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Abstract. We study large deviations and rare default clustering events in a dynamic large heterogeneous
portfolio of interconnected components. Defaults come as Poisson events and the default intensities of the
different components in the system interact through the empirical default rate and via systematic effects

that are common to all components. We establish the large deviations principle for the empirical default
rate for such an interacting particle system. The rate function is derived in an explicit form that is amenable
to numerical computations and derivation of the most likely path to failure for the system itself. Numerical
studies illustrate the theoretical findings. An understanding of the role of the preferred paths to large default
rates and the most likely ways in which contagion and systematic risk combine to lead to large default rates
would give useful insights into how to optimally safeguard against such events.

1. Introduction

The financial crisis of 2007-2008 challenged the mathematical finance community to understand connect-
edness in financial systems. Appropriate models need to be developed to understand how risk can propagate
between financial objects which might have heretofore been modeled as closed systems.

It is possible that initial shocks, such as changes in interest rate values, changes of commodities prices or
reduction in global economic growth, could trigger contagion effects, e.g., [19]. It is likely then that some
transmission mechanism, such as financial linkages or simply investor irrationality, could cause components
of the system to be affected by the initial shock. Reduce-form point process models of correlated default,
that are usually based on counting processes, are often used to access portfolio credit risk in portfolios of
defaultable assets such as loans and corporate defaults. In these models defaults arrive at intensities that are
governed by a given system of stochastic differential equations. Due to the size of the portfolios computing
the distribution of the loss from default in these models is often challenging. Main US banks for example
may easily have 20, 000 wholesale loans and 50, 000− 100, 000 mid-market and commercial loans. Mortgage
pools with size of 10, 000 are often common. Simulation and analysis of such pools is non-trivial and often
quite burdensome.

In this work we focus on using dynamic portfolio credit risk models to study rare events in large portfolios
and default clustering. We statistically model failure via the classical framework of point processes. However,
we include several distinct and meaningful sources of randomness that can lead to failure of the system itself.
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The intensities form an interacting particle system, where the interaction happens through feedback terms
and exposure to common systematic risks. The foundation of the empirically motivated model that we study
lies in [17]. In this work various properties of such models were investigated, finding that contagion and
systematic risk give meaningful insights into clustering of defaults.

Typical (law of large numbers) and central limit type behavior for such models as the number of com-
ponents in the system grows have been studied in [17, 18, 20]. Our interest here is tail behavior and rare
events. One of the principle theoretical attractions of structured finance was that, supposedly, large pools of
assets were regular enough that one could accurately price tail events. In hindsight, however, interaction in
large pools proved an Achilles’ heel. Interconnections often make a system robust, but they can also act as
conduits for failure. In this paper, we seek to understand the mathematics of rare systemic collapse in large
interacting systems.

We consider a large system with interacting components that is influenced by an exogenous source of
randomness. There is a central source of interconnection (a central “bus”). Failure of any component
stresses the central bus, which in turn can cause other components to fail (a feedback effect). In particular,
we want to understand how the system can catastrophically fail, and how the feedback mechanism and the
exogenous factor interact to produce large failure clusters. Along with an understanding of the likelihood of
such a failure, we want to understand the structure of pathways to failure. Given a statistical description
of the interacting system, an understanding of the “most likely” pathways to failure would naturally lead to
an understanding of how to control the system to minimize failure and how to sense the onset of failure.

Of particular interest is dynamic interactions. The extra dimension of time allows one to compare different
possible ways in which a system can end up at a given point. This may help in early-stage identification of
certain phenomena. Our goal here is to develop some of these insights in the model of [17]. In particular,
we would like to understand pathways to systemic collapse. In the presence of contagion, what are the most
likely ways that a pool can suffer large losses? As in other engineered systems, characterization of most
likely paths to failure can better allow effective intervention.

The heart of our analysis is the theory of large deviations, e.g., see the classical manuscripts [6, 11].
The theory of large deviations gives a rich framework in which to identify and then prove rates of decay of
exponential tails. Two simple examples are well-known; Sanov’s theorem, which in its simplest captures the
tail behavior of a large collection of i.i.d coin flips, and the Freidlin-Wentzell theorem, which identifies the
most likely way that diffusive perturbations can drive a stable differential equation out of equilibrium. Both
of these core examples play a role in our analysis, even though the situation is more complex here because
the coin flips are neither identically distributed, nor independent. Defaults can be modeled as coin flips,
and the effects of contagion can be thought of as random perturbations of a dynamical system. Our main
theorems, Theorems 3.1 and 3.10, give the large deviations principle. In the full case, where both contagion
and systematic effects are present, the rate function is a combination of a relative entropy (a “nonlinear”
Sanov’s type theorem) and the Freidlin-Wentzell action functional.

Tail behavior in static pools is investigated in [5, 14] and in [21] the authors study the effect of stochastic
recovery on the tail of the loss distribution when the recovery rate depends on the default rate. In [15, 16]
rare event asymptotics for the loss distribution in the Gaussian copula model of portfolio credit risk and
related importance sampling questions are studied. In a large deviations analysis of a mean field model in
[3] the authors take the default intensity of a component in the pool to be a deterministic function of the
percentage pool loss due to defaults, see also [4]. In [23], the authors establish a large time large deviations
principle for an interacting system of affine point processes. In [12], the authors study systematic risk [from
endogenous aspect] via a mean field model of interacting agents. Using a model of a two-well potential,
agents can move freely from a healthy state to a failed state. The authors study probabilities of transition
from the healthy to the failed state using large deviations ideas.

In this paper, we consider tail behavior for dynamic heterogeneous pools with stochastic intensity and we
are interested in the behavior for large pools of interconnected components. Our contribution is two-fold.
Firstly, we develop a large deviations principle for a dynamic point process model of correlated default timing
that takes into account both effects of contagion and of systematic, exogenous, risks. We study the case that
the number of constituent firms or components in the network grows. Secondly, we numerically explore the
large deviations results which can help understand how default clusters occur in such systems.
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In the theoretical side, we see that the rate function governing the tail events is given explicitly as
an additive functional of a Freidlin-Wentzell action functional and a nonlinear relative entropy, where the
nonlinearity originates from the fact that defaults are not independent. The dependence structure and
the heterogeneity of the environment, i.e., the fact that defaults are not identically distributed, complicate
the mathematical analysis. Nevertheless, we rigorously obtain a fairly explicit form of the large deviations
principle which is amenable to numerical investigations. In particular, we derive a representation for the
rate function which is suitable for numerically computing both the rate function and the most likely path to
failure, i.e., the extremals, in both homogeneous and heterogeneous environments.

In the numerical side, the numerical experiments illustrate the effect of systematic (exogenous) risks and
contagion on tail events of such systems. For instance, as we shall see in the numerical investigations of
Section 4, if a large default cluster occurs, the systematic risk is most likely to play a large role in the
initial phase, but then its importance decreases (and thus the contagion effects become more important).
Moreover, the analysis of the extremals related to the large deviations rate function (i.e., the most likely
paths to failure) in heterogeneous pools with two or more types can help understand which types in the pool
are more vulnerable to default due to the impact of contagion, and as a consequence the pathway to creation
of default clusters.

We end this introduction by mentioning that, even though the interacting system that we study is primarily
motivated by issues of systemic risk in large financial networks, its formulation is sufficiently generic to
make the analysis and results of broader interest. The physical phenomenon of the failure of an individual
component in a network, which could have been caused by an external force, increasing the stress to other
components of the network, making the system more likely to fail, is of broader interest and applicability.

The paper is organized as follows. In Section 2, we describe the model, the assumption and recall the
law of large numbers result proven in [17]. In Section 3 we describe our main results, the large deviations
principle for the empirical measure and empirical default rate. Then, in Section 4 we perform numerical
experiments supporting the theoretical findings. Section 5 contains the proofs of the large deviations results
of Section 3. We conclude with our conclusions in Section 6.

2. Model and law of large numbers

We assume that our overall system contains N components or subsystems (where N is large). We assume
that (Ω,F ,P) is an underlying probability triple on which all random variables are defined.

To start, let τNn be the stopping time at which the n-th component (or particle) in our system fails. A
failure time τNn has intensity process λN,n, which satisfies

P{τNn ∈ (t, t+ δ]|Ft, τ
N
n > t} ≈ λN,nt δ

as δ ց 0, where Ft is the sigma-algebra generated by the entire system up to time t. That is, the process

defined by χ{τNn ≤t} −
∫ t

0 λ
N,n
s 1{τNn >s}ds is a martingale with respect to Ft.

We want our model to capture several important phenomena. Each component will be affected by three
sources of randomness, one of which is unique to the component itself, one that is responsible for contagious
effects, and one of which reflects the external environment. We assume that each component has been
engineered to be stable. We also assume, however, the system is subject to cascading (or “contagious”)
behavior; failure of any component is likely to lead to failure of more components. In particular, fixing
N ∈ N and n ∈ {1, · · · , N} we consider the model

(1)

dλN,nt = −αN,n(λN,nt − λ̄N,n)dt+ σN,n

√

λN,nt dWn
t + βCN,ndL

N
t + εNβ

S
N,nλ

N,n
t dXt t > 0

λN,n0 = λ◦,N,n

dXt = b(Xt)dt+ κ(Xt)dVt t > 0

X0 = x◦

LNt =
1

N

N
∑

n=1

χ{τNn ≤t},
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where

(2) τNn
def
= inf

{

t ≥ 0 :

∫ t

0

λN,ns ds ≥ en

}

.

Here the Wn’s are an independent collection of standard Brownian motions, V is also a standard Brownian
motion, and the en’s are standard exponential random variables; theWn’s, V and the en’s are all independent
of each other.

