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Abstract. We consider the problem of finding a minimum edge cost subgraph of a graph sat-
isfying both given node-connectivity requirements and degree upper bounds on nodes. We present
an iterative rounding algorithm of the biset LP relaxation for this problem. For directed graphs
and k-out-connectivity requirements from a root, our algorithm computes a solution that is a 2-
approximation on the cost, and the degree of each node v in the solution is at most 2b(v) + O(k)
where b(v) is the degree upper bound on v. For undirected graphs and element-connectivity re-
quirements with maximum connectivity requirement k, our algorithm computes a solution that is a
4-approximation on the cost, and the degree of each node v in the solution is at most 4b(v) + O(k).
These ratios improve the previous O(log k)-approximation on the cost and O(2kb(v)) approxima-
tion on the degrees. Our algorithms can be used to improve approximation ratios for other node-
connectivity problems such as undirected k-out-connectivity, directed and undirected k-connectivity,
and undirected rooted k-connectivity and subset k-connectivity.

1. Introduction.

1.1. Problem definition. We consider the problem of finding a minimum edge
cost subgraph that satisfies both degree-bounds on nodes and certain connectivity
requirements between nodes. More formally, the problem is defined as follows.

Degree-Bounded Survivable Network
A directed/undirected graph G = (V,E) with edge costs c : E → R+, connectivity
requirements r : V × V → Z+, and degree-bounds b : B → Z+ on a subset B of V
are given. The goal is to find a minimum cost edge set F ⊆ E such that in the
subgraph (V, F ) of G, the uv-connectivity is at least r(u, v) for any (u, v) ∈ V ×V ,
and the out-degree/degree of each v ∈ B is at most b(v).

In the case of digraphs, our algorithms easily extend to the case when we also
have in-degree bounds b− : B− → Z+ on B− ⊆ V , and require that the in-degree of
each v ∈ B− is at most b−(v).

A node v ∈ V is called terminal if there exists u ∈ V \ {v} such that r(u, v) > 0
or r(v, u) > 0. We let T denote the set of terminals. We denote maxu,v∈V r(u, v) by
k and |V | by n throughout the paper.

If G is an undirected graph, B = V , b(v) = 2 for all v ∈ B, and a solution
is required to be a connected spanning subgraph, then we get the Hamiltonian Path
problem, and hence it is NP-hard even to find a feasible solution. Therefore we
consider bicriteria approximations by relaxing the degree-bounds. We say that an
algorithm for Degree-Bounded Survivable Network is (α, β(b(v)))-approximation, or
that it has ratio (α, β(b(v))), for α ∈ R+ and a function β : Z+ → R+, if it always
outputs a solution such that its cost is at most α times the optimal value, and the
degree (the out-degree, in the case of directed graphs) of each v ∈ B is at most β(b(v)),
for any instance which admits a feasible solution.

Notice that Degree-Bounded Survivable Network includes the problem of finding
a minimum cost subgraph of required connectivity minimizing the maximum degree.
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This can be done by letting B = V , and defining b(v) as the uniform bound on
the optimal value for all v ∈ B, which can be computed by binary search. For
LP based algorithms, such as ours, when a lower bound is obtained by solving an
LP relaxation, these algorithms also establish a “relaxed” integrality gap for the LP
relaxation (relaxed since the solutions violate the exact degree requirements).

In this paper, we are interested in node-connectivity and element-connectivity
requirements. The node-connectivity κ(u, v) is the maximum number of (u, v)-paths
that are pair-wise internally (node) disjoint. The definition of element-connectivity
assumes that a terminal set T is given. The element-connectivity λT (u, v) between
two terminals u, v ∈ T is the maximum number of (u, v)-paths that are pair-wise
disjoint in edges and in non-terminal nodes. The two main problems we consider are
as follows.

Degree-Bounded k-Out-connected Subgraph
This is a particular case of Degree-Bounded Survivable Network when it is required
that (V, F ) is k-outconnected from a given root s, namely, when κ(s, v) ≥ k for
each v ∈ V \ {s}.

Degree-Bounded Element-Connectivity Survivable Network
This is a particular case of Degree-Bounded Survivable Network when the input
graph is undirected, and it is required that λT (u, v) ≥ r(u, v) for each u, v ∈ T ,
where T ⊆ V is a given terminal set.

Our main results for Degree-Bounded k-Out-connected Subgraph is for directed
graphs. We also present similar results for undirected graphs, but these are derived
from the ones for the directed case. Another fundamental problem that we consider
for both directed and undirected graphs is as follows.

Degree-Bounded k-Connected Subgraph
This is a particular case of Degree-Bounded Survivable Network where it is required
that (V, F ) is k-connected, namely, that κ(u, v) ≥ k for each u, v ∈ V .

Other special cases of Degree-Bounded Survivable Network on undirected graphs
are defined according to the connectivity requirements, as follows.

• Degree-Bounded Node-Connectivity Survivable Network requires κ(u, v) ≥
r(u, v) for each u, v ∈ V .

• Degree-Bounded Rooted Survivable Network is a special case of Degree-
Bounded Node-Connectivity Survivable Network where a root node s is specified,
and r(u, v) = 0 holds if u 6= s and v 6= s.

• Degree-Bounded Subset k-Connected Subgraph is a special case of Degree-
Bounded Node-Connectivity Survivable Network where r(u, v) = k if {u, v} ⊆ T ,
and r(u, v) = 0 otherwise, for a given terminal set T ⊆ V .

1.2. Previous work.

1.2.1. Edge-Connectivity Survivable Network. Survivable Network without degree-
bounds is a typical combinatorial optimization problem, that was studied extensively;
c.f. [15] for a survey on exact algorithms, and [24] for a survey on approximation al-
gorithms for various Survivable Network problems and their classification w.r.t. costs
and requirements. One of the most important methods for these problems is itera-
tive rounding, that was invented in the context of a 2-approximation algorithm by
Jain [18]. He showed that every basic optimal solution to an LP relaxation for the
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undirected Edge-Connectivity Survivable Network always has a variable of value at least
1/2; see [34] for a simplified proof. The 2-approximation algorithm is obtained by re-
peatedly rounding up such variables and iterating the procedure until the rounded
subgraph is feasible.

Degree-Bounded Survivable Network, even with edge-connectivity requirements,
was regarded as a difficult problem for a long time because of the above-mentioned
hardness on feasibility. A breakthrough was given by Lau, Naor, Salavatipour, and
Singh [27] and Singh and Lau [39]. They gave a (2, 2b(v) + 3)-approximation for the
Degree-Bounded Edge-Connectivity Survivable Network problem, and a (1, b(v) + 1)-
approximation algorithm for the Degree-Bounded Spanning Tree problem. The former
result was improved (for large b(v)) to a (2, b(v) + 6k + 3)-approximation by Lau
and Singh [29] afterwards, which was followed by further improvements by Louis and
Vishnoi [31] and Lau and Zhou [30].

After their work, many efficient algorithms have been proposed for various types
of Degree-Bounded Edge-Connectivity Survivable Network problems, such as directed
Degree-Bounded k-Out-connected Subgraph problems [4], matroid base and submodu-
lar flow problems [23], and matroid intersection and optimization over lattice polyhe-
dra [3]. All of them are based on iterative rounding. For applying iterative rounding
to a problem with degree-bounds, we need to show that every basic optimal solution
to an LP relaxation has a high fractional variable or the subgraph induced by its sup-
port has a low degree node on which a degree-bound is given. Once this property is
proven, a bicriteria approximation algorithm can be obtained by repeatedly rounding
up a high fractional variable or dropping the degree-bound on a low degree node. See
[28] for a survey on the iterative rounding method.

1.2.2. Element-Connectivity and Node-Connectivity Survivable Network without
degree-bounds. Fleischer, Jain, and Williamson [12] showed that iterative round-
ing achieves ratio 2 for Element-Connectivity Survivable Network, and also for Node-
Connectivity Survivable Network with k = 2. Aazami, Cheriyan, and Laekhanukit [1]
presented an instance of undirected k-Connected Subgraph (without degree-bounds)
for which the basic optimal solution to the standard LP relaxation has all variables

of value O
(

1√
k

)
. Their instance belongs to a special case called the augmentation

version, in which the given graph has a (k − 1)-connected subgraph of cost zero. On
the other hand, several works showed that this augmentation version can be decom-
posed into a small number p of problems similar to k-Out-connected Subgraph each.
The bound on p was subsequently improved [5, 10, 21], culminating in the currently

best known bound O
(

log n
n−k

)
[35], that applies for both directed and undirected

graphs. When one applies this method for the general version, an additional factor of

O(log k) is invoked, giving the approximation ratio O
(

log k log n
n−k

)
[35]. Cheriyan

and Végh [7] showed that, for undirected graphs with n ≥ k3(k− 1) +k, this O(log k)
factor can be saved: After solving only two k-Out-connected Subgraph instances, iter-
ative rounding gives a 2-approximation by the work of [12, 19]. This gives ratio 6 for
undirected graphs with n ≥ k3(k − 1) + k.

The decomposition approach was also used for other Survivable Network prob-
lems. In [36] it is shown that the augmentation version of Rooted Node-Connectivity
Survivable Network can be decomposed into p = O(k) instances of a problem that is
similar to Element-Connectivity Survivable Network, while in [8] it is shown that Node-
Connectivity Survivable Network can be decomposed into p = O(k3 log n) instances of
Element-Connectivity Survivable Network. In [26, 37], it is shown that the augmenta-

3



tion version of Subset k-Connected Subgraph with k ≤ (1− ε)T and 0 < ε < 1 can be
decomposed into 1

εO(log k) instances of Rooted Survivable Network.
Summarizing, many Survivable Network problems can be decomposed into k-Out-

connected Subgraph and Element-Connectivity Survivable Network problems. Thus al-
gorithms for various Survivable Network problems can be derived from those for k-
Out-connected Subgraph and Element-Connectivity Survivable Network problems.

1.2.3. Degree-Bounded Element-Connectivity and Node-Connectivity Survivable
Network. Despite the success of iterative rounding, Degree-Bounded Survivable Net-
work with node- and element-connectivity requirements still remain difficult to ad-
dress with this method. Both [27] and [29] mention that their algorithms for edge-
connectivity extend to element-connectivity, but they assumed that degree-bounds
were given on terminals only. In [27] it is also shown that undirected Degree-Bounded

Subset k-Connected Subgraph with k = Ω(n) admits no 2log
1−ε nb(v) degree approxima-

tion unless NP ⊆ DTIME(npolylog(n)). For the Degree-Bounded k-Connected Subgraph
problem without costs, Feder, Motwani, and Zhu [11] presented an O(k log n · b(v))-
approximation algorithm, which runs in nO(k) time. Khandekar, Kortsarz, and Nutov
[22] proposed a (4, 6b(v)+6)-approximation algorithm for Degree-Bounded 2-Connected
Subgraph, using iterative rounding. Nutov [38] extended the idea of [22] to obtain ra-
tio (O(log k), O(2k) · b(v)) for Degree-Bounded k-Out-connected Subgraph and Degree-
Bounded Element-Connectivity Survivable Network.

As in the problems without degree-bounds, many Survivable Network problems
with degree-bounds are decomposed into Degree-Bounded k-Out-connected Subgraph
and Element-Connectivity Survivable Network problems. However, as indicated in [38],
compared to edge-connectivity problems, there is a substantial difficulty in proving
that iterative rounding achieves a good result for these problems. We resolve this dif-
ficulty by introducing several novel ideas. Moreover, we believe that it is worthwhile
investigating the iterative rounding approach for node-connectivity requirements. One
reason is that iterative rounding seems to be a promising approach for Degree-Bounded
Survivable Network problems, as we demonstrate in this paper. A second reason is that
it may give new insights for improving the approximability of Node-Connectivity Sur-
vivable Network problems (without degree-bounds) with rooted requirements, subset
k-connectivity requirements, and general requirements.

1.3. Our results.

1.3.1. New analysis of iterative rounding. We show that iterative roun-
ding works well for Degree-Bounded k-Out-connected Subgraph and Degree-Bounded
Element-Connectivity Survivable Network problems. Our main results for these two
problems are summarized in the following two theorems.

Theorem 1.1. Degree-Bounded Directed k-Out-connected Subgraph admits ap-

proximation ratio
(
α, αb(v) +

⌈
2(k−1)
α−1

⌉
+ 1
)

for any integer α ≥ 2.

Theorem 1.2. Degree-Bounded Element-Connectivity Survivable Network admits
the following approximation ratios.

(i)
(
α, αb(v) +

⌈
4 k+1
α−2

⌉
+ 4
)

for any integer α ≥ 4.

(ii) (∞, 2b(v) + 1.5k2 + 4.5k + 9).
Note that in Theorem 1.2, the degree approximation in part (ii) may be better

than the one in part (i) if b(v) > k2. The ratios in Theorems 1.1 and 1.2 improve
the ratio (O(log k), O(2kb(v))) of [38]. In a preliminary version [17] of this paper, we
gave a result similar to Theorem 1.1 with α = 2, but the additive term in the degree
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bounds is slightly improved in Theorem 1.1. For Degree-Bounded Element-Connectivity
Survivable Network, [17] also gave approximation ratios (4k − 1, (4k − 1)b(v) + O(k))
and (∞, 6b(v)+O(k2)). Thus, part (i) of Theorem 1.2 improves the former ratio even
if α = 4k−1, and part (ii) of Theorem 1.2 improves the coefficient of b(v) in the latter
ratio.

