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Abstract

We perform bifurcation analysis of plane wave solutions in one-dimensional complex cubic-
quintic Ginzburg-Landau equation with delayed feedback. Our study reveals how multistability
and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values
of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical
methods. For large delays, using an asymptotic approach we classify plane wave solutions into
strongly unstable, weakly unstable, and stable. The results of analytical bifurcation analysis are
in agreement with those obtained by direct numerical integration of the model equation.
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1 Introduction

The complex Ginzburg-Landau equation (CGLE) plays an important role in modeling of
various natural phenomena including nonlinear optical waves, second-order phase tran-
sitions, Rayleigh-Bénard convection, and superconductivity [5, 3]. It is an amplitude
equation describing the onset of instability near an Andronov-Hopf bifurcation in spa-
tially extended dynamical systems [19]. In nonlinear optics, equations of CGLE type are
widely used to describe such phenomena as mode-locking in lasers [26, 2, 9], short pulse
propagation in optical transmission lines [15], dynamics of multimode lasers, and trans-
verse pattern formation in nonlinear optical media [31, 28]. While classical cubic CGLE
describes a supercritical bifurcation, in the case of subcritical instability this equation is
augmented with the fifth-order terms to allow the existence of stable pulselike solutions
[29, 12].
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Here we focus on one-dimensional delayed cubic-quintic CGLE for the complex am-
plitude A(x, t)

∂tA =

(
β +

i

2

)
∂xxA+ δA+ (ε+ i) |A|2A+ (µ+ iν) |A|4A+ ηeiϕA(x, t− τ). (1)

The parameter β > 0 is the diffusion coefficient, second-order dispersion (diffraction) is
scaled to 1/2, and δ describes the linear loss or gain. Parameters ε, µ, and ν determine the
shape of the nonlinearity. In particular, there are two qualitatively different cases: ε > 0
and ε < 0 corresponding to destabilizing and stabilizing role of the cubic nonlinearity.
Equivalently, this leads to either subcritical or supercritical destabilization mechanisms
for the homogeneous steady state A = 0. In this work, we take the values ε < 0,
µ = ν = 0 for the supercritical case (cubic CGLE), and ε > 0, µ < 0 for the subcritical
case. Parameters η and ϕ determine the feedback rate and phase, respectively, whereas
τ is the delay time. Model equation (1) can describe, for instance, a broad area optical
system with delayed optical feedback [30, 10]. Notice that in the absence of delayed
feedback term, η = 0, Eq. (1) becomes the classical cubic-quintic CGLE [5, 23].

Although CGLE possesses a variety of different solutions [1, 27, 3, 16], in this work
we focus on the simplest plane waves of the form A = a0e

iqx+iωt. The stability of the
trivial homogeneous solution A = 0 is studied as well. Criteria of the stability of plane
wave solutions in the quintic CGLE without delay were briefly described in [23]. The
stabilization of plane waves in one-dimensional and two-dimensional cubic CGLE by a
combination of spatially shifted and temporally delayed non-invasive feedback was inves-
tigated in [17, 20] for the case when delay time and space shift are in the resonance with
plane wave spatial and temporal wavenumbers. In this paper, we study cubic-quintic
CGLE (as well as cubic CGLE as a special case) with arbitrary delay time and phase of
the feedback, including the long delay limit case. For small delay times, there appears
a single plane wave for every allowed spatial wavenumber q. The local stability of such
solutions can be studied by calculating a dispersion relation for a given plane wave solu-
tion [23]. As time delay becomes comparable or longer than the characteristic time scale
in the system the number of plane waves for each admissible wavenumber grows linearly
with τ . Moreover, the stability of each plane wave is no longer determined by a single
classical dispersion relation, but a set of dispersion relations, which correspond to various
“delay-induced modes”. This set of dispersion relations is conveniently described using
the methods from [32, 34, 14, 24, 8] by adding an additional dimension to the disper-
sion relation and studying a so called “hybrid dispersion relation”, which is a function of
two arguments. Performing such a stability analysis, we identify a large set of emerging
asymptotically stable plane waves. Another contribution of this work is that we present
a way how one can conveniently describe and visualize the whole set of plane waves and
their stability in system (1). As an interesting observation, we find that the branches of
plane waves exhibit a snaking behavior as the linear gain parameter δ is changed.

This paper is organized as follows: in Section 2 we start with the stability analysis
of the homogeneous solution A = 0. In addition, in this section we introduce some
important ideas that will be used in a technically more elaborated way in Section 3,
where the existence and stability of the plane wave solutions A = a0e

iqx+iωt is studied.
Finally, the conclusions are given in Section 4.
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2 Stability analysis of the homogeneous solution

2.1 The case without delayed feedback

In this section we start with the stability analysis of the trivial homogeneous steady state
solution A(x, t) = 0. Let us briefly recall the case when the feedback is absent, i.e. η = 0
[23, 17]. By substituting the perturbations of the form eiqx+λt in the linearized equation,
we obtain the characteristic equation

χ(λ) = λ− δ +

(
β +

i

2

)
q2 = 0. (2)

Here q is a spatial wavenumber of the perturbation and λ determines the growth rate.
The corresponding dispersion relation reads

λ(q) = δ −
(
β +

i

2

)
q2.

When all the eigenvalues λ(q) have negative real parts, the homogeneous solution is
asymptotically stable. Since β is positive, we conclude that the trivial solution is unstable
for δ > 0 and stable if δ < 0. The most unstable wavenumber is q = 0.

