
ar
X

iv
:1

31
1.

42
19

v3
 [

cs
.C

C
]

 2
5

N
ov

 2
01

4

The power of linear programming for general-valued CSPs∗

Vladimir Kolmogorov

Institute of Science and Technology, Austria

vnk@ist.ac.at

Johan Thapper

Université Paris-Est, Marne-la-Vallée, France

thapper@u-pem.fr

Stanislav Živný

University of Oxford, UK

standa.zivny@cs.ox.ac.uk

July 2, 2018

Abstract

Let D, called the domain, be a fixed finite set and let Γ, called the valued constraint language,
be a fixed set of functions of the form f : Dm → Q ∪ {∞}, where different functions might
have different arity m. We study the valued constraint satisfaction problem parametrised by Γ,
denoted by VCSP(Γ). These are minimisation problems given by n variables and the objective
function given by a sum of functions from Γ, each depending on a subset of the n variables. For
example, if D = {0, 1} and Γ contains all ternary {0,∞}-valued functions, VCSP(Γ) corresponds
to 3-SAT. More generally, if Γ contains only {0,∞}-valued functions, VCSP(Γ) corresponds to
CSP(Γ). If D = {0, 1} and Γ contains all ternary {0, 1}-valued functions, VCSP(Γ) corresponds
to Min-3-SAT, in which the goal is to minimise the number of unsatisfied clauses in a 3-CNF
instance. Finite-valued constraint languages contain functions that take on only rational values
and not infinite values.

Our main result is a precise algebraic characterisation of valued constraint languages whose
instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued
constraint language Γ, BLP is a decision procedure for Γ if and only if Γ admits a symmetric
fractional polymorphism of every arity. For a finite-valued constraint language Γ, BLP is a
decision procedure if and only if Γ admits a symmetric fractional polymorphism of some arity,
or equivalently, if Γ admits a symmetric fractional polymorphism of arity 2.

Using these results, we obtain tractability of several novel classes of problems, including
problems over valued constraint languages that are: (1) submodular on arbitrary lattices ; (2)
k-submodular on arbitrary finite domains ; (3) weakly (and hence strongly) tree-submodular on
arbitrary trees.

Keywords: valued constraint satisfaction, fractional polymorphisms, submodularity, bisubmodu-
larity, linear programming

∗Part of this work (by J. Thapper and S. Živný) appeared in the Proceedings of the 53rd Annual IEEE Symposium

on Foundations of Computer Science (FOCS), pp. 669–678, 2012 [69]. Part of this work (by V. Kolmogorov) appeared
in the Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP), pp.
625–636, 2013 [49]. Vladimir Kolmogorov is supported by the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 616160. Stanislav Živný is supported by
a Royal Society University Research Fellowship.

1

http://arxiv.org/abs/1311.4219v3

1 Introduction

1.1 Constraint Satisfaction

The constraint satisfaction problem provides a common framework for many theoretical and prac-
tical problems in computer science [31]. An instance of the constraint satisfaction problem (CSP)
consists of a collection of variables that must be assigned labels from a given domain subject to
specified constraints [60]. The CSP is equivalent to the problem of evaluating conjunctive queries
on databases [47], and to the homomorphism problem for relational structures [25].

The classic 3-COLOUR problem can be seen as the following CSP: the domain consists of three
labels corresponding to the three colours; the variables correspond to the vertices of the graph; and
the constraints specify that the variables corresponding to adjacent vertices have to be assigned
different labels.

The CSP is NP-complete in general and thus we are interested in restrictions which give rise
to tractable classes of problems. One possibility is to restrict the structure of the instances [30,58].
Following Feder and Vardi [25], we restrict the constraint language; that is, all constraint relations
in a given instance must belong to a fixed, finite set of relations on the domain. The most successful
approach to classifying the language-restricted CSP is the so-called algebraic approach [6, 39, 40],
which has led to several complexity classifications [1,4,5,7] and algorithmic characterisations [3,35]
going beyond the seminal work of Schaefer [63].

1.2 Valued Constraint Satisfaction

The CSP deals with only feasibility issues: Is there a solution satisfying certain constraints? In
this work we are interested in problems that capture both feasibility and optimisation issues: What
is the best solution satisfying certain constraints? Problems of this form can be cast as valued
constraint satisfaction problems [38,76].

An instance of the valued constraint satisfaction problem (VCSP) is given by a collection of
variables that must be assigned labels from a given domain with the goal to minimise the objective
function that is given by the sum of cost functions, each depending on some subset of the vari-
ables [12]. The cost functions can take on finite rational values and positive infinity. The VCSP
framework is very robust and has also been studied under different names such as Min-Sum prob-
lems, Gibbs energy minimisation, Markov Random Fields, Conditional Random Fields and others
in different contexts in computer science [17,56,74].

The CSP corresponds to the special case of the VCSP when the codomain of all cost functions is
{0,∞}. Given a CSP instance, the Max-CSP consists in determining the maximum possible number
of satisfied constraints, or equivalently with respect to exact solvability, the minimum number of
unsatisfied constraints. The Max-CSP corresponds to the case of the VCSP when the codomain of
all cost functions is {0, 1}.

The VCSP is NP-hard in general and thus we are interested in the restrictions which give rise
to tractable classes of problems. As for the CSP, one can restrict the structure of the instances [28].
We will be interested in restricting the valued constraint language; that is, all cost functions in a
given instance must belong to a fixed set of cost functions on the domain. The ultimate goal is
to understand the computational complexity of all valued constraint languages, that is, determine
which languages give rise to classes of problems solvable in polynomial time and which languages
give rise to classes of problems that are NP-hard. Languages of the former type are called tractable,
and languages of the latter type are called intractable.

Given the generality of the VCSP, it is not surprising that only few valued constraint lan-
guages have been completely classified as tractable or intractable. In particular, only Boolean (on

2

a 2-element domain) languages [12, 18] and conservative (containing all {0, 1}-valued unary cost
functions) languages [50] have been completely classified with respect to exact solvability.

Extending the notion of (generalised) arc consistency for the CSP [26,57] and several previously
studied notions of arc consistencies for the VCSP [16], Cooper et al. introduced optimal soft arc
consistency (OSAC) [14,15], which is a linear programming relaxation of a given VCSP instance. In
fact, the VCSP problem has a natural linear programming (LP) relaxation, proposed independently
by a number of authors [8, 46, 52, 55, 67, 73, 75]. This relaxation is referred to as the basic LP
relaxation (BLP) of VCSP as it is the first level in the Sheralli-Adams hierarchy [66], which provides
successively tighter LP relaxation of an integer LP. The BLP relaxation of a VCSP instance is known
to be equivalent to the dual (Lagrangian) decomposition of the instance in which the subproblems
are chosen as the individual constraints [41, 51, 68]. It is known that OSAC is at least as tight as
BLP.1

Apart from exact solvability of the CSP and its optimisation variants, the approximability of
the Max-CSP has attracted a lot of attention [19,42,44]. Under the assumption of the unique games
conjecture [45], Raghavendra has shown that the optimal approximation ratio for the finite-valued
CSP is achieved by the basic semidefinite programming relaxation [61,62]. Recently, the classes of
the Max-CSP that are robustly approximable have been characterised [2, 21,55]. Specifically, Kun
et al. have studied the question of which classes of the Max-CSP can be robustly approximated
using BLP [55]. Moreover, the power of BLP with respect to constant-factor approximation of
finite-valued CSPs has been recently studied [20,24].

More details on the complexity of the CSP can be found in [31] and more details on the
complexity of the VCSP can be found in the recent survey [38].

1.3 Contributions

We study the power of the basic linear programming relaxation (BLP). Our main result is a precise
characterisation of valued constraint languages for which BLP is a decision procedure. In other
words, we characterise valued constraint languages over which VCSP instances can be solved exactly
by the BLP, i.e., when the BLP has integrality gap 1.

The characterisation is algebraic in terms of fractional polymorphisms [10]. For a valued con-
straint language Γ with codomain the set of rationals with infinity, BLP is a decision procedure
for Γ if and only if Γ admits a symmetric fractional polymorphism of every arity. For a valued
constraint language Γ with codomain the set of rationals (so-called finite-valued languages), BLP is
a decision procedure if and only if any of the following equivalent statements is satisfied: Γ admits a
symmetric fractional polymorphism of every arity; Γ admits a symmetric fractional polymorphism
of some arity; Γ admits a symmetric fractional polymorphism of arity 2 ; Γ admits a fractional
polymorphism ω such that the support of ω generates a symmetric operation (possibly of different
arity than the arity of ω).

Our work links solving VCSP instances exactly using linear programming and the algebraic
machinery for the language-restricted VCSP introduced by Cohen et al. in [9, 13]. Part of the
proof is inspired by the characterisation of the width-1 CSP [22, 25]. The two main technical
contributions are the construction of a symmetric fractional polymorphism of a general-valued
language (Theorem 2) and the construction of symmetric fractional polymorphisms of all arities of
a finite-valued language (Theorem 4). In order to prove these two results, we present two techniques:

1The difference between BLP and OSAC is that (the dual of) OSAC has only one variable for all constraints with
the same scope (seen as a set) of variables. In BLP, different constraints yield different BLP variables even if the
scopes (seen as sets) are the same.

3

a “tree cutting” argument, used in Section 6 to prove Theorem 2, and an argument based on a
“graph of generalised operations”, used in Section 8 to prove Theorem 4.

Our results allow us to demonstrate that several valued constraint languages are tractable; that
is, VCSP instances over these languages can be solved exactly using BLP. Languages not previously
known to be tractable include: (1) submodular languages on arbitrary lattices; (2) k-submodular
languages on arbitrary finite domains (k = 2 corresponds to bisubmodularity); (3) weakly (and
hence strongly) tree-submodular languages on arbitrary trees. The complexity of (subclasses of)
these languages has been mentioned explicitly as open problems in [23,33,48,53].

1.4 Follow-up work

Since the announcement of our results [69], they have already been used to settle the complexity of
the minimum 0-extension problem [32], the complexity of the 3-element finite-valued VCSP [34], and
the complexity of the 3-element Min-Sol problems and conservative Min-Cost-Hom problems [71].
Moreover, the last two authors have recently shown that for finite-valued constraint languages,
the condition of admitting a symmetric fractional polymorphism of arity 2 is also necessary for
tractability [70].

1.5 Combinatorial Optimisation

Throughout the paper we assume that the objective function in our problem is represented as a sum
of functions each defined on some subset of the variables. There is a rich tradition in combinatorial
optimisation of studying problems in which the objective function to be optimised is represented
by a value-giving oracle. In this model, a problem is tractable if it can be solved in polynomial
time using only polynomially many queries to the oracle (where the polynomial is in the number
of variables). Any query to the oracle can be easily simulated in linear time in the VCSP model.
Consequently, a tractability result (for a class of functions) in the value oracle model automatically
carries over to the VCSP model, while hardness results automatically carries over in the opposite
direction.

One class of functions that has received particular attention in the value oracle model is the
class of submodular functions. There are several known algorithms for minimising a (finite-valued)
submodular function using only a polynomial number of calls to a value-giving oracle, see, for
instance, Iwata’s survey [36]. Most previously discovered tractable valued constraint languages are
somewhat related to submodular functions on distributive lattices [11, 12, 43, 50]. However, some
VCSP instance with submodular functions can be solved much more efficiently than by using these
general approaches [77].

Whilst submodular functions given by an oracle can be minimised in pseudopolynomial time on
diamonds [54], in polynomial time on distributive lattices [37,65] and the pentagon [53], and several
constructions on lattices preserving tractability have been identified [53], it is an interesting open
open question as to what happens on non-distributive lattices. Similarly, k-submodular functions
given by an oracle can be minimised in polynomial-time on domains of size three [27], but the
complexity is unknown on domains of larger size [33]. It is known that strongly tree-submodular
functions given by an oracle can be minimised in polynomial time on binary trees [48], but the
complexity is open on general (non-binary) trees. Similarly, it is known that weakly tree-submodular
functions given by an oracle can be minimised in polynomial time on chains and forks [48], but the
complexity on (even binary) trees is open.

4

2 Background

In this section we describe the necessary background for the rest of the paper. We start with some
basic notation. We denote Q≥0 = {x ∈ Q | x ≥ 0}, Q = Q ∪ {∞} and Q≥0 = Q≥0 ∪ {∞}. We
define sets of real numbers R≥0, R and R≥0 in a similar way. Throughout the paper we assume that
0 · ∞ = 0 and x · ∞ = ∞ for x > 0 (we will never use such multiplication in the case when x < 0).
Note that value ∞ is understood as positive infinity (and accordingly x < ∞ for any x ∈ R).

2.1 Valued CSP

Throughout the paper, let D be a fixed finite domain. We will call the elements of D labels (for
variables). A function f : Dm → Q is called an m-ary cost function and we say that f takes values.
The argument of f is called a labelling. For a cost function f , we denote dom f = {x ∈ Dn | f(x) <
∞}.

A language Γ is a set of cost functions of possibly different arities. A language Γ is called
finite-valued if the codomain of every f ∈ Γ is Q. If Γ is not finite-valued we may emphasise this
fact by calling Γ general-valued.

Definition 1. An instance I of the valued constraint satisfaction problem (VCSP) is a function
DV → Q given by

fI(x) =
∑

t∈T

ft(xv(t,1), . . . , xv(t,nt)).

It is specified by a finite set of variables V , finite set of terms T , cost functions ft : D
nt → Q of

arity nt and indices v(t, k) ∈ V for t ∈ T, k = 1, . . . , nt. The indices of term t ∈ T give the scope of
the cost function ft. A solution to I is a labelling (also an assignment) x ∈ DV with the minimum
total value. The instance I is called a Γ-instance if all terms ft belong to Γ.

The class of optimisation problems consisting of all Γ-instances is referred to as VCSP(Γ). A
language Γ is called tractable if VCSP(Γ′) can be solved in polynomial time for each finite Γ′ ⊆ Γ.
It is called NP-hard if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ.

2.2 The basic LP relaxation

LetMn be the set of probability distributions over labellings inDn, i.e.Mn = {µ ≥ 0|
∑

x∈Dn µ(x) =
1}. We also denote ∆ = M1; thus, ∆ is the standard (|D| − 1)-dimensional simplex. The corners
of ∆ can be identified with elements in D. For a distribution µ ∈ Mn and a variable v ∈ {1, . . . , n}
let µ[v] ∈ ∆ be the marginal probability of distribution µ for v:

µ[v](a) =
∑

x∈Dn:xv=a

µ(x) ∀a ∈ D.

Given an instance I, we define the value BLP(I) as follows:

BLP(I) = min
∑

t∈T

∑

x∈dom ft

µt(x)ft(x) (1)

s.t. (µt)[k] = αv(t,k) ∀t ∈ T, k ∈ {1, . . . , nt}

µt ∈ Mnt ∀t ∈ T

µt(x) = 0 ∀t ∈ T, x /∈ dom ft

αv ∈ ∆ ∀v ∈ V

5

If there are no feasible solutions then BLP(I) = ∞. All constraints in this system are linear,
therefore this is a linear program. We call it the basic LP relaxation of I (BLP). We say that BLP
solves I if BLP(I) = minx∈Dn fI(x). We say that BLP solves a language Γ if it solves all instances
I ∈ VCSP(Γ).