All results in Theorems 1.1 and 1.2 also bound the integrality gaps of an LP
relaxations in the same ratios. Lau and Singh [29] gave an example that indicates
that the integrality gap of an LP relaxation for the Degree-Bounded Edge-Connectivity
Survivable Network is at least (2, b(v)+Ω(k)). In this example, all nodes are terminals,
and hence the element-connectivity is equivalent to the edge-connectivity. Thus the
integrality gap given by part (i) of Theorem 1.2 is tight up to a constant factor.

In [38] it is shown that ratio (α, β(b(v))) for Degree-Bounded Directed k-Out-
connected Subgraph implies ratio (2α, β(b(v)) + k) for the undirected case. Thus
Theorem 1.1 implies for the undirected case the ratio (2α, αb(v) + O(k)) for any
integer α ≥ 2. In particular, for α = 2 the ratio is (4, 2b(v) +O(k)).

In addition, using known decompositions, Theorems 1.1 and 1.2 present the fol-
lowing results for several undirected variants of Survivable Network problems.

Theorem 1.3. Survivable Network problems on undirected graphs admit the fol-
lowing approximation ratios for any integer α ≥ 1.

(i) O(k3 log |T |) · (α, αb(v) + k/α) for Degree-Bounded Node-Connectivity Surviv-
able Network.

(ii) O(k log k) · (α, αb(v) + k/α) for Degree-Bounded Rooted Survivable Network.
(iii) 1

εO(k log2 k) · (α, αb(v) + k/α) for Degree-Bounded Subset k-Connected Sub-
graph with k ≤ (1− ε)|T | and 0 < ε < 1.

1.3.2. Improving reduction of Degree-Bounded k-Connected Subgraph prob-
lem. Next, we consider the Degree-Bounded k-Connected Subgraph problem. In [38],
it is shown that if Degree-Bounded k-Out-connected Subgraph admits approximation
ratio (α, β(b(v))), then Degree-Bounded k-Connected Subgraph admits approximation
ratio (α+O(k), β(b(v)) +O(k2)). We improve this reduction as follows.

Theorem 1.4. If Degree-Bounded k-Out-connected Subgraph admits approxima-
tion ratio (α, β(b(v))), then Degree-Bounded k-Connected Subgraph admits approxi-
mation ratio (µα + O(k), β(b(v)) + O(k

√
k)), where µ = 1 for undirected graphs and

µ = 2 for digraphs. Consequently, Degree-Bounded k-Connected Subgraph admits ap-
proximation ratio (2µ+O(k), 2b(v) +O(k

√
k)).

1.3.3. Improving the constant approximation algorithm for k-Connected
Subgraph. Cheriyan and Végh [7] showed that k-Connected Subgraph admits a 6-
approximation algorithm if the given graph is undirected and n ≥ k3(k−1)+k. Their
algorithm uses an algorithm for Undirected k-Out-connected Subgraph as a subroutine.

It is not difficult to see that their results can be extended to the degree-bounded
setting. Our (4, 2b(v)+O(k))-approximation algorithm for Degree-Bounded Undirected
k-Out-connected Subgraph presents a (12, 8b(v) + O(k))-approximation algorithm for
Degree-Bounded Undirected k-Connected Subgraph under the same assumption as [7].
We will explain this in Section 8.1.

In addition, we prove that the assumption n ≥ k3(k−1)+k in [7] can be weakened;
the bound k3(k − 1) + k = O(k4) is improved to k(k − 1)(k − 1.5) + k = O(k3) if we
have no degree-bounds, and to 2k(k − 1)(k − 0.5) + k in the degree-bounded setting.
Thus we obtain the following results.

Theorem 1.5. For undirected graphs with n ≥ k(k−1)(k−1.5)+k, k-Connected
Subgraph admits a 6-approximation algorithm, and if n ≥ 2k(k− 1)(k− 0.5) + k then
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Degree-Bounded k-Connected Subgraph admits approximation ratio (12, 8b(v)+O(k)).

Remark. When this paper was in submission, Ene and Vakilian [9] published
a paper that presents several improved results for Degree-Bounded Survivable Net-
work. They gave an (3, 6b(v)+5)-approximation for Degree-Bounded Edge-Connectivity
Survivable Network, (3, 6b(v) + 3)-approximation for Degree-Bounded k-Out-connected
Subgraph, and (15, 34b(v) + 17) for Degree-Bounded k-Connected Subgraph with |V | =
Ω(k3).

1.4. Organization. The rest of this paper is organized as follows. In Section 2
we formulate Theorems 1.1 and 1.2 in terms of biset functions, see Theorems 2.1 and
2.2, respectively. In Section 3 we describe the iterative rounding algorithm that we
use, and formulate the latter two theorems in terms of extreme points of appropriate
polytopes; see Theorems 3.1 and 3.2, respectively. These two theorems are the key
ingredients in proving Theorems 1.1 and 1.2, respectively; we prepare some tools for
proving them in Section 4 and prove them formally in Section 5. In Section 6, we
show that Theorem 1.3 follows from Theorems 1.1 and 1.2. In the subsequent two
Sections 7 and 8, we prove Theorems 1.4 and 1.5, respectively.

2. Biset edge-covering formulation of Survivable Network problems (The-
orems 1.1 and 1.2).

2.1. Biset LP relaxation. We use a standard setpair LP relaxation, due to
Frank and Jordán [13], but we formulate it in equivalent but more convenient terms
of bisets, as was suggested by Frank [14], and used in several other recent papers
[35, 36, 37, 38].

A biset is an ordered pair Ŝ = (S, S+) of subsets of V such that S ⊆ S+. S is
called the inner-part of Ŝ and S+ is called the outer-part of Ŝ. We call S+ \ S the
boundary of Ŝ, denoted by Γ(Ŝ). In the case of undirected graphs, an edge e covers a
biset Ŝ if it has one end-node in S and the other in V \ S+, and we denote by δE(Ŝ)
the set of edges in E covering Ŝ. In the case of directed graphs, an edge e covers Ŝ if
it enters Ŝ, namely, if e has tail in V \S+ and head in S; we denote by δ−E (Ŝ) the set

of edges in E that cover Ŝ. We also denote by δ+E(Ŝ) the set of edges in E that leave

Ŝ, namely, edges in E with tail in S and head in V \ S+.
Let V denote the set of all bisets of a groundset V . A graph (V, F ) satisfies the

connectivity requirements if |δF (Ŝ)| ≥ f(Ŝ) for each Ŝ ∈ V in undirected graphs,
and |δ−F (Ŝ)| ≥ f(Ŝ) for each Ŝ ∈ V in directed graphs, where f is the biset function
derived from the connectivity requirements; in this case we say that the graph (V, F )
is f -connected.

Every set S can be considered as the biset (S, S). Hence degree constraints can
be represented by using bisets. For a node v, define a biset Ŝv = ({v}, {v}). Then the
degree constraint on a node v in undirected graphs is represented by |δF (Ŝv)| ≤ b(v).
In digraphs, the out-degree constraint on v is |δ+F (Ŝv)| ≤ b(v), and the in-degree

constraint on v is |δ−F (Ŝv)| ≤ b−(v). We sometimes abuse the notation to identify a
node v ∈ V as the biset ({v}, {v}).

We consider the following generic problem.

Degree Bounded f-Connected Subgraph
A graph G = (V,E) with edge/arc costs c : E → R+, a biset function f on V,
and degree-bounds b : B → Z+ on a subset B of V are given. The goal is to
find a minimum cost edge set F ⊆ E such that (V, F ) is f -connected, and the
degree/out-degree of each v ∈ B is at most b(v).
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Let x(e) ∈ [0, 1] be a variable indicating whether an edge e ∈ E is chosen to the
solution or not. Given an edge-set F let x(F ) =

∑
e∈F x(e). Our LP relaxation for the

degree-bounded f -connected subgraph problem is min{c · x : x ∈ P (f, b, E)}, where
P (f, b, E) is a polytope defined as follows. In the case of directed graphs P (f, b, E) is
defined by the constraints

x(δ−E (Ŝ)) ≥ f(Ŝ) for each Ŝ ∈ V,
x(δ+E(v)) ≤ b(v) for each v ∈ B,
0 ≤ x(e) ≤ 1 for each e ∈ E.

In the case of undirected graphs, P (f, b, E) is defined by replacing both δ−E (Ŝ) and

δ+E(Ŝ) with δE(Ŝ).

Given a biset function f we denote γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|. Given a biset

function f and an edge-set J the residual biset function of f is fJ(Ŝ) = f(Ŝ)−|δ−J (Ŝ)|
in the case of directed graphs and fJ(Ŝ) = f(Ŝ) − |δJ(Ŝ)| in the case of undirected
graphs. Given a parameter α ≥ 1 the residual degree bounds are bαJ (v) = b(v) −
|δ+J (v)|/α in the case of directed graphs and bαJ (v) = b(v) − |δJ(v)|/α in the case of
undirected graphs.

2.2. Intersecting supermodularity and Directed k-Out-connected Subgraph.
Let X̂ = (X,X+) and Ŷ = (Y, Y +) be two bisets. Define

X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +).

For a biset function f and bisets X̂ and Ŷ , the supermodular inequality is defined
as

f(X̂) + f(Ŷ ) ≤ f(X̂ ∩ Ŷ ) + f(X̂ ∪ Ŷ ). (2.1)

A biset function f : V → Z is intersecting supermodular if any X̂, Ŷ with X ∩ Y 6= ∅
satisfy the supermodular inequality (2.1).

We assume that for any G = (V,E), J , and α ≥ 1, one can find an extreme
point solution to min{c · x : x ∈ P (fJ , b

α
J , E)}. Under this assumption, we prove the

following theorem.
Theorem 2.1 (Implies Theorem 1.1). If f is intersecting supermodular then

directed Degree-Bounded f -Connected Subgraph admits approximation ratio (α, αb(v)+⌈
2γ
α−1

⌉
+ 1) for any integer α ≥ 2, where γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|.

This theorem implies Theorem 1.1. For s ∈ V and an integer k ≥ 1, define a biset
function g : V → Z as

g(Ŝ) =

{
k − |Γ(Ŝ)| if S 6= ∅ and s 6∈ S+,

0 otherwise.

Then a digraph (V, F ) is k-outconnected from s (namely, satisfies κ(s, v) ≥ k for each
v ∈ V \ {s}) if and only if |δ−F (Ŝ)| ≥ g(Ŝ) for each Ŝ ∈ V, namely if and only if (V, F )
is g-connected. Thus g represents the k-out-connectivity requirements.

It is known that g is intersecting supermodular [14]. Observe that γg ≤ k − 1.
Moreover, an extreme point solution to min{c · x : x ∈ P (gJ , b

α
J , E)} can be com-

puted in polynomial time (we omit the somewhat standard implementation details).
Therefore, Theorem 1.1 is obtained by applying Theorem 2.1 to g.
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2.3. Skew supermodularity and Element-Connectivity Survivable Network. For
two bisets X̂ = (X,X+) and Ŷ = (Y, Y +), define

X̂ \ Ŷ = (X \ Y +, X+ \ Y ).

For a biset function f and bisets X̂ and Ŷ , the negamodular inequality is defined as

f(X̂) + f(Ŷ ) ≤ f(X̂ \ Ŷ ) + f(Ŷ \ X̂). (2.2)

f is called (positively) skew supermodular if the supermodular inequality (2.1) or the
negamodular inequality (2.2) holds for any bisets X̂, Ŷ with f(X̂) > 0 and f(Ŷ ) > 0.

We prove the following theorem under the same assumption as Theorem 2.1.
Theorem 2.2 (Implies Theorem 1.2). If f is skew supermodular then undirected

Degree-Bounded f -Connected Subgraph admits the following approximation ratios.

(i)
(
α, αb(v) +

⌈
4 γ+2
α−2

⌉
+ 4
)

for any integer α ≥ 4.

(ii) (∞, 2b(v) + 1.5γ2 + 7.5γ + 15).
Here, γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|.

For T ⊆ V and r : T × T → Z+ define a biset function h : V → Z as

h(Ŝ) =

 max
u∈S∩T,v∈T\S+

r(u, v)− |Γ(Ŝ)| if S ∩ T 6= ∅ 6= T \ S+ and T ∩ Γ(Ŝ) = ∅,

0 otherwise.

By a “mixed-connectivity” version of Menger’s Theorem (see, e.g. [24]), an undirected
graph (V, F ) satisfies λT (u, v) ≥ r(u, v) for each u, v ∈ T if and only if |δF (Ŝ)| ≥ h(Ŝ)
for each Ŝ ∈ V, namely, if and only if (V, F ) is h-connected. Thus h represents
element-connectivity requirements.