2.2 Case of delay τ

For nonzero feedback rate the characteristic equation for the homogeneous solution be-
comes

χ1(λ) = λ− δ − ηeiϕe−λτ +

(
β +

i

2

)
q2 = 0. (3)

The Andronov-Hopf bifurcation curves in the parameter plane (η, δ) can be found in
a parametric form. To this end we substitute λ = iω into characteristic equation (3)

iω − δ − ηeiϕe−iωτ +

(
β +

i

2

)
q2 = 0. (4)

By separating real and imaginary parts of equation (4), we obtain two relations

η(ω) =
q2

2
+ ω

sin(ϕ− ωτ)
, δ(ω) = βq2 −

cos(ϕ− ωτ)
(
q2

2
+ ω

)
sin(ϕ− ωτ)

(5)

defining the Andronov-Hopf bifurcation curves with the imaginary part of the critical
eigenvalue ω being a free parameter. Figure 1 shows these bifurcation curves in the
plane of two parameters, linear gain δ and feedback rate η. The stability region of the
trivial solution where real parts of all the eigenvalues λ(q) are negative is shown in gray.
A destabilization with respect to a given wavenumber q takes place when crossing the
boundary of this region from inside. Figures 1(a,b) present the Andronov-Hopf bifurcation
curves for the wavevector q = 0 at different values of the feedback phase, see also [21, 17].
For non-zero values of q, the instability region shifts to higher values of δ, as shown in Fig.
1(c). Therefore, the destabilization of the trivial homogeneous steady state first occurs at
the most unstable wavenumber q = 0. For larger delay times the set of bifurcation curves
becomes more dense, as it is seen from Fig. 1(d).
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Fig. 1: Andronov-Hopf bifurcation curves for the trivial homogeneous solution A = 0 of
Eq. (1) in (δ, η) plane. The curves are given in a parametric form (5). Stability
region of the solution A = 0 where the real part of the eigenvalue corresponding
to the most unstable mode q = 0 is negative is shown in gray. Parameter values:
(a) τ = 25, q = 0, ϕ = 0, (b) τ = 25, q = 0, ϕ = π/2, (c) τ = 25, q = 1, ϕ = 0,
(d) τ = 100, q = 0, ϕ = 0. In all figures β = 0.5.

2.3 The case of large delay

Delay time τ for optical systems can exceed the internal time scales of the system by
several orders of magnitude [25, 6, 13, 7]. To study this case, we use the asymptotic
technique similar to that used in [32, 34, 14, 24]. According to these results, there are two
types of delay-induced instabilities: strong instability and weak instability. Strong insta-
bility appears when there exists an eigenvalue (or Lyapunov exponent, for the periodic or
chaotic case), which tends to some constant value λ(τ)→ λ0 with <[λ0] > 0 as time delay
increases. In this case, the contribution of the term e−λτ in the characteristic equation
(3) can be neglected and we arrive to the following condition for the strong instability of
the mode with the wavenumber q

λ0 = δ +

(
β +

i

2

)
q2 > 0.

This instability condition coincides, in fact, with that for the feedback-free case. The
most unstable mode q = 0 gives the condition for the strong instability of the solution
A = 0:

δ > 0. (6)

Another type of instability, the weak one, can be described by a pseudo-continuous
spectrum of eigenvalues, which scales as

λ =
γ(ξ)

τ
+ iξ, (7)

in the limit τ →∞. More specifically, it was proved in [14, 24] that this spectrum is con-
verging to a set of continuous curves (7) parametrized by ξ. Moreover, the leading terms
of the real parts γ(ξ) can be found explicitly by substituting (7) into the characteristic
equation (3) and neglecting small terms of order 1/τ . In our case, we obtain the equation

iξ − δ − ηeiϕe−γe−iξτ +

(
β +

i

2

)
q2 = 0, (8)

which is solved explicitly with respect to γ:

γ(ξ, q) = −1

2
ln

(δ − βq2)2 +
(
ξ + 1

2
q2
)2

η2
. (9)
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In Eq. (9), we write an additional argument q, which indicates the dependence of the
real part (rescaled by 1/τ) of the eigenvalues on the wavenumber. The function γ of
two arguments extends naturally the dispersion relation, which is used [4] for partial
differential equations without delayed feedback. Indeed, for a fixed ξ, the relation (9)
determines the stability of the homogeneous state with respect to the perturbations with
the wavenumber q, i.e. it is the dispersion relation. The new variable ξ stands for the
delay induced modes, which appear additionally due to the delay. The homogeneous
solution is locally asymptotically stable when γ(ξ, q) < 0.