In the case βCN,n = βSN,n = 0 for all n ∈ {1, · · · , N}, one recovers the classical CIR model in credit

risk, e.g., [7]. The term βCN,ndL
N
t reflects the contagious effects and the Xt term is the external source of

randomness (systematic risk). Notice that movements in X cause correlated changes in each intensity λN,n,
which then provides a channel for default clustering. Each system’s component sensitivity to X is measured
by the parameter βSN,n ∈ R. Then, a default causes a jump of size βCN,n/N in the intensity λN,n, where

βCN,n ∈ R+ = [0,∞). The mean-reversion of λN,n implies that the impact of a default fades away with
time, exponentially with rate αN,n ∈ R+. The linear dependence of λ in the dX component guarantees

that λN,nt ≥ 0 for every N ∈ N, n ∈ {1, · · · , N} and t ≥ 0 (Proposition 3.3 in [17]), and makes the
analytic computations easier. As it is demonstrated in [1], an important channel for clustering of defaults
are self-exciting effects of such types.

Proposition 3.3 in [17] guarantees that under the assumption of an existence of a unique strong solution

for the SDE for X process, the system (1) has a unique strong solution such that λN,nt ≥ 0 for every N ∈ N,
n ∈ {1, · · · , N} and t ≥ 0. The structure of the feedback term, i.e., the empirical average LNt , is of mean field
type, which brings the system (1) roughly within the class of McKean-Vlasov models, e.g., [13]. However,
as it is also demonstrated in [17, 18], the structure of (1) presents several difficulties that bring the analysis
of such systems outside the scope of the standard setup. In particular, a key structural difference is that the

empirical measure is not on the level of the intensities λN,nt , but on the level of the default times τNn , i.e.
there is an extra level of randomness. Moreover, the interacting particle system is heterogeneous and not
homogeneous, there is the presence of the additional term X , the coefficients of the intensity dynamics are
not bounded and there is a square root degeneracy.

Let’s define a ‘type’ space which describes the λN,n’s. Define P def
= R

4
+ × R

2 and we denote by pN,n =

(αN,n, λ̄N,n, σN,n, β
C
N,n, β

S
N,n, λ◦,N,n) ∈ P . Then pN,n gives the dynamics of λN,n, the response to the loss

process LN , and the initial condition. Let’s also define PN,nt
def
= (αN,n, λ̄N,n, σN,n, β

C
N,n, β

S
N,n, λ

N,n
t ); this is a

P-valued process which keeps track of the dynamics of λN,n and its current value. Of course, we have that

PN,n0 = p
N,n
0 .

For any Polish space S, let M1(S) be the collection of subprobability Borel measures on S; i.e., S consists
of Borel measures ν on S such that ν(S) ≤ 1. Then M1(S) is itself a Polish space; [10]. Define here

E
def
= M1(P), and let

µ
N
t

def
=

1

N

N
∑

n=1

δPN,nt
χ{τNn >t};

this is the empirical distribution of PN,nt for those components which are still “alive”. We note that µNt is
a random trajectory in E. Also,

LNt = 1− µ
N
t (P),

We shall denote by P(P) the set of probability measures on P . In [17, 18, 20], the authors have developed
law of large numbers and central limit theorem approximations to µ

N
t and as a consequence to LNt as well.

The goal of this paper is to establish a large deviations principle for the empirical loss LNt , namely to study its
tail behavior. In this paper we mainly concentrate on the case limN→∞ εN = 0. To focus our investigation,
let’s first recall the law of large numbers results obtained in [17]; we can only understand ’rare’ events relative
to the ’typical’ event.

Assumption 2.1. We assume that there is a K2.1 > 0 such that the αN,n’s, λN,n’s, σN,n’s, |βCN,n|’s,
|βSN,n|’s, and λ◦,N,n’s are all bounded by K2.1 for all N ∈ N and n ∈ {1, 2, . . . , N}.
Thus the types are bounded. In fact we want them to have a macroscopic distribution.
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Assumption 2.2. For N ∈ N, define

UN
def
=

1

N

N
∑

n=1

δpN,n .

We assume that U
def
= limN→∞ UN exists in P(P), in the sense of weak convergence of probability measures

on P.

Under these assumptions, µ
def
= limN→∞ µ

N is a well-defined measure-valued process. We can identify
µ via the martingale problem. For p = (p̂, λ) where p̂ = (α, λ̄, σ, βC , βS) ∈ P and f ∈ C∞(P), define the
operators

(L1f)(p) =
1

2
σ2λ

∂2f

∂λ2
(p)− α(λ− λ̄)

∂f

∂λ
(p)− λf(p)

(L2f)(p) = βC
∂f

∂λ
(p).

Define also

Q(p)
def
= λ

for p = (p̂, λ) where p̂ = (α, λ̄, σ, βC , βS) ∈ P . The generator L1 corresponds to the diffusive part of the
intensity with killing rate λ, and L2 is the macroscopic effect of contagion on the surviving intensities at any
given time. For every f ∈ C∞(P) and µ ∈ E, define

〈f, µ〉E
def
=

∫

p∈P
f(p)µ(dp).

Let S be the collection of elements Φ in B(P(P)) of the form

Φ(µ) = ϕ (〈f1, µ〉E , 〈f2, µ〉E . . . 〈fM , µ〉E)
for some M ∈ N, some ϕ ∈ C∞(RM ) and some {fm}Mm=1 For Φ ∈ S of the form (2), define

(AΦ)(µ)
def
=

M
∑

m=1

∂ϕ

∂xm
(〈f1, µ〉E , 〈f2, µ〉E . . . 〈fM , µ〉E) {〈L1fm, µ〉E + 〈Q, µ〉E 〈L2fm, µ〉E} .

We claim that A will be the generator of the limiting martingale problem (see [17]).

Lemma 2.3. 1[Weak Convergence] Let limN→∞ εN = 0. The sequence {µN}N is tight in DE([0, T ]).
Moreover, for any Φ ∈ S and 0 ≤ r1 ≤ r2 . . . rJ = s < t < T and {ψj}Jj=1 ⊂ B(E), we have that

lim
N→∞

E





{

Φ(µNt )− Φ(µNs )−
∫ t

r=s

(AΦ)(µNr )dr

} J
∏

j=1

ψj(µ
N
rj
)



 = 0

lim
N→∞

E
[

Φ(µN0 )
]

= Φ(U).

The limit µ
def
= limN µ

N uniquely exists and is deterministic, this limit being in probability in C([0, T ];E).
Moreover, letting Lt = 1− µt(P), we get that for every δ > 0

lim
N→∞

P

{

sup
0≤t≤T

|LNt − Lt| ≥ δ

}

= 0.

Corollary 3.3 shows that Lt can be expressed as the unique solution to a fixed point equation. As in the
law of large numbers, this gives us a reference trajectory for defining rare events. For any closed subset F
of C([0, T ]; [0, 1]) which does not contain L, we have that

(3) lim
N→∞

P{LN ∈ F} = 0.

1At this point we would like to remark that there is a typo in the formulation of the particular result in [17]. In particular,

it is mentioned there that (L2f)(p) =
∂f
∂λ

(p) and Q(p) = βCλ, where it should have been (L2f)(p) = βC ∂f
∂λ

(p) and Q(p) = λ.
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The theory of large deviations gives us the rate of decay of probabilities like in (3), namely the tail of the
distribution of large portfolio losses. It identifies a function I : C([0, T ]; [0, 1]) → [0,∞] such that, informally,

P{LN ≈ Lref}
N→∞≍ exp [−NI(Lref)]

While rare events are (by definition) unlikely to happen, large deviations theory gives a rigorous framework
to compare the rarity of different rare events. It thus helps us understand the ’most likely’ rare event in a
given set of rare events. As the numerical experiments in Section 4 indicate, larger sensitivity to contagion
and systematic risk leads to fatter tails, which leads to larger likelihood of large losses in the system. Insights
of this type can help understand the role of contagion and systematic risk and how they interact to produce
atypically large failure rates. This can then provide guidance in guarding against dangerous rare system
behavior.

3. Problem formulation and main results

We here present our main results on large deviations for the empirical loss LNt . We start with some
notation and preliminary computations in Subsection 3.1. The first result is Theorem 3.1 in Subsection 3.2,
where we derive the large deviations principle in the case εN = 0. Lemma 2.3 with εN = 0 follows as a
result; see Corollary 3.3. Corollary 3.2 gives an alternate formulation of the rate function of Theorem 3.1;
this representation is useful for numerical studies. Then in Subsection 3.3, we present, in Theorem 3.10,
the second main result of this paper, which is the large deviations principle when εN 6= 0, i.e., when both
contagion and systematic effects are present.

The large deviations principle of Theorem 3.1 is obtained by first identifying a large deviations principle for
the empirical measure of defaults in the heterogeneous pool, νN , (properly defined in (8)), and then using the
contraction principle. The large deviations principle for νN is proved in two steps. First, we derive the large
deviations principle in the independent (i.e., when all βCN,n = 0), but heterogeneous case. Varadhan’s transfer

lemma (recalled as Theorem 5.7) then implies the LDP for the general case. The large deviations principle
of Theorem 3.10 is obtained via a conditioning argument from the large deviations principle of Theorem 3.1
and that of small noise diffusion processes, [11]. In this section we present statement of theorems and the
corresponding proofs are in Section 5.

Let’s recall the concept of large deviations and the associated rate function.