By [12], h is skew supermodular. Moreover, γh ≤ k − 1 holds, and an extreme
point solution to min{c · x : x ∈ P (gJ , b

α
J , E)} can be computed in polynomial time.

Therefore, Theorem 1.2 is obtained by applying Theorem 2.2 to h.

3. Iterative rounding algorithms (Theorems 2.1 and 2.2). Here we de-
scribe the version of the iterative rounding method we use, and formulate Theorems
2.1 and 2.2 in terms of extreme points of appropriate polytopes. To apply itera-
tive rounding, we define J ⊆ E as the set of edges that have already been chosen
as a part of the current solution by the algorithm. We also denote by degE(v) the
out-degree/degree of v w.r.t. E, so degE(v) = |δ+E(v)| in the case of digraphs and
degE(v) = |δE(v)| in the case of undirected graphs. The algorithms have three pa-
rameters α, β, and σ. Parameter σ must satisfy σ ≤ α, and is usually set to α or
0.

Algorithm IteRounding
Input: A graph G = (V,E), B ⊆ V , degree-bounds b : B → Z+, edge costs

c : E → Z+, a biset function f : V → Z, and integers α ≥ 1, β ≥ 0, and
σ ≤ α.

Output: An f -connected subgraph (V, J) of G.
Step 1: J := ∅.
Step 2: Compute a basic optimal solution x∗ to min{c · x : x ∈ P (fJ , b

α
J , E)}.

Step 3: If there is e ∈ E such that x∗(e) = 0 then remove e from E.
Step 4: If there is e ∈ E such that x∗(e) ≥ 1/α then move e from E to J .
Step 5: If there is v ∈ B such that degE(v) ≤ σbαJ (v) + β then remove v from B.
Step 6: If E 6= ∅, return to Step 2. Otherwise, output (V, J).
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The performance of various versions of this algorithm are analyzed in several
papers, c.f. [4, 27, 28, 29, 38]. Assume that at each iteration, there exists an edge
e ∈ E as in Steps 3 or 4, or a node v ∈ B as in Step 5. Then the algorithm
IteRounding computes an edge set J of cost at most α times the optimal, such that
degJ(v) ≤ αb(v)+β for every v ∈ B and if σ = 0 then degJ(v) ≤ αb(v)+max{β−1, 0}
for every v ∈ B (since b(v) ≥ 1 for v ∈ B; for details see e.g. [38]).

We say that x is maximal in a polyhedron if the polyhedron contains no point y
such that x(e) ≤ y(e) for all e ∈ E and x(e′) < y(e′) holds for some e′ ∈ E. If we care
only about the degree approximation, as in part (ii) of Theorems 1.2 and 2.2, then
we define x∗ computed in Step 2 as a basic optimal solution to max{

∑
e∈E x(e) : x ∈

P (fJ , b
α
J , E)}; thus, x∗ is maximal in P (fJ , b

α
J , E) in this case. Note that at Step 4 we

can move from E to J any edge e that has no tail/end-node in B, without changing
the approximability of the degrees.

Note that an arbitrary set F of directed edges satisfies |δ−F (X̂)| + |δ−F (Ŷ )| ≥
|δ−F (X̂ ∩ Ŷ )| + |δ−F (X̂ ∪ Ŷ )| for any X̂, Ŷ ∈ V. Similarly, an arbitrary set F of

undirected edges satisfies both |δF (X̂)| + |δF (Ŷ )| ≥ |δF (X̂ ∩ Ŷ )| + |δF (X̂ ∪ Ŷ )| and
|δF (X̂)|+ |δF (Ŷ )| ≥ |δF (X̂ \ Ŷ )|+ |δF (Ŷ \ X̂)| for any X̂, Ŷ ∈ V. These facts can be
verified by counting contributions of edges in both sides (see, e.g., [28]). Hence if f
is intersecting supermodular and the graph is directed, or if f is skew supermodular
and the graph is undirected, so is its residual function fJ .

We will prove the following property of extreme points solutions.

Theorem 3.1 (Implies Theorem 2.1). Let x∗ be an extreme point of P (f, b, E)
where G is a directed graph and f is an intersecting supermodular biset function on
V . Then for any integer α ≥ 2, there is e ∈ E with x∗(e) = 0 or x∗(e) ≥ 1/α, or

there is v ∈ B with |δ+E(v)| ≤ αb(v) +
⌈

2γ
α−1

⌉
+ 1. Here, γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|.

Theorem 3.2 (Implies Theorem 2.2). Let x∗ be an extreme point of P (f, b, E)
where G = (V,E) is an undirected graph and f is a skew supermodular biset function
on V . Recall that γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|. Then the following holds.

(i) For any integer α ≥ 4, there is e ∈ E with x∗(e) = 0 or x∗(e) ≥ 1/α, or there

is v ∈ B with |δE(v)| ≤
⌈
4 γ+2
α−2

⌉
+ 5.

(ii) If x∗ is maximal in P (f, b, E) and every edge in E is incident to some node
in B, then there is e ∈ E with x∗(e) = 0 or x∗(e) ≥ 1/2, or there is v ∈ B
with |δE(v)| ≤ 1.5γ2 + 7.5γ + 16.

Proof ideas in Theorems 3.1 and 3.2. Roughly speaking, Theorems 3.1 and
3.2 are based on two new ideas. One is a structural result on laminar biset families.
In the edge-connectivity problems, each extreme point solution of an LP relaxation
is characterized by a laminar set family, and this fact always plays a key role in
the analysis of iterative rounding algorithms. For proving Theorems 3.1 and 3.2, we
extend concept of laminarity to biset families. Indeed, we have two definitions of
laminar biset families, we call one of them simply a laminar family, and the other
a strongly laminar family. We will show in Lemma 4.2 that an extreme point of
P (f, b, E) is defined by a laminar biset family if f is intersecting supermodular and
the graph is directed, and by a strongly laminar biset family if f is skew supermodular
and the graph is undirected. Despite this observation, we still have some difficulty
in proving Theorems 3.1 and 3.2. This is because a node is possibly shared by more
than one biset even in these biset families. This is the main reason why Lau et
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al. [27] and Lau and Singh [29] needed to assume that the degree-bounds are given
on terminals only, and [38] needed an exponential approximation factor in the degree-
bounds. We overcome this by presenting a bound on the number of bisets that share
degree-bounded nodes (Lemma 4.5).

The other new idea is to use two token counting strategies depending upon the
size of the laminar biset family and the number of tight degree nodes. A standard way
to analyze iterative rounding is to compare the number of variables and the number
of constraints that define an extreme point solution. In our problem, each variable
corresponds to an edge, and an extreme point solution is defined by constraints corre-
sponding to a biset in a laminar or strongly laminar family, or to a tight degree node.
Hence we assign tokens to each edge, and count the number of tokens in terms of the
size of the biset family and the number of tight degree nodes. In Theorem 3.1 and
part (i) of Theorem 3.2, if the number of tight degree nodes is smaller compared with
the number of leaf bisets in the biset family, we can almost ignore the tight degree
nodes, and hence the token counting for the problem without degree-bounds can be
modified for such a case. For the other case, we apply a token counting using the
above structural result on a laminar or strongly laminar biset family. As for part (ii)
of Theorem 3.2, we do the opposite. If the number of tight degree nodes is smaller, we
apply a known token distribution after careful redistribution of tokens. If the number
of tight degree nodes is larger, we use the fact that each edge is incident to some node
in B.

These ideas have been already given in a preliminary version [17] of this paper. By
generalizing and simplifying them, the ratios were slightly improved in Theorem 3.1
and part (ii) of Theorem 3.2. In [17], we did not apply the idea of using two token
strategies for bicriteria approximation of Degree-Bounded Element-Connectivity Sur-
vivable Network. This is why [17] did not have a result corresponding to part (i) of
Theorem 3.2 with a constant α.

Proofs of Theorems 3.1 and 3.2 will be presented in the subsequent two sections.
In Section 4, we discuss laminarity of biset families. In Section 5, we prove the
theorems by giving token counting arguments.

4. Laminar biset families. A set family F is laminar if for any X,Y ∈ F ,
either X ⊆ Y , Y ⊆ X, or X ∩Y = ∅. Note that X ⊆ Y or Y ⊆ X holds if and only if
{X ∩ Y,X ∪ Y } = {X,Y }, and that X ∩ Y = ∅ holds if and only if {X \ Y, Y \X} =
{X,Y }. Our aim is to establish that any extreme point of P (f, b, E) with intersecting
supermodular f or with skew supermodular f is defined by a “laminar” family of
bisets. But how to define “laminarity” of bisets?

In the case of an intersecting supermodular f , it is natural to say that F is laminar
if {X̂ ∩ Ŷ , X̂ ∪ Ŷ } = {X̂, Ŷ } for any X̂, Ŷ ∈ F with X ∩ Y 6= ∅. In the case of a skew
supermodular f , it is natural to say that F is laminar if {X̂ ∩ Ŷ , X̂ ∪ Ŷ } = {X̂, Ŷ }
or {X̂ \ Ŷ , Ŷ \ X̂} = {X̂, Ŷ } for any X̂, Ŷ ∈ F ; we refer to this property as “strong
laminarity”. Laminar biset families are used in [14], while strongly laminar biset
families are defined in [12] in terms of setpairs. Following [38], we formulate both
these concepts in terms of bisets, by establishing an inclusion order (namely, a partial
order) on bisets.

Definition 4.1. We say that a biset Ŷ contains a biset X̂ and write X̂ ⊆ Ŷ if
X ⊆ Y and X+ ⊆ Y +; if also X̂ 6= Ŷ then X̂ ⊂ Ŷ and Ŷ properly contains X̂. A
biset family F is laminar (resp., strongly laminar) if for any X̂, Ŷ ∈ L either X̂ ⊆ Ŷ ,
Ŷ ⊆ X̂, or X ∩ Y = ∅ (resp., X ∩ Y + = ∅ and Y ∩X+ = ∅).

Figure 4.1 illustrates examples of laminar and strongly laminar biset families,
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strongly laminarlaminar

Fig. 4.1. A laminar family and a strongly laminar family of bisets on twelve nodes. A filled
region surrounded by a dotted line represents the inner-part of a biset, and a region surrounded by
a solid line represents the outer-part.

each of which consists of two bisets. The family illustrated in the left is not strongly
laminar because the outer-part of a biset intersects the inner-part of the other.

Note that a strongly laminar biset family is laminar, and that the family of inner-
parts of a laminar biset family is a laminar set family. The above inclusion order on
bisets defines a forest structure of a laminar biset family. In the rest of this paper,
“minimal” and “maximal” are defined with respect to this inclusion order. For a
laminar biset family F and X̂, Ŷ ∈ F , we say that Ŷ is the parent of X̂ and X̂ is a
child of Ŷ if Ŷ is the minimal biset with X̂ ⊂ Ŷ . A minimal biset in F is called a
leaf.

Let G = (V,E) be a graph, and let F be a biset family on V . For E′ ⊆ E
the characteristic vector of E′ is an |E|-dimensional vector whose component corre-
sponding to e ∈ E is 1 if e ∈ E′, and 0 otherwise. If G is a directed graph, then let
χ+
E(F) denote the set of characteristic vectors of the edge sets in {δ+E(Ŝ) : Ŝ ∈ F} and

χ−E(F) is the set of characteristic vectors of the edge sets in {δ−E (Ŝ) : Ŝ ∈ F}. If G
is an undirected graph, let χE(F) denote the set of characteristic vectors of the edge
sets in {δE(Ŝ) : Ŝ ∈ F}. For C ⊆ V , χE(C) = χE({(v, v) : v ∈ C}), and similarly
χ+
E(C) and χ−E(C) are defined. The following statement was proved for set-functions

in [4, 27], and the proof for biset functions is similar (e.g., see [38] for the case of a
skew supermodular f).

Lemma 4.2. Let x be an extreme point of P (f, b, E) with 0 < xe < 1 for all
e ∈ E 6= ∅. Let L be a family of bisets, C ⊆ B, and suppose that they satisfy the
following conditions.

(i) If G is a directed graph and f is intersecting supermodular, then x(δ−E (Ŝ)) =

f(Ŝ) ≥ 1 for all Ŝ ∈ L, x(δ+E(v)) = b(v) for all v ∈ C, the vectors in
χ−E(L) ∪ χ+

E(C) are linearly independent, and L is laminar.

(ii) If G is an undirected graph and f is skew supermodular, then x(δE(Ŝ)) =
f(Ŝ) ≥ 1 for all Ŝ ∈ L, x(δE(v)) = b(v) for all v ∈ C, the vectors in
χE(L) ∪ χE(C) are linearly independent, and L is strongly laminar.

If L and C are inclusion-wise maximal, then |L|+ |C| = |E|.
The following parameter is defined in [38].
Definition 4.3. Let L be a laminar biset family on V , let Ŝ ∈ L and let v ∈ V .

We say that Ŝ owns v if Ŝ is the minimal biset in L with v ∈ S. We say that Ŝ shares
v if Ŝ is a minimal biset in L with v ∈ Γ(Ŝ). Let ∆L(v) denote the number of bisets
in L that share v.