Figure 2 shows the surfaces of γ(ξ, q) calculated for different parameters. The red
curve shows the level line γ = 0 given by the relation

(
δ − βq2

)2
+

(
q2

2
+ ξ

)2

= η2. (10)

Equation (10) defines an ellipse in ξ and q2 coordinates. The trivial solution A = 0 is
unstable if at least part of the ellipse lies in the half-plane q2 > 0. Simple calculations
show that, for β > 0, this is equivalent to the condition

δ > −|η|. (11)

Hence, the inequality (11) gives the weak instability condition for the solution A = 0, see
Fig. 3. The corresponding critical wave numbers ξc and qc correspond to the maximum
of the quantity γ(ξ, q). For δ ≤ 0, we have qc = 0 and ξc = 0. Under the condition

δ > |η| (12)

there are two separated regions of unstable wavenumbers ξ and q, for which γ(ξ, q) > 0, see
Fig. 2(a). These regions are symmetric with respect to the ξ-axis, q = 0. Otherwise, when
only first of the two inequalities, (11) and (12), is satisfied, there is a single symmetric
region of unstable wavenumbers, see Fig. 2(b). The boundary defined by the inequality
(12) is shown in Fig. 3 by a dashed line. Figure 2(c) illustrates the case when the eigenvalue
spectrum is located in the left half-plane of the complex plane, γ(ξ, q) < 0, and the
homogeneous state A = 0 is stable.

The complete bifurcation diagram for the homogeneous state in the case of long delay
is summarized in Fig. 3, where the regions of strong and weak instability are shown. It
is instructive to compare this bifurcation diagram obtained in the limit τ → 0 with the
exact bifurcation curves for different values of τ shown at Figs. 1(a,b,d).

3 Plane wave solutions

In this section we study existence and stability of plane wave solutions A = a0e
iqx+iωt

of Eq. (1). As for the homogeneous solution, we start with the case without delayed
feedback in Sec. 3.1, and then consider the case with finite delay in Sec. 3.2. Further, in
Sec. 3.3 we study analytically the limit of a large delay time τ , which allows for a deeper
insight into the stability properties of plane wave solutions as compared to the arbitrary
τ case. Finally, in Sec. 3.4 the results of numerical simulations are presented.
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Fig. 2: Dispersion relation γ(ξ, q), given by Eq. (9) for the homogeneous state A = 0 at
large τ . Here ξ and q stand for the delay induced and the spatial wavenumber of
the perturbations. If γ < 0 for all ξ and q and no strong instability occurs, the
homogeneous state is stable. Parameter values: (a) unstable case with two regions
of unstable wavenumbers: δ = 0.3, η = 0.2, (b) unstable case with one unstable
region: δ = −0.2, η = 0.3, (c) stable case: δ = −0.3, η = 0.2. Red curve shows
the level lines γ = 0. In all figures β = 0.5.

3.1 The case without delayed feedback

Substituting A = a0e
iqx+iωt into Eq. (1), we obtain the relation between the unknown

amplitude a0, wavenumber q, and frequency ω of the plane wave solution:

iω = −
(
β +

i

2

)
q2 + δ + (ε+ i) a20 + (µ+ iν) a40. (13)

Due to the symmetry property of the CGLE A→ −A, this equation is symmetric under
the reflection a0 → −a0. Hence, we restrict our analysis to the case a0 ≥ 0. The real
and imaginary parts of Eq. (13) give the expressions for the amplitude a20(q) and the
frequency ω(q) at a given wavenumber q:

a20(q) =
−ε±

√
ε2 − 4µ(δ − βq2)

2µ
, ω(q) = −q

2

2
+ a20(q) + νa40(q). (14)

In particular, for the cubic CGLE (supercritical case with µ = ν = 0) we obtain

a20(q) =

√
βq2 − δ

ε
, ω(q) = −q

2

2
+
βq2 − δ

ε
. (15)

Figures 4 (a) and (b) show the amplitude of the plane wave a0(δ) as a function of
the gain parameter δ for the supercritical and subcritical case, respectively. The branch
of plane wave solutions with a given q emerges from the homogeneous state via Hopf
bifurcation at δ = βq2. For the parameter values of Fig. 4(b) corresponding to the
quintic CGLE, it bifurcates subcritically from A = 0 and undergoes a fold bifurcation at
δ = ε2

4µ
+ βq2.

Note that plane wave solutions of the CGLE without delay in supercritical case show
the classical Benjamin-Feir scenario [23, 3]. Let us shortly discuss the stability of plane
waves in the subcritical case of the quintic CGLE. Although the main ideas of this analysis
are known from e.g. [23], there are still some details, which are not explained in [23], but
are important for our further analysis. The perturbed plane wave solutions have the form

A(x, t) = (a0 + ap)e
iqx+iωt, (16)
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Strong and weak 

inst.

δ

η

Fig. 3: Bifurcation diagram of the homogeneous solution A = 0 in the parameter plane
(δ, η) for large delay times. The diagram shows the region of stability (gray), weak
and strong instability (light gray and white, respectively).

Fig. 4: Amplitude of plane wave solutions a0(δ) versus parameter δ in the absence of
the delay, given by Eqs. (15) and (14), for different spatial wavenumbers q. (a)
Supercritical case, ε = −1, µ = ν = 0. (b) Subcritical case, ε = 1, µ = −1,
ν = −0.1. In all plots β = 0.5.

where
ap = a+e

ikx+λt + ā−e
−ikx+λt (17)

is a small perturbation term with a growth rate λ. Here λ̄ and ā denote complex conju-
gation, and k stands for different perturbation modes. Substitution of (16) into CGLE
(1) with η = 0 and linearization in ap yields

∂tap + iω (a0 + ap) =

(
β +

i

2

)(
∂xxap + 2iq∂xap − q2(a0 + ap)

)
+ δ (a0 + ap) +

+ (ε+ i)
(
a30 + 2a20ap + a20ap

)
+ (µ+ iν)

(
a50 + 3a20ap + 2a20ap

)
. (18)

