, f lslc coincides with f .
Therefore, since ∇vi ∈ ∂Ai,

ess sup
x∈Ωi

f (∇vi (x)) = ess sup
x∈Ωi

f lslc (∇vi (x)) = ess sup
x∈Ωi

f lslc (∇u (x))

where we have used the fact that ∇u ∈ Ai in Ωi.
Therefore

ess sup
x∈Ω

f (∇u (x)) = max

{

ess sup
x∈Ω0

f (∇u (x)) , ess sup
x∈Ωi

f (∇vi (x)) , i ∈ N

}

= ess sup
x∈Ω

f lslc (∇u (x)) = inf(P lc)

and the existence of solution to problem (P ) follows from Theorem 4.2.

The following example shows many of the features of the results stated in this section.

Example 4.7. Let f : (ξ1, ξ2) ∈ R
2 → (ξ21 − 1)2 + ξ22 ∈ R. Clearly f ≥ 0, and f(ξ1, ξ2) = 0 if and only if

(ξ1, ξ2) = ±(1, 0). Since f ≥ 0 then f lslc ≥ 0, and thus, using Corollary 2.8,

{

f lslc = 0
}

= L0(f
lslc) = coL0(f) = [−1, 1]× {0},

which has empty interior.
This example also shows that in dimension n > 1 there are cases where the gradient of the boundary

datum doesn’t belong neither to Lf lslc(ξ0)(f) nor to intLf lslc(ξ0)(f
lslc) and thus the inclusion (4.5) doesn’t

admit any solution. By Theorem 4.2, if u0 = uξ0 is such that ∇u0(x) ≡ ξ0 ∈ (−1, 1)× {0}, considering
the minimizing problem (P ) related to the function f with the boundary data u0 = uξ0 , we can ensure
that (P ) doesn’t have a solution.

We also observe that, in this example, problem (P lc) with affine boundary condition u0 = uξ0 , such

that ∇u0(x) ≡ ξ0 ∈ (−1, 1) × {0} has exactly one solution. Indeed, if u ∈ u0 +W 1,∞
0 (Ω) is a solution

to (P lc), then f lslc(∇u(x)) = 0, a.e. x ∈ Ω and thus ∇u(x) ∈ [−1, 1]× {0}, a.e. x ∈ Ω. In particular,
∇u(x) − ξ0 is orthogonal to the vector (0, 1), a.e. x ∈ Ω. It then follows by [24, Lemma 11.17], that
u ≡ uξ0 , showing that uξ0 is the only solution to (P lc).

As we will see in Proposition 4.8, the fact that (P lc) admits a unique solution, and the boundary
condition is such that ξ0 ∈ {f lslc < f} implies that (P ) has no solution.

We will now turn our attention to necessary conditions for existence of solutions to a non-level convex
problem of the form (P ) with affine boundary data. Our strategy will be based on uniqueness of solutions
to the relaxed problem (P lc), as considered for problems in the integral form by Marcellini [34], Dacorogna-
Marcellini [26], and Dacorogna-Pisante-Ribeiro [27]. The basis to our research is the following result.

Proposition 4.8. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let f : Rn → R be a

continuous function satisfying (3.3). Let (P ) and (P lc) be the problems (3.1) and (3.2), respectively, with
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the affine boundary condition uξ0(x) = ξ0 · x+ c. Assume that f lslc(ξ0) < f(ξ0) and assume f lslc satisfies
the condition

ess sup
x∈Ω

f lslc (∇u (x)) = f lslc(ξ0)

u ∈ uξ0 +W 1,∞
0 (Ω)







⇒ u = uξ0 ,

which means that problem (P lc) has a unique solution.
Then problem (P ) has no solution.

Proof. Since f lslc ≤ f , if u is a solution to (P ) then, by Corollary 3.5, it is also a solution to (P lc).
Therefore, by the uniqueness of solutions to (P lc) stated in the hypothesis, u = uξ0 . This contradicts the
fact that f lslc(ξ0) < f(ξ0) and we conclude that a solution to (P ) cannot exist.