From the definition it follows that every node v is owned by at most one biset in a
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laminar family, and that if two bisets in a laminar family share the same node v then
they are incomparable, namely, that none of them contains the other. The definition
also motivates the following lemma, which we need for proving our structural result
described in Lemma 4.5.

Lemma 4.4. Let L be a laminar biset family, and let v ∈ V . Let X be a sub-
family of L such that v ∈ Γ(X̂) for each X̂ ∈ X , and the bisets in X are pair-wise
incomparable. For each X̂ ∈ X , let X̂ ′ be a biset in L such that X̂ ⊆ X̂ ′ and X̂ ′

contains no biset in X \ {X̂} (possibly X̂ ′ = X̂). Then v ∈ Γ(X̂ ′) or v ∈ X ′ holds,
and the latter holds for at most one biset in X ′ = {X̂ ′ : X̂ ∈ X}. Furthermore, if L
is strongly laminar then the former holds for all bisets in X ′.

Proof. Since Γ(X̂) is contained by the outer-part of X̂ ′, v ∈ Γ(X̂) is either in Γ(X̂ ′)
or in X ′. Any two bisets X̂ ′ and Ŷ ′ in X ′ are incomparable, and hence X ′ ∩ Y ′ = ∅
by the laminarity of L. It follows from this fact that v is contained by the inner-part
of at most one biset in X ′. When L is strongly laminar, X ′ ∩Γ(Ŷ ′) = Γ(X̂ ′)∩Y ′ = ∅
holds for any X̂ ′, Ŷ ′ ∈ X ′, and hence v ∈ Γ(X ′) holds for all X̂ ′ ∈ X ′.

The following key statement will be used in our token countings.

Lemma 4.5 (Structural Lemma). Let L be a biset family on V , let C ⊆ V , let E
be the set of leaves of L, and let γ = maxŜ∈L |Γ(Ŝ)|. Then∑

v∈C
max{∆L(v), 1} ≤ 2γ(|E| − 1) + |C| if L is laminar, (4.1)∑

v∈C
max{∆L(v), 1} ≤ γ|E|+ |C| if L is strongly laminar. (4.2)

Proof. We may assume that |∆L(v)| ≥ 2 for every v ∈ C, as if ∆L(v) ≤ 1 for
some v ∈ C, then excluding v from C decreases both sides of each of (4.1) and (4.2)
by exactly one. We also assume that exactly one biset is maximal in L; otherwise, we
add the biset (V, V ) to L, which has no effect on the claim.

We prove (4.1). Let L′ be the family of bisets in L whose parent has at least
two children. It is known and easy to prove by induction that |L′| ≤ 2|E| − 2. Let
v ∈ C. L includes ∆L(v) incomparable bisets that contain v in their boundaries. Let
X denote a family of such bisets. For each biset X̂ ∈ X , let X̂ ′ be the minimal biset
in L′ with X̂ ⊆ X̂ ′. Note that X̂ ′ includes no biset in X \ {X̂}. Lemma 4.4 indicates
that at most one biset in {X̂ ′ : X̂ ∈ X} includes v in its inner-part. Thus v belongs
to the boundaries of at least ∆L(v)− 1 bisets in L′. This implies∑

v∈C
max{∆L(v), 1} − |C| =

∑
v∈C

(max{∆L(v), 1} − 1) ≤ γ|L′| ≤ 2γ(|E| − 1) .

We prove (4.2) by induction on |E|. Assume therefore that |E| ≥ 2, as otherwise
|∆L(v)| ≤ 1 for every v ∈ C. Then there exists Ŝ ∈ L such that Ŝ has at least two
children, but every proper descendant of Ŝ has at most one child. Let R̂ be a child of
Ŝ, let Ẑ ⊆ R̂ be a leaf of L (possibly R̂ = Ẑ), and let P = {Ŷ ∈ L : Ẑ ⊆ Ŷ ⊆ R̂} be
the “chain” from the child R̂ of Ŝ to Ẑ. Since we assume that |∆L(v)| ≥ 2 for every
v ∈ C, then by Lemma 4.4, every node that is shared by some biset in P belongs to
Γ(R̂), so there are at most |Γ(R̂)| ≤ γ such nodes. Hence excluding the bisets in P
from L decreases the left hand side of (4.2) by at most γ, while |E| decreases by 1,
hence the right hand side of (4.2) decreases by γ.
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S+

S S

Fig. 5.1. Examples of edges in E+
S and E−S . In the left example, edges are directed, and

bisets are Ŝ and its two children that form a laminar family. In the right, edges are undirected and
bisets are Ŝ and its two children that form a strongly laminar family. Edges in E+

S and in E−S are
represented by gray solid lines and gray dotted lines, respectively.

5. Proof of Theorems 3.1 and 3.2. Let x = x∗ be an extreme point solution
to the corresponding biset LP relaxation, and let L and C be as in Lemma 4.2. Let
E be the set of leaf bisets in L. For a biset Ŝ ∈ L, denote by CS the set of children of
Ŝ, by E+

S the set of edges in E that cover Ŝ but not a child of Ŝ, and by E−S the set

of edges in E that cover a child of Ŝ but not Ŝ; see examples in Fig. 5.1. If Ŝ ∈ E ,
then E+

S = δ−E (Ŝ) when E is the set of arcs, and E+
S = δE(Ŝ) when E is the set of

undirected edges. E−S = ∅ if Ŝ ∈ E . If Ŝ ∈ L \ E , then E+
S ∪ E

−
S 6= ∅ since otherwise

the vectors in χE({Ŝ} ∪ CS) are linearly dependent.

5.1. Intersecting supermodular f and directed graphs (Theorem 3.1).
Assume for the sake of contradiction that 0 < x(e) < 1/α for every e ∈ E. Assign
one token to every edge e = uv ∈ E, putting 1 − αx(e) > 0 “tail-tokens” at u and
αx(e) > 0 “head-tokens” at v. We will show that these tokens can be distributed such
that every member of L ∪ C gets one token, and some tokens are not assigned. This
gives the contradiction |E| > |L|+ |C|.

For every Ŝ ∈ L, the amount of head-tokens of edges in E+
S and tail-tokens of edges

in E−S is αx(E+
S ) + |E−S | −αx(E−S ). Note that this is an integer, since α is an integer,

and since x(E+
S )−x(E−S ) = f(Ŝ)−

∑
R̂∈CS f(R̂) follows from δ−E (Ŝ)\(

⋃
R̂∈CS δ

−
E (R̂)) =

E+
S and (

⋃
R̂∈CS δ

−
E (R̂)) \ δ−E (Ŝ) = E−S . It is a positive integer since x(E+

S ) > 0 if

E+
S 6= ∅, and |E−S | − αx(E−S ) > 0 if E−S 6= ∅. Thus if we assign to every Ŝ ∈ L the

head-tokens of edges in E+
S and the tail-tokens of edges in E−S , then every member

of L will get at least one token, and the tail-tokens entering the maximal members of
L are not assigned. An edge belongs to E+

S for at most one biset Ŝ ∈ L. Thus each
head-token is not counted twice. The same goes for tail-tokens.

We note that we did not use the assumption α ≥ 2 above, and hence this token
distribution is possible even if α = 1. Hence, if C = ∅, and in particular if there are
no degree bounds, then this implies that the extreme points of the polytope P (f, b, E)
are all integral.

Lemma 5.1. If (α− 1)|E| ≥ |C| then there is e ∈ E with x(e) ≥ 1/α.

Proof. Every leaf Ŝ gets αx(δ−E (Ŝ)) = αf(Ŝ) ≥ α head-tokens from edges in E+
S .

Hence we have α|E| tokens at leaves. By the assumption (α − 1)|E| ≥ |C| we have
|E| + |C| ≤ α|E|, hence the α|E| tokens at leaves suffice to give one token to each
member of E ∪ C. Every non-leaf biset Ŝ ∈ L gets the head-tokens from edges in
E+
S and the tail-tokens from edges in E−S , so at least one token. Consequently, every
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member of L∪C gets one token, and the tail-tokens of the edges entering the maximal
members of L are not assigned. This gives the contradiction |E| > |L|+ |C|.

Lemma 5.2. If |C| > (α− 1)|E|, then there is e ∈ E with x(e) ≥ 1/α or there is

v ∈ C with |δ+E(v)| ≤ αb(v) + β, where β =
⌈

2γ
α−1

⌉
+ 1.

Proof. Assume that |δ+E(v)| ≥ αb(v) +β+ 1 for every v ∈ C. Then the amount of
tail-tokens at each v ∈ C is at least αb(v)+β+1−αx(δ+E(v)) = β+1. Hence we have
at least α|E|+ (β+ 1)|C| tokens at leaves and nodes in C. From these tokens, we give
one token to every leaf and ∆L(v)+2 tokens to every v ∈ C, and spare tokens remain.
This is possible, since by (4.1) of Lemma 4.5 and the assumption |C| > (α− 1)|E|,

|E|+
∑
v∈C

(∆L(v) + 2) ≤ |E|+ 3|C|+ 2γ(|E| − 1)

= α|E|+ (2γ + 1− α)|E|+ 3|C| − 2γ

= α|E|+ |C|
(

(2γ + 1− α)
|E|
|C|

+ 3

)
− 2γ

< α|E|+ |C|
(

2γ

α− 1
+ 2

)
− 2γ

≤ α|E|+ |C|(β + 1) .

Every v ∈ C will keep one token, and from the remaining at least ∆L(v) + 1
tokens v will give one token to every biset that owns or shares v. Now let Ŝ ∈ L be
a biset that is not a leaf and that does not own or share any node in C. Then Ŝ gets
the head-tokens from edges in E+

S and the tail tokens from edges in E−S , so at least
one token as argued above. Consequently, every members of L ∪ C gets one token.
This gives the contradiction |E| > |L|+ |C|.

Theorem 3.1 follows by combining Lemmas 5.1 and 5.2.

5.2. Skew supermodular f and undirected graphs (Part (i) of Theo-
rem 3.2). We now consider Theorem 3.2. Recall that edges are undirected and L
is strongly laminar in this theorem. We deduce part (i) of Theorem 3.2 from the
following two lemmas.

Lemma 5.3. If (θ − 1)|E| ≥ |C| for an integer θ ≥ 2, then there is e ∈ E with
x(e) ≥ 1

2θ .
Proof. We generalize the approach from [34]. Suppose for the sake of contradiction

that 0 < x(e) < 1
2θ for every e ∈ E. Assign one token to every e = uv ∈ E, putting

θx(e) > 0 “end-tokens” at each of u and v, and 1− 2θx(e) > 0 “middle-tokens” at e.
We will show that these tokens can be distributed such that every member of L ∪ C
gets one token, and the middle-tokens of the edges entering the maximal members of
L are not assigned. This gives the contradiction |E| > |L|+ |C|.

Every leaf Ŝ gets θx(δE(Ŝ)) = θf(Ŝ) ≥ θ end-tokens from edges in E+
S . Hence we

have θ|E| tokens at leaves. By the assumption (θ−1)|E| ≥ |C|, we have |E|+|C| ≤ θ|E|,
so these tokens suffice to give one token to each member of E ∪ C.

Now let Ŝ ∈ L be a non-leaf biset. Denote by t(Ŝ) the amount of the following
tokens:

• end-tokens of edges in E+
S at nodes owned by Ŝ (these tokens always exist if

E+
S 6= ∅),

• middle-tokens of edges in E−S (these tokens always exist if E−S 6= ∅),
• end-tokens of edges in E−S at nodes owned or shared by Ŝ (these tokens exist

if there exists an edge in E−S 6= ∅ that covers exactly one child of Ŝ).
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Note that t(Ŝ) > 0, by the linear independence. We claim that t(Ŝ) is an integer,
hence t(Ŝ) ≥ 1. Let E1 be the set of edges in E−S that cover exactly one child of Ŝ

and let E2 = E−S \E1 be the set of edges in E−S that cover two distinct children of Ŝ.

Let E′ be the set of edges in E that cover both Ŝ and some child of Ŝ. Then,

t(Ŝ) = θx(E+
S ) + (|E1| − θx(E1)) + (|E2| − 2θx(E2))

= θ[x(E+
S ) + x(E′)]− θ[x(E1) + 2x(E2) + x(E′)] + |E1|+ |E2|

= θx(δE(Ŝ))− θ
∑
R̂∈CS

x(δE(R̂)) + |E−S | = θ

f(Ŝ)−
∑
R̂∈CS

f(R̂)

+ |E−S | .

To each non-leaf biset Ŝ ∈ L, we distribute tokens counted in t(Ŝ). Consequently,
every members of L ∪ C gets one token, and the middle-tokens of the edges entering
the maximal members of L are not assigned. We note that any tokens are not counted
more than once because E+

S ∩E
+
S′ = ∅ and E−S ∩E

−
S′ = ∅ hold for any distinct bisets

Ŝ, Ŝ′ ∈ L. This gives the contradiction |E| > |L|+ |C|.
We note that if C = ∅, i.e., if there are no degree bounds, then the same proof

applies for θ = 1 to show that any extreme point of P (f, b, E) has an edge e ∈ E with
x(e) ≥ 1/2. This coincides with the simple proof of the result of [12] given in [34].