After substituting (17) into (18) and using Eq. (13) we obtain an equation involving

two linearly independent functions eikx+λt and e−ikx+λt. Requiring that the coefficients at
these functions are zero, we arrive at a system of linear equations for the unknowns a−
and a+:

M

(
a+
a−

)
= 0
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with

M =


λ+

(
β + i

2

) (
k2 + 2kq

)
− − (ε+ i) a20 − 2 (µ+ iν) a40

− (ε+ i) a20 − 2 (µ+ iν) a40

λ+
(
β − i

2

) (
k2 − 2kq

)
−

− (ε− i) a20 − 2 (µ− iν) a40 − (ε− i) a20 − (µ− iν) a40

 . (19)

Since we are looking for non-trivial solutions (a+, a−), the characteristic equation for the
perturbation growth rate λ(k) is obtained by setting detM = 0:

λ2 + 2
(
ikq + βk2 − εa20 − 2µa40

)
λ− 2

(
(ν + 2µβ) k2 + 2 (µ− 2νβ) ikq

)
a40 +

−
(
(1 + 2εβ) k2 + 2 (ε− 2β) ikq

)
a20 +

(
4β2 + 1

) (
k4/4 + k2q2

)
= 0. (20)

Solutions λ(k) can now be found explicitly and the maximum of their real parts determines
the stability of plane waves. As it is seen from Fig. 5 the plane waves are stable for larger
values of δ and become modulationally unstable with the decrease of δ. This instability
appears when the real part of the derivative ∂kkλ(0) changes its sign from negative to
positive, see insets (a) and (b) in Fig. 5.

Fig. 5: Amplitude of plane wave solutions a0(δ) in quintic CGLE (1) in the absence of
the delay for different spatial wavenumbers q. Stability domain is shown in gray.
Insets show the dependence of real part of the growth rate λ(k) for selected plane
waves. (a) δ = 0.1, q = 0, a0 ' 1.04, stable case, (b) δ = −0.2, q = 0, a0 ' 0.85,
unstable case. Other parameters: β = 0.5, ε = 1, µ = −1, and ν = −0.1.

The threshold of the modulational instability is given by the condition <[∂kkλ(0)] = 0.
For small k (long-wavelength limit) the Taylor expansion of λ(k) reads

λ(k) =

(
−C3

C1

− q
)
ik +

(
− C2

3

128C3
1

− C2
2

C1

− β
)
k2 +O(k3), (21)

where C1 = εa20 +2µa40, C2 = 16β2q2 +4a20 +8νa40 and C3 = 64β3q3−4βqC2. In particular,
the stability boundary ∂kkλ(0) = 0 is given by

C2
3

128C3
1

+
C2

2

C1

+ β = 0. (22)

Figure 5 shows the amplitude a0 of plane wave solutions versus δ for different wavenum-
bers q along with the examples of <[λ(k)] for stable an unstable cases respectively. Stable
solutions are depicted by solid lines and the stable domain is shown in gray. The first
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zero wavenumber plane wave solution A = a0e
iωt with q = 0, a20 = [−ε±

√
ε2 − 4µδ]/2µ,

and ω = a20 + νa40 is stable for

δ >
4βε (βε+ 2βµ+ ν + 1) + 2(2βµ+ ν + 1)

4(2βµ+ ν)2
. (23)

With the further increase of δ, stable plane wave solutions with q2 > 0 appear.

3.2 Case of delay τ

Description of the set of plane wave solutions

Substituting A = a0e
iqx+iωt into CGLE with delayed feedback (1) we obtain the equation

connecting the amplitude a0, frequency ω, and wavenumber q of the plane waves

iω = −
(
β +

i

2

)
q2 + δ + (ε+ i) a20 + (µ+ iν) a40 + ηeiϕe−iωτ . (24)

After separating real and imaginary parts of (24), we obtain

0 = −βq2 + δ + εa20 + µa40 + η cos(ωτ − ϕ), (25)

ω = −q
2

2
+ a20 + νa40 − η sin(ωτ − ϕ). (26)

In the coordinates (δ, ω, a0), the set of solutions of Eqs. (25)–(26) for each q lies on
the surface of a tube, which is implicitly defined by the following equation

(
−βq2 + δ + εa20 + µa40

)2
+

(
ω +

q2

2
− a20 − νa40

)2

= η2 (27)

(see Fig. 6), obtained from Eqs. (25)–(26) by exclusion of ωτ − ϕ. For fixed parameters,
including δ, this is a one-dimensional set, see the cross-section in Fig. 6.

Solving (25) with respect to a20 and substituting the result into (26), we obtain the
equation for the frequencies ω of the plane waves

0 = f± (ω) = ω +
q2

2
+
ε±

√
ε2 − 4µ (δ − βq2 + η cos (ωτ − ϕ))

2µ
− (28)

−
ν
(
ε±

√
ε2 − 4µ (δ − βq2 + η cos (ωτ − ϕ))

)2
4µ2

+ η sin (ωτ − ϕ) ,

which can be studied numerically for any fixed value of the delay τ . The functions f±(ω)
are shown on Fig. 7. In particular, with the increase of τ the functions f± (ω) oscillate
faster and number of solutions grows. This corresponds to a general result obtained in
[33] stating that in the limit of large delay the number of periodic solutions increases
linearly with τ . Eventually the solutions fill the curves defined by relation (27). Figure
(8) shows the exact solutions (a0, ω) for increasing delay time τ as points on these curves.
It is interesting to remark the strong analogy between the curve (27) of the plane wave
solutions and the ellipse of external cavity modes appearing in rate equation models for
semiconductor lasers with time delayed feedback, where the notion is frequently used
[18, 11, 34, 25, 22].
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Fig. 6: Amplitudes a0 and frequencies ω of plane wave solutions as a function of δ, defined
by Eq. (27). Black curve indicates the branch of plane wave solutions (defined by
(25)–(26)) for τ = 25 and ϕ = 0. Other parameters: q = 0, η = 0.5, β = 0.5,
ε = 1, µ = −1, and ν = −0.1. Red curve shows the cross-section of the tube by
the plane of the fixed parameter δ = 0.4.