Definition 3.1. If S is a Polish space and P is a probability measure on (S,B(S)), we say that a collection
(ξn)n∈N of S-valued random variables has a large deviations principle with rate function I : S → [0,∞] and
speed n if

(i) For each s ≥ 0, the set Φ(s) = {s ∈ S : I(s) ≤ s} is a compact subset of S.
(ii) For every open G ⊂ S,

lim
nր∞

1

n
lnP {ξn ∈ G} ≥ − inf

s∈G
I(s)

(iii) For every closed F ⊂ S,

lim
nր∞

1

n
lnP {ξn ∈ F} ≤ − inf

s∈F
I(s).

3.1. Preliminary computations. Let’s set up some notation. Fix p = (α, λ̄, σ, βC , βS , λ◦) ∈ P . Fix also
a time horizon T > 0. Let a Polish space S and denote by C(S;R) and AC(S;R) to be the collection of
continuous and respectively absolutely continuous paths from S to R. For notational convenience we will
sometimes write C(S;R) and AC(S;R) if no confusion arises. For ϕ and ψ in AC([0, T ];R) and W ∗ a
reference Brownian motion, let λϕ,ψ be the solution of the SDE

(4)

λϕ,ψt (p) = λ◦ − α

∫ t

0

(λϕ,ψs (p)− λ̄)ds+ σ

∫ t

0

√

λϕ,ψs (p)dW ∗
s

+ βCϕ(t)χ[0,T ](t) + βS
∫ t

0

λϕ,ψs (p)χ[0,T ](s)dψ(s) t > 0

6



This will represent the conditional intensity of a “randomly-selected” name of type p in our pool. Let the
random variable τϕ,ψ be such that

(5) P
{

τϕ,ψ ≤ t
}

= P

{
∫ t

0

λϕ,ψs (p)ds ≥ e

}

= 1− E

[

exp

[

−
∫ t

0

λϕ,ψs (p)ds

]]

for all t > 0, where e is an exponential (1) random variable which is independent of W ∗. Define

fp

ϕ,ψ(t)
def
= E

[

λϕ,ψt (p) exp

[

−
∫ t

0

λϕ,ψs (p)ds

]]

.

Then for t ∈ [0, T ]

P
{

τϕ,ψ ≤ t
}

=

∫ t

0

fp

ϕ,ψ(s)ds = 1− E

[

exp

[

−
∫ t

0

λϕ,ψs (p)ds

]]

.(6)

Let’s now collect together all scenarios where τϕ,ψ > T . Fix an abstract point ⋆ not in [0, T ] and define

T def
= [0, T ] ∪ {⋆}

(which is a Polish space). For given trajectories ϕ and ψ in AC([0, T ];R), define µp

ϕ,ψ ∈ P(T ) as

(7) µp

ϕ,ψ(A)
def
=

∫

t∈A∩[0,T ]

fp

ϕ,ψ(t)dt+ δ⋆(A)

{

1−
∫ T

0

fp

ϕ,ψ(t)dt

}

for all A ∈ B(T ). In other words, µp

ϕ,ψ is the corresponding probability measure on T .

The large deviations principles appearing in Theorems 3.1 and 3.10 are in terms µp

ϕ,ψ. Moreover, taking

advantage of the special structure of the problem, Lemma 4.1 shows that µp

ϕ,ψ can be computed in closed
form.

3.2. Large deviations principle for the case εN = 0. In this case the exogenous source of randomness,
X plays no role in the computations. Define the probability measures νN ∈ P(P × T )

(8) ν
N =

1

N

N
∑

n=1

δpN,n,τnχ{τn≤T} +
1

N

N
∑

n=1

δpN,n,⋆χ{τn>T}

This captures the distribution of pN,n (the ’type’ of the asset) and τN,n (the default time).
For notational convenience set

X
def
= P × T

then X is Polish. We can of course recover the empirical loss from ν
N ; LNt = ν

N (P × [0, t]).
Let’s make the following definition.

Definition 3.2. Fix ω ∈ P(X) and υ ∈ P(P); we say that ω = ξ ⊗ υ, where ξ is a measurable map from
P to P(S) (i.e., ξ is a stochastic kernel) if

ω(A× B) =

∫

p∈A
ξ(p)(B)υ(dp).

for all A ∈ B(P) and B ∈ B(T ). In this case, we write

ξ =
∂ω

∂υ
.

Let us define

(9) H(ν, µ) =

{

∫

t∈T ln dν
dµ

(t)ν(dt), if ν ≪ µ

∞, otherwise

and then

(10) H̄(ν) =

{

∫

p∈P H
(

∂ν
∂U

(p), µp
ν̄,0

)

U(dp) if ∂ν
∂U

(p) exists

∞ otherwise

7



and where µp
ν̄,0 is defined in (7), U is given by Assumption 2.2, the superscript p denotes the dependence on

the particular element p = (α, λ̄, σ, βC , βS , λ) ∈ P , and for B ∈ B(T ), we set

ν̄(B) = ν(P ×B).

The form of the action functional is fairly easy to understand, at least in the homogeneous case. Suppose
that there is a fixed p∗ ∈ P and pN,n = p∗ for all N ∈ N and n ∈ {1, 2, . . . , N} (and thus U = δp). If

ν∗ = δp∗ × ω for some ω ∈ P(T ), then ∂ν∗

∂U
(p∗) = ω and one expects that

PN (dνN ∈ dν∗)
N→∞≍ e

−NH
(

ω,µ
p∗

ν∗,0

)

= e−NH̄(ν∗).

Consider next a heterogeneous pool with two fixed types p∗A and p∗B. Assume that, in a pool of size N ,
every third name is of type p∗A the remaining names are of type p∗B. If

ν∗ =
1

3
δp∗
A
× ωA +

2

3
δp∗
B
× ωB,

then

∂ν∗

∂U
(p) =

{

ωA if p = p∗A
ωB if p = p∗B

Then

∂νN

∂UN
(p∗A) =

1

N/3

∑

1≤n≤N
n∈3N

δτnχ{τn≤T} +
1

N/3

∑

1≤n≤N
n∈3N

δ⋆χ{τn>T}

∂νN

∂UN
(p∗B) =

1

2N/3

∑

1≤n≤N
n6∈3N

δτnχ{τn≤T} +
1

2N/3

∑

1≤n≤N
n6∈3N

δ⋆χ{τn>T}

At a heuristic level, one expects that

PN (dνN ∈ dν∗) = PN

{

∂νN

∂UN
(p∗A) ≈ dωA,

∂νN

∂UN
(p∗B) ≈ dωB

}

N→∞≍ exp

[

−N
3
H
(

ωA, µ
p∗A
ν̄,0

)

− 2N

3
H
(

ωB, µ
p∗B
ν̄,0

)

]

= e−NH̄(ν∗).

Theorem 5.8 gives the rigorous proof that, in general, H̄(ν) is the rate function for {νN , N < ∞} in
the heterogeneous case. An immediate consequence of Theorem 5.8 and contraction principle is the large
deviations principle for LNt = ν

N (P × [0, t]).

Theorem 3.1. Consider the system defined in (1) with εN = 0 and let T < ∞. Under Assumptions 2.1
and 2.2, the family {LNT , N ∈ N} satisfies the large deviation bounds of Definition 3.1, with rate function

I(ℓ) = inf
{

H̄(ν) : ν ∈ P(X) and ν (P × [0, T ]) = ℓ
}

.

and speed N . The rate function I is lower semicontinuous and has compact level sets.

As expected the rate function is essentially defined via an entropy functional, which in the present setting
takes the formH

(

∂ν
∂U

(p), µp
ν̄,0

)

. However, due to the heterogeneity of the environment and due to the feedback

term dLNt in the system, new phenomena appear. The effect of heterogeneity is to essentially integrate over
all the different types in the P space, whereas the feedback term is responsible for the subscript ν̄ in the
µp
ν̄,0, which is a non-linear effect in the entropy.

For ξ, ϕ ∈ AC([0, T ];R) let us define the functional

g
(

ξ, fp
ϕ,0

)

=

∫ T

0

ln

(

ξ̇(t)

fp
ϕ,0(t)

)

ξ̇(t)dt+ ln

(

1− ξ(T )

1−
∫ T

0
fp
ϕ,0(t)dt

)

(1− ξ(T ))

Next, in Corollary 3.2, we note that the rate function I has a straightforward alternate representation
which is a bit more suited to numerical investigations.

8



Corollary 3.2. Consider the system defined in (1) with εN = 0. Define

I ′(ℓ) = inf
ϕ∈AC(P×[0,T ];R),ϕ≥0

{
∫

P
g
(

ϕ(p), fp
ϕ̄,0(t)

)

U(dp) : ϕ(p, 0) = 0, ϕ̄(s) =

∫

P
ϕ(p, s)U(dp), and ϕ̄(T ) = ℓ

}

Under the assumptions and notation of Theorem 3.1, I = I ′.

An immediate consequence of Theorem 3.1 is the law of large numbers result for LNt obtained in [17].

Corollary 3.3. Assume that εN = 0. There is a unique measure ν∗ such that for every t ∈ [0, T ]

ν̄∗([0, t]) = 1−
∫

P
e−(b

p(t)λ0+
∫

t

0
αλ̄bp(t−u)du+βC

∫

r

0
bp(t−u)ν̄∗(du))U(dp);

this is the unique solution of H̄(ν) = 0. Finally, ν̄∗([0, t]) = Lt for all t ∈ [0, T ], where L was given in
Lemma 2.3.

The proof of Corollary 3.3 is in Section 5.2.
As an example of possible use of Theorem 3.1 and Corollary 3.2, let’s consider homogenous pools and

heterogeneous pools composed of K different bins that are homogeneous within each bin.