In view of the result just stated, we want to find conditions ensuring uniqueness of solution to level
convex problems of type (P ), defined in (3.1). We start observing that the strict level convexity of the
function related to the minimizing problem (P ) provides that uniqueness, if the boundary condition is
affine. Indeed this follows from Remark 2.21 and applies to both the scalar and the vectorial cases. It is
interesting to observe that condition (2.1), involved in Proposition 4.8 is the counterpart in the supremal
setting of the notion of strict quasiconvexity at ξ0 which guarantees uniqueness of solutions in the integral
framework (see Definition 11.9 and Theorem 11.11 in [24].) Therefore, if f lslc was strictly level convex
then, for affine boundary conditions, problem (P lc), defined in (3.1), would have a unique solution and
problem (P ), defined in (3.2), would have no solution. However, we show in the next proposition that we
can’t expect f lslc 6= f to be strictly level convex and thus we will work with a weaker notion.

Proposition 4.9. Let f : Rn → R be a continuous function such that f lc > −∞ and lim
|ξ|→+∞

f(ξ) = +∞

and let ξ0 ∈ R
n be such that f lslc(ξ0) < f(ξ0). Then f lslc is constant in a segment line containing ξ0

(possibly ξ0 is an extremity of the segment line).

Remark 4.10. The same assertion can be proved if we assume f to be lower semicontinuous, bounded

from below, and such that lim
|ξ|→+∞

f(ξ)

|ξ|
= +∞. The proof in this case is the same that we present below,

but one shall invoke Theorem 2.10 (ii), instead of Theorem 2.7.

Proof. By Theorem 2.7, f lslc(ξ0) = max{f(ξ1), . . . , f(ξn+1)} for some ξi ∈ R
n, i = 1, . . . , n+1, such that

ξ0 = λ1ξ1 + · · · + λn+1ξn+1 with λi ≥ 0, i = 1, . . . , n + 1 and
∑n+1

i=1 λi = 1. Moreover, we can assume
λi > 0 for every i = 1, . . . n+1 (notice that some ξi can be equal) and since f lslc(ξ0) < f(ξ0), we conclude
that ξ0 belongs to the relative interior of the convex hull co{ξ1, . . . , ξn+1}. Therefore we can consider a
segment line [η, ζ] contained in this relative interior such that ξ0 ∈ (η, ζ). By the level convexity of f lslc,

f lslc(ξ) ≤ max{f lslc(ξ1), . . . , f
lslc(ξn+1)} ≤ max{f(ξ1), . . . , f(ξn+1)} = f lslc(ξ0), ∀ ξ ∈ [η, ζ].

Finally, again by the level convexity of f lslc, one has f lslc ≡ f lslc(ξ0) either in [η, ξ0] or in [ξ0, ζ], as
wished.

In the spirit of [26], we will deal with a weaker notion of strict level convexity, the strict level convexity
in at least one direction, which was introduced in Section 2.2. We have the following result.

Theorem 4.11. Let Ω ⊂ R
n be a bounded open set, let ξ0 ∈ R

n, and let f : Rn −→ R be a Borel
measurable and level convex function which is strictly level convex at ξ0 in at least one direction. Then,
uξ0 is the only solution to the problem

inf

{

ess sup
x∈Ω

f (∇u (x)) : u ∈ uξ0 +W 1,∞
0 (Ω)

}

. (4.6)
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Proof. Of course, by the supremal Jensen’s inequality, uξ0 is a solution of the minimizing problem and
thus another solution u satisfies ess sup

x∈Ω
f (∇u (x)) = f(ξ0). Let us fix a representative of u still denoted

by u.
One has, in particular, f(Du(x)) ≤ f(ξ0), ∀ x ∈ Ω \A, where A is a null measure subset of Ω. Thus

S := {Du(x) : x ∈ Ω \A} ⊂ {ξ : f(ξ) ≤ f(ξ0)}.