2.3 Fractional polymorphisms

We denote by O(m) the set of m-ary operations g : Dm → D. An operation g : D2 → D of arity

2 is called binary. An m-ary projection on the ith coordinate is the operation e
(m)
i : Dm → D

defined by e
(m)
i (x1, . . . , xm) = xi. Let Sm be the symmetric group on {1, . . . ,m}. An operation

g ∈ O(m) is called symmetric if it is invariant with respect to any permutation of its arguments:
g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)) for any permutation π ∈ Sm and any (x1, . . . , xm) ∈ Dm. The

set of symmetric operations in O(m) will be denoted by O
(m)
sym .

A fractional operation of arity m is a vector ω : O(m) → R≥0 satisfying ‖ω‖1 = 1, where ‖ω‖1 =
∑

g∈O(m) ω(g). We let supp(ω) denote the support of ω, defined by supp(ω) = {g ∈ O(m) |ω(g) > 0}.

It will often be convenient to write a fractional operation ω : O(m) → R≥0 as a sum ω =
∑

g∈O(m) ω(g) ·χg, where χg : O
(m) → R≥0 denotes the vector that assigns weight 1 to the operation

g and 0 to all other operations.
A fractional operation ω is called symmetric if all operations in supp(ω) are symmetric.
The superposition, h[g1, . . . , gn], of an n-ary operation h with n m-ary operations g1, . . . , gn is

the m-ary operation defined by

h[g1, . . . , gn](x1, . . . , xm) = h(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

This can also be seen as a composition h ◦ (g1, . . . , gn) : D
m → D of the operation h : Dn → D and

the mapping (g1, . . . , gn) : D
m → Dn.

The superposition, ω[g1, . . . , gn], of an n-ary fractional operation ω with n m-ary operations
g1, . . . , gn is the m-ary fractional operation defined as follows:

ω[g1, . . . , gn](h) =
∑

{h′ | h=h′[g1,...,gn]}

ω(h′).

The following example illustrates these definitions.

Example 1. Let D = {0, 1, . . . , d} and let min,max : D2 → D be the two binary operations on D
that return the smaller (larger) of its two arguments respectively with respect to the natural order
of integers.

The ternary operation min(3) returning the smallest of its three arguments can be obtained by

the following superposition: min(3)(x, y, z) = min[e
(3)
1 ,min[e

(3)
2 , e

(3)
3]].

Let ω be the fractional operation that assigns weight 1
2 to min and weight 1

2 to max. Clearly,
supp(ω) = {min,max}. Since both min and max are symmetric operations, we have that ω is a
symmetric fractional operation.

Let min
(4)
12 and min

(4)
34 be the two 4-ary operations that return the smaller of its first (last) two

arguments respectively. Then the superposition of ω with min
(4)
12 and min

(4)
34 is the 4-ary fractional

operation ω′ = ω[min
(4)
12 ,min

(4)
34] that assigns weight 1

2 to the operation min(4), which returns the

smallest of its four arguments, and weight 1
2 to the operation max[min

(4)
12 ,min

(4)
34].

6

Definition 2. For an n-ary cost function f : Dn → Q and x1, . . . , xm ∈ Dn for some m ≥ 1, we
define the average value of f applied to the labellings x1, . . . , xm by

fm(x1, . . . , xm) =
1

m
(f(x1) + . . .+ f(xm)).

Definition 3. A fractional operation ω : O(m) → R≥0 is called a fractional polymorphism of the
language Γ, and we say that Γ admits ω, if for every cost function f ∈ Γ,

∑

g∈O(m)

ω(g)f(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ dom f. (2)

We note that (2) implies that if g ∈ supp(ω) and x1, . . . , xm ∈ dom f then g(x1, . . . , xm) ∈ dom f .
Definition 3 is illustrated in Figure 1, which should be read from left to right. Let f be an

n-ary cost function and ω : O(m) → R≥0 an m-ary fractional operation. Moreover, let k = |O(m)|.
Starting with m n-tuples x1, . . . , xm ∈ dom f , which we view as row vectors in Figure 1, we first
apply all m-ary operations g1, . . . , gk to these tuples componentwise, thus obtaining the m-tuples
y1, . . . , yk. Inequality 2 amounts to comparing the average of the values of f applied to the tuples
x1, . . . , xm with the weighted sum of the values of f applied to the tuples y1, . . . , yk, where the
weight of the ith tuple yi (obtained from gi) is the weight assigned to gi by ω.

x1

x2

...
xm

y1 = g1(x
1, . . . , xm)

y2 = g2(x
1, . . . , xm)
...

yk = gk(x
1, . . . , xm)

= (x1
1 x1

2 . . . x1
n)

= (x2
1 x2

2 . . . x2
n)

...
= (xm

1 xm
2 . . . xm

n)

= (y11 y12 . . . y1n)
= (y21 y22 . . . y2n)

...
= (yk1 yk2 . . . ykn)

f
−→

f(x1)
f(x2)

...
f(xm)

1

m

m
∑

i=1

f(xi)

≥

f
−→

f(y1)
f(y2)

...
f(yk)

k
∑

i=1

ω(gi)f(y
i)

Figure 1: Definition of a fractional polymorphism.

Example 2. A simple example of an m-ary fractional operation is the vector ω : O(m) → R≥0

defined by ω(e
(m)
i) = 1/m for all 1 ≤ i ≤ m and ω(h) = 0 for any m-ary operation h that is not a

projection. It follows from Definition 3 that ω is a fractional polymorphism of every cost function
f and in fact (2) holds with equality in this case.

Example 3. Recall from Example 1 the fractional operation ω defined on D that assigns weight 1
2

to min and weight 1
2 to max. In this special case, (2) simplifies to

f(min(x1, x2)) + f(max(x1, x2)) ≤ f(x1) + f(x2) ∀x1, x2 ∈ dom f.

For D = {0, 1}, a cost function f that satisfies (2) with this ω is called submodular [65].

Remark 1. One can equivalently view fractional polymorphisms in a probabilistic setting. A frac-
tional operation ω : O(m) → R≥0 is a fractional polymorphism of Γ if ω is a probability distribution
over O(m), and every cost function f ∈ Γ satisfies,

Eg∼ωf(g(x
1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ dom f.

7

3 Results

In this section we will state our main results together with some algorithmic consequences. The
rest of the paper will be devoted to the proofs of the results.

3.1 The power of BLP

Let Γ be a language such that the set Γ is countable. First, we give a precise characterisation of
the power of BLP for (general-valued) languages.

Theorem 1. BLP solves Γ if and only if Γ admits a symmetric fractional polymorphism of every
arity m ≥ 2.

Second, we give a sufficient condition for the existence of symmetric fractional polymorphisms.
But first we need a standard definition from universal algebra.

A set C of operations is called a clone if it contains all projections and is closed under super-

position; that is, C contains e
(m)
i for all m ≥ 1 and 1 ≤ i ≤ m, and if h, g1, . . . , gn ∈ C then

h[g1, . . . , gn] ∈ C, where h is an n-ary operation and g1, . . . , gn are operations of the same arity. A
set O of operations is said to generate g if g belongs to the smallest clone containing O; in other
words, g can be obtained by superpositions of operations from O and projections.

Example 4. If O contains the binary maximum operation max : D2 → D that returns the
larger of its two arguments (with respect to some total order on D), then O can generate the
m-ary operation max(m) that returns the largest of its m arguments by max(m)(x1, . . . , xm) =
max(x1,max(x2, . . . ,max(xm−1, xm) . . .)).

Theorem 2. Suppose that, for every n ≥ 2, Γ admits a fractional polymorphism ωn such that
supp(ωn) generates a symmetric n-ary operation. Then, Γ admits a symmetric fractional polymor-
phism of every arity m ≥ 2.

The following is an immediate consequence of Theorems 1 and 2.

Corollary 3. BLP solves Γ if and only if for every n ≥ 2, Γ admits a fractional polymorphism ωn

such that supp(ωn) generates a symmetric n-ary operation.

Finally, we give, in Theorem 5, a more refined characterisation of the power of BLP for finite-
valued languages. It is based on the following result.

Theorem 4. Suppose that a finite-valued language Γ admits a symmetric fractional polymorphism
of arity m− 1 ≥ 2. Then Γ admits a symmetric fractional polymorphism of arity m.

Theorem 5. Suppose that Γ is finite-valued. The following are equivalent:

1. BLP solves Γ;
2. Γ admits a symmetric fractional polymorphism of every arity m ≥ 2;
3. Γ admits a symmetric fractional polymorphism of some arity m ≥ 2;
4. Γ admits a symmetric fractional polymorphism of arity 2;
5. For every n ≥ 2, Γ admits a fractional polymorphism ωn such that supp(ωn) generates a

symmetric n-ary operation.

Proof. The equivalence between statements (1) and (2) is a special case of Theorem 1. The implica-
tions (2) =⇒ (4) =⇒ (3) and (2) =⇒ (5) are trivial. The implication (4) =⇒ (2) follows from

Theorem 4. Assume (3). By Theorem 4, we may assume that m is even. Let e
(2)
1 and e

(2)
2 be the

8

two binary projections on the domain of Γ. Then ω[e
(2)
1 , e

(2)
2 , . . . , e

(2)
1 , e

(2)
2] is a binary symmetric

fractional polymorphism of Γ, so (4) follows. Finally, the implication (5) =⇒ (3) follows from
Theorem 2.

Note that the finite-valuedness assumption in Theorems 4 and 5 is essential: for general-valued
languages these theorems do not hold as the following example demonstrates.

Example 5. Let D = {a, b, c} and consider the binary operation g : D2 → D defined by g(x, x) = x
for x ∈ D, g(a, b) = g(b, a) = b, g(b, c) = g(c, b) = c, and g(a, c) = g(c, a) = a (g corresponds to the
oriented cycle a → b → c → a). Note that g is symmetric. Moreover, g is also conservative, that
is, g(x, y) ∈ {x, y} for all x, y ∈ D. Any operation that is symmetric and conservative is called a
tournament operation [11]. Consider the fractional operation ω defined by ω(g) = 1. It is known
that any general-valued constraint language admitting ω is tractable [11] (ω is called a tournament
pair in [11]).

Let f : D2 → Q≥0 be the following binary cost function: f(x, y) = 0 if (x, y) ∈ {(a, b), (b, c), (c, a)}
and f(x, y) = ∞ otherwise. Let Γ = {f}. It can be verified that Γ admits ω as a fractional poly-
morphism and thus is tractable.

We now show, however, that Γ does not admit any ternary symmetric fractional polymorphism.
Let h : D3 → D be an arbitrary ternary symmetric operation. Since dom f = {(a, b), (b, c), (c, a)},
we have that h applied to the tuples (a, b), (b, c), and (c, a) componentwise gives a tuple (x, x) for
some x ∈ D but (x, x) 6∈ dom f for any x ∈ D. Thus no ternary fractional polymorphism of Γ can
have a symmetric ternary operation in its support. By Theorem 1, BLP does not solve Γ.

3.2 Examples of languages solved by BLP

We now give examples of languages that are solved by BLP. In some cases, the tractability of these
languages was known before, while in others, we present here the first proof of their tractability.

A binary operation g : D2 → D is idempotent if g(x, x) = x for all x ∈ D, commutative if
g(x, y) = g(y, x) for all x, y ∈ D, and associative if g(x, g(y, z)) = g(g(x, y), z)) for all x, y, z ∈ D.
A binary operation g : D2 → D is a semilattice operation if g is idempotent, commutative, and
associative. The max-operation of Example 4 is an example of a semilattice operation. In the
same way that max generates max(m), m ≥ 2, every semilattice operation g : D2 → D generates
symmetric operations of all arities. In particular, a symmetric operation g(m) : Dm → D can be
obtained from g by

g(m)(x1, . . . , xm) = g(x1, g(x2, . . . , g(xm−1, xm) . . .)).

Consequently, we obtain the following result.

Corollary 6 (of Theorem 1 and Theorem 2). If Γ admits a fractional polymorphism with a semi-
lattice operation in its support, then BLP solves Γ.

Most previously identified tractable languages have been defined via binary multimorphisms,
which are a special case of binary fractional polymorphisms [12]. A binary multimorphism 〈g1, g2〉
of a language Γ is a binary fractional polymorphism ω of Γ such that ω(g1) = ω(g2) = 1/2, where
g1, g2 : D2 → D. For a binary multimorphism 〈g1, g2〉, the fractional polymorphism inequality (2)
simplifies to,

f(g1(x
1, x2)) + f(g2(x

1, x2)) ≤ f(x1) + f(x2) ∀f ∈ Γ, x1, x2 ∈ dom f.

With the exception of skew bisubmodularity, the languages discussed below are all defined by
binary multimorphisms.

9

Submodularity on a lattice

Let (D;∧,∨) be an arbitrary lattice on D, where ∧ and ∨ are the meet and join operations, re-
spectively. Let Γ be a language admitting the multimorphism 〈∧,∨〉; such languages are called
submodular on the lattice (D;∧,∨). The operations ∧ and ∨ of any lattice are semilattice opera-
tions, hence Corollary 6 shows that BLP solves Γ. The tractability of submodular languages was
previously known only for distributive lattices [37, 65]. Moreover, several tractability-preserving
operations on lattices have been identified in [53]. Finally, it is known that VCSP instances over
submodular languages on diamonds can be minimised in pseudopolynomial time [54].

Symmetric tournament pair

A binary operation g : D2 → D is conservative if g(x, y) ∈ {x, y} for all x, y ∈ D. A binary
operation g : D2 → D is a tournament operation if g is commutative and conservative. The dual
of a tournament operation g is the unique tournament operation g′ satisfying g(x, y) 6= g′(x, y) for
all x 6= y. The multimorphism 〈g1, g2〉 is a symmetric tournament pair (STP) if both g1 and g2 are
tournament operations and g2 is the dual of g1 [11]. If Γ is a finite-valued language with an STP
multimorphism 〈g1, g2〉 then Γ also admits a submodularity multimorphism discussed above. This
result is implicitly contained in [11] and a full proof is given in Appendix A. Consequently, BLP
solves Γ by Corollary 6. This also follows from Theorem 5.

k-Submodularity

Let D = {0, 1, . . . , k} and let Γ be a language defined on D that admits the multimorphism
〈min0,max0〉 [12], where min0(x, x) = x for all x ∈ D and min0(x, y) = 0 for all x, y ∈ D,x 6= y;
max0(x, y) = 0 if 0 6= x 6= y 6= 0 and max0(x, y) = max(x, y) otherwise, where max returns the
larger of its two arguments with respect to the normal order of integers; such languages are known
as k-submodular [33]. Since min0 is a semilattice operation, BLP solves Γ by Corollary 6. The
tractability of k-submodular languages was previously open for k > 2 [33].