Let us consider the effect of the feedback phase ϕ, which shifts the function f± (ω), see
Fig. 7. For small delay times, when f± (ω) oscillates slowly, the role of ϕ is pronounced
since a few of individual solutions are moved along the curve a0(ω) and new solutions can
be born. As τ increases, the overall number of plane wave solutions becomes large, thus
diminishing the effect of the feedback phase, as shown in Figs. 7(b) and 8(b).

Even though exact values of a0 and ω for any fixed set of parameters can only be
computed numerically, the branches of plane wave solutions versus parameter δ can be
obtained explicitly in a parametric form (a0 (ω) , δ (ω)). Namely, the amplitude a0(ω)
is the solution of Eq. (26). Substituting a0(ω) into Eq. (25) and solving the resulting
equation for δ, we obtain an expression for δ(ω). As a result, the branches of plane waves
have the parametric form

a0(ω) : =
{

solution of ν (a20)
2

+ a20 − η sin(ωτ − ϕ)− ω − q2

2
= 0
}
, (29)

δ(ω) : = βq2 − εa20(ω)− µa40(ω)− η cos(ωτ − ϕ).

The branches of plane wave solutions obtained using this procedure are shown in Fig. 9
and Fig. 10 for cubic and quintic CGLE, respectively. Interestingly, the branches have the
form of snaking curves, which are constrained between two “limiting” branches (14) (red
and blue curves in Figs. 9-10), which can be obtained by setting τ = 0, ϕ = 0 and τ = 0,
ϕ = π, respectively. One can see that the increase of τ leads to even more dense snaking
of the curve (Fig. 9(b)), whereas the increase of q shifts the branches to the right.
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Fig. 7: Zeros of functions f± (ω) determine frequencies ω of plane waves. f± (ω) are cal-
culated from Eq. (28) for (a) τ = 5 and (b) τ = 50. Solid lines: ϕ = 0, dashed
lines: ϕ = π. Other parameters: q = 0, δ = 0.4, η = 0.5, β = 0.5, ε = 1, µ = −1,
and ν = −0.1.

Fig. 8: Amplitudes a0 and frequencies ω of plane wave solutions for fixed δ = 0.4. The
solutions are located on curves determined by Eq. (27) (solid lines), which are
independent of the delay τ . Exact plane wave solutions for different values of τ
are shown by points: (a) τ = 5, (b) τ = 50. Red points: ϕ = 0, blue points:
ϕ = π. Other parameters: q = 0, η = 0.5, β = 0.5, ε = 1, µ = −1, and ν = −0.1.

Stability of plane wave solutions

As in the case without delayed feedback, we use the ansatz (16) to investigate the stability
of plane waves. After substituting it into delayed CGLE (1) and linearization in ap, we
obtain:

∂tap + iω (a0 + ap) =

(
β +

i

2

)(
∂xxap + 2iq∂xap − q2(a0 + ap)

)
+ δ (a0 + ap) +

+ (ε+ i)
(
a30 + 2a20ap + a20ap

)
+ (µ+ iν)

(
a50 + 3a20ap + 2a20ap

)
(30)

+ηeiϕ−iωτ (a0 + ap(t− τ)) .

We simplify this equation using Eq. (24) and substitute the exponential ansatz (17) for
ap(x, t) into it. As a result, similarly to Section 3.1, we obtain a linear system of equations
with respect to two unknowns a+ and a−:

Mτ

(
a+
a−

)
= 0,
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Fig. 9: Amplitudes a0 (δ) and frequencies ω (δ) of plane wave solutions in cubic CGLE
with delayed feedback for (a) τ = 5, q = 0, (b) τ = 50, q = 1. Solid black lines:
ϕ = 0, dotted lines: ϕ = π. The enveloping red and blue lines are the branches
of plane waves solutions for τ = 0, ϕ = π and τ = 0, ϕ = 0, respectively. Other
parameters: η = 0.2, β = 0.5, ε = 1, µ = ν = 0.

where

Mτ =


λ+ iω − δ +

(
β + i

2

) (
k2 + 2kq + q2

)
− − (ε+ i) a20 − 2 (µ+ iν) a40

−2 (ε+ i) a20 − 3 (µ+ iν) a40 − ηe−λτ eiϕ−iωτ

λ− iω − δ +
(
β − i

2

) (
k2 − 2kq + q2

)
−

− (ε− i) a20 − 2 (µ− iν) a40 −2 (ε− i) a20 − 3 (µ− iν) a40 − ηe−λτ e−iϕ+iωτ

 . (31)