On the other hand, as in the proof of Proposition 4.1 we get ξ0 ∈ int coS = int coS.
Now let x ∈ Ω\A. Then either Du(x) = ξ0 or Du(x) 6= ξ0. If x is in this last case we do the following.

Since ξ0 ∈ int coS, we can write
ξ0 = tDu(x) + (1− t)η

for some η ∈ coS with η 6= ξ0 and t ∈ (0, 1). By the level convexity of f

f(ξ0) ≤ max{f(Du(x)), f(η)} ≤ f(ξ0).

Thus, max{f(Du(x)), f(η)} = f(ξ0) and by the strict level convexity of f at ξ0 in at least one direction
one gets < Du(x)− η, γ >= 0 for some γ ∈ R

n \ {0}. Since Du(x)− η and Du(x)− ξ0 are colinear, then
< Du(x)− ξ0, γ >= 0.

So we have obtained < Du(x)− ξ0, γ >= 0, ∀ x ∈ Ω \A and repeating the argument in [26, Theorem
5.1] one gets u = uξ0 which proves the desired uniqueness of solution.

Remark 4.12. Another proof for Theorem 4.11 can be obtained via geometric arguments on the level
sets. Namely Proposition 2.28 ensures that ξ0 ∈ ∂Lf(ξ0)(f), and thus by Proposition 4.1, (4.6) admits
just the affine solution.

It is worth to observe also that Theorem 4.11 provides a result analogous to [24, Proposition 11.14]
(where the notion of strict quasiconvexity has been introduced and compared with strict convexity in at
least one direction in order to guarantee uniqueness of solutions to integral vectorial minimum problems).
In fact one can read (2.1) as a strict weak Morrey quasiconvexity, and deduce that this condition is weaker
than strict convexity at a point in at least one direction.

Going back to the non-level convex problems we can state the following result which shows that, the
strict level convexity at ξ0 in at least one direction for f lslc, with f lslc(ξ0) < f(ξ0), is the characterizing
feature for non existence of solutions to problem (P ).

Corollary 4.13. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary, let ξ0 ∈ R

n, and let
f : Rn −→ R be a continuous function satisfying (3.3). Assume that f lslc(ξ0) < f(ξ0). Consider problem
(P ) with u0 = uξ0 . Then problem (P ) admits a solution if and only if f lslc is not strictly level convex at
ξ0 in any direction.

Remark 4.14. Under the assumptions of the corollary, we can state more precisely that, if f lslc is strictly
level convex at ξ0 in at least one direction, then problem (P lc) has exactly one solution and problem (P )
has no solution. This follows from Theorem 4.11 and Proposition 4.8, as mentioned in the proof below.
If f is also lower semicontinuous, Propositions 4.1 and 2.28 ensure that strict level convexity at ξ0 in at
least one direction is equivalent to strict weak Morrey quasiconvexity at ξ0.

Proof. The fact that if (P ) has a solution then f lslc is not strictly level convex at ξ0 in any direction is
an immediate consequence of Theorem 4.11 and Proposition 4.8.

Now we prove the reverse implication. Assume f lslc is not strictly level convex at ξ0 in any direction.
Then, by Propostion 2.28, ξ0 6∈ ∂Lf lslc(ξ0)(f

lslc), being an interior point of this set. Theorem 4.2, (4.5)
ensures then that (P ) has a solution.

Our previous results lead to the following theorem, which intends to characterize the set Rf lslc(ξ0)(f
lslc)

(cf. Notation 2.17) near the point ξ0, for non level convex problems admitting a minimizer and with affine
boundary data u0 = uξ0 . The result is the analogous version to [24, Theorem 11.26] for the supremal
setting.
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Theorem 4.15. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary, let ξ0 ∈ R

n, and let
f : Rn −→ R be a continuous function satisfying (3.3). Assume that f lslc(ξ0) < f(ξ0). Let K := {ξ ∈
R

n : f lslc(ξ) < f(ξ)} and assume that K is connected, otherwise we replace K by its connected component
containing ξ0. Consider problem (P ) with u0 = uξ0 .