Example 3.4 (Homogeneous). Fix p∗ ∈ P and assume that pN,n = p∗ for all N and n. Then

I(ℓ) = inf
{

g
(

ϕ, fp
ϕ,0

)

: ϕ(0) = 0, ϕ(T ) = ℓ, ϕ ≥ 0, ϕ ∈ AC([0, T ];R)
}

.

Example 3.5 (Heterogeneous). Let us assume that the pool is composed of K different bins. Assume that

κi% of the names are of type Ai with i = 1, · · · ,K and
∑K
i=1 κi = 100. Setting ϕ(p, s) =

∑K
i=1

κi
100ϕAi(s)χ{pAi},

we get that

I(ℓ) = inf

{

K
∑

i=1

κi
100

g
(

ϕAi , f
pAi
ϕ,0

)

: ϕ(t) =
K
∑

i=1

κi
100

ϕAi(t) for every t ∈ [0, T ]

ϕ(T ) = ℓ, ϕAi(0) = 0, ϕAi ≥ 0, ϕAi ∈ AC([0, T ];R) for every i = 1, · · · ,K} .
3.3. Main result: Large deviations principle for the case limN→∞ εN = 0. In this subsection, we
study the case where systematic effects are present. When εN 6= 0, the large deviations of process {XN

t =
εNXt, N ∈ N} affect the large deviations of the empirical default rate process {LNt , N ∈ N}. In order to
properly formulate our result we need to make some assumptions on the scaling properties of the coefficients
of the X process. These are minimal assumptions that guarantee the existence of a large deviations principle
for the family {XN

t = εNXt, N ∈ N}. In particular:

Assumption 3.6. We assume that the following limits exist uniformly on bounded subsets of R

• b̄(x) = limε↓0 bε(x) = limε↓0 εb(x/ε).
• For some ζ ∈ (0, 1], κ̄(x) = limε↓0 κε(x) = limε↓0 ε1−ζκ(x/ε).

Moreover, the coefficients b̄(x), κ̄(x) are uniformly continuous on compact subsets of R and we assume that
the SDE with drift coefficient b̄(x) and diffusion coefficient κ̄(x) has a unique strong solution.

For any u ∈ L2 ([0, T ];R) define the map Γ : L2 ([0, T ];R) 7→ C([0, T ];R) by the equation

(11) ψ(t) =

∫ t

0

b̄(ψ(s))ds+

∫ t

0

κ̄(ψ(s))u(s)ds

Assumption 3.7. We assume that for any u ∈ L2 ([0, T ];R) the map Γ : L2 ([0, T ];R) 7→ C([0, T ];R) defined
by (11) is well defined and (11) has a unique solution. Moreover, we assume that for every N ∈ N, the map

Γ is continuous when it is restricted to the set {u ∈ L2 ([0, T ];R) :
∫ T

0
|u(s)|2ds ≤ N} endowed with the weak

topology of L2[0, T ].

We need one more assumption.

Assumption 3.8. Let u ∈ A the set of square integrable on [0, T ], R-valued and Ft predictable processes
and consider the controlled sde

dXε,u
t = [bε(X

ε,u
t ) + κε(X

ε,u
t )u(t)] dt+ εζκε(X

ε,u
t )dVt, Xε,u

0 = 0.
9



If limn→∞ εn = 0 and {un}n∈NA such that supn∈N

∫ T

0
|un(s)|2ds ≤ N almost surely, then Xεn,un is tight in

C ([0, T ];R) and

sup
n∈N

E

∫ T

0

|κ̄(Xεn,un
s )|2ds <∞.

As we shall see in Lemma 5.10 of Subsection 5.3, under Assumptions 3.6, 3.7 and 3.8, the large deviations

principle for the family {XN
t = εNXt, N ∈ N} on C ([0, T ];R) with speed 1/ε2ζN is the same as the large

deviations principle and with the same speed for the family {X̄N
t , N ∈ N}, where

(12) dX̄N
t = b̄(X̄N

t )dt+ εζN κ̄(X̄
N
t )dVt, X̄N

0 = 0.

In this case, the large deviations action functional for {X̄N
t , N ∈ N} in C([0, T ];R) is

(13) JX(ψ) = inf

{

1

2

∫ T

0

|u(s)|2 ds : u ∈ L2 ([0, T ];R) ,Γ(u) = ψ

}

whenever {u ∈ L2 ([0, T ];R) ,Γ(u) = ψ} 6= ∅ and JX(ψ) = ∞ otherwise.
We remark here that if κ̄(x) 6= 0 for all x ∈ R, then for ψ ∈ AC ([0, T ];R) with ψ(0) = 0, we have the

simplified well known form, see Section 5.3 of [11],

JX(ψ) =
1

2

∫ T

0

∣

∣

∣

∣

∣

ψ̇(t)− b̄(ψ(s))

κ̄(ψ(s))

∣

∣

∣

∣

∣

2

ds

and JX(ψ) = ∞ otherwise. However, in general, the form of the rate function is given by (13).

Example 3.9. Two classical examples, where Assumptions 3.6, 3.7 and 3.8 hold and thus the LDP for the
process {XN , N ∈ N} holds, are (a): the Ornstein-Uhlenbeck process with b(x) = −γx and κ(x) = 1, where
then b̄(x) = −γx, κ̄(x) = 1 and ζ = 1, and (b): the CIR (or square-root) process with b(x) = −γ(x− x̄/ε)
and κ(x) =

√
x, where then b̄(x) = −γ(x− x̄), κ̄(x) =

√
x and ζ = 1/2.

Then, we have the following theorem.

Theorem 3.10. Consider the system defined in (1) with limN→∞ εN = 0 such that limN→∞Nε2ζN = c ∈
(0,∞) and let T < ∞. Under Assumptions 2.1, 2.2, 3.6, 3.7 and 3.8 the family {LNT , N ∈ N} satisfies the
large deviation bounds of Definition 3.1, with speed N and with rate function

I(ℓ) = inf {S(ϕ, ψ) : ϕ ∈ C (P × [0, T ];R) , ψ ∈ C ([0, T ];R) , ϕ̄(T ) = ℓ}

where

S(ϕ, ψ) =















∫

P g
(

ϕ(p), fp

ϕ̄,ψ(t)
)

U(dp) + 1
c
JX(ψ), if ϕ ∈ AC (P × [0, T ];R) , ψ ∈ AC ([0, T ];R) , ψ(0) = 0,

ϕ(p, 0) = 0, ϕ ≥ 0, ϕ̄(s) =
∫

P ϕ(p, s)U(dp)

∞, otherwise

Here, JX(ψ) is the rate function for the process {XN , N <∞}, as defined by (13). I(ℓ) has compact level
sets.

The definition of S(ϕ, ψ) suggests that if c = limN→∞Nε2ζN = ∞ then the
∫

P g
(

ϕ(p), fp

ϕ̄,ψ(t)
)

U(dp)

integral in S(ϕ, ψ) will be the dominant factor, whereas if c = limN→∞Nε2ζN = 0, then the JX(ψ) entropy
term will be the dominant factor. This will become clearer in Section 5.3. Hence both effects are preesent if

c = limN→∞Nε2ζN ∈ (0,∞) and this is the case that we focus on in this paper. However, in the course of the
proof of Theorem 3.10 we prove Lemma 5.9, which is the large deviations principle for {LNt , N ∈ N, t ∈ [0, T ]}
conditional a given path of the process t 7→ Xt in Cc([0, T ;R]), when εN = 1.
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4. Numerical exploration of the large deviations principle

In this section we illustrate our theoretical results by some numerical computations. In particular, in
Subsection 4.1 we investigate how the rate function, the tails of the probability loss distribution and the
extremals behave in specific situations for a homogeneous pool. We compare two different portfolios and
qualitatively compare the two cases. Then, in Subsection 4.2 we perform some numerical experiments for a
heterogeneous pool composed of two types, where the difference in the two types is in the level of influence
of contagion and systematic effects.

Understanding the most likely ways in which contagion and systematic risk combine to lead to large
default rates, gives useful insights into how to optimally hedge against such events. In particular, the
numerical experiments show that if a large cluster were to occur, the effect of the systematic factor would be
more significant in the initial phase, but then its importance decreases and contagion effects become more
important. Moreover, in the case of heterogeneous pools, the large deviations analysis allows us to make
statements about which types of names in the pool are likely to be affected more and in which order.

In the numerical results that follow we have computed numerically the rate function I(ℓ) and the cor-
responding extremals ϕ and ψ solving the variational problems of Theorem 3.10 for the homogeneous and
heterogeneous cases of interest. In the numerical computation of the rate function, one needs to compute
fp

ϕ,ψ(t) and this is done with the help of Lemma 4.1.

4.1. Numerics for homogeneous pool. Let us now understand how our calculations look like in some
specific cases in the case of homogeneous portfolios. We consider the systematic risk Xt to be of Ornstein-
Uhlenbeck type and in particular

(14)
dXt = −γXtdt+ dVt

X0 = 0

For the numerical experiments below we have taken εN = 1√
N
. The LDP is given by Theorem 3.10 with

c = 1. The main difficulty in evaluating I(ℓ) and the extremals is the computation of µp

ϕ,ψ of (7). The virtue

of the CIR-based evolution of λN,n of (1) is that fairly explicit formulae are available. For t ∈ [0, T ], let θpt
solve

(15) θpt (s) =

∫ s

0

(

1− 1

2
σ2 (θpt (r))

2 − αθpt (r)

)

dr + βS
∫ s

0

θpt (t− r)dψ(r). s ∈ [0, t]

Then define

Γp

ϕ,ψ(t) = θpt (t)λ◦ + αλ̄

∫ t

0

θpt (r)dr + βC
∫ t

0

θpt (t− r)dϕ(r)

Lemma 4.1. We have that

fp

ϕ,ψ(t) = Γ̇p

ϕ,ψ(t) exp
[

−Γp

ϕ,ψ(t)
]

.