The condition
detMτ = 0 (32)

now gives us the characteristic equation for the perturbation growth rate λ.
Stability of individual plane wave solutions with arbitrary delay time τ is determined

by the real parts of the roots of the characteristic equation (32). If for all k, the roots
satisfy <[λ] < 0 (except the trivial one with <[λ] = 0), then the plane wave is stable. For
a fixed q, the branch of plane waves is given parametrically by (a0 (ω) , δ (ω)), defined by
Eq. (29). Substituting a0(ω) and δ(ω) in Eq. (32), we obtain a nonlinear characteristic
equation for λ

F (λ; q, ω, k,p) = 0, (33)

where p denotes system parameters (β, ε, µ, ν, η, ϕ, τ). Equation (33) was solved numer-
ically for fixed values of p and varying ω. In this way we obtain the stability properties
for the parametrically defined family of plane waves (a0 (ω) , δ (ω)) for the given CGLE
parameters and wavenumber q. Figure 11 shows the stability properties on the branches
of plane waves (a0 (ω) , δ (ω)) with q = 0 and various delay times τ . Stable solutions
are plotted in green, unstable in red. Figure 11(a) illustrates the effect of the feedback
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Fig. 10: Amplitudes a0 (δ) and frequencies ω (δ) of plane wave solutions in quintic CGLE
with delayed feedback for (a) τ = 5, q = 0, (b) τ = 50, q = 1. Solid black lines:
ϕ = 0, dotted lines: ϕ = π. The enveloping red and blue lines are the branches
of plane wave solutions for τ = 0, ϕ = π and τ = 0, ϕ = 0, respectively. Other
parameters: η = 0.2, β = 0.5, ε = 1, µ = −1, ν = −0.1.

phase ϕ on plane wave solutions and their stability at relatively small delay time τ = 5,
whereas Fig. 11(b) depicts the bifurcations for larger delay time τ = 50. One can observe
the growing number of multistable plane waves with the increase of the delay. With the
increase of the parameter δ high amplitude parts of the snaking branches with the higher
amplitude becomes stable while low amplitude parts remain unstable. An additional an-
alytical insight into the structure of stable and unstable regions is obtained by using the
large delay approximation, which is discussed in the next section.

3.3 Large delay

For large delay times, the plane wave solutions fill the tube defined by Eq. (27) densely,
see also Figs. 6 and 8(b). Hence, instead of looking at individual solutions and solving
the transcendental Eq. (28), it is convenient to parametrize the whole family of solutions
by a parameter θ = (ωτ -ϕ+π) mod 2π, which may be represented as an angular coordi-
nate on the tube. Every single solution for given control parameters and wavevector q
can be uniquely defined by the coordinate θ. Therefore, one can consider the question
about the stability of a plane wave at a given θ-value with the amplitude a0(θ) and the
frequency ω(θ). The growth rate λ, which determines the stability of an individual plane
wave solution, is obtained from the characteristic equation depending just on the system
parameters and the coordinate θ. Note that θ = π corresponds to the plane waves with
the maximal amplitude a0. The two sides of the tube of plane wave solutions, one with
θ < π and another with θ > π, are projected onto the same set in the (δ, a0) plane, but
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(b)

Fig. 11: Stability of the branches of plain wave solutions for different delay times (a)
τ = 5, ϕ = 0 (solid line), ϕ = π (dotted line) (b) τ = 50, ϕ = 0. Stable parts are
shown in green and unstable – in red. Black lines in (b) denote the destabilization
borders in the limit of large delay. Other parameters: η = 0.2, β = 0.5, ε = 1,
µ = −1, and ν = −0.1.

correspond to different values of ω.
To study the strong instability of plane wave solutions, again, as in Sec. 3.3, we neglect

the terms containing e−λτ in Eq. (32). This gives us a quadratic equation for λ. For a
given parameter θ, the plane wave is strongly unstable, if the maximum of <[λ(k, θ)] is
positive. Figure 12 shows the the real part of λ(k, θ) for reduced equation (32) for two
different values of the wavenumber, q = 0 and q = 1 (δ is fixed to 0.5). Red curves depict
zero level lines. We observe, that at larger values of q, unlike the feedback-free case, the
destabilization occurs first at non-zero values of the perturbation wavenumber k.

Fig. 12: Real parts of the eigenvalues <[λ(k, θ)] describing the strong instability of plane
waves. For a given plane wave, which is determined by the parameter θ, the
positiveness of <[λ(k, θ)] for some k implies the strong instability. Red curves
depict zero level lines. (a) q = 0, (b) q = 1. On panel (a), the plane waves are
strongly unstable for θ . 1.9 and θ & 5.0. On panel (b), the plane waves are
strongly unstable for θ . 1.9 and θ & 4.5. Other parameters are: δ = 0.5, η = 0.2,
β = 0.5, ε = 1, µ = −1, and ν = −0.1.

In order to determine the strong instability boundary of the plane wave solutions, in
Fig. 13 we plot on (δ, θ) plane zero contour levels <[λ(δ, θ)] = 0 corresponding to different
perturbation wavenumbers k. Figure 13(a) shows that for the plane wave with q = 0,
stability border almost coincides with the zero level line corresponding to k=0, depicted
by the black line. By contrast, for the plane wave with q = 1 a significant part of stability
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border, shown in red color, corresponds to destabilization with non-zero perturbation
wavenumber k ∼ 0.9 (see Fig. 13(b)).