Lemma 5.4. If |C| > (α/2− 1)|E|, then there is e ∈ E with x(e) ≥ 1/α or there

is v ∈ C with |δE(v)| ≤ β, where β =
⌈
4 γ+2
α−2

⌉
+ 5.

Proof. Assume for a contradiction that 0 < x(e) < 1/α for every e ∈ E and that
|δE(v)| ≥ β + 1 for every v ∈ C. We give one token to each end-node of every edge
in E. We will show that these tokens can be distributed such that every member of
L ∪ C gets two tokens, and each maximal member of L gets four tokens leading to
the contradiction that |E| > |L|+ |C|.

The amount of tokens at each v ∈ C is at least β + 1. Hence we have at least
(β + 1)|C| tokens at the nodes in C. From these tokens, we give four tokens to every
leaf and 2(∆L(v) + 2) tokens to every v ∈ C. This is possible by (4.2) of Lemma 4.5
and the assumption |C| > (α/2− 1)|E|, as we verify below.

4|E|+ 2
∑
v∈C

(∆L(v) + 2) ≤ 4|E|+ 2(γ|E|+ 3|C|) = 2|E|(γ + 2) + 6|C|

= |C|
(

6 + 2
|E|
|C|

(γ + 2)

)
< |C|

(
6 + 2(γ + 2)

2

α− 2

)
≤ |C|(1 + β).

Every v ∈ C will keep two tokens. From the remaining 2(∆L(v)+1) tokens, v will
give two tokens to every biset that owns or shares v. Now we discuss the tokens given
to bisets in L. We show that the tokens can be rearranged as claimed by induction
on the height of the forest corresponding to L.

Let Ŝ ∈ L be a biset that is not a leaf. By the induction hypothesis, we assume
that each descendant of Ŝ has at least two tokens, and each child of Ŝ has four tokens.
We move two tokens from each child to Ŝ. If Ŝ has at least two children then we are
done. If Ŝ has one child and owns or shares a node v ∈ C, then Ŝ gets two tokens
from its child and two tokens from v. Let us consider the other case (i.e., Ŝ has one
child and owns or shares no node in C). In this case, each edge in E+

S ∪ E
−
S has

one end-node that is owned or shared by Ŝ, and this end-node is not contained by
C. We give the tokens of these end-nodes to Ŝ. Note that |E+

S ∪ E
−
S | ≥ 2, by linear
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independence and the integrality of f . Hence Ŝ gets two tokens from its child and
two tokens from end-nodes of edges in E+

S ∪ E
−
S . Consequently, we can always give

four tokens to Ŝ, keeping two tokens for each descendant of Ŝ.

Applying Lemma 5.3 with θ = bα/2c, we get that if (bα/2c − 1)|E| ≥ |C|, and in
particular if (α/2−1)|E| ≥ |C|, then there is e ∈ E with x(e) ≥ 1

2bα/2c ≥
1
α . Together

with Lemma 5.4 this implies Theorem 3.2.

5.3. Degree approximation only (Part (ii) of Theorem 3.2). We call a
biset in L strictly black if it owns a node in C, black if one of its descendents is strictly
black (i.e., its inner-part contains a node in C), and white otherwise (i.e., its inner-
part contains no node in C). Let Eb and Ew denote the family of strictly black bisets
and white bisets in E , respectively.

Lemma 5.5. If |E| ≤ (γ + 4)|C|, then there is e ∈ E with x(e) ≥ 1/2, or there is
v ∈ C with |δE(v)| ≤ 1.5γ2 + 7.5γ + 16.

Proof. Assume for a contradiction that 0 < x(e) < 1/2 for every e ∈ E and
|δE(v)| ≥ 1.5γ2 + 7.5γ + 17 for every v ∈ C. Identifying a node v ∈ C as a biset
({v}, {v}), we regard L∪C as a biset family. L∪C may not be strongly laminar, but
it is laminar. Therefore we can define the inclusion order on L ∪ C.

We assign two tokens to every edge in E, putting one end-token at each of its
end-nodes. We will show that these tokens can be distributed such that every member
of L ∪ C gets two tokens, and an extra token remains. This gives the contradiction
that |E| > |L|+ |C|.

Let e = uv ∈ E. Note that there always exists a biset X̂ ∈ L ∪ C such that
e ∈ δE(X̂). Suppose that X̂ is a minimal one among such bisets. Without loss of
generality, let u ∈ X. We give the end-token of e at u to X̂. If there also exists a
biset Ŷ ∈ L ∪ C such that e ∈ δE(Ŷ ) and v ∈ Y , then we give the end-token of e
at v to the minimal such biset Ŷ . Otherwise, the end-token of e at v is given to the
minimal biset X̂ ′ such that X̂ ⊂ X̂ ′ and e 6∈ δE(X̂ ′).

Since bisets in Ew and nodes in C are leaves of L∪C, they obtain one token from
each edge incident to them after this distribution. Hence each biset Ŝ ∈ Ew has three
tokens and each node v ∈ C has |δE(v)| tokens. We make each v ∈ C keep only two
tokens, return 1/3 tokens to each edge in δE(v), and release the other tokens. Then
the total number of released tokens is

∑
v∈C

(
2

3
|δE(v)| − 2

)
> |C|(γ2 + 5γ + 9) ≥ (1 + γ)|E|+ 5|C|,

where the first inequality follows from |δE(v)| > 1.5γ2+7.5γ+16.5, v ∈ C and the last
one follows from |E| ≤ (γ + 4)|C|. We redistribute these tokens to bisets as follows:

• one token is given to each biset in Ew,
• four tokens are given to each biset in Eb,
• if v ∈ C is shared by a biset X̂, then one token is given to X̂,
• if v ∈ C is owned by a biset X̂ and v is shared by no biset in L, then two

tokens are given to X̂,
• if v ∈ C is owned by a biset X̂ and v is shared by some bisets in L, then one

token is given to X̂.

If a biset owns or shares more than one node in C, it obtains tokens from each of
those nodes in C following the last three rules. This redistribution is possible because
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the number of tokens we need is

|Ew|+ 4|Eb|+
∑
v∈C

(1 + max{1,∆L(v)}) ≤ (|E| − |C|) + 4|C|+ |C|+ γ|E|+ |C|

= (1 + γ)|E|+ 5|C|,

where the above inequality follows from |Ew|+ |Eb| = |E|, |Eb| ≤ |C|, and (4.2).

Now all tokens given to bisets in E and nodes in C have been redistributed such
that

• each node in C has two tokens,
• each biset in E has four tokens,
• each pair of v ∈ C and e ∈ δE(v) has 1/3 tokens,
• each biset X̂ ∈ L has at least one token from each owning node in C, and

one token from each sharing node in C. If a node v owned by X̂ is shared by
no biset, then X̂ has two tokens from v.

Let Ŝ ∈ L, and let L′ be the family of Ŝ and its proper descendants. In what
follows, we make each biset in L′ receive at least two tokens, and Ŝ receive four tokens.
For this, we redistribute tokens that were given to the bisets in L′, and those kept by
pairs of edge e and its end-node v ∈ C such that e is incident to a biset in L′ and
v is shared or owned by this biset. We prove that this redistribution is possible by
induction on the height of the tree defined from L′. If the height is one, the claim
follows from that each biset in E has four tokens. Hence let us consider the case where
the height of the tree is more than one.

By the induction hypothesis, we can assume that each descendant has at least
two tokens, and each child of Ŝ has four tokens. Ŝ can obtain two tokens from each
of its child. Thus Ŝ can collect four tokens in each of the following cases:

• Ŝ has more than one child;
• Ŝ owns a node in C that is shared by no biset in L;
• Ŝ owns or shares at least two nodes in C.

In the rest, we discuss the other case, and show that Ŝ collects at least two tokens in
addition to the tokens given from the child. Let Ŷ be the child of Ŝ.

By the linear independence, |E+
S ∪ E

−
S | ≥ 2 always holds, and |E+

S ∪ E
−
S | ≥ 3

holds when either E+
S or E−S is empty by the assumption that x(e) < 1/2, e ∈ E. Let

us discuss how many tokens are given to Ŝ from the end-nodes of edges in E+
S ∪E

−
S .

Let e = uv ∈ E+
S . Without loss of generality, we let u ∈ S and v ∈ V \S+. Notice

that Ŝ owns u. Hence if u ∈ C, then Ŝ receives one or two tokens from u. If u 6∈ C, Ŝ
obtains the end-token of e at u. Let e′ = u′v′ ∈ E−S . We let u′ ∈ S be the end-node
which is within Y , and consequently v′ ∈ S+ \ Y +. By the strongly laminarity of L,
no biset X̂ ∈ L with e′ ∈ δE(X̂) contains v′ in its inner-part. This implies that, if
v′ 6∈ C, Ŝ obtains the end-token of e′ at v′. If v′ ∈ C, then Ŝ owns or shares v′, and
obtains one or two tokens from v′. Summing up, if there is more than one node such
as u or v′, then we are done. Even if there exists exactly one such node, Ŝ receives
at least two tokens unless the node is in C and is shared by some bisets.

Consider the case of E−S 6= ∅ 6= E+
S . We define e = uv and e′ = u′v′ as above. The

above discussion shows that Ŝ receives two tokens unless u = v′ ∈ C. If u = v′ ∈ C,
this node is not contained by Y +, and hence no biset in L shares it. This means that
Ŝ always receives at least two tokens in this case.

Next, consider the case of E+
S = ∅. Then |E−S | ≥ 3, and all edges in E−S are

incident to the same node v′ in C ∩ (S+ \ Y +). Each of the edges in E−S has 1/3
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tokens corresponding to v′. Ŝ collects one token from these edges, and another token
from v′. Therefore, we are done. The claim is proven similarly when E−S = ∅.

We next discuss the case where |E| ≥ (γ + 4)|C|, and prove the following lemma.

Lemma 5.6. If x is maximal in P (f, b, E) and every edge in E is incident to
some node in B and |E| ≥ (γ + 4)|C|, then there is e ∈ E with x(e) ≥ 1/2.

Under the assumption in Lemma 5.6, each edge e ∈ E is incident to a node in
{v ∈ B : x(δE(v)) = b(v)} since otherwise we can increase x∗(e). Since Lemma 4.2
holds for arbitrary L and C that satisfy the conditions described in the lemma, we
can define C as an inclusion-wise maximal subset of {v ∈ B : x(δE(v)) = b(v)} such
that the vectors in χE(C) are linearly independent. If C contains no end-node of
e ∈ E, then the incidence vector of δE(v) defined from an end-node v of e is linearly
independent from those in χE(C). Since this contradicts the maximality of C, we can
observe that each edge e ∈ E is incident to at least one node in C.

We again count bisets in L and nodes in C for proving Lemma 5.6, but the way
of distributing tokens is different here. Let e = uv ∈ E. By the assumption, at least
one of the end-nodes of e is in C. If C contains both end-nodes of e, then we assign
no token to e. If C contains exactly one end-node, say v, of e, then we assign one
token. This token will be given to a biset in L as follows. If L contains a biset Ŝ such
that e ∈ δE(Ŝ) and u ∈ S, then the token is given to such a minimal biset. If there
exists no such bisets and L contains a biset X̂ such that e ∈ δE(X̂) and v ∈ X, then
the token is given to the minimal biset in {Ŷ ∈ L : X̂ ⊂ Ŷ , u ∈ Y +}. Since the total
number of tokens is at most |E|, it suffices to show that an extra token remains after
redistributing tokens so that each biset in L and each node in C owns one token.

Let Ŝ ∈ Ew. Since x(e) < 1/2 for each e ∈ E, |δE(Ŝ)| ≥ 2f(Ŝ) + 1. Since
S contains no nodes in C, each edge in δE(Ŝ) gives a token to Ŝ. Thus Ŝ has
2f(Ŝ) + 1 ≥ f(Ŝ) + 2 tokens. We make each Ŝ ∈ Ew release one token. Then the
number of released tokens is at least |Ew| ≥ |E| − |C| ≥ (γ + 3)|C|. Recall that the
number of strictly black bisets is at most |C|. We redistribute the released token to
the nodes in C and the strictly black bisets so that each v ∈ C has one token, and
each strictly black biset has γ + 2 tokens. Note that each Ŝ ∈ Ew still has at least
f(Ŝ) + 1 tokens after this redistribution.

We first count tokens in a tree which consists of only white bisets.

Lemma 5.7. Let R̂ ∈ L be a white biset, and L′ = {Ŝ ∈ L : Ŝ ⊆ R̂}. We can
distribute tokens owned by bisets in L′ so that each biset in L′ has at least one token,
and R̂ has at least 1 + f(R̂) tokens when 0 < x(e) < 1/2 for each e ∈ E.

Proof. We prove this by induction on the height of the tree representing L′. If
the height is one, then L′ = {R̂} and R̂ ∈ Ew. Thus the lemma follows in this case.