Proof. Define

Ms
def
= exp

[

−θpt (t− s)λϕ,ψs − αλ̄

∫ t

s

θpt (t− r)dr − βC
∫ t

s

θpt (t− r)dϕ(r) −
∫ s

0

λϕ,ψr dr

]

for s ∈ [0, t]. Note that θpt (0) = 0. In differential form,

dMs =
{

θ̇pt (t− s)λϕ,ψs − θpt (t− s)
{

−α(λϕ,ψs − λ̄) + βC ϕ̇(s) + βSψ̇(s)λϕ,ψs

}

− λϕ,ψs

+
1

2
(θpt (t− s))2σ2λϕ,ψs + θpt (t− s)

{

αλ̄+ βC ϕ̇(s)
}

}

Msds+ dMs

where M is a martingale. The ODE (15) implies that the ds term is identically zero, so M is a martingale.
Noting that

M0 = exp [−Γφ,ψ(t)] and Mt = exp

[

−
∫ t

0

λϕ,ψr dr

]

,

we get that

e−Γψ,ψ(t) =M0 = E[Mt] = E

[

exp

[

−
∫ t

0

λϕ,ψr dr

]]

.

11



Comparing this with (5) and differentiating, the claim follows. �

We consider two test portfolios; see Table 1. For each test portfolio, we compare four different cases, (a)
Independence: βS = βC = 0, (b) Contagion only: βS = 0, βC 6= 0, (c) Systematic risk only: βS 6= 0, βC = 0,
and (d) Systematic risk and contagion: βS 6= 0, βC 6= 0. In each case, the time horizon is T = 1.

N α λ̄ σ λ0 γ βS βC

Portfolio I 200 1 1 0.9 0.5 1 10 3
Portfolio II 200 5 1 1 0.5 0.1 28 1

Table 1. Model parameter values for two test portfolios.

In Table 2 we report the losses in the pool at time T = 1 for the two portfolios, both in the case that
there is a contagion effect (i.e. βC 6= 0 and taking the values of Table 1) and in the case that there is no
contagion effect (i.e., setting βC = 0).

Lc(1) Lnc(1)

Portfolio I 0.804 0.470
Portfolio II 0.650 0.589

Table 2. Typical default rate ℓ̄ = Lc(T ) at T = 1 when contagion is present, i.e., βC 6= 0
and ℓ̄ = Lnc(T ) at T = 1 when contagion is not present, i.e., βC = 0.

In Figure 1 we see a comparison of all rate functions I. Note that in both cases ℓ̄ satisfies I(ℓ̄) = 0, where
the law of large numbers is numerically given by Table 2. Of course, this is expected and is in accordance
with large deviations theory.
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Figure 1. The rate function I ′(ℓ). Left panel : Portfolio I. Right panel : Portfolio II.

In Figure 2 we see a large deviations approximation to the tail of LNT . That is, we plot P{LNT ≈ ℓ} ≍
exp [−NI(ℓ)] where ℓ > ℓ̄ = LT . The exposure to contagion and the systematic risk has significant implica-
tions for the tail of LNT . Moreover, we see here that, in terms of the tail of the distribution, in Portfolio I, the
effect of contagion dominates the effect of systematic risk, whereas, in Portfolio II, the effect of systematic
risk dominates the effect of contagion. This is mainly due to the differences in the values of βS and βC in
the two portfolios, Table 1.

12



0.6 0.7 0.8 0.9 1.0

0e
+0

0
2e

−0
6

4e
−0

6
6e

−0
6

8e
−0

6
1e

−0
5

Default rate

Pr
ob

ab
ilit

y

Independence
Contagion only
Systematic risk only
Systematic risk and contagion

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0e
+0

0
2e

−0
6

4e
−0

6
6e

−0
6

8e
−0

6
1e

−0
5

Default rate

Pr
ob

ab
ilit

y

Independence
Contagion only
Systematic risk only
Systematic risk and contagion

Figure 2. Large deviations approximation to the tail of the default rate LNT . Left panel :
Portfolio I. Right panel : Portfolio II.

In Figures 3 and 4 we see a comparison of the optimal ϕ and ψ for a level ℓ = 0.85. The effect of contagion
and of the systematic risk alter the behavior of the extremals (the most likely path to failure). Comparing
the tails of the loss distributions of portfolios I and II in Figure 2, we conclude that in Portfolio I, the effect
of contagion is in general more profound than the effect of systematic risk. On the other hand in the case
of Portfolio II, the effect of systematic risk is more profound than the effect of contagion. Moreover, in the
left panel of Figure 4, we see that if a large default cluster occurs, the systematic risk is most likely to play
a large role in the initial phase, but then its importance decreases (and thus the contagion effect becomes
more important).
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Figure 3. Optimal φ(t) for t ∈ [0, 1] and ℓ = 0.85. Left panel : Portfolio I. Right panel :
Portfolio II.

4.2. Numerics for heterogeneous pool. In this subsection, we illustrate numerically the case of a het-
erogeneous portfolio, which is composed of two types. Type A is 1/3 of the names and type B is 2/3 of
the names. In order to illustrate the effect of contagion and systematic risk in such a heterogeneous port-
folio, we keep all parameters the same, except for the parameters (βCA , β

S
A) and (βCB , β

S
B) for types A and B

respectively. The systematic risk is assumed to be given by (14).
In particular, we assume that initially we have N = 200 names in the pool and we consider a portfolio

composed of two types with the following parameters. In such a portfolio we compute that the typical loss
at time T = 1 is 0.62 if there is no contagion and 0.81 if there is contagion. Below, we see plots comparing
the rate functions, tails of the distribution and extremals in all cases, depending on weather both contagion
and systematic risk effects are present or not.
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Figure 4. Optimal ψ(t) for t ∈ [0, 1] and ℓ = 0.85. Left panel : Portfolio I. Right panel :
Portfolio II.

α λ̄ σ λ0 γ βS βC

Type A 1 2 1 0.5 1 5 10
Type B 1 2 1 0.5 1 1 2

Table 3. Model parameter values for two types in the portfolios.

In Figure 5 we see a comparison of all rate functions I and of the tails of the loss distribution.
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Figure 5. The rate function I(ℓ) and the tails of the loss distribution

The effect of contagion and of the systematic risk alter the behavior of the extremals (the most likely
path to failure). In Figure 6 we see a comparison of the optimal ϕ for a level of loss ℓ = 0.85 for types A
and B under the different scenarios of contagion effects or not and systematic risk effects or not. In order
to illustrate the difference between the behavior of the most likely path to failure between types A and B,
we compare the corresponding ϕ extremals in the left panel of Figure 7 when both effects of contagion and
systematic risk are included in the model. We notice that at any given time t, the extremal for type A is
bigger than the extremal for type B. This implies that unlikely large losses for components of type A are
more likely than unlikely large losses for components of type B. Thus, components of type A affect the pool
more than components of type B even though type A composes 1/3 of the pool, whereas type B, composes
2/3 of the pool.
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Then, in the right of Figure 7 we see a comparison of the optimal ψ extremals for a level ℓ = 0.85 for
the cases of systematic risk effects are present or not. We see that in the presence of contagion, if a large
default cluster occurs, the systematic risk is most likely to play a large role in the initial phase, but then
its importance decreases, which means that contagion effect becomes more important. So, in conclusion the
analysis of the extremals shows that in such a pool if a large cluster were to occur, it would most likely be
due to effects of the systematic risk factor which then affects more names of type A and less names of type
B.
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Figure 6. Optimal φ(t) for t ∈ [0, 1] and ℓ = 0.85. Left panel : φ extremal for type A.
Right panel : φ extremal for type B.
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Figure 7. Left panel : Comparison of φ extremals for types A and B when systematic risk
effects are present. Right panel : Optimal ψ(t) for t ∈ [0, 1] and ℓ = 0.85.

5. Proof of the large deviations principle

The proof of Theorem 3.1 goes in two steps. First we prove the corresponding result when βC = 0, namely
we prove the LDP in the heterogeneous case when defaults are independent of each other (Subsection 5.1).
Then, based on this result combined with Theorem 5.7, we shall obtain the desired LDP of of Theorem 3.1
in Subsection 5.2. In Subsection 5.3, we prove Theorem 3.10.

5.1. Large deviations under independence and heterogeneity. For each N ∈ N, let {τ ind,Nn }Nn=1 be
the independent collection of default times with intensities

(16)
dλind,N,nt = −αN,n(λind,N,nt − λ̄N,n)dt+ σN,n

√

λind,N,nt dWn
t t > 0

λind,N,n0 = λ◦,N,n.
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In other words,

τ ind,Nn
def
= inf

{

t ≥ 0 :

∫ t

0

λind,N,ns ≥ en

}

where the en’s are as in (2). Then {τ ind,Nn }Nn=1 is a collection of independent random variables (although
they are not identically distributed ). Define the empirical measure of the types and default times:

ν
ind,N =

1

N

N
∑

n=1

δ
pN,n,τ

ind,N
n

.

Moreover, let

(17) H̄ ind(ν) =

{

∫

p∈P H
(

dν
dU

(p), µp
0,0

)

U(dp) if ∂ν
∂U

exists

∞ otherwise

whereH is as in (9). The definition of H̄ ind differs from the definition (10) of H̄ in that we replace µp
ν̄,0 in (10)

by µp
0,0. This corresponds to no contagion or systematic effects, which is the same as setting βC = βS = 0

leading to independent default rates.
Then, the corresponding large deviations principle reads as follows.