(i) [Necessary condition.] If (P ) has a minimizer, then there exists ν ∈ R
n \ {0} and ε > 0 such that

f lslc is constant in the set {ξ ∈ Bε(ξ0) : < ξ − ξ0, ν >≥ 0} ⊂ Rf lslc(ξ0)(f
lslc).

(ii) [Sufficient condition.] If there exists E ⊂ ∂K such that ξ0 ∈ int co(E) and f lslc
∣

∣

{ξ0}∪E is constant
then (P ) has a solution.

Proof. To prove the necessary part we start observing that, by Corollary 4.13, if (P ) admits a mini-
mizer, then f lslc is not strictly level convex at ξ0 in any direction. Then, by Proposition 2.28, ξ0 ∈
intLf lslc(ξ0)(f

lslc). Let ε > 0 be such that Bε(ξ0) ⊂ Lf lslc(ξ0)(f
lslc) and consider, for each n ∈ N, the

convex sets

Cn :=

{

ξ ∈ Bε(ξ0) : f
lslc(ξ) ≤ f lslc(ξ0)−

1

n

}

.

Let
C :=

⋃

n∈N

Cn =
{

ξ ∈ Bε(ξ0) : f
lslc(ξ) < f lslc(ξ0)

}

.

Observe that C, being an increasing sequence of convex sets, it is also a convex set. Moreover, by
Theorem 2.7, f lslc is continuous and thus C is open. If C is empty, it means that f lslc is constant
in Bε(ξ0). Otherwise, applying a separation result for the convex open set C, one gets the existence
of ν ∈ R

n \ {0} such that < ξ0 − ξ, ν >< 0 for all ξ ∈ C. Therefore, for all ξ ∈ Bε(ξ0) such that
< ξ0 − ξ, ν >≥ 0 one has f lslc(ξ) = f lslc(ξ0), as wished.

The sufficient part is proved observing that, by Theorem 2.31, there exists u ∈ uξ0 +W 1,∞
0 (Ω) such

that ∇u ∈ E ⊂ ∂K for a.e. x ∈ Ω. Since f lslc = f on ∂K, we have f(∇u(x)) = f lslc(∇u(x)) for a.e.
x ∈ Ω and since f lslc is constant in {ξ0} ∪ E, we have

ess sup
x∈Ω

f(∇u(x)) = ess sup
x∈Ω

f lslc(∇u(x)) = f lslc(ξ0),

which, by Theorem 4.2, ensures that (P ) has a solution.

Remark 4.16. We observe that (as very well emphasized by Crandall [23] and Aronsson-Crandall-
Juutinen in [8]) that given u0 ∈ W 1,∞(Ω), and f : Rn → R continuous and strict level convex, then the
functional

F : u ∈ C(Ω) →











ess sup
x∈Ω

f(∇u(x)) if u ∈ u0 +W 1,∞
0 (Ω),

+∞ otherwise,

is in general not strictly level convex as a functional, i.e. it does not satisfy F (u) < max{F (u1), F (u2)},
for every u = λu1 + (1 − λ)u2, u1, u2 ∈ u0 +W 1,∞

0 (Ω), λ ∈ (0, 1), even when n = 1. This is in fact the
case of the minimum problem arising when looking for the minimal Lipschitz extension, where in fact the
density f defined as f(·) := | · | is strictly level convex, but the minimizer is not unique. On the other
hand, our previous results (cf. in particular Remark 2.21, Proposition 4.8 and Theorem 4.11) show (also
in the vectorial case) that if u0 is affine, namely u0 := uξ0 then we have a unique solution to the problem

inf

{

ess sup
x∈Ω

f(∇u(x)) : u ∈ uξ0 +W 1,∞
0 (Ω)

}

.