Applications of k-submodular functions can be found in [29,72].

Bisubmodularity

The special case of k-submodularity for k = 2 is known as bisubmodularity. The tractability of
(finite-valued) bisubmodular languages was previously known only using a general algorithm for
minimising bisubmodular set functions [27,59].

Skew bisubmodularity

Let D = {0, 1, 2} with the partial order satisfying 0 < 1 and 0 < 2. Recall the definition of the
operations min0 and max0 from the description of k-submodularity above. We define max1(x, y) = 1
if 0 6= x 6= y 6= 0 and max1(x, y) = max(x, y) otherwise, where max returns the larger of its two
arguments with respect to the normal order of integers. A language Γ defined on D is called
α-bisubmodular, for some real 0 < α ≤ 1, if Γ admits a fractional polymorphism ω defined by
ω(min0) = 1/2, ω(max0) = α/2, and ω(max1) = (1 − α)/2. (Note that 1-bisubmodular languages
are bisubmodular languages discussed above.) A language that is α-bisubmodular for some α is
called skew bisubmodular. Since min0 is a semilattice operation, BLP solves Γ by Corollary 6. The
tractability of skew bisubmodular languages was first observed in [34] using an extended abstract
of this paper [69].

10

Strong tree-submodularity

Assume that the labels in the domain D are arranged into a tree T . The tree induces a partial order:
a � b if a is an ancestor of b, that is, if a lies on the unique path from b to the root of T . Given
a, b ∈ T , let Pab denote the unique path in T between a and b of length (=number of edges) d(a, b),
and let Pab[i] denote the i-th vertex on Pab, where 0 ≤ i ≤ d(a, b) and Pab[0] = a. Let 〈g1, g2〉
be two binary commutative operations defined as follows: given a and b, let a1 = Pab[⌊d/2⌋] and
a2 = Pab[⌈d/2⌉]. If a2 � a1 then swap a1 and a2 so that a1 � a2. Finally, g1(a, b) = g1(b, a) = a1
and g2(a, b) = g2(b, a) = a2. Let Γ be a language admitting the multimorphism 〈g1, g2〉; such
languages are called strongly tree-submodular. Since g1 is a semilattice operation, BLP solves Γ by
Corollary 6. The tractability of finite-valued strongly tree-submodular languages on binary trees
has been shown in [48] but the tractability of strongly tree-submodular languages on non-binary
trees was left open.

Weak tree-submodularity

Assume that the labels in the domain D are arranged into a tree T . For a, b ∈ T , let g1(a, b) be
defined as the highest common ancestor of a and b in T ; that is, the unique node on the path Pab

that is ancestor of both a and b. We define g2(a, b) as the unique node on the path Pab such that
the distance between a and g2(a, b) is the same as the distance between b and g1(a, b). Let Γ be a
language admitting the multimorphism 〈g1, g2〉; such languages are called weakly tree-submodular.
Since g1 is a semilattice operation, BLP solves Γ by Corollary 6. The tractability of finite-valued
weakly tree-submodular languages on chains2 and forks3 has been shown in [48] and left open
for all other trees. Weak tree-submodularity generalises the above-discussed concept of strong
tree-submodularity in the sense that any language that is strongly tree-submodular is also weakly
tree-submodular [48]. Weak tree-submodularity also generalises the above-discussed concept of k-
submodularity, which corresponds to the special case with a tree on k + 1 vertices consisting of a
root node with k children.

1-Defect chain

In our final example, Corollary 6 does not suffice to prove that BLP solves the specific languages.
Instead, we refer directly to Theorems 1 and 2 (and also Theorem 5 in the special case of finite-
valued languages). Let b and c be two distinct elements of D and let (D;<) be a partial order
which relates all pairs of elements except for b and c. A pair 〈g1, g2〉, where g1, g2 : D2 → D are
two binary operations, is a 1-defect chain multimorphism if g1 and g2 are both commutative and
satisfy the following conditions:

• If {x, y} 6= {b, c}, then g1(x, y) = x ∧ y and g2(x, y) = x ∨ y.
• If {x, y} = {b, c}, then {g1(x, y), g2(x, y)} ∩ {x, y} = ∅, and g1(x, y) < g2(x, y).

The tractability of finite-valued languages admitting a 1-defect chain multimorphism has been
shown in [43]. By Theorem 5, the BLP solves any such language. We now show a more general
result: BLP also solves general-valued languages admitting a 1-defect chain multimorphism.

We consider the case when g1(b, c) < b, c and set g = g1. (An analogous argument works in the
case when g2(b, c) > b, c.) Using g, we construct a symmetric m-ary operation h(m)(x1, . . . , xm) for
each m. Consequently, BLP solves Γ by Theorem 1 and Theorem 2.

2A chain is a binary tree in which all nodes except leaves have exactly one child.
3A fork is a binary tree in which all nodes except leaves and one special node have exactly one child. The special

node has exactly two children.

11

Let h1, . . . , hM be the M =
(

m
2

)

terms g(xi, xj). Let

h(m) = g(h1, g(h2, . . . , g(hM−1, hM) . . .)).

There are three possible cases:

• {b, c} 6⊆ x1, . . . , xm. Then g acts as ∧, which is a semilattice operation, hence so does h(m).
• {b, c} ⊆ {x1, . . . , xm} and g(b, c) ≤ x1, . . . , xm. Then hi = g(b, c) for some 1 ≤ i ≤ M , and

g(hi, hj) = g(b, c) for all 1 ≤ j ≤ M , so h(m)(x1, . . . , xm) = g(b, c).
• {b, c} ⊆ {x1, . . . , xm} and xp ≤ g(b, c), for some 1 ≤ p ≤ m. By choice of g, xp 6∈ {b, c} and we

can additionally choose p so that xp ≤ x1, . . . , xm. Then g(xp, xq) = xp for all 1 ≤ q ≤ m so
hi = xp for some 1 ≤ i ≤ M and g(hi, hj) = xp for all 1 ≤ j ≤ M , so h(m)(x1, . . . , xm) = xp.

3.3 Finding a solution

Let I be an instance of VCSP(Γ) and assume that the BLP solves Γ. We will now justify this
terminology by showing how to obtain an actual assignment that optimises I.

The basic idea is that of self-reduction: we iteratively assign labels to the first variable of I
and test whether the partially assigned instance has the same optimum as I. When such a label is
found, we proceed with the next variable. After n · |D| steps, where n is the number of variables of
I, we are guaranteed to have found an optimal assignment. This method requires that we can find
the optimum of a partially assigned instance. In order to do this, we need the following technical
lemma which is proved in Section 7.

Lemma 7. There exists a subset D′ ⊆ D such that if Γ admits an m-ary symmetric fractional
polymorphism, then it admits an m-ary symmetric fractional polymorphism ω such that, for all
g ∈ supp(ω),

1. g(x, x, . . . , x) ∈ D′ for all x ∈ D;
2. g(x, x, . . . , x) = x for all x ∈ D′.

The utility of Lemma 7 can be described as follows: whenever we have an appropriate fractional
polymorphism that maps into a sub-domain D′ and that is idempotent on D′, then we can infer
that there is an optimal solution just consisting of labels from D′. Such languages are made no more
complex by adding constants restricting variables to be particular labels from D′. In particular, we
can use BLP to solve partially assigned instances.

Proposition 8. Let Γ be an arbitrary valued constraint language and let I be an instance of
VCSP(Γ). If BLP solves Γ, then an optimal assignment of I can be found in polynomial time.

Proof. Let D′ ⊆ D be the set in Lemma 7. Let cd be the unary cost function with cd(x) = ∞ for
x 6= d and cd(d) = 0, and let Γc = Γ ∪ {cd | d ∈ D′}. It follows from Theorem 1 and Lemma 7(2)
that the BLP solves Γc. We can now apply self-reduction to obtain an optimal assignment of I. Let
x = (x1, . . . , xn) be the variables of I. The idea is to successively try each possible label d ∈ D′ for
x1 by adding the term cd(x1) to the sum of I. The modified instance is an instance of VCSP(Γc)
so we can use the BLP to obtain its optimum. If, for some d1 ∈ D′, the optimum of the modified
instance matches that of I, then we know that there exists an optimal solution to I in which x1 is
assigned d1 and we can proceed with the next variable.

We now claim that this procedure always terminates with an optimal assignment. In particular,
we must show that if the optimum of I is equal to the optimum of the instance I ′ obtained by
adding

∑k
i=1 cdi(xi), di ∈ D′, k ≥ 1, to the sum of I, then we can always find an optimal solution

of I ′ that assigns dk+1 to xk+1, for some dk+1 ∈ D′. Let s : V → D be an optimal solution to I ′.

12

Note that s(xi) = di for all i = 1, . . . , k. Let ω be a fractional polymorphism of Γ satisfying (1)
and (2) in Lemma 7. Then, with I represented as in Definition 1 on page 5, and with the notation
xt = (xv(t,1), . . . , xv(t,nt)),

fI′(s(x)) = fI(s(x)) +
k

∑

i=1

cdi(s(xi))

≥
∑

t∈T

∑

g∈supp(ω)

ω(g)ft(g(s(x
t), . . . , s(xt)))

=
∑

g∈supp(ω)

ω(g)fI(g[s, . . . , s](x)) ≥ min
x∈Dn

fI(x).

Since fI′(s(x)) = minx∈Dn fI(x), we conclude that g[s, . . . , s] is an optimal solution to I, for
each g ∈ supp(ω). Every g ∈ supp(ω) satisfies (2) in Lemma 7, so g[s, . . . , s](xi) = di for all
i = 1, . . . , k, and it follows that g[s, . . . , s] is also an optimal solution to I ′. Finally, g satisfies (1)
in Lemma 7, so g[s, . . . , s](xk+1) ∈ D′, from which the claim follows.

4 Characterisation of general-valued languages

In this section we will prove the main characterisation of general-valued languages solved by BLP.

Theorem 1 (restated). BLP solves Γ if and only if Γ admits a symmetric fractional polymorphism
of every arity m ≥ 2.

Recall that Mn is the set of probability distributions over labellings in Dn and ∆ = M1. For

an integer m ≥ 1 we denote by M
(m)
n the set of vectors µ ∈ Mn such that all components of µ are

rational numbers of the form p/m, where p ∈ Z. We also denote ∆(m) = M
(m)
1 , and define Ω(m) to

be the set of mappings ∆(m) → D.
A vector α ∈ ∆(m) can be viewed as a multiset over D of size m, or equivalently as an element of

the quotient space Dm/ ∼ where ∼ is the equivalence relation defined by permutations. Therefore,
a symmetric mapping g : Dm → D can be equivalently viewed as a mapping g : ∆(m) → D. This

gives a natural isomorphism between O
(m)
sym and Ω(m).

A symmetric fractional polymorphism ω can thus be viewed either as a probability distribution

over O
(m)
sym or as a probability distribution over Ω(m). In the proposition below we use both views

interchangeably.

Proposition 9. Let ω be a symmetric fractional operation of arity m and let f be a cost function of

arity n. Then ω is a fractional polymorphism of f (i.e., (2) holds) if and only if for every µ ∈ M
(m)
n ,

Eg∼ωf(g(µ[1], . . . , µ[n])) ≤ Ex∼µf(x), (3)

where µ[i] ∈ ∆(m) is the marginal probability of distribution µ for the ith coordinate.

Proof. The left-hand side of (3) is equal
∑

g∈Ω(m) ω(g)f(g(µ[1], . . . , µ[n])) and the right-hand side is
equal

∑

x∈Dn µ(x)f(x). The claim thus follows from Definition 3 and Remark 1.

Proof. (of Theorem 1) To prove Theorem 1, we need to establish the following: BLP solves Γ if
and only if for every m ≥ 2 there exists a probability distribution ω over Ω(m) that satisfies (3).

“⇐”: Suppose that Γ admits a symmetric fractional polymorphism of every arity. Let I be a
Γ-instance with n variables. We need to show that system (1) for I has an integral minimiser.

13

It is well known that every LP with rational coefficients has an optimal solution with rational co-
efficients (for instance, this is a direct consequence of Fourier-Motzkin elimination) [64]. Therefore,
since the LP (1) has rational coefficients, it has an optimal solution {α, µt} such that all variables
are rational numbers of the form p/m for some integers p,m with m ≥ 1. We can assume that
m ≥ 2, otherwise the claim is trivial.

Let ω be a symmetric fractional polymorphism of Γ of arity m. For any n-ary cost function f

and µ ∈ M
(m)
n , we denote by f(µ) the expectation f(µ) = Ex∼µf(x).

Using (1) and (3), we can write

BLP(I) =
∑

t∈T

∑

x∈dom ft

µt(x)ft(x) =
∑

t∈T

ft(µt)

≥
∑

t∈T

∑

g∈Ω(m)

ω(g)f(g(µv(t,1)), . . . , g(µv(t,nt)))

=
∑

g∈Ω(m)

ω(g)fI(g(µ)), (4)

where g is applied component-wise, i.e., if α = (α1, . . . , αn) ∈ [∆(m)]n, then g(α) = (g(α1), . . . , g(αn)) ∈
Dn. (Note that in the second equality in (4) we have used 0 · ∞ = 0.) Eq. (4) implies that
BLP(I) ≥ fI(g(µ)) for some g ∈ supp(ω), and therefore BLP solves the instance I.

“⇒”: Let us fix m ≥ 2, and assume that BLP solves Γ. In this part we will use letters with a
“hat” (α̂ and µ̂) for vectors of the form p/m, p ∈ Z.

First, we consider the case when |Γ| is finite. Suppose that Γ does not admit a symmetric
fractional polymorphism of arity m. Using the notation

• Γ+ is the set of tuples (f, µ̂, α̂) such that f is a function in Γ of arity n, µ̂ ∈ M
(m)
n with

supp(µ̂) ⊆ dom f , and α̂ = (µ̂[1], . . . , µ̂[n]) ∈ [∆(m)]n; and

• Ω
(m)
Γ ⊆ Ω(m) is the set of mappings g : ∆(m) → D such that g(α̂) ∈ dom f for all (f, µ̂, α̂)∈Γ+,

the following system does not have a solution:

∑

g∈Ω
(m)
Γ

ω(g)f(g(α̂)) ≤ f(µ̂) ∀(f, µ̂, α̂) ∈ Γ+ (5a)

∑

g∈Ω
(m)
Γ

ω(g) = 1 (5b)

ω(g) ≥ 0 ∀g ∈ Ω
(m)
Γ (5c)

Since system (5) is infeasible, by Farkas’ lemma [64] the following system has a solution:
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) + z < 0 (6a)

∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(g(α̂)) + z ≥ 0 ∀g ∈ Ω
(m)
Γ (6b)

y(f, µ̂, α̂) ≥ 0 ∀(f, µ̂, α̂) ∈ Γ+ (6c)

Eliminating z gives
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(g(α̂)) >
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) ∀g ∈ Ω
(m)
Γ (7a)

y(f, µ̂, α̂) ≥ 0 ∀(f, µ̂, α̂) ∈ Γ+ (7b)

14

We claim that vector y in (7) can be chosen to be integer-valued and strictly positive. To see this, ob-
serve that if y is a feasible solution then so is any vector y′ with y′(f, µ̂, α̂) ∈ [Cy(f, µ̂, α̂), Cy(f, µ̂, α̂)+
1] for (f, µ̂, α̂) ∈ Γ+, for some sufficiently large constant C (namely, C > 2

ǫ
maxf∈Γ,x∈dom f |f(x)|

where ǫ > 0 is the minimum difference between the left-hand side and the right-hand side in (7a)).
Let us construct an instance I with variables V = ∆(m) and the function

fI(x) =
∑

(f,µ̂,α̂)∈Γ+,α̂=(α̂1,...,α̂n)

y(f, µ̂, α̂)f(xα̂1 , . . . , xα̂n
). (8)

This can be viewed as a Γ-instance, if we simulate the multiplication of y(f, µ̂, α̂) and f by repeating
the latter term y(f, µ̂, α̂) times.