Theorem 5.1. The family {νind,N , N ∈ N} satisfies the large deviations principle with rate function
H̄ ind(ν) : P(P × T ) 7→ [0,∞].

Proof. The upper and lower bound follow by Lemmas 5.4 and 5.6 respectively. Let us now prove that this
is a lower-semicontinuous functional with compact level sets. Lower-semicontinuity of H

(

dν
dU

(p), µp
)

follows
immediately, since H(ν, µ) is a convex, lower-semincontinuous function of each variable ν or µ separately
(e.g., Lemma 1.4.3 in [8]). Compactness of level sets follows again as a consequence of the corresponding
property of the relative entropy H(ν, µ) (e.g., Lemma 1.4.3 in [8]). These properties are being inherited to
H̄ ind(ν), by Lemma 6.2.16 of [6]. This completes the proof of the Theorem. �

Remark 5.2. Under homogeneity, namely if pN,n0 = p0 for all N ∈ N and n ∈ {1, · · · , N} then the LDP is
a direct consequence of Sanov’s theorem and is given by (9). The fact that the defaults are not identically
distributed posses some additional difficulties in the proof, as it is seen below.

5.1.1. Compact Support. It is often useful (in passing from a large deviations upper bound for compact sets
to an upper bound for closed sets) to show sufficient tightness. In our case, Assumption 2.1 actually gives

us compact support. Assumption 2.1 implies that there is a bounded subset K of P such that pN,n0 ∈ K for
all N ∈ N and n ∈ {1, 2 . . .N}. Since T is itself compact, [−K2.1,K2.1]

6 × T is compact, and fact

ν
ind,N

(

[−K2.1,K2.1]
6 × T

)

= 1.

Moving this to measure space, let’s define

(18) K def
=
{

ω ∈ P(X) : ω
(

[−K2.1,K2.1]
6 × T

)

= 1
}

.

Then K ⊂⊂ P(X), and P-a.s. ν ind,N ∈ K for all N ∈ N.

5.1.2. Large deviations upper bound. In this section, we prove the large deviations upper bound.
Let’s start with an equivalent characterization of H̄(ν).

Lemma 5.3. For every ν ∈ P(X) we have that

H̄(ν) = sup
φ∈C(P×T )

{

∫

(p,t)∈X

φ(p, t)ν(dp, dt) −
∫

p∈P
log

∫

t∈T
eφ(p,t)µp

0,0(dt)U(dp)

}

.

Proof. First we assume that the stochastic kernel ξ = ∂ν
∂U

exists. For φ ∈ C(T ) and p ∈ P , let’s define

G(φ, p)
def
=

∫

t∈T
φ(t)ξ(p)(dt) − log

∫

t∈T
eφ(t)µp

0,0(dt).
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The Donsker-Varadhan variational representation of the relative entropy [8, Theorem 1.4.3] is that

H(ξ(p), µp
0,0) = sup

φ∈C(T )

G(φ, p).

For any φ ∈ C(X;R), we have that
∫

(p,t)∈P×T
φ(p, t)ν(dp, dt) −

∫

p∈P
log

∫

t∈T
eφ(p,t)µp

0,0(dt)U(dp)

=

∫

p∈P

{
∫

t∈T
φ(p, t)ξ(p)(dt) − log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

=

∫

p∈P
G(φ(p, ·), p)U(dp) ≤

∫

p∈P
H(ξ(p), µp

0,0)U(dp) = H̄ ind(ν).

To prove the opposite inequality, define

FN (p) = sup
φ∈C(X),‖φ‖≤N

G(φ(p, ·), p)

for all positive integers N . Fix now η > 0. For each N , let φ∗N ∈ C(X;R) be such that ‖φ∗N‖ ≤ N and
G(φ∗N (p, ·), p) ≥ FN (p) − η. Since N 7→ FN (p) is non-decreasing for each p ∈ P , monotone convergence
implies that

H̄(ν) =

∫

p∈P
lim
N→∞

FN (p)U(dp) ≤ lim
N→∞

∫

p∈P
FN (p)U(dp)

≤ lim
N→∞

∫

p∈P
G(φ∗N (p), p)U(dp) + η ≤ sup

φ∈C(X)

∫

P
G(φ, p)U(dp) + η

Let η ց 0; combining things together, we have the claim when ∂ν
∂U

exists.

Let’s next consider the case where ∂ν
∂U

is not well defined; thus H̄ ind(ν) = ∞. Then there is an A ∈ B(P)
and B ∈ B(T ) such that ν(A × B) > 0 and U(B) = 0. Since P is Polish, there is a closed subset F of A
such that ν(F ×B) > 0. For c > 0 and N ∈ N, define

φcN (p, t) = c exp [−N distX((p, t), F ×B)]

where distX(·, F ×B) is the distance (in X) to F ×B. Note that

lim
N→∞

φcN = cχF×B

pointwise. By dominated convergence, we then have that

sup
φ∈C(X)

{

∫

(p,t)∈X

φ(p, t)ν(dp, dt) −
∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

}

≥ lim
N→∞

{

∫

(p,t)∈X

φcN (p, t)ν(dp, dt) −
∫

p∈P

{

log

∫

t∈T
eφ

c
N (p,t)µp

0,0(dt)

}

U(dp)

}

=

∫

(p,t)∈X

cχF×B(p, t)ν(dp, dt) −
∫

p∈P

{

log

∫

t∈T
ecχF×B(p,t)µp

0,0(dt)

}

U(dp)

If p ∈ F c, then
∫

t∈T
ecχF×B(p,t)µp

0,0(dt) =

∫

t∈T
1µp

0,0(dt) = µp
0,0(T ) = 1.

Thus

sup
φ∈C(X)

{

∫

(p,t)∈X

φ(p, t)ν(dp, dt) −
∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

}

≥ cν(F ×B).

Letting cր ∞, we get the claim when ∂ν
∂U

is not well defined, finishing the proof. �

We now can prove the upper bound.
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Lemma 5.4. For any closed set F ⊂ P(X), we have

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ F

}

≤ − inf
ν∈F

H ind(ν)

Proof. Using (18), we start with the fact that

(19) P
{

ν
ind,N ∈ F

}

= P
{

ν
ind,N ∈ F ∩ K

}

.

Fix ℓ < infν∈F∩K H̄ ind(ν). For every φ ∈ C(X;R), define

Aφ =

{

ν ∈ P(X) :

∫

(p,t)∈X

φ(p, t)ν(dp, dt) −
∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp(dt)

}

U(dp) > ℓ

}

By Lemma 5.3, we have that

F ∩ K ⊂ ∪φ∈C(X)Aφ.

Since F ∩ K is compact, we in fact have that

F ∩ K ⊂ ∪φ∈ΦAφ

for some finite subset Φ of C(X;R). Consequently

(20) P
{

ν
ind,N ∈ F ∩K

}

≤
∑

φ∈Φ

P{νind,N ∈ Aφ}.

Using the exponential Chebychev inequality, we calculate that

P
{

ν
ind,N ∈ Aφ

}

≤ P

{

∫

(p,t)∈X

φ(p, t)ν ind,N (dp, dt)

> ℓ+

∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

}

= P

{

N

∫

(p,t)∈X

φ(p, t)ν ind,N (dp, dt)

> Nℓ+N

∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

}

≤ exp [−Nℓ]E exp

[

N

∫

(p,t)∈X

φ(p, t)ν ind,N (dp, dt)

]

× exp

[

−N
∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

]

≤ exp [−Nℓ] exp
[

N

∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

UN (dp)

]

× exp

[

−N
∫

p∈P

{

log

∫

t∈T
eφ(p,t)µp

0,0(dt)

}

U(dp)

]

Thus

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ Aφ

}

≤ −ℓ.

Using this a finite number of times in (20), we get that

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ F ∩ K

}

≤ −ℓ.

Letting ℓր infν∈F∩K H̄ ind(ν), we have that

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ F ∩ K

}

≤ − inf
ν∈F∩K

H̄ ind(ν).

18



Finally returning to (19), we calculate that

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ F

}

≤ − inf
ν∈F∩K

H̄ ind(ν) ≤ − inf
ν∈F

H̄ ind(ν)

giving us the claim. �

5.1.3. Large deviations lower bound. In this section, we prove the large deviations lower bound.
We need the following continuity result.

Lemma 5.5. The map p 7→ µp
0,0 is continuous as a map from P to P(T ).

Proof. This follows fairly easily from the explicit formula (7). �

We can now prove the lower bound.

Lemma 5.6. Let G be an open subset of P(X). Then

lim
N→∞

1

N
lnP

{

ν
ind,N ∈ G

}

≥ − inf
ν∈G

H̄ ind(ν)

Proof. We proceed in a standard way. It suffices to fix a ν∗ ∈ G such that H̄ ind(ν∗) < ∞ and a η > 0 and
show that

(21) lim
N→∞

1

N
lnP

{

ν
ind,N ∈ G

}

≥ −H̄ ind(ν∗)− η.

Let’s understand the implications of H̄ ind(ν∗) <∞. Then ξ
def
= ∂ν∗

∂U
exists and

∫

p∈P
H(ξ(p), µp

0,0)U(dp) <∞

so H(ξ(p), µp
0,0) < ∞ for U -a.e. p ∈ P . Thus ξ(p) ≪ µp

0,0 for U -a.e. p ∈ P . Finally, this and Tonelli’s
theorem ensures that

φ(p, t)
def
=

dξ(p)

dµp
0,0

(t)

is well-defined. In fact, defining the stochastic kernel µ•
0,0(p)

def
= µp

0,0, we have that

(22) φ =
dν∗

d(µ•
0,0 ⊗ U)

so φ is measurable. Using (22), we furthermore note that

ν∗ {(p, t) ∈ X : φ(p, t) = 0} =

∫

(p,t)∈X

χ{0}(φ(p, t))φ(p, t)(µ
•
0,0 ⊗ U)(dp, dt) = 0.