Fig. 13: Strong instability of the plane wave solutions with q = 0 (a) and q = 1 (b).Gray
region shows the absence of strong instability. Different curves indicate zero
contour levels of <[λ(δ, θ)] corresponding to different perturbation wavenumbers
k. (a) q = 0, (b) q = 1. Other parameters: η = 0.2, β = 0.5, ε = 1, µ = −1, and
ν = −0.1.

In the limit of large delay, the weak instability boundary is determined by the pseudo-
continuous spectrum

λ =
γ

τ
+ iξ. (34)

To calculate this spectrum we substitute (34) into Eq. (32) and neglect the terms pro-
portional to γ/τ . Then, denoting

Y = e−γe−iξτ , (35)

one can solve the resulting quadratic equation with respect to Y . The two roots Y1
and Y2 of this equation depend on the model equation parameters p, plane wave (q, θ),
wavenumber of the perturbation k, and the delay induced perturbation modes ξ. For
brevity we do not write down the explicit form of these solutions. The factor γ in (35) is
given by

γ1,2 = − ln |Y1,2(k, ξ; q, θ,p)|. (36)

For every plane wave solution defined by q and θ and fixed parameters p we obtain two
surfaces γ1,2(k, ξ), which generalize the dispersion relation (see Sec. (2.3)). If γ1,2 < 0
for all wavenumbers k and delay modes ξ (except the trivial eigenvalue corresponding to
the Goldstone mode), then the corresponding plane wave is stable (provided no strong
instability exists). Otherwise, it is weakly unstable. Thus, the weak instability of the plane
wave solutions is determined by considering the behavior of the two surfaces γ1,2(k, ξ), or,
more specifically, the upper one.

Figure (14) shows the upper branch of γ1,2(k, ξ) calculated for different values of θ, δ,
and q. Even though the surfaces γ(k, ξ) are given by explicit expressions, we were not
able to find simple analytical conditions for weak instability in terms of θ and q. Instead,
we determined the sign of sup[γ(k, ξ)] numerically. The resulting bifurcation diagrams
showing the regions of stable, weakly unstable, and strongly unstable plane waves with
q = 0 and q = 1 on (δ, θ) plane are presented in Figure (15).

The corresponding bifurcation diagrams in (δ, a0) plane are shown in Figs. 16 and
17. Note that in contrast to the unique parameterization of the plane waves with the
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Fig. 14: The rescaled growth rate γ = τ<[λ] of different perturbation modes (generalized
dispersion relation) for different plane wave solutions. k is the spatial wavenumber
of the perturbations, ξ stands for the delay induced modes. The positiveness of
γ implies weak instability of the plane wave. The surface γ(ξ, q) is obtained from
Eq. (36) for different values of θ, δ, and q. (a) θ = 0, δ = 0.5, q = 0. (b)
θ = 2, δ = 1.0, q = 0. (c) θ = 2, δ = 1.0, q = 1. (d) θ = 4, δ = 1.0, q = 1.
Panels (b) and (d) [(a) and (c)] correspond to stable [weakly unstable] plane
waves. Other parameters: η = 0.2, β = 0.5, ε = 1, µ = −1, and ν = −0.1.

parameter θ, in general the plane wave solution is not uniquely defined by the parameter
a0 (the frequencies ω can still be different for the same a0), which means that the sets
with 0 ≤ θ ≤ π and π ≤ θ ≤ 2π are overlapping on the (δ, a0) plane. Moreover, the
stability properties of these two sets are not symmetric with respect to θ = π, as shown
in Figs. 16,17(a) and (b), respectively.

Note that the areas of weak instability for quintic CGLE in the large delay limit
are consistent with the stability borders obtained numerically for τ = 50 (compare the
transitions from stability to instability on the branches of solutions and black dashed
lines determining the boundaries in the large delay limit in Fig. 11(b)). It provides also a
simple qualitative way how to predict the appearance of stable plane waves: namely, when
the branches of plane waves for a finite τ appear to be in the domain of stability given in
Figs. 16,17 (dark grey shaded), then they are likely to be stable. Since the domains are
independent on τ , the number of coexisting stable plane waves grows linearly with τ [33].

3.4 Numerical simulations

To investigate the behavior of particular plane wave solutions, e.g. the onset of destabi-
lization and convergence to stable solutions, we performed direct numerical integration
of the delayed quintic CGLE (1). An embedded adaptive Cash-Carp scheme for time-
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Strong inst.

Strong inst. (b)

Strong inst.

Fig. 15: Regions of stability (dark gray), weak (light gray) and strong (white) instability
for the plane waves in quintic CGLE on (δ, θ) plane. (a) q = 0, (b) q = 1. Other
parameters: η = 0.2, β = 0.5, ε = 1, µ = −1, and ν = −0.1.

Fig. 16: Regions of stability (dark gray), weak (light gray) and strong (white) instability
for the plane waves in cubic CGLE in (δ, a0) plane. (a) θ < π, (b) θ > π. Other
parameters q = 0, η = 0.2, β = 0.5, and ε = −1 .

stepping was used with the spatial derivative was treated by three-point central finite
difference scheme. Periodic boundary conditions were are applied, and the length of the
system is chosen to include 16 spatial periods of simulated plane waves with q = 1. Space
was discretized into 500 points, while relative tolerance for Cash-Karp scheme was set at
10−6.