Consider a mapping g : ∆(m) → D. Since V = ∆(m), such g is a valid labelling for the instance

I, so we can evaluate fI(g). If g ∈ Ω(m) \ Ω
(m)
Γ then fI(g) = ∞ (by the definition of Ω

(m)
Γ), and if

g ∈ Ω
(m)
Γ then fI(g) equals the left-hand side of eq. (7a). Thus, eq. (7a) gives

min
g:V→D

fI(g) >
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂). (9)

The left-hand side of eq. (9) is the optimal value of the instance I. We claim that

∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) ≥ BLP(I) (10)

and so ming fI(g) > BLP(I), which contradicts the assumption that BLP solves Γ. To prove
eq. (10), it suffices to specify a feasible vector of the BLP relaxation of I (given by eq. (1)) whose
value equals the left-hand side of (10). Such vector is constructed as follows: αv = v for all
v ∈ V = ∆(m) and µt = µ̂ for all t = (f, µ̂, α̂) ∈ Γ+.

We showed that if Γ is finite then it admits a symmetric fractional polymorphism of arity m.
Now suppose that Γ is infinite but countable: Γ = {f1, f2, . . .}. For any integer r ≥ 1, denote by
Γr = {f1, . . . , fr}. As we just showed, Γr admits some symmetric fractional polymorphism ωr of

arity m. The space of symmetric fractional polymorphisms is a compact subset of R|Ω(m)|, therefore
the sequence ω1, ω2, . . . has a limit vector ω. Using standard continuity arguments, we conclude
that ω is a symmetric fractional polymorphism of Γ. This concludes the proof.

5 Constructing new fractional polymorphisms

In this section we introduce a generic procedure for constructing new fractional polymorphisms of
a language Γ from existing ones. This procedure will be used in the proofs of Theorems 2 and 4,
and Lemma 7.

We start with a motivating example to illustrate techniques that we will use.

Example 6. Let us consider all idempotent binary operations D2 → D for the set of labels D =
{0, 1}. In total, there are four such operations: g00, g01, g10, g11 where gab for a, b ∈ D denotes the
operation with

gab(0, 0) = 0, gab(0, 1) = a, gab(1, 0) = b, gab(1, 1) = 1.

The operations g01 and g10 are the two binary projections e
(2)
1 and e

(2)
2 to the first and second

coordinate respectively. The operations g00 and g11 are the min and max operations with respect to
the natural order on D.

15

Suppose that Γ admits a binary fractional polymorphism ω = 1
3χg00+

2
3χg01 (so that one operation

in supp(ω) is symmetric and the other is not), and we want to prove that Γ admits a symmetric
binary fractional polymorphism. For a function f ∈ Γ and labellings x, y ∈ dom f we can write

f(x) + f(y)

2
=

1

2

f(x) + f(y)

2
+

1

2

f(y) + f(x)

2

≥
1

2

∑

g∈supp(ω)

ω(g)f(g(x, y)) +
1

2

∑

g∈supp(ω)

ω(g)f(g(y, x))

=
1

3
f(g00(x, y)) +

2

3

f(x) + f(y)

2
(11)

This inequality means that vector ρ1 =
1
3χg00 +

2
3
χg01+χg10

2 is a fractional polymorphism of Γ. This
demonstrates how we can derive new fractional polymorphisms of a language from existing ones by
taking superpositions.

To obtain a symmetric fractional polymorphism of Γ, we can now use two strategies:

(i) Cancel terms in (11), obtaining inequality 1
3
f(x)+f(y)

2 ≥ 1
3f(g00(x, y)). This inequality means

that vector χg00 is a fractional polymorphism of Γ.

(ii) Take the last term 2
3
f(x)+f(y)

2 in (11) and apply ω to it again. This gives a new inequality

corresponding to a fractional polymorphism ρ2 =
5
9χg00+

4
9
χg01+χg10

2 . By repeating this process
we obtain a sequence of vectors ρ1, ρ2, ρ3, . . . that are fractional polymorphisms of Γ. The
weight of operation g00 in ρi tends to 1 as i tends to infinity; thus, by taking the limit we can
prove that vector χg00 is a fractional polymorphism of Γ.

Observe that in the construction in Example 6 operations g01 and g10 always had the same
weight in ρi. Therefore, we were working with a subset of all possible fractional polymorphisms.
This example motivates definitions given below.

5.1 Generalised fractional polymorphisms

The construction of new fractional polymorphisms is based on the idea of grouping operations in
O(m) together into what we will call collections and working with fractional operations that assign
the same weight to every operation in a collection. We will consider two types of collections: ordered
and unordered. Ordered collections are finite sequences of operations from O(m) and unordered
collections are subsets of O(m).

Let G be a fixed set of collections. We will always assume that all collections in G are
of the same type, i.e., either ordered or unordered. (In Example 6 above we would use G =
{{g00}, {g11}, {g01, g10}}.) For a collection g ∈ G, we let |g| denote its size, i.e., the cardinality of
the set, or the length of the sequence, depending on its type. We write

∑

g∈g to denote a sum over
all components of the (ordered or unordered) collection g; one has e.g.

∑

g∈g 1 = |g|.
For a given G, we define a generalised fractional polymorphism ρ of a language Γ as a probability

distribution over G such that, for every cost function f ∈ Γ,

∑

g∈G

ρ(g)
∑

g∈g

1

|g|
f(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm), ∀x1, . . . , xm ∈ dom f. (12)

To simplify notation, we will write (12) as

∑

g∈G

ρ(g)f |g|(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm), ∀x1, . . . , xm ∈ dom f, (13)

16

where, for an unordered collection g = {g1, . . . , gk} ofm-ary operations, the application g(x1, . . . , xm)
denotes the set of labellings {g1(x

1, . . . , xm), . . . , gk(x
1, . . . , xm)}, and we define fk({y1, . . . , yk}) =

fk(y1, . . . , yk) for labellings y1, . . . , yk ∈ Dn. Similarly, for an ordered collection g = (g1, . . . , gk) of
m-ary operations, the application g(x1, . . . , xm) denotes the sequence of labellings

(g1(x
1, . . . , xm), . . . , gk(x

1, . . . , xm)).

As for fractional operations, we define the supp(ρ) as the set of collections g for which ρ(g) > 0,
and the vector χg as the vector that assigns weight 1 to the collection g and 0 to all other collections.

Note that ρ is a generalised fractional polymorphism of Γ if and only if ω =
∑

g∈G ρ(g)
∑

g∈g
1
|g|χg

is an m-ary fractional polymorphism of Γ.

Terminology for ordered collections Observe that an ordered collection g = (g1, . . . , gk) is a
mapping Dm → Dk. Denote the set of such mappings by O(m→k). If G is a subset of O(m→k), then
a generalised fractional polymorphism ρ over G will be called a generalised fractional polymorphism
of arity m → k. We can identify fractional polymorphisms of arity m with generalised fractional
polymorphisms of arity m → 1.

5.2 Constructing generalised fractional polymorphisms

Our goal will be to construct a generalised fractional polymorphism ρ such that all collections
g ∈ supp(ρ) satisfy some desired property. Let G∗ ⊆ G be the set of such “good” collections.
We consider an expansion operator Exp that takes a collection g ∈ G and produces a probability
distribution ρ over G. We say that Exp is valid for a language Γ if, for any f ∈ Γ and any g ∈ G,
the probability distribution ρ = Exp(g) satisfies

∑

h∈G

ρ(h)f |h|(h(x1, . . . , xm)) ≤ f |g|(g(x1, . . . , xm)), ∀x1, . . . , xm ∈ dom f. (14)

We say that the operator Exp is non-vanishing (with respect to the pair (G,G∗)) if, for any g ∈ G,
there exists a sequence of collections g0,g1, . . . ,gr such that g0 = g, gi+1 ∈ supp(Exp(gi)) for
i = 0, . . . , r − 1, and gr ∈ G∗.

The main result of this section is the following.

Lemma 10 (“Expansion Lemma”). Let Exp be an expansion operator which is valid for the language
Γ and non-vanishing with respect to (G,G∗). If Γ admits a generalised fractional polymorphism ρ
with supp(ρ) ⊆ G, then it also admits a generalised fractional polymorphism ρ∗ with supp(ρ∗) ⊆ G∗.

The example below demonstrates how this lemma can be used.

Example 6 (revisited). Recall that in this example we have a language Γ over D = {0, 1} that
admits a fractional polymorphism ω = 1

3χg00 +
2
3χg01 . Let us show how we can use the Expansion

Lemma to derive the fact that Γ admits a symmetric fractional polymorphism.
Let G = {{g00}, {g11}, {g01, g10}} and G∗ = {{g00}, {g11}}. Note that vector ρ = χ{g01,g10} is a

17

generalised fractional polymorphism of Γ. Define expansion operator Exp as follows:

Exp({g00}) =
∑

g∈supp(ω)

ω(g)χ{g[g00,g00]} = χ{g00}

Exp({g11}) =
∑

g∈supp(ω)

ω(g)χ{g[g11,g11]} = χ{g11}

Exp({g01, g10}) =
∑

g∈supp(ω)

ω(g)χ{g[g01,g10],g[g10,g01]} =
1

3
χ{g00} +

2

3
χ{g01,g10}

It can be verified Exp is valid for Γ and non-vanishing with respect to (G,G∗); we leave this to
the reader. By the Expansion Lemma, Γ admits a generalised fractional polymorphism ρ∗ with
supp(ρ∗) ⊆ G∗, i.e. ρ∗ = ρ∗00χ{g00}+ρ∗11χ{g11} for some ρ∗00, ρ

∗
11 ≥ 0 with ρ∗00+ρ∗11 = 1. This means

that vector ρ∗00χg00 + ρ∗11χg11 is a (symmetric) fractional polymorphism of Γ.
Note that in the original Example 6 we claimed a stronger property, namely that Γ admits

a fractional polymorphism χg00. This can be established by taking G = {{g00}, {g01, g10}} and
G∗ = {{g00}}; the expansion operator for these collections is defined as above.

The lemma will be used for constructing the desired fractional polymorphisms in Theorem 2
and Lemma 7; their proofs consist of exhibiting an appropriate pair (G,G∗) and an expansion
operator Exp. We will also exploit the lemma in the proof of Theorem 4. However, on its own it
will not be enough, and we will need an additional method for constructing symmetric fractional
polymorphisms. Considering Example 5, this should not come as a surprise: Theorem 4 holds only
for finite-valued languages, while Lemma 10 is valid for all general-valued languages.

We will now give two proofs of Lemma 10. The first one is constructive: it shows how to obtain
ρ∗ from ρ using a finite number of steps. The second one is shorter but non-constructive. Roughly
speaking, the constructive proof uses strategy (i) from Example 6, while the non-constructive one
uses strategy (ii).

5.3 Constructive proof of the Expansion Lemma

In this subsection, we give a constructive proof of the Expansion Lemma based on a node-weighted
tree generated by repeated applications of the expansion operator.

Proof. (of Lemma 10) The proof goes via an explicit construction of a node-weighted tree. Each
node of the tree contains a collection g ∈ G, and we will use g to denote both the node and the
collection of operations it contains. We say that two nodes are equal as collections if the collections
they contain are the same. Each node also carries a (strictly) positive weight, denoted by w(g).
We say that a node g is covered (by h), and that h is a covering node (of g) if g is a descendant of
h and g and h are equal as collections. We say that h is a minimal covering node if no descendant
of h is a covering node.

The root of the tree will be denoted by p. If the collections in G are unordered, then we let

p = {e
(m)
1 , . . . , e

(m)
m } be the set of m-ary projections. If the collections are ordered, then we let

p = (e
(m)
1 , . . . , e

(m)
m). If p is not in G, then we can augment G with p and define Exp(p) to be ρ. In

both cases, since Γ admits ρ, the augmented expansion operator remains non-vanishing and valid
for Γ.

The construction is performed in two steps. In the first step, the expansion, a tree with root
p is constructed. At the end of this step, the tree will have leaves that are either in G∗ or that
are covered. From the construction, it will immediately follow that the leaves induce a generalised

18

fractional polymorphism of Γ. In the second step, the pruning, certain parts of the tree will be cut
down to remove all leaves that are not in G∗. We then prove that the set of leaves remaining after
the pruning step still induces a generalised fractional polymorphism of Γ.

The expansion step is carried out as follows.

• While there exists a leaf g in the tree that is in G \ G∗ and not covered, add the set
supp(Exp(g)) as children to g with the weight of each added node h given by w(g) ·Exp(g)(h).

First, we argue that the expansion step terminates after a finite number of applications of the
expansion operator. Assume to the contrary that the expansion generates an infinite tree. Since
there is a finite number of m-ary operations, |G| is finite, and hence it follows that the tree has an
infinite path g0,g1, . . . , descending from the root. Therefore, there exist i < j such that gi = gj as
collections. If gj ∈ G∗, then gi would never have been expanded, so we may assume that gj 6∈ G∗.
But then gj is covered by gi, hence gj would never have been expanded. We have reached a
contradiction and it follows that the tree generated by the expansion is finite.

Let T be the tree generated by the expansion step. For a node g in T , let L(g) be the set of
leaves of the sub-tree rooted at g and define the vector νg ∈ RG

≥0 by νg =
∑

h∈L(g)(w(h)/w(g))χh .
We claim that the following three properties are satisfied:

(a)

1. For every node g in T , the vector νg is a probability distribution on G such that for every
function f ∈ Γ, and all tuples x1, . . . , xm ∈ dom f ,

∑

h∈G

νg(h)f
|h|(h(x1, . . . , xm)) ≤ f |g|(g(x1, . . . , xm)). (15)

2. Every leaf in T is either a member of G∗ or covered.
3. Every sub-tree of T contains a leaf that is not covered by a node in that sub-tree.