Assume that the height is at least two. Applying the induction hypothesis to the
trees rooted at the children of R̂, we can allocate tokens so that each biset below the
children of R̂ has one token, and each child Ŝ of R̂ has 1 + f(Ŝ) tokens. We can move∑
Ŝ∈CR f(Ŝ) tokens from the children to R̂.

If
∑
Ŝ∈CR f(Ŝ) > f(R̂), then we are done. Hence consider the other case. When∑

Ŝ∈CR f(Ŝ) = f(R̂), |E+
R | ≥ 1 holds by the linear independence. When

∑
Ŝ∈CR f(Ŝ) <

f(R̂), |E+
R | ≥ 1 + 2(f(R̂)−

∑
Ŝ∈CR f(Ŝ)) holds by x∗(e) < 1/2, e ∈ E. In either case,

|E+
R | ≥ 1 + f(R̂)−

∑
Ŝ∈CR f(Ŝ). R̂ is given a token from each e ∈ E+

R because e has

an end-node v ∈ R such that R̂ is a minimal biset with e ∈ δE(R̂) and v ∈ R, and
v 6∈ C by R ∩ C = ∅. Thus R̂ has already owned 1 + f(R̂)−

∑
Ŝ∈CR f(Ŝ). With the

tokens from the children, R̂ obtains 1 + f(R̂) tokens.
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We next give a token distribution scheme for trees in which the maximal bisets
are black. Together with Lemma 5.7, this finishes the proof of Lemma 5.6.

Lemma 5.8. Let R̂ ∈ L be a black biset, and L′ = {Ŝ ∈ L : Ŝ ⊆ R̂}. We can
distribute tokens owned by bisets in L′ so that each biset in L′ has at least one token,
and R̂ has at least 2 tokens when 0 < x(e) < 1/2 for each e ∈ E.

Proof. We show how to rearrange the tokens so that each biset in L′ obtains at
least one token, and R̂ obtains at least 2 + γ−|Γ(R̂)∩C| ≥ 2 tokens. Our proof is by
induction on the height of the tree. If the height is one, then the claim holds because
it consists of a strictly black biset. Hence suppose that the height is at least two.

Let B be the set of black children of R̂, and W be the set of white children of
R̂. Apply the induction hypothesis to the subtrees rooted at the black children, and
Lemma 5.7 to the subtrees rooted at the white children. Then each biset below the
children has one token, each X̂ ∈ B has 2 + γ − |Γ(X̂) ∩ C| tokens, and each Ŷ ∈ W
has 1 + f(Ŷ ) ≥ 2 tokens. If B = ∅, then R̂ is strictly black, and it has already given
γ + 2 tokens. Since this finishes the claim, suppose that B 6= ∅. Since each child of R̂
needs only one token, we can move extra tokens from the children to R̂. The number
of tokens R̂ obtains is at least

|W|+
∑
X̂∈B

(1 + γ − |Γ(X̂) ∩ C|). (5.1)

Let Ŝ be an arbitrary biset in B. A node v ∈ Γ(Ŝ) ∩ C is either in R or Γ(R̂). If
v is in R, then we are done because R̂ is a strictly black biset that owns v. Therefore
assume that each v ∈ Γ(Ŝ) ∩ C is in Γ(R̂). This means that Γ(Ŝ) ∩ C ⊆ Γ(R̂) ∩ C,
and hence |Γ(Ŝ) ∩ C| ≤ |Γ(R̂) ∩ C|. Hence (5.1) is at least the required number of
tokens if |W| ≥ 1, if |B| ≥ 2, or if Γ(Ŝ) ∩ C ⊂ Γ(R̂) ∩ C.

Let |B| = 1, |W| = 0, and Γ(Ŝ) ∩ C = Γ(R̂) ∩ C. Notice that Ŝ is the only child
of R̂ in this case. It suffices to find one more token for R̂. The linear independence
between χE(R̂) and χE(Ŝ) implies that at least one of E+

R and E−R is not empty.

Let e ∈ E+
R . Then e has an end-node v in R \ S. If v ∈ C, then R̂ is a strictly

black biset that owns v, and hence R̂ has the required number of tokens in this case
as mentioned above. If v 6∈ C, then e gives a token to R̂. Thus we are done when
E+
R 6= ∅.

Let e′ = u′v′ ∈ E−R . Then e′ has an end-node, say u′, in R+ \S+. If u′ ∈ C, then

Γ(Ŝ) ∩ C = Γ(R̂) ∩ C implies that u′ ∈ R, and hence R̂ is a strictly black biset. Let
u′ 6∈ C. Then v′ ∈ C. L has no biset Ẑ with e′ ∈ δE(Ẑ) and u′ ∈ Z by the strong
laminarity of L. e′ ∈ δE(Ŝ), v′ ∈ S ∩ C, and R̂ is the minimal biset such that Ŝ ⊂ R̂
and u′ ∈ R+. Hence e′ gives one token to R̂ in this case, which completes the proof.

6. Proof of Theorem 1.3. Here we prove Theorem 1.3, stating that Surviv-
able Network on undirected graphs admits the following approximation ratios for any
integer α ≥ 1.

(i) O(k3 log |T |)·(α, αb(v)+k/α) for Degree-Bounded Node-Connectivity Survivable
Network.

(ii) O(k log k) · (α, αb(v) + k/α) for Degree-Bounded Rooted Survivable Network.
(iii) 1

εO(k log2 k) · (α, αb(v) + k/α) for Degree-Bounded Subset k-Connected Sub-
graph with k ≤ (1− ε)|T | and 0 < ε < 1.

Part (i) follows from Theorem 1.2 and the decomposition of Node-Connectivity
Survivable Network into O(k3 log |T |) instances of Element-Connectivity Survivable Net-
work due to Chuzhoy and Khanna [8].
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For proving (ii), we need to explain the algorithm of [36] for Rooted Survivable
Network without degree-bounds. By augmentation version, we denote instances of
the problem in which G contains a subgraph J of zero edge cost such that κ(s, v) ≥
r(s, v) − 1 for every v ∈ T . In [36] it is shown that the augmentation version can
be decomposed into O(k) instances of Degree-Bounded f -Connected Subgraph with
skew supermodular f . The algorithm for the general version has k iterations. At
iteration `, one adds to J an edge set that increases the connectivity by one for each
node v such that κ(s, v) = r(s, v) − k + ` − 1. After iteration ` we have κ(s, v) ≥
r(s, v) − k + `, hence after k iterations the solution becomes feasible. In [36] it is
shown that if the augmentation version admits an algorithm that computes a solution
of cost at most α times the optimal value of the corresponding biset LP relaxation,
then the general version admits ratio O(α log k). This is because if x is a feasible
solution to LP relaxation derived from an instance of Rooted Survivable Network,
then x

k−`+1 is feasible to the LP relaxation derived from the augmentation version.
For the case with degree-bounds, we proceed in the same way. When we solve an

augmentation version instance, the degree-bounds b′ are defined by b′(v) = d b(v)
k−`+1e

for v ∈ B. Then we claim that if there exists an (α, β(b(v)))-approximation algorithm
for Degree-Bounded f -Connected Subgraph with skew supermodular f , then Degree-
Bounded Rooted Survivable Network admits ratio O(k log k) · (α, β(b(v))). This and
Theorem 2.2 prove (ii).

We prove (iii). In the augmentation version of Subset k-Connected Subgraph, the
goal is to increase the connectivity between the terminals from k − 1 to k, namely,
G contains a subgraph J of zero edge cost such that κ(u, v) ≥ k − 1 for all u, v ∈ T .
We use a result of [37] that the augmentation version of Subset k-Connected Subgraph
with k ≤ (1− ε)|T | is decomposed into 1

εO(log k) instances of augmentation versions
of Rooted Survivable Network with r(s, v) = k for all v ∈ T . To solve the general
version of Subset k-Connected Subgraph, we repeatedly solve k augmentation versions,
at iteration ` increasing the connectivity between the nodes in T from ` − 1 to `.
As in the rooted case, if x is a feasible solution to LP relaxation derived from an
instance of Subset k-Connected Subgraph, then x

k−`+1 is feasible to the LP relaxation
derived from the augmentation version. Hence if the augmentation version admits an
algorithm that computes a solution of cost at most α times the optimal value of the
corresponding biset LP relaxation, then the general version admits ratio O(α log k).
This extends to the degree bounded setting, if at iteration ` we scale the degree

bounds to b′(v) = d b(v)
k−`+1e for each v ∈ B. Then we claim that if the augmentation

version of Degree-Bounded Rooted Survivable Network admits ratio (α, β(b(v))) then
Degree-Bounded Subset k-Connected Subgraph admits ratio 1

εO(log2 k) · (α, β(b(v))).
By [36] the augmentation version of Rooted Survivable Network can be decomposed
into O(k) instances of f -Connected Subgraph with skew supermodular f , and this also
extends to the degree bounded setting. Overall, we obtain that Degree-Bounded f -
Connected Subgraph with skew supermodular f admits ratio (α, β(b(v))) then Degree-
Bounded Subset k-Connected Subgraph admits ratio 1

εO(k log2 k) · (α, β(b(v))). This
and Theorem 2.2 prove (iii).

Part (iii) does not mention the case k > (1 − ε)|T |. In this case, compute a
minimum cost set of k internally disjoint (u, v)-paths for each pair of u, v ∈ T , and
define a solution as the union of these paths. Note that the k internally disjoint
(u, v)-paths can be computed by a minimum cost flow algorithm. The edge cost of
this solution is O(k2) times the optimal, and the degree of each node is O(k2) because
|T | = O(k).
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7. Proof of Theorem 1.4. We need to describe the algorithm of [38] for Degree-
Bounded k-Connected Subgraph. The algorithm uses the following procedure due to
Khuller and Raghavachari [25], that is also used in the next section.

Procedure External k-Out-connectivity
Input: A graph G = (V,E), an integer k, and R ⊆ V with |R| = k.
Output: A subgraph J of G.
Step 1: Let G′ be obtained from G by adding a new node s and all edges between

s and R, of cost zero each.
Step 2: Compute a k-outconnected from s spanning subgraph J ′ of G′.
Step 3: Return J = (J ′ \ {s}).

Assume that Degree-Bounded k-Out-connected Subgraph admits an (α, β(b(v)))-
approximation algorithm. For undirected graphs, the algorithm of [38] is as follows.

Algorithm Degree Bounded k-Connectivity
Step 1: Apply Procedure External k-Out-connectivity, where J ′ is com-

puted using the (α, β(b(v)))-approximation algorithm for Degree-Bounded
k-Out-connected Subgraph with degree bounds b′(v) = b(v) + 1 if v ∈ R
and b′(v) = b(v) otherwise.

Step 2: Let F be a set of edges on V such that J ∪ F is k-connected.
Step 3: For every ut ∈ F compute a minimum-cost inclusion-minimal edge-set

Iut ⊆ E \ J such that J ∪ Iut contains k internally disjoint ut-paths.
Step 4: Return J ∪ I, where I = ∪ut∈F Iut.

In the case of directed graphs, Procedure External k-Out-connectivity com-
putes a subgraph J ′ = J−∪J+, where: J+ is k-outconnected from s and is computed
by the (α, β(b(v)))-approximation algorithm, while J− is a minimum cost subgraph
which is k-inconnected to s, namely, κJ−(v, s) ≥ k for each v ∈ V \ {s}.

Lemma 7.1 ([38]). Algorithm Degree Bounded k-Connectivity has ratio
(α+|F |, β(b(v))+2|F |+kd/2) for undirected graphs, and (α+1+|F |, β(b(v))+k+|F |+
kd/2) for digraphs, where F is the edge set computed at Step 2, d = maxv∈V |δF (v)|
for undirected graphs, and d = maxv∈V |δ+F (v)| for digraphs.

Let F be an edge set that satisfies the condition at Step 2 of Algorithm Degree
Bounded k-Connectivity. In [20, 38], it is shown that there exists such an edge
set F on R. Moreover, if F is an inclusion-minimal such edge set, then F is a forest
in the undirected case, and F contains no alternating cycle (a cycle such that every
two successive arcs have opposite directions) in the directed case. The latter property
is a known consequence from the undirected and directed Critical Cycle Theorems
of Mader [32, 33]. In addition, the latter property implies |F | ≤ 2|R| − 1. This can
be seen as follows. We make a copy R′ of R, and replace each arc uv ∈ F by an
undirected edge uv′, where v′ is the copy of v. Then we obtain an undirected edge
set on R ∪ R′. This edge set is a forest if F contains no alternating cycle. Thus
|F | ≤ 2|R| − 1.

Therefore, we can find in polynomial time F with |F | ≤ |R| − 1 = k − 1 in the
undirected case, and |F | ≤ 2|R| − 1 = 2k − 1 in the directed case. We improve
this by showing that F as above can be converted in polynomial time into an edge
set F ′ such that |F ′| ≤ |F |, maxv∈V |δF ′(v)| = O(

√
k) for undirected graphs, and

maxv∈V |δ+F ′(v)| = O(
√
k) for digraphs.
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7.1. Undirected graphs. We start by proving the following.
Lemma 7.2. Let G = (V,E ∪ F ) be a simple k-connected undirected graph such

that |δE(v)| ≥ p for all v ∈ V , and G \ {e′} is not k-connected for each e′ ∈ F . Let
d = max

v∈V
|δF (v)| ≥ 4, let u ∈ V with |δF (u)| = d, and let e = ut ∈ δF (u). Suppose

that for every v ∈ V with |δF (v)| ≤ d−2 the graph G\{ut}∪{vt} is not k-connected.
Then d(d+ p− k − 2) ≤ 3p− k + 1.