We also observe that the continuity and strict level convexity of a function f : Rn → R, satisfying
(3.3), is sufficient to ensure the uniqueness of solution to the minimization problem

inf

{

ess sup
x∈Ω

f(u(x)) : u ∈ L∞(Ω;Rn)

}

.

Moreover, this unique solution is a constant function. Indeed, the coercivity condition and the continuity of
f implies the existence of a global minimum to f and the strict level convexity ensures that this minimum
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is attained in only one point, say ξ0 ∈ R
n. Therefore u(x) ≡ ξ0 is a solution to the minimization problem

and it is obviously the only solution, since any other solution v satisfies ess supx∈Ω f(v(x)) = f(ξ0) and
this implies that v(x) = ξ0 for a.e. x ∈ Ω.

5 Appendix

In this section we make some considerations concerning the vectorial case, that is when f : Rm×n → R.
We also correct some statements by Barron-Jensen-Wang in [14]. In the vectorial case the necessary and
sufficient condition for sequential weak * lower semicontinuity of the supremal functional is the so called
(strong) Morrey quasiconvexity as proved by Barron-Jensen-Wang [14, Theorems 2.6 and 2.7]. We start
recalling this notion together with other notions also introduced in [14, Definitions 2.1, 2.2 and 3.7]. We
denote by Q the unitary cube of Rn.

Definition 5.1. (i) A Borel measurable function f : Rm×n → R is said to be strong Morrey quasiconvex
if for any ε > 0, for any ξ ∈ R

m×n, and any K > 0, there exists a δ = δ(ε,K, ξ) > 0 such that if
ϕ ∈ W 1,∞(Q;Rm) satisfies

‖∇ϕ‖L∞(Q) ≤ K, max
x∈∂Q

|ϕ(x)| ≤ δ,

then,
f(ξ) ≤ ess sup

x∈Q

f(ξ +∇ϕ(x)) + ε.

(ii) A function f : Rm×n → R is said to be weak Morrey quasiconvex if

f(ξ) ≤ ess sup
x∈Q

f(ξ +∇ϕ(x)), (5.1)

for every ξ ∈ R
m×n and every ϕ ∈W 1,∞

0 (Q;Rm).
(iii) A function f : Rm×n → R is level convex if f(tξ+(1− t)η) ≤ max{f(ξ), f(η)}, for every t ∈ [0, 1]

and for every ξ, η ∈ R
m×n.

(iv) A function f : Rm×n → R is rank one quasiconvex (rank one level convex) if for any ξ, η ∈ R
m×n

with rank(ξ − η) ≤ 1, f(tξ + (1− t)η) ≤ max{f(ξ), f(η)}, for every t ∈ [0, 1].

Remark 5.2. Clearly, as observed in [14], strong Morrey quasiconvexity implies weak Morrey quasicon-
vexity. However, it is not true that weak Morrey quasiconvexity implies rank one quasiconvexity, as it was
wrongly stated in [14, Proposition 3.8 and Corollary 3.9]. See Example 5.3. We will show in Theorem
5.5 below, that this statement is true if we assume the function to be upper semicontinuous.

Example 5.3. Let m ≥ 1 and n > 1. Let S := {ξ, η} ⊂ R
m×n such that rank(ξ − η) = 1 and let

f := 1−χS, where χS is the characteristic function of S. Of course f is not rank one quasiconvex. Let’s
see that f is weak Morrey quasiconvex:

f(ζ) ≤ ess sup
x∈Q

f(ζ +∇ϕ(x)), ∀ ζ ∈ R
m×n, ϕ ∈W 1,∞

0 (Q;Rm).

To this end it is enough to consider the case where ζ /∈ S. Then, the inequality follows from the fact that,
there is no ϕ ∈ W 1,∞

0 (Q;Rm) such that ∇ϕ(x) ∈ {ξ − ζ, η − ζ} a.e. in Q. Actually, if m = 1, this is a
consequence of Theorem 2.30. In the vectorial case m > 1, this follows from [10, Propositions 1 and 2].