Property (a) follows by repeated application of (14), with special care taken to the case νp,
where the fact that ρ satisfies (13) is also used. Property (b) holds trivially when the expansion
step terminates. To see that (c) holds, assume to the contrary that, after the expansion step, there
is a sub-tree rooted at g for which every leaf is in G \ G∗. Pick any node g0 in this sub-tree, and
for i ≥ 0, arbitrarily pick gi+1 ∈ supp(Exp(gi)). Then, each gi contains a collection that already
exists in the sub-tree, hence the sequence g0,g1, . . . never encounters a collection in G∗. This is a
contradiction since Exp is assumed to be non-vanishing. Hence, (3) holds after the expansion step.

The pruning step is carried out as follows.

• While there exists a covered leaf in the tree, pick a minimal covering node g and let Tg be
the sub-tree rooted at g. Write νg as νg = (1 − κ) · χg + ν⊥, where 1 − κ = νg(g) so that
ν⊥(g) = 0. Remove all nodes below g from the tree and, for each collection h ∈ G such that
ν⊥(h) > 0, add a new leaf h′ as a child to g containing the collection h and with weight
w(h′) = w(g) 1

κ
ν⊥(h).

We refer to each choice of a minimal covering node g and the subsequent restructuring of Tg

as a round of pruning. Below, we prove that the properties (1–3) are invariants that hold before
and after each round of pruning. This has the following consequences. Since (3) holds before each
round, some leaf h of g is different from g as a collection, and since w(h) is strictly positive, κ > 0.
Therefore the new weights in the pruning step are defined. Each round of pruning decreases the
size of the tree by at least one, so the pruning step eventually terminates. After the pruning step
has terminated, let ρ∗ be νp. By (1), ρ∗ is a generalised fractional polymorphism of Γ, and by (2),
every leaf must contain a collection in G∗, so supp(ρ∗) ⊆ G∗.

19

We finish the proof by showing that (1–3) hold after a round of pruning that picks a minimal cov-
ering node g, assuming that they held before the round. By (1) and noting that

∑

h∈G χg(h)f
|h|(h(x1, . . . , xm)) =

f |g|(g(x1, . . . , xm)), we have

∑

h∈G

νg(h)f
|g|(g(x1, . . . , xm)) =

∑

h∈G

((1− κ) · χg + ν⊥)(h)f
|h|(h(x1, . . . , xm))

≥
∑

h∈G

((1− κ) · νg + ν⊥)(h)f
|h|(h(x1, . . . , xm)), (16)

for all f ∈ Γ and x1, . . . , xm ∈ dom f . Since κ > 0, inequality (16) is equivalent to

∑

h∈G

νg(h)f
|h|(h(x1, . . . , xm)) ≥

∑

h∈G

1

κ
ν⊥(h)f

|h|(h(x1, . . . , xm)). (17)

The round of pruning only affects the vector νg′ for nodes g′ that lie on the path from the root
to g. Let g′ be such a node and let ν ′g′ be the altered function after the round. Let C = w(g)/w(g′).

Then, ν ′g′ = νg′ −Cνg +C 1
κ
ν⊥ and ν ′g′ can easily be verified to be a probability distribution on G,

and

f |g′|(g′(x1, . . . , xm)) ≥
∑

h∈G

(νg′ − Cνg + Cνg)(h)f
|h|(h(x1, . . . , xm))

≥
∑

h∈G

(νg′ − Cνg + C
1

κ
ν⊥)(h)f

|h|(h(x1, . . . , xm))

=
∑

h∈G

ν ′g′(h)f |h|(h(x1, . . . , xm)), (18)

so (1) holds after the round.
Before the round of pruning, using (2) and the fact that g is a minimal covering node, every

leaf in Tg is either equal to g as collections, is a member of G∗, or is covered by a node above g in
the tree. Therefore, every new child h′ added to g in the pruning is either a member of G∗ or is
still covered by some node above g, so (2) holds after the round.

The round of pruning only affects the leaves of the sub-trees Tg′ that contain g. Before the
round, by (3), the sub-tree Tg′ either contains a leaf in G∗ or a leaf that is covered by a node above
g′ in the tree. If such a leaf h is also a leaf of Tg, and therefore potentially altered in the round of
pruning, then h is different from g as collections, hence g will have a new child h′ with the same
property. It follows that (3) holds after the round.

5.4 Non-constructive proof of the Expansion Lemma

We now give a non-constructive proof of the Expansion Lemma.

Proof. (of Lemma 10) Let Ω be the set of generalised fractional polymorphisms ρ of Γ with
supp(ρ) ⊆ G; it is non-empty by the assumption of Lemma 10. Let us pick ρ∗ ∈ Ω with the
maximum value of ρ∗(G∗) =

∑

g∈G∗ ρ(g). (Clearly, Ω is a compact set which is a subset of R|G|, so
the maximum is attained by some vector in Ω). We claim that supp(ρ∗) ⊆ G∗. Indeed, suppose that
g0 /∈ G∗ for some g0 ∈ supp(ρ∗). Since Exp is non-vanishing, there exists a sequence g0,g1, . . . ,gr

20

such that gi+1 ∈ supp(Exp(gi)) for i = 0, . . . , r − 1, g0, . . . ,gr−1 /∈ G∗, and gr ∈ G∗. Define a
sequence of generalised fractional polymorphisms ρ0 = ρ∗, ρ1, . . . , ρr as follows:

ρi+1 = ρi + ρi(gi) · (−χgi
+ νi), νi = Exp(gi)

for i = 0, . . . , r − 1. We can prove by induction on i that ρi ∈ Ω, i.e. ρi is a generalised fractional
polymorphism of Γ. Indeed, for any f ∈ Γ, and x1, . . . , xm ∈ dom f , we have

∑

h∈G

(−χgi
+ νi)(h)f

|h|(h(x1, . . . , xm)) ≤ 0

where we used eq. (14) and the fact that f |gi|(gi(x
1, . . . , xm)) is finite (since gi ∈ supp(ρi) and ρi

is a generalised fractional polymorphism of f). Therefore,

∑

h∈G

ρi+1(h)f
|h|(h(x1, . . . , xm)) ≤

∑

h∈G

ρi(h)f
|h|(h(x1, . . . , xm)) ≤ fm(g(x1, . . . , xm))

(the last inequality is by the induction hypothesis). We proved that ρi ∈ Ω for all i.
By construction, ρ∗(G∗) = ρ0(G

∗) ≤ ρ1(G
∗) ≤ . . . ≤ ρr−1(G

∗) < ρr(G
∗). This contradicts the

choice of ρ∗.

6 Second characterisation of general-valued languages

In this section, we use the Expansion Lemma from Section 5 to prove Theorem 2.

Theorem 2 (restated). Suppose that, for every n ≥ 2, Γ admits a fractional polymorphism ωn

such that supp(ωn) generates a symmetric n-ary operation. Then, Γ admits a symmetric fractional
polymorphism of every arity m ≥ 2.

Proof. The proof is an application of Lemma 10. Fix some arbitrary arity m ≥ 2. Let ∼ denote
the following equivalence relation on the set O(m) of m-ary operations on D:

g ∼ g′ ⇔ ∃π ∈ Sm : g(x1, . . . , xm) = g′(xπ(1), . . . , xπ(m)).

Let G be the set of equivalence classes of the relation ∼ and let G∗ be the set of all equivalence
classes g ∈ G for which |g| = 1, i.e., the set of equivalence classes containing a single symmetric
operation. We say that a fractional operation ν is weight-symmetric if ν(g) = ν(g′) whenever
g ∼ g′. A weight-symmetric fractional operation ν induces a probability distribution ρ on G:
ρ(g) = ν(g)/|g|, where g is any of the operations in g.

We now define the expansion operator Exp by giving its result when applied to an arbitrary
g ∈ G. Let n = |g| and let ω be a k-ary fractional polymorphism of Γ such that supp(ω) generates
a symmetric n-ary operation.

Define a sequence of m-ary weight-symmetric fractional operations ν0, ν1, . . . , each with ‖νi‖1 =
1, as follows. Let ν0 =

∑

g∈g
1
|g|χg. For i ≥ 1, assume that νi−1 has been defined. Let li−1 =

min{νi−1(g) | g ∈ supp(νi−1)} be the minimum weight of an operation in the support of νi−1. The
fractional operation νi is obtained by subtracting from νi−1 an equal weight from each operation in
supp(νi−1) and adding back this weight as superpositions of ω by all possible choices of operations in
supp(νi−1). The amount subtracted from each operation is 1

2 li−1. This implies that every collection
in supp(νi−1) is also in supp(νi).

21

Formally νi is defined as follows:

νi = νi−1 −
li−1

2
χi−1 +

li−1

2
ηi−1,

where χi−1 =
1

| supp(νi−1)|

∑

g∈supp(νi−1)

χg and, with K = | supp(νi−1)|
k,

ηi−1 =
1

K

∑

g1,...,gk∈supp(νi−1)

ω[g1, . . . , gk].

By definition, ν ≥ 0 and ‖νi‖1 = ‖νi−1‖1 = 1. To see that νi is weight-symmetric, it suffices to
verify that ηi−1 is weight-symmetric. Let g be any m-ary operation of the form g = h[g1, . . . , gk] and
let g ∼ g′. Let π ∈ Sm be such that g(x1, . . . , xm) = g′(xπ(1), . . . , xπ(m)) and define g′j(x1, . . . , xm) =
gj(xπ(1), . . . , xπ(m)) for 1 ≤ j ≤ k. Since νi−1 is weight-symmetric, it follows that gi ∈ supp(νi−1) if
and only if g′i ∈ supp(νi−1). Therefore the terms ω(h)h[g1, . . . , gk] in ηi−1 such that g = h[g1, . . . , gk]
are in bijection with the terms ω(h)h[g′1, . . . , g

′
k] such that g′ = h[g′1, . . . , g

′
k]. So the fractional

operation ηi−1 assigns the same weight to g and g′.
The assumption that supp(ω) generates a symmetric n-ary operation t means that t can be

obtained by a finite number of superpositions of operations from supp(ω) and the set of all projec-

tions. Formally, define A0 = {e
(i)
j | 1 ≤ j ≤ i} to be the set of all projections and, for j ≥ 1, define

Aj = {g[h1, . . . , hq] | g ∈ supp(ω), h1, . . . , hq ∈ Aj′ , j
′ < j}. Then, t ∈ Ad, for some d ≥ 1. Fix any

such value of d and define Exp(g) to be the probability distribution on G induced by νd.
We now show that this operator is non-vanishing. Assume that g = {g1, . . . , gn}. Since

supp(ν0) = {g1, . . . , gn} and using the fact that supp(νi) contains all superpositions g[h1, . . . , hq],
g ∈ supp(ω), h1, . . . , hq ∈ supp(νi−1), it follows by induction that t[g1, . . . , gn] ∈ supp(νd). Note
that the operation t[g1, . . . , gn] is symmetric since for all π ∈ Sm, there is a permutation π′ ∈ Sn such
that t[g1, . . . , gn](xπ(1), . . . , xπ(m)) = t[gπ′(1), . . . , gπ′(n)](x1, . . . , xm) = t[g1, . . . , gn](x1, . . . , xm). Hence,
Exp(g) assigns non-zero probability to {t[g1, . . . , gn]} and since {t[g1, . . . , gn]} ∈ G∗, it follows that
Exp is non-vanishing.

It remains to show that Exp is valid for Γ, i.e., that (14) is satisfied. We claim that for each
i ≥ 1, we have

∑

g∈O(m)

νi(g)f(g(x
1, . . . , xm)) ≤

∑

g∈O(m)

νi−1(g)f(g(x
1, . . . , xm)), (19)

for all f ∈ Γ and x1, . . . , xm ∈ dom f . The inequality (14) then follows by induction on i, noting
that

∑

g∈O(m) ν0(g)f(g(x
1, . . . , xm)) =

∑

g∈g
1
|g|f(g(x

1, . . . , xm)) = f |g|(g(x1, . . . , xm)). To see why

(19) holds, compare the last two terms in the definition of νi:

∑

g∈O(m)

χi−1(g)f(g(x
1, . . . , xm)) =

1

K

∑

g1,...,gk∈supp(νi−1)

1

k

k
∑

i=1

f(gi(x
1, . . . , xm))

≥
1

K

∑

g1,...,gk∈supp(νi−1)

∑

h∈O(m)

ω(h)f(h[g1, . . . , gk](x
1, . . . , xm))

=
∑

h′∈O(m)

ηi−1(h
′)f(h′(x1, . . . , xm)).

Hence, Exp is valid, so Lemma 10 is applicable and shows that Γ admits a generalised fractional
polymorphism ρ∗ with support on singleton sets, each containing a symmetric m-ary operation.
Therefore, Γ admits the symmetric m-ary fractional polymorphism

∑

{g}∈G∗ ρ∗({g})χg .

22

7 Imposing idempotency

In this section we prove Lemma 7 which was used to find optimal solutions in Section 3.3. The
lemma states that for a symmetric fractional polymorphism, we can impose idempotency on a
sub-domain D′ of D while simultaneously ensuring that there is an optimal solution with labels
restricted to D′. The proof uses the Expansion Lemma.

Lemma 7 (restated). There exists a subset D′ ⊆ D such that if Γ admits an m-ary symmetric
fractional polymorphism, then it admits an m-ary symmetric fractional polymorphism ω such that,
for all g ∈ supp(ω),

1. g(x, x, . . . , x) ∈ D′ for all x ∈ D;
2. g(x, x, . . . , x) = x for all x ∈ D′.

Proof. Every language Γ admits the fractional polymorphism that assigns probability 1 to the unary
identity operation onD. Furthermore, assuming that Γ admits two unary fractional polymorphisms
ν1 and ν2, Γ also admits ν ′ = 1

2 (ν1 + ν2) with supp(ν ′) = supp(ν1) ∪ supp(ν2). Therefore, we can
let ν be a unary fractional polymorphism of Γ with inclusion-maximal support. Let h ∈ supp(ν)
be such that |h(D)| = min{|g(D)| | g ∈ supp(ν)} and define D′ = h(D).

Let G = {{g} | g ∈ O
(m)
sym } and let G∗ be the operations in G that additionally satisfy

(1) and (2). The expansion operatior Exp is defined as follows: Exp({g}) assigns probabilty
∑

h′∈supp(ν),g′=h′◦g ν(h
′) to the set {g′}. It is easy to see that Exp is valid and we show below

that it is non-vanishing. Therefore, Lemma 10 is applicable with ρ taken to be an m-ary symmetric
fractional polymorphism of Γ. Consequently, Γ admits ω =

∑

{g}∈G∗ ρ∗({g})χg .
We finish the proof by showing that Exp is non-vanishing. It is easy to see that Γ admits the

unary fractional polymorphism µ =
∑

h1∈supp(ν)
ν(h1)

∑

h2∈supp(ν)
ν(h2)χh1◦h2 . Since ν is inclusion-

maximal, it follows that h1◦h2 ∈ supp(µ) ⊆ supp(ν), so supp(ν) forms a monoid under composition.
Define G as {g|D′ | g ∈ supp(ν), g(D) = D′}. Then, G is a set of permutations of D′ that

contains the identity. Let g′1, g
′
2 ∈ G be two permutations in this set and let g1, g2 ∈ supp(ν) be

such that g1(D) = g2(D) = D′ and g′i = gi|D′ . Since supp(ν) forms a monoid under composition,
g1 ◦ g2 ∈ supp(ν). Therefore, g′1 ◦ g

′
2 = g1|D′ ◦ g2|D′ = (g1 ◦ g2)|D′ ∈ G, so G forms a group under

composition.
Let {g} ∈ G. By the diagonal of an operation f we mean the unary operation x 7→ f(x, . . . , x).