Proof. F is a forest by Mader’s Critical Cycle Theorem for undirected graphs.
Consider the graph G \ {e} and the biset family

F = {Ŝ ∈ V : u ∈ S, t ∈ V \ S+, |Γ(Ŝ)| = k − 1, δE∪F (Ŝ) = {e}} .

F is a ring biset family, namely, that (i) the intersection of the inner parts of the
members of F is non-empty, and (ii) X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F . Indeed,
(i) is obvious because the inner part of each biset in F includes t. (ii) follows from
the fact that the functions |Γ(·)| and |δE∪F | satisfy the submodular inequality (the
reverse of (2.1)), and the biset family {Ŝ ∈ V : u ∈ S, t ∈ V \ S+} is closed under
union and intersection. This implies that F has a unique minimal member Ŝ, and
that for every v ∈ S the graph G \ {ut} ∪ {vt} is k-connected. Thus |δF (v)| ≥ d − 1
for every v ∈ S, implying that |δE∪F (v)| ≥ p+ d− 1.

Let K = Γ(Ŝ), so |K| = k − 1. Let I be the set of edges in F with at least
one end-node in S. Every edge in I \ {e} has both of its end-nodes in S ∪K because
δE∪F (Ŝ) = {e}. In G, every v ∈ S\{u} has at least p+d−1 neighbors in (S\{v})∪K,
implying (|S| − 1) + (k − 1) ≥ p + d − 1, so p + d − k + 1 ≤ |S|. Since I is a forest
on a set S ∪K ∪ {t} of |S|+ k nodes, |I| ≤ |S|+ k − 1. Let ζI(S) be the set of edges
in I with both end-nodes in S, so I is a disjoint union of δI(S) and ζI(S). Hence
|δI(S)|+ |ζI(S)| = |I| ≤ |S|+ k − 1. On the other hand, (d− 1)|S| ≤

∑
v∈S |δI(v)| =

|δI(S)|+ 2|ζI(S)|. Summarizing, we have the following:

p+ d− k + 1 ≤ |S|, (7.1)

|δI(S)|+ |ζI(S)| ≤ |S|+ k − 1, (7.2)

|δI(S)|+ 2|ζI(S)| ≥ (d− 1)|S|. (7.3)

Subtracting (7.2) from (7.3) gives |ζI(S)| ≥ (d − 2)|S| − k + 1 and thus |δI(S)| ≤
2k − 2 − (d − 3)|S|. Since |δI(S)| ≥ 0 we get (d − 3)|S| ≤ 2k − 2. Combining with
(7.1) we get

p+ d− k + 1 ≤ |S| ≤ 2k − 2

d− 3
.

Multiplying by d− 3 and rearranging terms we obtain d(d+ p− k − 2) ≤ 3p− k + 1,
as claimed.

Corollary 7.3. Let G = (V,E ∪ F ) be a simple k-connected undirected graph
such that |δE(v)| ≥ k−1 for all v ∈ V . Then there exists a polynomial time algorithm
that finds a set F ′ of edges on V with |F ′| ≤ |F | such that G′ = (V,E ∪ F ′) is

k-connected and such that |δF ′(v)| ≤ max
{

3, 32 +
√

2k + 1
4

}
for all v ∈ V .

Proof. Let u ∈ V be a node that maximizes |δF (u)|. Lemma 7.2 with p = k − 1
implies that if |δF (u)| is larger than the required value, then we can replace an edge
ut ∈ δF (u) by another edge vt such that |δF (v)| is at most |δF (u)| − 2, keeping the
graph being k-connected. By repeating this replacement, we can obtain a required
edge set F ′.
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The undirected part of Theorem 1.4 follows from Lemma 7.1, Corollary 7.3, and
our ability to find in polynomial time an edge set F with |F | ≤ k − 1 at Step 2 of
Algorithm Degree Bounded k-Connectivity.

7.2. Digraphs. We start by proving the directed counterpart of Lemma 7.2.
Lemma 7.4. Let G = (V,E ∪ F ) be a simple k-connected digraph such that

|δ+E(v)| ≥ p for all v ∈ V , and G \ {e′} is not k-connected for each e′ ∈ F . Let
d = max

v∈V
|δ+F (v)| ≥ 4, let u ∈ V with |δ+F (u)| = d and let e = ut ∈ δ+F (u). Suppose

that for every v ∈ V with |δ+F (v)| ≤ d− 2 the graph G \ {e} ∪ {vt} is not k-connected.
Then d(d+ p− k − 2) ≤ 3p− k + 2.

Proof. Consider the graph G \ {e} and the biset family

F = {Ŝ ∈ V : u ∈ S, t ∈ V \ S+, |Γ(Ŝ)| = k − 1, δ+E∪F (Ŝ) = {e}} .

As in Lemma 7.2, it can be shown that F is a ring biset family, so F has a unique
minimal member Ŝ, and that for every v ∈ S the graph G\{ut}∪{vt} is k-connected.
Thus |δ+F (v)| ≥ d − 1 for every v ∈ S, implying that |δ+E∪F (v)| ≥ p + d − 1 for every
v ∈ S.

Let K = Γ(Ŝ), so |K| = k− 1. Let I be the set of arcs in F with tail in S. Every
edge in I \ {e} has its head in S ∪K. In G, every v ∈ S \ {u} has at least p+ d− 1
neighbors in (S\{v})∪K, implying (|S|−1)+(k−1) ≥ p+d−1, so d−k+p+1 ≤ |S|.
Since F has no alternating cycle, I is an arc set without alternating cycle on a set
S ∪ K ∪ {t} of |S| + k nodes. This implies that |I| ≤ 2(|S| + k) − 1. On the other
hand, (d− 1)|S| ≤

∑
v∈S |δ

+
I (v)| = |I|. Summarizing, we have the following:

d− k + p+ 1 ≤ |S|, (7.4)

|I| ≤ 2(|S|+ k)− 1, (7.5)

|I| ≥ (d− 1)|S|. (7.6)

From (7.5) and (7.6) we get (d−1)|S| ≤ 2(|S|+k)−1 so |S|(d−3) ≤ 2k−1. Combining
with (7.4) we get

d− k + p+ 1 ≤ |S| ≤ 2k − 1

d− 3
.

Multiplying by d− 3 and rearranging terms we obtain d(d+ p− k − 2) ≤ 3p− k + 2,
as claimed.

Corollary 7.5. Let G = (V,E ∪ F ) be a simple k-connected digraph such
that minv∈V |δ−E (v)| ≥ k − 1 and minv∈V |δ+E(v)| ≥ k − 1. Then there exists a poly-
nomial time algorithm that finds a set F ′ of arcs on V with |F ′| ≤ |F | such that
G′ = (V,E ∪ F ′) is k-connected and such that |δ+F ′(v)| and |δ−F ′(v)| are both at most
max

{
3, 1.5 +

√
2k + 1.25

}
for all v ∈ V .

Proof. Let u ∈ V be a node that maximizes |δ+F (u)|. Lemma 7.4 with p = k − 1
implies that if |δ+F (u)| is larger than the required value, then we can replace an edge
ut ∈ δ+F (u) by another edge vt such that |δ+F (v)| is at most |δ+F (u)| − 2, keeping
the graph being k-connected. By repeating this replacement, we can obtain F ′′ that
satisfies the conditions on connectivity and out-degree. Notice that |δ−F ′′(v)| = |δ−F (v)|
for all v ∈ V . Similarly we can decrease the in-degree of a node in V if it is larger
than the required value, by applying Lemma 7.4 to the graph obtained by reversing
the directions of all arcs. This gives the required edge set F ′.

The directed part of Theorem 1.4 follows from Lemma 7.1, Corollary 7.5, and
our ability to find in polynomial time an edge set F with |F | ≤ 2k − 1 at Step 2 of
Algorithm Degree Bounded k-Connectivity.
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8. Proof of Theorem 1.5. First, we overview the algorithm of Cheriyan and
Végh [7], and show that it can be extended to the degree-bounded setting. Then, we
improve the bound on the number of nodes.

8.1. Extension to the degree-bounded setting. Define a biset function
fk : V → Z as

fk(Ŝ) =

{
k − |Γ(Ŝ)| if S 6= ∅ and S+ 6= V

0 otherwise.

By the node-connectivity version of Menger’s Theorem, an undirected graph (V, F ) is
k-connected if and only if |δF (Ŝ)| ≥ fk(Ŝ) for each Ŝ ∈ V. Now suppose that our goal
is to augment a given graph (V, J) by a minimum-cost edge set F such that (V, J ∪F )
is k-connected. A natural LP relaxation for this problem is as follows (see [13]).

τ∗ = min

{∑
e∈E

c(e)x(e) : x(δE(Ŝ)) ≥ fkJ (Ŝ) for ∀Ŝ ∈ V, 0 ≤ x(e) ≤ 1 for ∀e ∈ E

}
(8.1)

where fkJ (Ŝ) = fk(Ŝ) − |δJ(Ŝ)| is the residual biset function of fk. We will denote

SJ = {Ŝ : fkJ (Ŝ) > 0}. Recall also that we denote γ = maxf(Ŝ)>0 |Γ(Ŝ)|, and note

that γ ≤ k − 1 for f = fkJ . In what follows, we assume that k ≥ 2.

Two bisets X̂ and Ŷ cross if X ∩ Y 6= ∅ and X+ ∪ Y + 6= V , and nega-cross if
X \ Y + 6= ∅ and Y \ X+ 6= ∅. A biset function f is crossing supermodular if any
X̂, Ŷ ∈ V that cross satisfy the supermodular inequality (2.1). f is symmetric if
f(S, S+) = f(V \ S+, V \ S) for any biset Ŝ = (S, S+) ∈ V. It is known that the
function fkJ is crossing supermodular and symmetric for any edge set J .

A biset family F is independence-free if any X̂, Ŷ ∈ F cross or nega-cross. We
say that a biset function f is independence-free if the family {Ŝ ∈ V : f(Ŝ) > 0} is
independence-free, and that an edge set J is independence-free if the biset function
fkJ is independence-free (namely, if the family SJ is independence-free). The idea
of Cheriyan and Végh is to find a “cheap” independence-free edge set J . They also
showed that if J is independence-free, the iterative rounding algorithm of [12] for skew
supermodular biset functions computes an edge set F ⊆ E with c(F ) ≤ 2τ∗ such that
(V, J ∪ F ) is k-connected.

The step for finding such J is based on the following statement.
Lemma 8.1 ([7]). Let J ′ be an undirected graph on a node set V ∪ {s} such

that J ′ is k-outconnected from s. Let R be the set of neighbors of s in J ′, and let
J = J ′ \ {s}. Let U =

⋃
{S : Ŝ ∈ SJ , |S| ≤ k − 1}. Then |U | ≤ |R|k2(k − 1).

Furthermore, if |V | ≥ |U | + k, then there exists a polynomial time algorithm that
given an edge set E on V with costs returns one of the following:

(i) An edge set F ⊆ E with c(F ) ≤ 2τ∗ such that J ∪ F is k-connected.
(ii) The set U .
The algorithm constructs an edge set that corresponds to J ′ in Lemma 8.1 by

applying Procedure External k-Out-connectivity from the beginning of Sec-
tion 7. Frank and Tardos [16] gave a polynomial-time algorithm for computing a
subgraph that is spanning k-outconnected from a root node in a directed graph. This
implies a 2-approximation algorithm for the same problem in undirected graphs [25];
then it computes a subgraph of cost at most 2τ∗. Procedure External k-Out-
connectivity uses this 2-approximation algorithm in its Step 2.
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The algorithm of Cheriyan and Végh has four steps. At every step, a certain edge
set of cost at most 2τ∗ is computed. If the algorithm terminates at Step 2, then it
returns the union of the edge-sets computed at Steps 1 and 2, of overall cost at most
4τ∗. Else, the algorithm returns the union of the edge-sets computed at Steps 1, 3,
and 4, of overall cost at most 6τ∗.

Algorithm of Cheriyan and Végh
Step 1: Compute a subgraph JCV of G by applying Procedure External k-

Out-connectivity for some R ⊆ V with |R| = k.
Step 2: Apply the algorithm from Lemma 8.1. If the algorithm returns an edge

set F as in Lemma 8.1(i) then return JCV ∪ F and STOP.
Step 3: If the algorithm from Lemma 8.1 returns UCV , then apply Procedure

External k-Out-connectivity for some R ⊆ V \ UCV with |R| =
k, and add the computed edge set to JCV . (Then, the graph JCV is
independence-free.)

Step 4: Apply the iterative rounding algorithm of [12] to compute an edge set
F ⊆ E such that JCV ∪ F is k-connected.