First, we considered the solution starting in the vicinity of the unstable homogeneous
plane wave with q = 0, see red point in Fig. 18(b). Fig. 18(a) shows the evolution of
the amplitude, while Fig. 18(b) shows the stable plane wave (green circle), to which the
solution is attracted. In the case when there are no stable plane waves for given system
parameters, the solution converges to the stable homogeneous state A = 0.

Transitions similar to those shown in Fig. 18 were also observed for q 6= 0, see Fig.
19, where two unstable plane waves with q = 1 were chosen as initial conditions. Figures
20(a) and (b) present the spatio-temporal evolution of the solutions corresponding to
the transitions shown in Fig. 19. It is seen that the solution (a) develops defects after
several delay cycles and transforms into a slightly modulated solution with lower spatial
wavenumber (q = 0.25), which is stable for the given control parameter values. Note that
for these parameter values there are no stable plane waves with the wavenumber q = 1.
By contrast, solution (b) does not change its principal spatial wavenumber. After several
delay periods of transient it converges without defects to a stable plane wave having the
same wavenumber q = 1, see corresponding transition (b) in Fig. 19.
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Fig. 17: Regions of stability (dark gray), weak (light gray) and strong (white) instability
for the plane waves in quintic CGLE in (δ, a0) plane. (a) θ < π, (b) θ > π. Other
parameters q = 0, η = 0.2, β = 0.5, ε = 1, µ = −1, and ν = −0.1.
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Fig. 18: Solution starting from the neighborhood of an unstable plane wave with q = 0 is
attracted to a stable plane wave with the same wavenumber. (a) depicts the time
evolution of the amplitude a. (b) shows the corresponding transition in (δ, a0)
plane. Initial unstable solution: ω = 1.12, a0 = 1.086 (red circle). Resulting
stable solution: ω = 0.998, a0 = 1.166 (green circle). System parameters: δ =
0.023, τ = 20, η = 0.2, β = 0.5, ε = 1, µ = −1, and ν = −0.1.

Now we choose τ sufficiently large (τ = 50), so that we can exploit the results of
asymptotic analysis obtained in the limit of large delay. We consider a plane wave with
the control parameters from weakly unstable region on (θ, δ) plane and investigate the
evolution of a small perturbation of this plane wave. We expect to observe the onset
of destabilization after a long period. Figure 21(a) illustrates the choice of the initial
plane wave, while Fig. 21(b) shows the transient and the onset of destabilization. The
solution stays close to the weakly unstable plane wave for about 80 delay time periods,
and then goes away from it. Eventually, the solution is attracted to a stable plane wave
with q = 1/8.

4 Conclusions

We have investigated the properties of plane wave solutions of cubic and cubic-quintic
CGLE with delayed feedback. It is demonstrated that the delayed feedback induces a
multistability of plane wave solutions with the same wavenumber q. As the gain pa-
rameter δ is varied, the branches of plane wave solutions are shown to exhibit a snaking
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(a) (b)

 q = 0.25
 q = 1

Fig. 19: Evolution of solutions starting close to unstable plane waves with q = 1. Solution
(a) with δ = 0.19, ω = 0.31, and a0 = 0.87 approach the stable plane wave with
different wavenumber q = 0.25, and ω = 0.969, a0 = 1.12. Solution (b) δ = 0.66,
ω = 0.5, a0 = 0.99 approaches the stable solution with the same wavenumber
q = 1, and ω = 0.626, a0 = 1.11.

Fig. 20: Evolution of plane waves with q = 1. The profile of <[A] is shown in color. System
parameters: τ = 20, η = 0.2, β = 0.5, ε = 1, µ = −1, and ν = −0.1. Panel
(a) corresponds to the transition (a) in Fig. 19 when a defect is developed and
the spatial wavenumber is changed. Panel (b) corresponds to the wavenumber-
preserving transition (b) in Fig. 19 without defects.
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(a)

Strong inst.

Fig. 21: A solution started from the vicinity of a weakly unstable plane wave with q = 1 for
large delay. The weak instability of the plane wave implies that the perturbation
stays small at least several delay intervals. Initial unstable solution: θ = 3.94, ω =
0.33, a0 = 1.05 (red circle in (a)). System parameters: δ = 0.56, τ = 50, η = 0.2,
β = 0.5, ε = 1, µ = −1, and ν = −0.1.

behavior, where the frequency of the snaking oscillations is proportional to the time de-
lay τ . Furthermore, stability properties of trivial homogeneous zero solution and plane
wave solutions with different wavenumbers are investigated. The numerical bifurcation
diagrams for various delay times as well as the analytical results in the limit of large delay
reveal the borders of strong and weak instability of the plane waves. Direct numerical
integration of the model equation confirms the results of analytical investigations.
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dimensional nonlinear schrödinger systems via spatio-temporal modulation of the
external potential. Phys. Rev. A, 75:011604(R), 2007.

[29] O. Thual and S. Fauve. Localized structures generated by subcritical instabilities. J.
Phys. (France), 49:1829–1833, 1988.

[30] M. Tlidi, A.G. Vladimirov, D. Pieroux, and D. Turaev. Spontaneous motion of cavity
solitons induced by a delayed feedback. Phys. Rev. Lett., 103:103904, 2009.

[31] A. G. Vladimirov, S. V. Fedorov, N. A. Kaliteevskii, G. V. Khodova, and N. N.
Rosanov. Numerical investigation of laser localized structures. Journal of Optics B:
Quantum & Semiclassical Optics, 1:101–106, 1999.
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