Note that the diagonal of h ◦ g acts as a permutation on D′. This permutation has an inverse in
G, so there exists an operation i ∈ supp(ν) such that i(D) = D′ and such that the restriction of i
to D′ is the inverse of the diagonal of h ◦ g. Hence {i ◦ h ◦ g} ∈ G∗. Since supp(ν) forms a monoid
under composition, i ◦ h ∈ supp(ν) so we conclude that {i ◦ h ◦ g} ∈ supp(Exp({g})).

8 Characterisation of finite-valued languages

The goal of this section is to prove the characterisation of finite-valued languages solved by BLP.
In particular, we prove the following theorem.

Theorem 4 (restated). Suppose that a finite-valued language Γ admits a symmetric fractional
polymorphism of arity m− 1 ≥ 2. Then Γ admits a symmetric fractional polymorphism of arity m.

Let us fix a symmetric fractional polymorphism ω : O(m−1) → R≥0 of Γ of arity m− 1. We will
use the letter s for operations in supp(ω) to emphasize that these operations are symmetric.

A symmetric fractional polymorphism of Γ of arity m will be constructed in two steps. The
first one will rely on the Expansion Lemma. Essentially, in this step we start with a fractional

23

polymorphism ρ0 = 1
m
(e

(m)
1 + . . . + e

(m)
m) and repeatedly modify it by applying the fractional

polymorphism ω. The example below demonstrates such modification for m = 3.

Example 7. Suppose that language Γ admits a binary symmetric fractional polymorphism ω. For
a function f ∈ Γ and labellings x, y, z ∈ dom f we can write

f3(x, y, z) =
1

3
f2(y, z) +

1

3
f2(x, z) +

1

3
f2(x, y)

≥
1

3

∑

s∈supp(ω)

ω(s)f(s(y, z)) +
1

3

∑

s∈supp(ω)

ω(s)f(s(x, z)) +
1

3

∑

s∈supp(ω)

ω(s)f(s(x, y))

=
∑

s∈supp(ω)

ω(s)f3(s(y, z), s(x, z), s(x, y))

This means that the following vector is a fractional polymorphism of Γ:

ρ1 =
∑

s∈supp(ω)

ω(s) ·
1

3
(χ

s◦(e
(3)
2 ,e

(3)
3)

+ χ
s◦(e

(3)
1 ,e

(3)
3)

+ χ
s◦(e

(3)
1 ,e

(3)
2)

)

We can then take one component 1
3(χg1 + χg2 + χg3) of the sum above and replace it with another

vector by applying ω in a similar way. This shows how we can derive new fractional polymorphisms
of Γ. Note that such polymorphisms will have a special structure, namely they will be a weighted
sum of vectors of the form 1

3(χg1 + χg2 + χg3) where g1, g2, g3 ∈ O(3). This means that we will

be working with the set G containing triplets of operations g = (g1, g2, g3) ∈ O(3→3). Recall that
in Section 5 a probability distribution over such G was called a fractional polymorphism of arity
3 → 3.

The example above can be generalised to other values of m ≥ 3 in a natural way. The output
of the first step (described in Section 8.1 below) will thus be a generalised fractional polymorphism
of Γ of arity m → m with certain properties that will be exploited in step 2.

In the second step (Sections 8.2-8.5) we will turn it into an m-ary symmetric fractional poly-
morphism of Γ using tools such as Farkas’ lemma. Note that in the second step the assumption
that Γ is finite-valued will be essential.

With this introduction, we now proceed with the formal proof of Theorem 4.

8.1 Proof of Theorem 4: Step 1

We start with some additional notation and definitions. We use [m] to denote set {1, . . . ,m}. Let
π ∈ Sm be a permutation of [m]. For a labelling α = (a1, . . . , am) ∈ Dm we define απ ∈ Dm as
follows: απ = (aπ(1), . . . , aπ(m)). For an operation g : Dm → D, let gπ : Dm → D be the following
operation:

gπ(α) = g(απ) (20)

For a symmetric operation s ∈ supp(ω) of arity m − 1 we introduce the following definitions.
For a labelling α = (a1, . . . , am) ∈ Dm let αs ∈ Dm be the labelling

αs = (s(α−1), . . . , s(α−m)) (21)

where α−i ∈ Dm−1 is the labelling obtained from α by removing the i-th element. For a mapping
g : Dm → Dm, let gs : Dm → Dm be the mapping

gs(α) = [g(α)]s (22a)

24

The last definition can also be expressed as

gs = (s ◦ g−1, . . . , s ◦ g−m) (22b)

where g−i : D
m → Dm−1 is the sequence of m − 1 operations obtained from g = (g1, . . . , gm) by

removing the i-th operation. We use gs1...sk to denote (. . . (gs1)...)sk .
Let 1 be the identity mapping Dm → Dm, and let G = {1s1...sk | s1, . . . , sk ∈ supp(ω), k ≥

0} ⊆ O(m→m) be the set of all mappings that can be obtained from 1 by applying operations from
supp(ω).

Graph on mappings Let us define a directed weighted graph (G, E,w) with the set of edges
E = {(g,gs) | g ∈ G, s ∈ supp(ω)} and positive weights w(g,h) =

∑

s∈supp(ω):h=gs ω(s) for (g,h) ∈
E. Clearly, we have

∑

h:(g,h)∈E

w(g,h) = 1 ∀g ∈ G (23)

The graph (G, E) can be decomposed into strongly connected components, yielding a directed
acyclic graph (DAG) on these components. We define Sinks(G, E) to be the set of those strongly con-
nected components H ⊆ G of (G, E) that are sinks of this DAG (i.e. have no outgoing edges). Any
DAG has at least one sink, therefore Sinks(G, E) is non-empty. We denote G∗ =

⋃

H∈Sinks(G,E)H ⊆
G.

By applying the Expansion Lemma to the sets of collections (G,G∗) defined above we can obtain
the following result.

Lemma 11. There exists a generalised fractional polymorphism ρ∗ of Γ of arity m → m with
supp(ρ∗) ⊆ G∗.

Proof. Clearly, Γ admits a least one generalised fractional polymorphism ρ with supp(ρ) ⊆ G,
namely ρ = χ1. It thus suffices to prove the existence of an expansion operator Exp which is valid
for Γ and non-vanishing with respect to (G,G∗).

Given a mapping g ∈ G, we define the probability distribution ρ = Exp(g) as follows:

ρ =
∑

s∈supp(ω)

ω(s)χgs

Let us check that it is indeed valid for Γ. Consider a function f ∈ Γ of arity n and labellings
x1, . . . , xm ∈ Dn. Denote (y1, . . . , ym) = g(x1, . . . , xm). Then,

∑

h∈supp(ρ)

ρ(h)fm(h(x1, . . . , xm)) =
∑

s∈supp(ω)

ω(s)fm(gs(x1, . . . , xm))

=
∑

s∈supp(ω)

ω(s)
1

m

∑

i∈[m]

f(s((y1, . . . , ym)−i))

=
1

m

∑

i∈[m]

∑

s∈supp(ω)

ω(s)f(s((y1, . . . , ym)−i))

≤
1

m

∑

i∈[m]

fm−1((y1, . . . , ym)−i))

= fm(y1, . . . , ym) = fm(g(x1, . . . , xm)).

Now let us show that the expansion operator Exp is non-vanishing. Observe that supp(Exp(g)) =
{h | (g,h) ∈ E} for any g ∈ G. Furthermore, it follows from the definition of G∗ that for any g ∈ G

there exists a path in (G, E) from g to some node g∗ ∈ G∗. These two facts imply the claim.

25

This concludes the first step of the proof. To summarize, we have constructed a generalised
fractional polymorphism ρ∗ of Γ with supp(ρ∗) ⊆ G∗. Note that operations in collections g ∈
supp(ρ∗) are not necessarily symmetric (otherwise this would be a contradiction to Example 5). In
the second step we will show that for finite-valued languages we can replace these collections with
p ◦ g, where p : Dm → Dm is a mapping that orders tuples α = (a1, . . . , am) ∈ Dm according to
some total order on D. More precisely, we will show that

fm(g(x1, . . . , xm)) = fm((p ◦ g)(x1, . . . , xm)) ∀g ∈ G∗, f ∈ Γ, x1, . . . , xm ∈ dom f

This will imply that vector ρ =
∑

g∈supp(ρ∗) ρ
∗(g)χp◦g is also a generalised fractional polymorphism

of Γ, which gives an m-ary symmetric fractional polymorphism of Γ, thus proving Theorem 4.

8.2 Proof of Theorem 4: Step 2

We start with the following observation.

Proposition 12. Every g = (g1, . . . , gm) ∈ G satisfies the following:

(gπ1 , . . . , g
π
m) = (gπ(1), . . . , gπ(m)) ∀ permutations π ∈ Sm (24)

Thus, permuting the arguments of gi(·, . . . , ·) gives a mapping which is also present in the sequence
g, possibly at a different position.

Proof. Checking that 1 satisfies (24) is straightforward. Let us prove that for any g : Dm → Dm

satisfying (24) and for any symmetric operation s ∈ O(m−1), the mapping gs also satisfies (24).
Consider i ∈ [m]. We need to show that (s ◦ g−i)

π = s ◦ g−π(i). For each α ∈ Dm we have

(s ◦ g−i)
π(α) = s ◦ g−i(α

π)

= s(g1(α
π), . . . , gi−1(α

π), gi+1(α
π), . . . , gm(απ))

= s(gπ1 (α), . . . , g
π
i−1(α), g

π
i+1(α), . . . , g

π
m(α))

= s(gπ(1)(α), . . . , gπ(i−1)(α), gπ(i+1)(α), . . . , gπ(m)(α)) = s ◦ g−π(i)(α)

For the next statement consider a connected component H ∈ Sinks(G, E), and denote I =
H× [m]. Below we use the Iverson bracket notation: [φ] = 1 if φ is true, and [φ] = 0 otherwise.

Lemma 13. (a) For any fixed distinct g′,g′′ ∈ H, there exists a vector λ ∈ RI
≥0 that satisfies

∑

h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj

m− 1
= cg ∀(g, i) ∈ I (25)

where cg = [g = g′]− [g = g′′].
(b) For any fixed distinct i′, i′′ ∈ [m], there exists a vector λ ∈ RI∪H

≥0 that satisfies

∑

h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj

m− 1
= ciλg ∀(g, i) ∈ I (26a)

∑

g∈H

λg = 1 (26b)

where ci = [i = i′]− [i = i′′].

26

A proof of this statement is given in Section 8.3, and is based on Farkas’ Lemma.
Now let us fix a function f ∈ Γ of arity n. Given labellings x1, . . . , xm, we define labellings xgi

for all (g, i) ∈ I via
(xg1, . . . , xgm) = g(x1, . . . , xm) (27)

Note that xgi is a function of (x1, . . . , xm); for brevity of notation, this dependence is not shown.
For a vector λ ∈ RH and an index i ∈ [m] we define the function F λ

i via

F λ
i (x

1, . . . , xm) =
∑

g∈H

λgf(x
gi) ∀x1, . . . , xm ∈ Dn (28)

Lemma 14. (a) It holds that fm(xg
′1, . . . , xg

′m) = fm(xg
′′1, . . . , xg

′′m) for all g′,g′′ ∈ H and
x1, . . . , xm ∈ Dn.
(b) There exists a probability distribution λ over H such that F λ

i′ (x
1, . . . , xm) = F λ

i′′(x
1, . . . , xm) for

all i′, i′′ ∈ [m] and x1, . . . , xm ∈ Dn.

A proof of Lemma 14 is given in section 8.4. The idea of the proof is as follows. Let us fix g′,g′′

and labellings x1, . . . , xm ∈ Dn. We will write down inequalities for the fractional polymorphism ω
applied to m− 1 labellings (xg1, . . . , xgm)−i with (g, i) ∈ I. We will then take a linear combination
of these inequalities with weights λgi ≥ 0 constructed in Lemma 13(a); this will give inequality
fm(xg

′1, . . . , xg
′m) ≤ fm(xg

′′1, . . . , xg
′′m). This inequality should hold for all choices of g′,g′′,

therefore it must actually be an equality. Part (b) of Lemma 14 will be proved in a similar way.
With Lemma 14 we will finally be able to prove the following (see Section 8.5).

Lemma 15. Let g∗ be a mapping in G∗ and p ∈ O(m→m) be any mapping such that p(α) is a
permutation of α for all α ∈ Dm. Denote

Rangen(g
∗) = {g∗(x1, . . . , xm) | x1, . . . , xm ∈ Dn}

For any function f ∈ Γ of arity n and any (x1, . . . , xm) ∈ Rangen(g
∗) it holds that fm(x1, . . . , xm) =

fm(p(x1, . . . , xm)).

This will imply Theorem 4. Indeed, we can construct an m-ary symmetric fractional polymor-
phism of Γ as follows. Take the vector ρ∗ from Lemma 11, take a mapping p ∈ O(m→m) that orders
tuples α = (a1, . . . , am) ∈ Dm according to some total order on D, and define the following vector.

ρ =
∑

g∈supp(ρ∗)

ρ∗(g)χp◦g

Then, Γ admits ρ since for any f ∈ Γ and for any labellings x1, . . . , xm ∈ Dn we have

∑

h∈supp(ρ)

ρ(h)fm(h(x1, . . . , xm)) =
∑

g∈supp(ρ∗)

ρ∗(g)fm(p(g(x1, . . . , xm)))

=
∑

g∈supp(ρ∗)

ρ∗(g)fm(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm)

Note, for any h = (h1, . . . , hm) ∈ supp(ρ), the operations h1, . . . , hm are symmetric. Indeed,
we have h = p ◦ g for some g ∈ G∗. If α ∈ Dm and π is a permutation of the set [m] then
h(απ) = p(g(απ)) = p([g(α)]π) = p(g(α)) = h(α) which implies the claim.

A symmetricm-ary fractional polymorphism of Γ is finally given by ωm =
∑

g∈G ρ(g)
∑

g∈g
1
m
χg.

It remains to prove Lemmas 13, 14 and 15.

27

8.3 Proof of Lemma 13

The lemma has two parts. For each part we will use a similar technique, namely we will assume
the opposite and then derive a contradiction by using Farkas’ lemma.