We also observe that f is lower semicontinuous. So lower semicontinuity and weak Morrey quasicon-
vexity is not enough to ensure rank one quasiconvexity.

Next we show that if a function is upper semicontinuous and weak Morrey quasiconvex then it is
rank one quasiconvex. We start recalling a lemma due to Müller-Šverák [35, Lemma 2.1], which is a
generalization of a classical one and which will be useful for our proof.

Lemma 5.4. Let Ω ⊂ R
n be a bounded open set. Let t ∈ [0, 1] and ξ, η ∈ R

m×n with rank(ξ − η) = 1.
Let ϕ be an affine map such that

Dϕ(x) = tξ + (1− t)η, x ∈ Ω.
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Then, for every ε > 0, there exists u ∈ Affpiec(Ω;R
m) such that



















dist(Du(x), {ξ, η}) ≤ ε, a.e. x ∈ Ω,

sup
x∈Ω

|u(x)− ϕ(x)| ≤ ε,

u(x) = ϕ(x), x ∈ ∂Ω.

Theorem 5.5. (i) Let f : Rm×n → R be an upper semicontinuous and weak Morrey quasiconvex function,
then f is rank one quasiconvex. In particular, for m = 1, if f is upper semicontinuous and weak Morrey
quasiconvex, then f is level convex.

(ii) For m = 1, if f is continuous then f is weak Morrey quasiconvex if and only if f is level convex.
(iii) Let f : Rm×n → R be a Borel measurable function. If n = 1 and f is weak Morrey quasiconvex

then f is level convex.

Remark 5.6. Clearly, if a function f : Rm×n −→ R satisfies the supremal Jensen’s inequality then it is
weak Morrey quasiconvex. The converse being true in the scalar case n = 1, that is when Ω is an interval.
This follows from the present theorem combined with Theorem 2.6.

Proof. Once the first assertion of the theorem is proved, the remainder of condition (i) and condition (ii)
follow immediately since evidently rank one quasiconvexity reduces to level convexity if m = 1 and since,
level convex functions satisfy the supremal Jensen’s inequality (cf. Theorem 2.6).

We prove that weak Morrey quasiconvexity implies Morrey rank one quasiconvexity for upper semi-
continuous functions. Let ξ, η ∈ R

m×n be such that rank(ξ − η) = 1 and let t ∈ (0, 1). We want to show
that f(tξ + (1− t)η) ≤ max{f(ξ), f(η)}. Fix δ > 0. By the upper semicontinuity of f , there exists ε > 0
such that

|X − ξ| ≤ ε, |Y − η| ≤ ε ⇒ f(X) ≤ δ + f(ξ), f(Y ) ≤ δ + f(η).

Applying Lemma 5.4, we get ψ ∈W 1,∞
0 (Q,Rm) such that

dist(Dψ(x), {(1 − t)(ξ − η),−t(ξ − η)}) ≤ ε, a.e. x ∈ Q.

Using the weak Morrey quasiconvexity and the upper semicontinuity of f , we get

f(tξ + (1− t)η) ≤ ess sup
x∈Q

f(tξ + (1 − t)η +Dψ(x)) ≤ δ +max{f(ξ), f(η)}.

The result is now achieved letting δ go to zero.
It remains to prove condition (iii). Let f : Rm×1 → R be a Borel measurable and weak Morrey

quasiconvex function, let ξ, η ∈ R
m×1, and let t ∈ [0, 1] be arbitrary. Define

ϕ(x) =

{

(1− t)(ξ − η)x if 0 ≤ x ≤ t,

t(ξ − η)(1 − x) if t ≤ x ≤ 1.

Clearly ϕ ∈W 1,∞
0 ((0, 1);Rm) and applying (5.1) one gets f(tξ+(1− t)η) ≤ max{f(ξ), f(η)}, which gives

the level convexity of f .
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