Let’s thus define

ψ(p, t)
def
=

{

lnφ(p, t) if φ(p, t) > 0

−∞ if φ(p, t) = 0

Defining, for convenience e−∞ def
= 0; we know that

(23)

∫

t∈T
eψ(p,t)µp

0,0(dt) = ξ(p)(B) = 1.

for U -a.e. p ∈ P . We also note that

H̄ ind(ν∗) =

∫

(p,t)∈X

ψ(p, t)ν∗(dp, dt)−
∫

p∈P

{

log

∫

t∈T
eψ(p,t)µp

0,0(dt)

}

U(dp).

Fix some µ◦ ∈ P(T ). For Ψ ∈ C(X;R), define now the stochastic kernel

ΞΨ(p)(B)
def
=

{

∫

t∈B
exp[Ψ(p,t)]µp

0,0(dt)
∫

t∈T
exp[Ψ(p,t)]µp

0,0(dt)
if
∫

t∈T exp [Ψ(p, t)]µp
0,0(dt) > 0

µ◦(B) if
∫

t∈T exp [Ψ(p, t)]µp
0,0(dt) = 0

B ∈ B(T )
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Let’s now approximate, keeping in mind Lemma 5.5, (22), and the fact that x 7→ e−x is continuous on

[−∞,∞). We then have that there is a ψ̂ ∈ C(X;R) such that
∣

∣

∣

∣

∣

H̄ ind(ν∗)−
∫

(p,t)∈X

ψ̂(p, t)ν∗(dp, dt)−
∫

p∈P

{

log

∫

t∈T
eψ̂(p,t)µp

0,0(dt)

}

U(dp)

∣

∣

∣

∣

∣

< η/3

and such that the measure ν̂
def
= Ξψ̂ ⊗ U is in G.

Let’s now define

(24) SN
def
=

∫

(p,t)∈X

ψ̂(p, t)ν ind,N (dp, dt)−
∫

p∈P

{

log

∫

t∈T
eψ̂(p,t)µp

0,0(dt)

}

UN (dp).

Then E [exp [NSN ]] = 1, and we thus define

P̂N (A)
def
= E [χA exp [NSN ]] A ∈ F

The next step is to reduce G. Let B ⊂ X be an open subset of G which contains ν̂ and such that
∣

∣

∣

∣

∣

∫

(p,t)∈X

ψ̂(p, t)ν(dp, dt) −
∫

(p,t)∈X

ψ̂(p, t)ν∗(dp, dt)

∣

∣

∣

∣

∣

< η/2

for all ν ∈ B. Thus

P{νind,N ∈ G} ≥ P{νind,N ∈ B} = ÊN

[

χ{νind,N∈B} exp [−NSN ]
]

.

Thanks to Lemma 5.5, the map

p 7→
∫

t∈T
eψ̂(p,t)µp

0,0(dt)

is in C(P ;R). Thus we can find an N∗ ∈ N such that
∣

∣

∣

∣

∫

p∈P

{

log

∫

t∈T
eψ̂(p,t)µp

0,0(dt)

}

U(dp)−
∫

p∈P

{

log

∫

t∈T
eψ̂(p,t)µp

0,0(dt)

}

UN (dp)

∣

∣

∣

∣

≤ η/2

if N ≥ N∗. Combining things together, we have that
∣

∣

∣

∣

∣

∫

(p,t)∈X

ψ̂(p, t)ν ind,N (dp, dt)−
∫

p∈P

{

log

∫

t∈T
eψ̂(p,t)µp

0,0(dt)

}

UN(dp)− H̄ ind(ν∗)

∣

∣

∣

∣

∣

< η

if ν ind,N ∈ B and N ≥ N∗.
Assume now that N ≥ N∗. Then

P{νind,N ∈ G} ≥ P{νind,N ∈ B} = ÊN

[

χ{νind,N∈B} exp [−NSN ]
]

≥ P̂N{νind,N ∈ B} exp
[

−N{H̄ ind(ν∗) + η}
]

.

To finish the proof, let’s show that

(25) lim
N→∞

P̂N{νind,N ∈ B} > 0.

To do so, let’s construct a metric on P(X). Define d(x)
def
= |x|/(1 + |x|); then the map (x, y) 7→ d(x − y)

is a metric on R. Let {fn}n∈N be a countable and dense subset of C(X;R), and define

(26) ρ(ν1, ν2)
def
=
∑

n∈N

2−nd

(

∫

(p,t)∈X

fn(p, t)ν1(dp, dt)−
∫

(p,t)∈X

fn(p, t)ν2(dp, dt)

)

for all ν1 and ν2 in P(X). Then ρ is a metric on P(X). Since ν̂ ∈ B, there is a δ(27) > 0 small enough such
that

(27)
{

ν′ ∈ P(X) : ρ(ν′, ν̂) < δ(27)
}

⊂ B.

Let’s now understand the statistics of νind,N under P̂N . From the structure (24) of SN , we see that, under

P̂N , {τ ind,Nn }Nn=1 are independent and τNn has law Ξψ̂(p
N
n ).
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Fix f ∈ C(X;R). Let’s write
∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)νind,N(dp, dt) −
∫

(p,t)∈X

f(p, t)ν̂(dp, dt)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)νind,N (dp, dt)−
∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ UN )(dp, dt)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ UN)(dp, dt) −
∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ U)(dp, dt)

∣

∣

∣

∣

∣

.

Keeping Lemma 5.5 in mind, we have that

lim
N→∞

∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ UN )(dp, dt) −
∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ U)(dp, dt)

∣

∣

∣

∣

∣

= 0.

Let’s next use Chebychev’s inequality; we have arranged things to take advantage of the fact that

ÊN

[

f(pNn , σ
N
n )
]

=

∫

t∈T
f(pNn , t)Ξ

pNn

ψ̂
(dt)

for all N and n. We then calculate that

ÊN





∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)ν ind,N (dp, dt)−
∫

(p,t)∈X

f(p, t)(Ξψ̂ ⊗ UN)(dp, dt)

∣

∣

∣

∣

∣

2




= ÊN





∣

∣

∣

∣

∣

1

N

N
∑

n=1

{

f(pNn , σ
N
n )−

∫

t∈T
f(pNn , t)Ξψ̂(p

N
n )(dt)

}

∣

∣

∣

∣

∣

2




=
1

N2

N
∑

n=1

ÊN

[

{

f(pNn , σ
N
n )−

∫

t∈T
f(pNn , t)Ξψ̂(p

N
n )(dt)

}2
]

≤ 4

N
sup

(p,t)∈X

|f(p, t)|2.

Let’s collect things together. For each f ∈ C(X;R), we have that

lim
N→∞

ÊN

[
∣

∣

∣

∣

∣

∫

(p,t)∈X

f(p, t)ν ind,N (dp, dt)−
∫

(p,t)∈X

f(p, t)ν̂(dp, dt)

∣

∣

∣

∣

∣

]

= 0.

The structure of (26) then implies that

lim
N→∞

P̂N

{

ρ(ν ind,N , ν̂) > δ(27)
}

= 0.

This then implies (25), finishing the proof. �

5.2. Proof of Theorem 3.1. In this section we prove Theorem 3.1, using Varadhan’s integral lemma [22]
as it appears in Theorem II.7.2 of [9].

Theorem 5.7 (Varadhan’s integral lemma). Let S be a Polish space. Suppose that {ξN}N∈N is a sequence

of S-valued random variables with large deviations principle with rate function I. Let {ξ̃N}N∈N be another
sequence of S-valued random variables and assume that there is a continuous function G : S → R such that

P{ξ̃N ∈ A} = E [χA(ξN ) exp [NG(ξN )]]

for all A ∈ B(S). If

lim
α→∞

lim
N→∞

1

N
lnE

[

χ[α,∞)

(

G(ξN )
)

eNG(ξN )
]

= −∞

then {ξ̃N}N∈N has a large deviation principle with good rate function I −G.
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In our case, we take S
def
= P(X) and ξN

def
= ν

ind,N . Lemma 4.1 allows us to define the Radon-Nikodym
derivative eNG.

For p ∈ P , define

ḃp(t) = 1− 1

2
σ2 (bp(t))

2 − αbp(t) t > 0

bp(0) = 0.

Note that since βS = 0 then θpt (s) = bp(s) for all 0 ≤ s ≤ t ≤ T , where θpt (s) is defined in (15). It is easy

to see that bp and ḃp are uniformly bounded in P × [0, T ]. Using (6) and Lemma 4.1 we can fairly easily
compute the ratio of densities of τNn and τ ind,Nn and consequently of νN and ν

ind,N . For p ∈ P , r ∈ [0, T ],
and ν ∈ P(P × [0, T ]), define

gν(p, r)
def
= log

dµp
ν̄,0([0, r])

dµp
0,0([0, r])

= log

{

ḃp(r)λ◦ + αλ̄bp(r) + βC
∫ r

0

ḃp(r − u)ν(P , du)
)

− log
(

ḃp(r)λ◦ + αλ̄bp(r)
)

− βC
∫ r

0

bp(r − u)ν(P , du)

For p ∈ P , let’s also define

gν(p, ⋆) = βC
∫ T

0

bp(T − u)ν(P , du)

For ν ∈ P(X), let’s finally define

G(ν)
def
=

∫

(p,t)∈X

gν(p, t)ν(dp, dt).