Lemma 13 (restated). (a) There exists a vector λ ∈ RI
≥0 that satisfies

∑

h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj

m− 1
= cg ∀(g, i) ∈ I (29)

where cg = [g = g′]− [g = g′′].

Proof. Suppose that the claim does not hold. By Farkas’ lemma [64] there exists a vector y ∈ RI

such that
∑

(g,i)∈I

cgygi < 0 (30a)

∑

h:(g,h)∈E

w(g,h)yhi −
∑

j∈[m]−{i}

ygj
m− 1

≥ 0 ∀(g, i) ∈ I (30b)

Denote ug =
∑

i∈[m] ygi. Summing inequalities (30b) over i ∈ [m] gives

∑

h:(g,h)∈E

w(g,h)uh − ug ≥ 0 ∀g ∈ H (31)

Denote H∗ = argmax{ug | g ∈ H}. From (23) and (31) we conclude that g ∈ H∗ implies h ∈ H∗

for all (g,h) ∈ E. Therefore, H∗ = H (since H is a strongly connected component of G).
We showed that ug = C for all g ∈ H where C ∈ R is some constant. But then the expression

on the LHS of (30a) equals C − C = 0, a contradiction.

Lemma 13 (restated). (b) There exists a vector λ ∈ RI∪H
≥0 that satisfies

∑

h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj

m− 1
= ciλg ∀(g, i) ∈ I (32a)

∑

g∈H

λg = 1 (32b)

where ci = [i = i′]− [i = i′′].

Proof. Suppose that the claim does not hold. By Farkas’ lemma [64] there exist a vector y ∈ RI

and a scalar z ∈ R such that

z < 0 (33a)

z −
∑

i∈[m]

ciygi ≥ 0 ∀g ∈ H (33b)

∑

h:(g,h)∈E

w(g,h)yhi −
∑

j∈[m]−{i}

ygj
m− 1

≥ 0 ∀(g, i) ∈ I (33c)

Denote ug =
∑

i∈[m] ygi. Using the same argument as in part (a) we conclude that ug = C for all
g ∈ H where C ∈ R is some constant. We can assume w.l.o.g. that this constant is zero. Indeed,

28

this can be achieved by subtracting C/m from values ygi for all (g, i) ∈ I with g ∈ H; it can be
checked (using eq. (23)) that this operation preserves inequalities (33). We thus have

∑

j∈[m]−{i}

ygj = −ygi ∀(g, i) ∈ I (34)

Substituting this into (33c) gives

∑

h:(g,h)∈E

w(g,h)yhi +
ygi

m− 1
≥ 0 ∀(g, i) ∈ I (35)

Consider k ∈ [m]. Summing (35) over i ∈ [m]− {k} and then using (34) yields

∑

h:(g,h)∈E

w(g,h)(−yhk) +
−ygk
m− 1

≥ 0 ∀(g, k) ∈ I (36)

Combining (35) and (36) gives

∑

h:(g,h)∈E

w(g,h)yhi +
ygi

m− 1
= 0 ∀(g, i) ∈ I (37)

Denote rg =
∑

i∈[m] ciygi for g ∈ H. Summing (37) over i ∈ [m] with appropriate coefficients gives

∑

h:(g,h)∈E

w(g,h)rh +
rg

m− 1
= 0 ∀g ∈ H (38)

From (33a) and (33b) we conclude that rg < 0 for all g ∈ H, and thus eq. (38) cannot hold, a
contradiction.

8.4 Proof of Lemma 14

Let us fix a function f ∈ Γ of arity n and a connected component H ∈ Sinks(G, E). In this
subsection we will prove the following.

Lemma 14 (equivalent statement). (a) Inequality

∑

i∈[m]

f(xg
′i)−

∑

i∈[m]

f(xg
′′i) ≤ 0 (39a)

holds for any distinct mappings g′,g′′ ∈ H and any x1, . . . , xm ∈ Dn.
(b) There exists a probability distribution λ over H such that

∑

g∈H

λgf(x
gi′)−

∑

g∈H

λgf(x
gi′′) ≤ 0 (39b)

for any distinct indices i′, i′′ ∈ [m] and any x1, . . . , xm ∈ Dn.

Since inequality (39a) holds for any pair of distinct mappings g′,g′′ ∈ H, we conclude that in
(39a) we actually must have an equality (and similarly for (39b)). Therefore, the statement above
is indeed equivalent to the original formulation of Lemma 14, which had equalities. (Note, we have
also moved terms from the right-hand side of the original equalities to the left-hand side with the
negative sign; for that we have used the fact the Γ is finite-valued.)

We will need the following observation.

29

Proposition 16. If h = gs where g ∈ H, s ∈ supp(ω) then xhi = s((xg1, . . . , xgm)−i) for i ∈ [m]
where (xg1, . . . , xgm)−i is the sequence of m− 1 labellings obtained by removing the i-th labelling.

Proof. Consider a coordinate v ∈ [n], and denote α = (x1v, . . . , x
m
v), β = (xg1v , . . . , xgmv), γ =

(xh1v , . . . , xhmv). By definition (27), β = g(α) and γ = h(α). Therefore, γ = gs(α) = [g(α)]s = βs.
In other words, the ith component of γ equals s(β−i), which is what we needed to show.

Consider m−1 labellings (xg1, . . . , xgm)−i for (g, i) ∈ I. Applying the polymorphism inequality
to these labellings gives

∑

s∈supp(ω)

ω(s)f(s((xg1, . . . , xgm)−i)) ≤
1

m− 1

∑

j∈[m]−{i}

f(xgj)

Let us multiply this inequality by weight λgi ≥ 0 (to be defined later), and apply Proposition 16
and the fact that w(g,h) =

∑

s∈supp(ω):h=gs ω(s):

λgi

∑

h:(g,h)∈E

w(g,h)f(xhi)−
λgi

m− 1

∑

j∈[m]−{i}

f(xgj) ≤ 0 ∀(g, i) ∈ I

Summing these inequalities over (g, i) ∈ I gives

∑

(g,i)∈I

∑

h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj

m− 1

 f(xgi) ≤ 0 (40)

Plugging weights λgi from Lemma 13(a) into 40 gives inequality (39a). This proves Lemma 14(a).
Similarly, we can plug weights λgi from Lemma 13(b) into (40) and get inequality (39b). How-

ever, we need an additional argument in order to establish Lemma 14(b) with this strategy. Indeed,
the vector λ in Lemma 13(b) depends on the pair (i′, i′′); let us denote it as λi′i′′ . We need to
show that these vectors can be chosen in such a way that for a given g ∈ H, the components λi′i′′

g

are the same for all pairs (i′, i′′). This can be done as follows. Take the vector λ12 constructed
in Lemma 13(b). For a pair of distinct indices (i′, i′′) 6= (1, 2) select a permutation π of [m] with
π(i′) = 1, π(i′′) = 2, and define vector λi′i′′ via

λi′i′′

g = λ12
g ∀g ∈ H λi′i′′

gi = λ12
gπ(i) ∀(g, i) ∈ I

Clearly, the vector λi′i′′ satisfies conditions of Lemma 13(b) for the pair (i′, i′′). Thus, Lemma 13(b)
indeed implies Lemma 14(b).

8.5 Proof of Lemma 15

In this subsection we prove the following.

Lemma 15 (restated). Let g∗ be a mapping in G∗ and p ∈ O(m→m) be any mapping such that
p(α) is a permutation of α for all α ∈ Dm. Denote

Rangen(g
∗) = {g∗(x1, . . . , xm) | x1, . . . , xm ∈ Dn}

For any function f ∈ Γ of arity n and any (x1, . . . , xm) ∈ Rangen(g
∗) it holds that fm(x1, . . . , xm) =

fm(p(x1, . . . , xm)).

30

Fix function f ∈ Γ of arity n, and let H ∈ Sinks(G, E) be the strongly connected component that
contains g∗. Let λ ∈ RH

≥0 be a vector constructed in Lemma 14(b). We denote F λ(x1, . . . , xm) =

F λ
i (x

1, . . . , xm) for i ∈ [m].

Lemma 17. The following transformation does not change F λ(x1, . . . , xm): pick a coordinate
v ∈ [n] and permute the labels (x1v, . . . , x

m
v).

Proof. It suffices to prove the claim for a permutation π which swaps the labels xiv and xjv for
i, j ∈ [m] (since any other permutation can be obtained by repeatedly applying such swaps). Since
m ≥ 3 there exists an index k ∈ [m] − {i, j}. We claim that for any g = (g1, . . . , gm) ∈ H, the
labelling xgk = gk(x

1, . . . , xm) is not affected by the swap above. Indeed, it suffices to check this
for coordinate v (for other coordinates the claim is trivial). Denoting the new labellings as x̃i and
x̃gk, we can write

x̃gkv = gk(x̃
1
v, . . . , x̃

m
v) = gπ(k)(x̃

1
v, . . . , x̃

m
v) // since π(k) = k

= gπk (x̃
1
v, . . . , x̃

m
v) // by Proposition 12

= gk(x̃
π(1)
v , . . . , x̃π(m)

v) = gk(x
1
v, . . . , x

m
v) = xgkv

Since the labellings xgk do not change, the value of F λ
k (x

1, . . . , xm) is also not affected by the swap
(see its definition in eq. (28).) The lemma is proved.

Lemma 18. If (x1, . . . , xm) ∈ Rangen(g
∗) then (x1, . . . , xm) = (xg1, . . . , xgm) for some g ∈ H.

Proof. It suffices to show that there exists g ∈ H with g ◦ g∗ = g∗.
Note that 1s1...sk ◦ h = hs1...sk for any s1, . . . , sk ∈ supp(ω) and h ∈ O(m→m), since for any

α ∈ Dm we have

[1s1...sk ◦ h](α) = 1
s1...sk(h(α)) = [1(h(α))]s1...sk = [h(α)]s1...sk = hs1...sk(α).

Therefore, conditions g ∈ G, h ∈ H imply that g ◦ h ∈ H (since g can be written as g = 1
s1...sk

and there are no edges leaving H).
Since H is strongly connected, there is a path in (G, E) from g∗ ◦ g∗ ∈ H to g∗ ∈ H, i.e.

[g∗ ◦ g∗]s1...sk = g∗ for some s1, . . . , sk ∈ supp(ω). Equivalently, h ◦ g∗ ◦ g∗ = g∗ where h = 1
s1...sk .

It can be checked that mapping g = h ◦ g∗ has the desired properties.

Lemma 19. If (x1, . . . , xm) ∈ Rangen(g
∗) then fm(x1, . . . , xm) = F λ(x1, . . . , xm).

Proof. From Theorem 14(a) and Lemma 18 we get that fm(xg1, . . . , xgm) = fm(x1, . . . , xm) for all
g ∈ H. Using this fact and the definition of F λ

i (·), we can write

F λ(x1, . . . , xm) =
1

m

∑

i∈[m]

F λ
i (x

1, . . . , xm) =
1

m

∑

g∈H

λg

∑

i∈[m]

f(xgi)

=
∑

g∈H

λgf
m(xg1, . . . , xgm) =

∑

g∈H

λgf
m(x1, . . . , xm) = fm(x1, . . . , xm)

The lemma follows.

We can finally establish Lemma 15. For labelings (x1, . . . , xm) ∈ Rangen(g
∗) we can write

fm(x1, . . . , xm)
(1)
= F λ(x1, . . . , xm)

(2)
= F λ(p(x1, . . . , xm))

(3)
= fm(p(x1, . . . , xm))

where equalities (1) and (3) follow from Lemma 19, and (2) follows from Lemma 17. Note, to be able
to apply Lemma 19 in (3), we need the condition p(x1, . . . , xm) ∈ Rangen(g

∗). The proof of this
condition follows mechanically from the assumption (x1, . . . , xm) ∈ Rangen(g

∗) and Proposition
12, and is omitted.

31

Acknowledgements

We thank Andrei Krokhin for helpful discussions and for communicating the result of Raghaven-
dra [62]. We also thank the anonymous referees for their diligent work on improving the presentation
of the paper.

References

[1] Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11), pages
301–310. IEEE Computer Society, 2011.

[2] Libor Barto and Marcin Kozik. Robust Satisfiability of Constraint Satisfaction Problems. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12), pages
931–940. ACM, 2012.

[3] Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local Consis-
tency Methods. Journal of the ACM, 61(1), 2014. Article No. 3.

[4] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5):1782–1802, 2009.

[5] Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM, 53(1):66–120, 2006.

[6] Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[7] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans-
actions on Computational Logic, 12(4), 2011. Article 24.

[8] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid Zosin. A linear programming
formulation and approximation algorithms for the metric labeling problem. SIAM Journal on
Discrete Mathematics, 18(3):608–625, 2004.

[9] David A. Cohen, Martin C. Cooper, Páid́ı Creed, Peter Jeavons, and Stanislav Živný. An alge-
braic theory of complexity for discrete optimisation. SIAM Journal on Computing, 42(5):915–
1939, 2013.

[10] David A. Cohen, Martin C. Cooper, and Peter G. Jeavons. An Algebraic Characterisation of
Complexity for Valued Constraints. In Proceedings of the 12th International Conference on
Principles and Practice of Constraint Programming (CP’06), volume 4204 of Lecture Notes in
Computer Science, pages 107–121. Springer, 2006.

[11] David A. Cohen, Martin C. Cooper, and Peter G. Jeavons. Generalising submodularity and
Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms.
Theoretical Computer Science, 401(1-3):36–51, 2008.

[12] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The Complexity
of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

32

[13] David A. Cohen, Páid́ı Creed, Peter G. Jeavons, and Stanislav Živný. An algebraic theory
of complexity for valued constraints: Establishing a Galois connection. In Proceedings of the
36th International Symposium on Mathematical Foundations of Computer Science (MFCS’11),
volume 6907 of Lecture Notes in Computer Science, pages 231–242. Springer, 2011.

[14] Martin C. Cooper. Minimization of Locally Defined Submodular Functions by Optimal Soft
Arc Consistency. Constraints, 13(4):437–458, 2008.

[15] Martin C. Cooper, Simon de Givry, Mart́ı Sánchez, Thomas Schiex, Matthias Zytnicki, and
Tomáš Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7–8):449–478, 2010.

[16] Martin C. Cooper and Thomas Schiex. Arc consistency for soft constraints. Artificial Intelli-
gence, 154(1-2):199–227, 2004.

[17] Yves Crama and Peter L. Hammer. Boolean Functions - Theory, Algorithms, and Applications.
Cambridge University Press, 2011.

[18] Páid́ı Creed and Stanislav Živný. On minimal weighted clones. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’11), volume
6876 of Lecture Notes in Computer Science, pages 210–224. Springer, 2011.

[19] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classification of Boolean
Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics
and Applications. SIAM, 2001.

[20] Vı́ctor Dalmau, Andrei Krokhin, and Rajsekar Manokaran. Towards a characterization of
constant-factor approximable Min CSPs. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’15). SIAM, 2015.

[21] Vı́ctor Dalmau and Andrei A. Krokhin. Robust Satisfiability for CSPs: Hardness and Algo-
rithmic Results. ACM Transactions on Computation Theory, 5(4), 2013. Article No. 15.