Step 3 of this algorithm needs a condition |V | ≥ |UCV |+ k to find R. Lemma 8.1
shows that |UCV | ≤ k3(k− 1), and hence n ≥ k3(k− 1) + k suffices for guarantee the
condition.

The algorithm can be extended to the degree bounded setting as follows. At Steps
1 and 3, we apply Procedure External k-Out-connectivity with degree bounds
b′(v) = b(v)+1 if v ∈ R and b′(v) = b(v) otherwise, using our algorithm for undirected
Degree-Bounded k-Out-connected Subgraph. At Steps 2 and 4, we use our algorithm for
Degree-Bounded f -Connected Subgraph with skew supermodular f . If |V | ≥ |U | + k,
then following [7], we can design a polynomial time algorithm that returns either the
set U , or an edge set F ⊆ E such that J ∪F is k-connected, within the same ratio as
our algorithm for Degree-Bounded f -Connected Subgraph with skew supermodular f
(with γ = k − 1). These give (12, 8b(v) +O(k))-approximation algorithm for Degree-
Bounded Undirected k-Connected Subgraph.

8.2. Improving the bound on the number of nodes. In the rest, we improve
the bound on n as described in Theorem 1.5. For the degree-bounded setting, we
simply improve the statement |U | ≤ |R|k2(k − 1) (= k3(k − 1)) in Lemma 8.1 to
|U | ≤ 2k(k − 1)(k − 0.5). Since the last claim in Lemma 8.1 requires |V | ≥ |U | + k,
this improvement proves our claim.

For the setting without degree bounds, we slightly modify the algorithm of Cheriyan
and Végh. Auletta et al. [2] gave a procedure for computing a spanning subgraph J ′

of an undirected graph G such that J ′ is k-outconnected from some node r in G,
|δJ′(r)| = k, and c(J ′) ≤ 2τ∗ (this procedure does not apply in the degree bounded
setting, if we care about the cost). We apply this procedure at Step 1, instead of
the External k-Out-connectivity procedure to obtain a subgraph J ′ (instead of
JCV ). Define U ′ as

⋃
{S : Ŝ ∈ SJ′ , |S| ≤ k − 1}. We apply Steps 2, 3, and 4 with J ′

and U ′ instead of JCV and UCV . We will prove that |U ′|+ k ≤ k(k − 1)(k − 1.5) + k
holds, and hence we can weaken the assumption on |V | to |V | ≥ k(k−1)(k−1.5) +k.

Now we describe the main result in this subsection.

Lemma 8.2. Let J ′ be an undirected graph such that J ′ is k-outconnected from
some node s with |δJ′(s)| = k and let J = J ′ \ {s}. Let U ′ =

⋃
{S : Ŝ ∈ SJ′ , |S| ≤ p}

and U =
⋃
{S : Ŝ ∈ SJ , |S| ≤ p}. Then |U ′| ≤ pk(k − 1.5) and |U | ≤ 2pk(k − 0.5). In
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particular, for p = k − 1,

|U ′|+ k ≤ k(k − 1)(k − 1.5) + k and |U |+ k ≤ 2k(k − 1)(k − 0.5) + k .

Let us say that a biset family F is weakly nega-uncrossable if for any X̂, Ŷ ∈ F
with X \Y +, Y \X+ 6= ∅, one of the bisets X̂ \ Ŷ , Ŷ \X̂ is in F . We have the following
lemma on weakly nega-uncrossable families.

Lemma 8.3. If f is crossing supermodular and symmetric, then the biset family
F = {Ŝ : f(Ŝ) > 0} is weakly nega-uncrossable.

Proof. Suppose that X̂, Ŷ ∈ F satisfy X \ Y + 6= ∅ and Y \X+ 6= ∅. Let X̂ ′ be
(V \X+, V \X). Then, f(X̂ ′)+f(Ŷ ) = f(X̂)+f(Ŷ ) > 0 holds because f is symmetric.
Since X̂ ′ and Ŷ are crossing, we have f(X̂ ′) + f(Ŷ ) ≤ f(X̂ ′ ∩ Ŷ ) + f(X̂ ′ ∪ Ŷ ) by
the crossing supermodularity of f . Note that X̂ ′ ∩ Ŷ = Ŷ \ X̂ and X̂ ′ ∪ Ŷ = X̂ \ Ŷ .
Thus combining these gives f(X̂ \ Ŷ ) + f(Ŷ \ X̂) > 0, and hence f(X̂ \ Ŷ ) > 0 or
f(Ŷ \ X̂) > 0 holds.

Two bisets X̂ and Ŷ are strongly disjoint if X̂ \ Ŷ = X̂ or Ŷ \ X̂ = Ŷ (note
that this is equivalent to X̂ \ Ŷ = X̂ and Ŷ \ X̂ = Ŷ ; in particular, X ⊆ V \ Y +

and Y ⊆ V \ X+). Given a biset family F , let νF denote the maximum number of
pairwise strongly disjoint bisets in F .

Lemma 8.4. Let F be a weakly nega-uncrossable biset family. Denote p =
maxŜ∈F |S| and γ = maxŜ∈F |Γ(Ŝ)|. Then

∣∣⋃
Ŝ∈F S

∣∣ ≤ p(2γ + 1)νF .

Proof. Let F ′ = {Ŝ1, Ŝ2, . . . , Ŝ`} be a minimum size sub-family of F such that⋃`
i=1 Si =

⋃
Ŝ∈F S. We prove that |F ′| ≤ (2γ + 1)νF . For every Ŝi ∈ F ′, there is

vi ∈ Si such that vi /∈ Sj for every j 6= i. Among all bisets in F that are contained in

Ŝi and that includes vi in its inner-part, let Ĉi be a minimal one. Since F is weakly
nega-uncrossable, the minimality of Ĉi implies that one of the following must hold for
any distinct Ĉi and Ĉj :

• vi ∈ Γ(Ĉj) or vj ∈ Γ(Ĉi);

• Ĉi = Ĉi \ Ĉj or Ĉj = Ĉj \ Ĉi, namely, Ĉi, Ĉj are strongly disjoint.

Construct an auxiliary directed graph J on node set C = {Ĉ1, Ĉ2, . . . , Ĉ`}. Add an
arc ĈiĈj if vi ∈ Γ(Ĉj). The in-degree in J of a node Ĉi is at most |Γ(Ĉi)| ≤ γ. This
implies that every subgraph of the underlying graph of J has a node of degree ≤ 2γ.
A graph is d-degenerate if every subgraph of it has a node of degree ≤ d. It is known
that any d-degenerate graph is (d + 1)-colorable. Hence J is (2γ + 1)-colorable, so
its node set can be partitioned into 2γ + 1 independent sets. The members of each
independent set are pairwise strongly disjoint, hence their number is at most νC .
Consequently, ` ≤ (2γ + 1)νC ≤ (2γ + 1)νF , as claimed.

To prove Lemma 8.2, we need the following lemma, which is also used for proving
Lemma 8.1 in [7].

Lemma 8.5 ([25]). Let J ′ be an undirected graph such that J ′ is k-outconnected
from some node s, let R be the set of neighbors of s in J ′, and let J = J ′ \ {s}. Then
S ∩R 6= ∅ for any Ŝ ∈ SJ .

The following version of Lemma 8.5 is proved in [2]; we provide a proof-sketch for
completeness of exposition.

Lemma 8.6. Let J ′ be an undirected graph such that J ′ is k-outconnected from
some node s and let R be the set of neighbors of s in J ′. Then s ∈ Γ(Ŝ) and |S∩R| ≥ 2
for any Ŝ ∈ SJ′ . Hence νSJ′ ≤ b|R|/2c.

Proof. Let Ŝ ∈ SJ′ . If s /∈ Γ(Ŝ) then s ∈ S or s ∈ V \ S+. Since S 6= ∅ and
S+ 6= V , and since J ′ is k-outconnected from s, we easily obtain a contradiction to
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Menger’s Theorem. We prove that |S ∩ R| ≥ 2. Let v ∈ S, C = δJ′(Ŝ) ∪ Γ(Ŝ), and
` = |δJ′(Ŝ)|+ |Γ(Ŝ)| (≤ k− 1). Consider a set of k internally disjoint paths from s to
v in J ′. At most |S ∩R| of these paths may not contain a member in C. This implies
that each of the other at least k−|S∩R| paths must contain an element from C \{s}.
Hence `− 1 ≥ k − |S ∩R|. This implies |S ∩R| ≥ k − (`− 1) ≥ 2.

Now let us prove Lemma 8.2. Let SpJ = {Ŝ : Ŝ ∈ SJ , |S| ≤ p}. Since SJ′ and
SJ are weakly nega-uncrossable by Lemma 8.3, so are SpJ′ and SpJ . We have |R| ≤ k
because δJ′(s) = k. Thus Lemmas 8.5 and 8.6 imply νSpJ ≤ k and νSp

J′
≤ bk/2c,

respectively. Applying Lemma 8.4 to SpJ , we obtain

|U | ≤ p(2(k − 1) + 1)νSpJ ≤ p(2k − 1)k = 2pk(k − 0.5).

When we apply Lemma 8.4 to SpJ′ , we may assume γ ≤ k − 2. This is because, by

Lemma 8.6, s ∈ Γ(Ŝ) holds for any Ŝ ∈ SJ′ , and hence we can apply Lemma 8.4 after
removing s from the boundary of every biset in SpJ′ . Hence we have

|U ′| ≤ p(2(k − 2) + 1)νSp
J′
≤ p(2k − 3)bk/2c ≤ pk(k − 1.5)

This concludes the proof of Lemma 8.2.
The claim on the degree-bounded setting of Theorem 1.5 is immediate from Sec-

tion 8.1 and Lemma 8.2. As for the setting without degree bounds, we have to verify
that the above modification of the algorithm makes no effect on the claim. More
specifically, we need to show that the algorithm claimed in Lemma 8.1 exists even if
U is replaced by U ′ and J is replaced by J ′. We note that the proof in [7] still holds
even after the replacement. Since it is not our main focus, we leave it to the readers.

9. Conclusion. We have presented iterative rounding algorithms and decompo-
sition results for various Degree-Bounded Survivable Network problems. We introduced
several novel ideas in the field, which may be applicable also to Node-Connectivity Sur-
vivable Network problems without degree bounds. We believe that this is an important
direction for future work.
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[23] T. Király, L.C. Lau, M. Singh. Degree bounded matroids and submodular flows. Combinatorica
32(6):703–720 (2012).

[24] G. Kortsarz and Z. Nutov. Approximating Minimum Cost Connectivity Problems. Ch. 58 In
Handbook on Approximation Algorithms and Metaheuristics. Ed. T. F. Gonzalez, Chap-
man & Hall/CRC.

[25] S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity
problems. J. Algorithms 21:434–450 (1996).

[26] B. Laekhanukit. An improved approximation algorithm for minimum-cost subset k-connectivity.
Algorithmica 72(3):714–733 (2015).

[27] L.C. Lau, J. Naor, M.R. Salavatipour, M. Singh. Survivable network design with degree or
order constraints. SIAM J. Comput. 39(3):1062–1087 (2009).

[28] L.C. Lau, R. Ravi, M. Singh. Iterative Method in Combinatorial Optimization. Cambridge
University Press, 2011.

[29] L.C. Lau and M. Singh. Additive approximation for bounded degree survivable network design.
SIAM J. Comput. 42(6):2217-2242 (2013).

[30] L.C. Lau and H. Zhou. A unified algorithm for degree bounded survivable network design. Proc.
17th International Conference on Integer Programming and Combinatorial Optimization,
2014, Lecture Notes in Computer Science 8494, pp. 369–380.

[31] A. Louis and N.K. Vishnoi. Improved algorithm for degree bounded survivable network design
problem. Proc. 12th Scandinavian Symposium and Workshops on Algorithm Theory, 2010,
Lecture Notes in Computer Science 6139, pp. 408–419.

[32] W. Mader. Ecken vom grad n in minimalen n-fach zusammenhängenden graphen. Archive der
Mathematik 23:219–224 (1972).

[33] W. Mader. Minimal n-fach in minimalen n-fach zusammenhängenden digraphen. J. Comb.
Theory B 38(2):102–117 (1985).

28



[34] V. Nagarajan, R. Ravi, M. Singh. Simpler analysis of LP extreme points for traveling salesman
and survivable network design problems. Oper. Res. Lett. 38(3):156–160 (2010).

[35] Z. Nutov. Approximating minimum-cost edge-covers of crossing biset-families. Combinatorica
34(1):95–114 (2014).

[36] Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies. ACM
Transactions on Algorithms 9(1):1 (2012).

[37] Z. Nutov. Approximating subset k-connectivity problems. J. Discrete Algorithms 17:51–59
(2012).

[38] Z. Nutov. Degree-constrained node-connectivity problems. Algorithmica 70(2):340–364 (2014).
[39] M. Singh and L.C. Lau. Approximating minimum bounded degree spanning trees to within one

of optimal. J. ACM 62(1):1 (2015).
[40] D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms, Cambridge Uni-

versity Press, 2011.

29