Then

P
{

ν
N ∈ A

}

= E
[

χA(ν
ind,N ) exp

[

NG(ν ind,N )
]]

.

Theorem 3.1 follows by Theorem 5.8 and contraction principle.

Theorem 5.8. The family (νN )N∈N of (8) satisfies the large deviations principle with rate function H̄(ν) :
P(P × T ) 7→ [0,∞].

Proof. Note that G : P(X) → R is continuous in the weak topology and bounded. Thus

lim
α→∞

lim
N→∞

1

N
logE

[

χ[α,∞)

(

G(ν ind,N )
)

exp
[

NG(ν ind,N )
]]

= −∞

holds. Thus {νN , N ∈ N} has a large deviations principle with rate function H̄
def
= H̄ ind−G. Fix ν ∈ P(X).

If ∂ν
∂U

does not exist, then H̄ ind(ν) = ∞ so H̄(ν) = ∞. If ∂ν
∂U

exists, then

H̄(ν) =

∫

p∈P

{

∫

t∈T
ln

∂ν
∂U

(p)

dµp
0,0

(t)
dν

dU
(p, dt)

}

U(dp)−
∫

(p,t)∈X

ln
dµp

ν̄,0(s)

dµp
0,0(s)

ν(dp, ds)

=

∫

p∈P

{

∫

t∈T

{

ln
∂ν
∂U

(p)

dµp
0,0

(t)− ln
dµp

ν̄,0(s)

dµp
0,0(s)

}

∂ν

∂U
(p, ds)

}

U(dp)

=

∫

p∈P

{

∫

t∈T
ln

∂ν
∂U

(p)

dµp
ν,0

(t)
dν

dU
(p, dt)

}

U(dp)

=

∫

p∈P
H

(

dν

dU
(p), µp

ν̄,0

)

U(dp)

�

We conclude with the proof of Corollary 3.3.
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Proof of Corollary 3.3. Clearly, it is enough to consider the case H̄(ν) < ∞. H (·, ·) is relative entropy,
which implies that it is a convex and lower semicontiunuous function with respect to both arguments and
strictly convex as a function of the first argument for each fixed second argument. Thus H̄(ν) = 0 implies
that H

(

dν
dU

(p), µp
ν̄,0

)

= 0, which due to the relative entropy nature of H , it is true if ∂ν
∂U

(p) = µp
ν̄,0 U−a.e.

This implies the relation

ν(P , B) =

∫

P×B
µp
ν̄,0(ds)U(dp), for all B ∈ B(T )

which by (6) and Lemma 4.1, translates to the equation

ν̄([0, t]) =

∫

P

[

1− E

[

e−
∫

t

0
λν̄,0s (p)ds

]]

U(dp)

= 1−
∫

P
e−(b

p(t)λ0+
∫

t

0
αλ̄bp(t−u)du+βC

∫

t

0
bp(t−u)ν̄(du))U(dp)(28)

where λν,0(p) satisfies (4) with ϕ(t) = ν̄([0, t]) and ψ(t) = 0. Let us next argue that this equation has a
unique solution which coincides with Lt, the limit in probability of the empirical loss LNt as N → ∞.

By Lemma 4.1 of [17] we get that

(29) Lt = 1− µt(P) = 1−
∫

P
E

[

e−
∫

t

0
λ∗
s(p)ds

]

U(dp)

where for each p ∈ P , there is a unique pair {(Q(t), λ∗t (p)) : t ∈ [0, T ]} taking values in R+ × R+ such that

Q(t) =

∫

P
E

{

λ∗t (p) exp

[

−
∫ t

0

λ∗s(p)ds

]}

U(dp).

and

λ∗t (p) = λ◦ − α

∫ t

0

(λ∗s(p)− λ̄)ds+ σ

∫ t

0

√

λ∗s(p)dW
∗
s + βC

∫ t

0

Q(s)ds.

Then, using Lemma 4.1, one easily computes from (29) that Lt = ν̄([0, t]), the unique solution of (28). �

5.3. Proof of Theorem 3.10. In this Subsection, we consider Theorem 3.10. The proof is a direct con-
sequence of (a): Theorem 5.8 and (b): the LDP for the XN

t = εNXt process, Lemma 5.10. Thus, we only
sketch the main arguments.

Firstly, we notice that an immediate consequence of Theorem 5.8, is the following conditional LDP.

Lemma 5.9. Consider the system defined in (1) with εN = 1. Under Assumptions 2.1 and 2.2, and given a
path t 7→ Xt in Cc ([0, T ];R), the family {νN , N ∈ N} satisfies the conditional large deviation principle with
rate function H̄(ν;X) : P(P × T ) 7→ [0,∞] and speed N , where

H̄(ν;X) =

{

∫

P H
(

∂ν
∂U

(p), µp

ν̄,X

)

U(dp), if ∂ν
∂U

(p) exists

+∞, otherwise.

Secondly, we notice that under Assumptions 3.6, 3.7 and 3.8 the family {XN = εNX,N ∈ N} satisfies a
large deviations principle as given by Lemma 5.10.

Lemma 5.10. Let XN = εNX and assume that Assumptions 3.6, 3.7 and 3.8 hold. Then, the process
{XN

· , N ∈ N} satisfies the large deviations principle with rate function JX(·) as given by (13) and speed

1/ε2ζN .

Proof. Notice that XN = εNX is the unique strong solution of the SDE

dXN
t = εNb

(

XN
t

εN

)

dt+ εζN

[

ε1−ζN κ

(

XN
t

εN

)]

dVt, XN
0 = εNx0

It follows then by Theorem 2.1 in [2], or in the case of non-degenerate bounded diffusion from the classical
results in Section 5.3. of [11], that under Assumptions 3.6, 3.7 and 3.8 the processes {εNX,N < ∞} and
{X̄N , N < ∞} defined in (12) have the same large deviations principle with rate function JX(·) and where

speed of the large deviations asymptotic is 1/ε2ζN . �
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By Lemma 5.9 and contraction principle we get that, given a path t 7→ Xt, the large deviations rate
function for the family {LNt = ν

N (P × [0, t]) , N ∈ N, t ∈ [0, T ]} is given by

(30) J(ϕ;X) =















∫

P g
(

ϕ(p), fp

ϕ̄,X(t)
)

U(dp), ϕ ∈ AC(P × [0, T ];R), ϕ(p, 0) = 0, ϕ ≥ 0,

and ϕ̄(s) =
∫

P ϕ(p, s)U(dp)

+∞, otherwise

The latter statement and Lemma 5.10 imply that the rate function for the pair
{

(LNt , X
N
t ), N ∈ N, t ∈ [0, T ]

}

is given by S(ϕ, ψ), as defined in Theorem 3.10. Indeed, by Lemma 1.2.18 and Theorem 4.1.11 of [6], it is
enough to establish a local large deviations principle and exponential tightness. Exponential tightness is a
direct consequence of the compact support computations of Section 5.1.1 and the exponential tightness of
the small noise diffusion process XN . Denoting by B(·, δ) the ball in the space of continuous functions in
[0, T ] with uniform norm, proving a local large deviations principle amounts to proving

lim
δ↓0

lim sup
N→∞

1

N
logP

{

(LN , XN) ∈ B((ϕ, ψ), δ)
}

≤ −S(ϕ, ψ), and

lim
δ↓0

lim inf
N→∞

1

N
logP

{

(LN , XN) ∈ B((ϕ, ψ), δ)
}

≥ −S(ϕ, ψ)

In the case limN→∞Nε2ζN = c ∈ (0,∞), both statements are seen to be true due to the conditional
probability relation P(A ∩ Γ) = P(A|Γ)P(Γ) and using the conditonal large deviations principle discussed at
Lemma 5.9 and the large deviations principle of Lemma 5.10. Basically, to exponential order, we have as
N → ∞

(31) P{LN ≈ ϕ, XN ≈ ψ} ≈ exp

[

−NJ(ϕ;ψ)− 1

ε2ζN
JX(ψ)

]

.

which means that if limN→∞Nε2ζN = c ∈ (0,∞), the rate function for the pair
{

(LNt , X
N
t ), N ∈ N, t ∈ [0, T ]

}

is given by S(ϕ, ψ), as defined in Theorem 3.10. Then, by varying over ψ ∈ C([0, T ];R) and ϕ ∈ C(P ×
[0, T ];R) such that ϕ̄(T ) = ℓ, we get that the rate function for the loss {LNT , N < ∞} at time T is I(·),
which is the statement of Theorem 3.10, concluding its proof.

Display (31) also shows that if limN→∞Nε2ζN = ∞, then the term J(ϕ;ψ) is the dominant factor, while

if limN→∞Nε2ζN = 0, then the JX(ψ) entropy term is the dominant factor.

6. Conclusion

In this paper we studied large deviations for an empirically motivated interacting particle system of
default clustering. The components in the system interact through the empirical default rate in the pool
and through a systematic risk which is common to all of the them. An explicit large deviations principle is
derived and probabilities of tail events are then studied. One can compute the extremals of the rate function,
which characterize the most likely path to failure of the system. The numerical experiments reveal the role
that contagion and systematic risk play in the failure of the system. In the numerical examples that we
performed, we saw that if a large default cluster occurs, the systematic risk is most likely to play a large role
in the initial phase, but then its importance decreases, and then contagion effect become more important.
Then, the analysis of the extremals in heterogeneous pools can help understanding which components in the
pool are more vulnerable to the effect of contagion.
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