[22] Vı́ctor Dalmau and Justin Pearson. Set Functions and Width 1 Problems. In Proceedings of
the 5th International Conference on Constraint Programming (CP’99), volume 1713 of Lecture
Notes in Computer Science, pages 159–173. Springer, 1999.

[23] Vladimir Deineko, Peter Jonsson, Mikael Klasson, and Andrei Krokhin. The approximability
of Max CSP with fixed-value constraints. Journal of the ACM, 55(4), 2008. Article 16.

[24] Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approx-
imability of multiway partitioning problems. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’13), pages 306–325. SIAM, 2013.

[25] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

[26] Eugene C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM,
21(11):958–966, 1978.

[27] Satoru Fujishige and Satoru Iwata. Bisubmodular Function Minimization. SIAM Journal on
Discrete Mathematics, 19(4):1065–1073, 2005.

33

[28] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Tractable Optimization Problems
through Hypergraph-Based Structural Restrictions. In Proceedings of the 36th International
Colloquium on Automata, Languages and Programming (ICALP’09), Part II, volume 5556 of
Lecture Notes in Computer Science, pages 16–30. Springer, 2009.

[29] Igor Gridchyn and Vladimir Kolmogorov. Potts model, parametric maxflow and k-submodular
functions. In Proceedings of the 14th IEEE International Conference on Computer Vision
(ICCV’13), pages 2320–2327. IEEE, 2013.

[30] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1–24, 2007.

[31] Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Computer
Science Review, 2(3):143–163, 2008.

[32] Hiroshi Hirai. Discrete Convexity and Polynomial Solvability in Minimum 0-Extension Prob-
lems. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’13), pages 1770–1778. SIAM, 2013.

[33] Anna Huber and Vladimir Kolmogorov. Towards Minimizing k-Submodular Functions. In
Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12),
volume 7422 of Lecture Notes in Computer Science, pages 451–462. Springer, 2012.

[34] Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 43(3):1064–1084, 2014.

[35] Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023–3037, 2010.

[36] Satoru Iwata. Submodular Function Minimization. Mathematical Programming, 112(1):45–64,
2008.

[37] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. Journal of the ACM, 48(4):761–777, 2001.

[38] Peter Jeavons, Andrei Krokhin, and Stanislav Živný. The complexity of valued constraint
satisfaction. Bulletin of the European Association for Theoretical Computer Science (EATCS),
113:21–55, 2014.

[39] Peter G. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theoretical Com-
puter Science, 200(1-2):185–204, 1998.

[40] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527–548, 1997.

[41] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Lagrangian relaxation for
MAP estimation in graphical models. In Allerton Conference on Communication, Control and
Computing, pages 64–73, 2007.

[42] Peter Jonsson, Andrei A. Krokhin, and Fredrik Kuivinen. Hard constraint satisfaction prob-
lems have hard gaps at location 1. Theoretical Computer Science, 410(38-40):3856–3874, 2009.

34

[43] Peter Jonsson, Fredrik Kuivinen, and Johan Thapper. Min CSP on Four Elements: Moving
Beyond Submodularity. In Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming (CP’11), volume 6876 of Lecture Notes in Computer
Science, pages 438–453. Springer, 2011.

[44] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2001.

[45] Subhash Khot. On the unique games conjecture (invited survey). In Proceedings of the 25th
Annual IEEE Conference on Computational Complexity (CCC’10), pages 99–121. IEEE Com-
puter Society, 2010.

[46] Carleton L. Kingsford, Bernard Chazelle, and Mona Singh. Solving and analyzing side-chain
positioning problems using linear and integer programming. Bioinformatics, 21(7):1028–1039,
2005.

[47] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[48] Vladimir Kolmogorov. Submodularity on a tree: Unifying l♯-convex and bisubmodular func-
tions. In Proceedings of the 36th International Symposium on Mathematical Foundations of
Computer Science (MFCS’11), volume 6907 of Lecture Notes in Computer Science, pages 400–
411. Springer, 2011.

[49] Vladimir Kolmogorov. The power of linear programming for finite-valued CSPs: a constructive
characterization. In Proceedings of the 40th International Colloquium on Automata, Languages
and Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages 625–
636. Springer, 2013.

[50] Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs. Jour-
nal of the ACM, 60(2), 2013. Article 10.

[51] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual
decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):531–
552, 2011.

[52] Arie Koster, Stan P.M. van Hoesel, and Antoon W.J. Kolen. The partial constraint satisfaction
problem: Facets and lifting theorems. Operations Research Letters, 23(3–5):89–97, 1998.

[53] Andrei Krokhin and Benoit Larose. Maximizing Supermodular Functions on Product Lattices,
with Application to Maximum Constraint Satisfaction. SIAM Journal on Discrete Mathemat-
ics, 22(1):312–328, 2008.

[54] Fredrik Kuivinen. On the complexity of submodular function minimisation on diamonds.
Discrete Optimization, 8(3):459–477, 2011.

[55] Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear pro-
gramming, width-1 CSPs, and robust satisfaction. In Proceedings of the 3rd Innovations in
Theoretical Computer Science (ITCS’12), pages 484–495. ACM, 2012.

[56] Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.

35

[57] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99–118,
1977.

[58] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM, 60(6), 2013. Article No. 42.

[59] S. Thomas McCormick and Satoru Fujishige. Strongly polynomial and fully combinatorial
algorithms for bisubmodular function minimization. Mathematical Programming, 122(1):87–
120, 2010.

[60] Ugo Montanari. Networks of Constraints: Fundamental properties and applications to picture
processing. Information Sciences, 7:95–132, 1974.

[61] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08), pages
245–254. ACM, 2008.

[62] Prasad Raghavendra. Approximating NP-hard Problems: Efficient Algorithms and their Lim-
its. PhD Thesis, 2009.

[63] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.

[64] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
1986.

[65] Alexander Schrijver. A Combinatorial Algorithm Minimizing Submodular Functions in
Strongly Polynomial Time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[66] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal of Discrete
Mathematics, 3(3):411–430, 1990.

[67] Michail I. Shlezinger. Syntactic analysis of two-dimensional visual signals in noisy conditions.
Cybernetics and Systems Analysis, 12(4):612–628, 1976. Translation from Russian.

[68] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to dual decomposition for
inference. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for
Machine Learning. MIT Press, 2011.

[69] Johan Thapper and Stanislav Živný. The power of linear programming for valued CSPs.
In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’12), pages 669–678. IEEE, 2012.

[70] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Proceedings
of the 45th ACM Symposium on the Theory of Computing (STOC’13), pages 695–704. ACM,
2013.

[71] Hannes Uppman. The Complexity of Three-Element Min-Sol and Conservative Min-Cost-
Hom. In Proceedings of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages 804–815.
Springer, 2013.

36

[72] Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 1762–1781.
SIAM, 2014.

[73] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on trees: message
passing and linear programming. IEEE Transactions on Information Theory, 51(11):3697–
3717, 2005.

[74] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[75] Tomáš Werner. A Linear Programming Approach to Max-Sum Problem: A Review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–1179, 2007.

[76] Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive Tech-
nologies. Springer, 2012.

[77] Stanislav Živný, David A. Cohen, and Peter G. Jeavons. The Expressive Power of Binary
Submodular Functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.

A STP Multimorphisms Imply Submodularity

In this section, we consider symmetric tournament pair (STP) multimorphisms [11] mentioned in
Section 3.2.

Definition 4. (a) A pair of operations 〈⊓,⊔〉 with ⊓,⊔ : D2 → D is called a symmetric tournament
pair (STP) if

a ⊓ b = b ⊓ a, a ⊔ b = b ⊔ a ∀a, b ∈ D (commutativity) (41a)

{a ⊓ b, a ⊔ b} = {a, b} ∀a, b ∈ D (conservativity) (41b)

(b) Pair 〈⊓,⊔〉 is called a submodularity operation if there exists a total order on D for which
a ⊓ b = min{a, b}, a ⊔ b = max{a, b} for all a, b ∈ D.
(c) Language Γ admits 〈⊓,⊔〉 (or 〈⊓,⊔〉 is a multimorphism of Γ) if every function f ∈ Γ of arity
n satisfies

f(x ⊓ y) + f(x ⊔ y) ≤ f(x) + f(y) ∀x, y ∈ Dn

It has been shown in [11] that if Γ admits an STP multimorphism then VCSP(Γ) can be solved
in polynomial time. STP multimorphisms also appeared in the dichotomy result of [50]:

Theorem 20. Suppose a finite-valued language Γ is conservative, i.e. it contains all possible unary
cost functions u : D → {0, 1}. Then Γ either admits an STP multimorphism or it is NP-hard.

In this paper we prove the following.

Theorem 21. If a finite-valued language Γ admits an STP multimorphism then it also admits a
submodularity multimorphism.

This fact is already known; in particular, footnote 2 in [50] mentions that this result is implicitly
contained in [11], and sketches a proof strategy. However, to our knowledge a formal proof has
never appeared in the literature. This paper fills this gap. Our proof is different from the one
suggested in [50], and inspired some of the proof techniques used in the main part of this paper.

37

A.1 Proof of Theorem 21

Consider a directed graph G = (D,E). We say that G is a tournament if for each pair of dis-
tinct labels a, b ∈ D exactly one of the edges (a, b), (b, a) belongs to E. We define a one-to-one
correspondence between STP multimorphisms 〈⊓,⊔〉 and tournaments G = (D,E) as follows:

(a, b) ∈ E ⇔ (a ⊓ b, a ⊔ b) = (a, b) ∀a, b ∈ D, a 6= b

It can be seen that 〈⊓,⊔〉 is a submodularity multimorphism if and only if the corresponding graph
G is acyclic.

Lemma 22. Suppose a finite-valued language Γ admits an STP multimorphism 〈⊓,⊔〉 correspond-
ing to a tournament G = (D,E), and suppose that G has a 3-cycle: (a, b), (b, c), (c, a) ∈ E. Let
Ĝ be the graph obtained from G by reversing the orientation of edge (a, b), and let 〈⊓̂, ⊔̂〉 be the
corresponding STP multimorphism. Then Γ admits 〈⊓̂, ⊔̂〉.

Proof. Let 〈∧,∨〉 be the following multimorphism:

(x ∧ y, x ∨ y) =

{

(x, y) if (x, y) ∈ {(a, b), (b, a)}

(x ⊓ y, x ⊔ y) if (x, y) /∈ {(a, b), (b, a)}

First, we will prove that Γ admits 〈∧,∨〉 (step 1), and then prove that Γ admits 〈⊓̂, ⊔̂〉 (step 2).
We fix below function f ∈ Γ of arity n and labellings x, y ∈ Dn.
Step 1 Let us define labellings x′, y′ ∈ Dn via

(x′v, y
′
v) =

{

(xv, xv ⊓ yv) if (xv , yv) 6= (b, a)

(c, c) if (xv , yv) = (b, a)
∀v ∈ [n]

It can be checked that the following identities hold:

x′ ⊓ y = y′ x ⊔ y′ = x′ (42a)

x ⊓ y′ = x ∧ y x′ ⊔ y = x ∨ y (42b)

Let us write multimorphism inequalities for pairs (x′, y) and (x, y′):

f(x′ ⊓ y) + f(x′ ⊔ y) ≤ f(x′) + f(y) (43a)

f(x ⊓ y′) + f(x ⊔ y′) ≤ f(x) + f(y′) (43b)

Summing (43a) and (43b), cancelling terms using (42a), and then substituting expressions us-
ing (42b) gives

f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) (44)

Step 2 Let us define labellings x′, y′ ∈ Dn via

(x′v, y
′
v) =

{

(xv ∧ yv, yv) if (xv, yv) 6= (a, b)

(c, c) if (xv, yv) = (a, b)
∀v ∈ [n]

It can be checked that the following identities hold:

x′ ∨ y = y′ x ∧ y′ = x′ (45a)

x ∨ y′ = x ⊔̂ y x′ ∧ y = x ⊓̂ y (45b)

38

Let us write multimorphism inequalities for pairs (x′, y) and (x, y′):

f(x′ ∧ y) + f(x′ ∨ y) ≤ f(x′) + f(y) (46a)

f(x ∧ y′) + f(x ∨ y′) ≤ f(x) + f(y′) (46b)

Summing (46a) and (46b), cancelling terms using (45a), and then substituting expressions us-
ing (45b) gives

f(x ⊓̂ y) + f(x ⊔̂ y) ≤ f(x) + f(y) (47)

We call the operation of reversing the orientation of edge (a, b) ∈ E in a graph G = (D,E) a
valid flip if (a, b) belongs to a 3-cycle. To prove Theorem 21, it thus suffices to show the following:

• For any tournament G there exists a sequence of valid flips that makes it acyclic.

Such sequence can be constructed as follows: (1) start with a subset B ⊆ D with |B| = 3; (2)
perform valid flips in G[B] to make it acyclic, where G[B] = (B,E[B]) is the subgraph of G
induced by B; (3) if B 6= D, add a vertex c ∈ D − B to B and repeat step 2. The lemma below
shows how to implement step 2.

Lemma 23. Suppose that G = (B′, E) is a tournament, B′ = B ∪ {c} with c /∈ B and subgraph
G[B] is acyclic. Then there exists a sequence of valid flips that makes G acyclic.

Proof. Suppose that G has a cycle C, then it must pass through c (since G[B] is acyclic): C = . . .→
b→ c→a→ Since there is a path from a to b in G[B], we must have (a, b) ∈ E (again, due to
acyclicity of G[B]). Thus, c→a→b→c is a 3-cycle in G.

Let us repeat the following procedure while possible: pick such cycle and flip edge (c, a) to (a, c).
This operation decreases the number of edges in G coming out of c. Therefore, it must terminate
after a finite number of steps and yield an acyclic graph G.

39

	1 Introduction
	1.1 Constraint Satisfaction
	1.2 Valued Constraint Satisfaction
	1.3 Contributions
	1.4 Follow-up work
	1.5 Combinatorial Optimisation

	2 Background
	2.1 Valued CSP
	2.2 The basic LP relaxation
	2.3 Fractional polymorphisms

	3 Results
	3.1 The power of BLP
	3.2 Examples of languages solved by BLP
	3.3 Finding a solution

	4 Characterisation of general-valued languages
	5 Constructing new fractional polymorphisms
	5.1 Generalised fractional polymorphisms
	5.2 Constructing generalised fractional polymorphisms
	5.3 Constructive proof of the Expansion Lemma
	5.4 Non-constructive proof of the Expansion Lemma

	6 Second characterisation of general-valued languages
	7 Imposing idempotency
	8 Characterisation of finite-valued languages
	8.1 Proof of Theorem ??: Step 1
	8.2 Proof of Theorem ??: Step 2
	8.3 Proof of Lemma ??
	8.4 Proof of Lemma ??
	8.5 Proof of Lemma ??

	A STP Multimorphisms Imply Submodularity
	A.1 Proof of Theorem ??

