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3 On sparse interpolation and the design of

deterministic interpolation points

Zhiqiang Xu ∗ Tao Zhou †

Abstract

In this paper, we build up a framework for sparse interpolation. We

first investigate the theoretical limit of the number of unisolvent points for

sparse interpolation under a general setting and try to answer some basic

questions of this topic. We also explore the relation between classical

interpolation and sparse interpolation. We second consider the design

of the interpolation points for the s-sparse functions in high dimensional

Chebyshev bases, for which the possible applications include uncertainty

quantification, numerically solving stochastic or parametric PDEs and

compressed sensing. Unlike the traditional random sampling method, we

present in this paper a deterministic method to produce the interpolation

points, and show its performance with ℓ1 minimization by analyzing the

mutual incoherence of the interpolation matrix. Numerical experiments

show that the deterministic points have a similar performance with that

of the random points.

1 Introduction

In signal processing, computer algebra, as well as in uncertainty quantification,
there are increasing needs to efficiently recover a function from a rather small
set of function values, where the function has sparse representations in some
bases. We state the problem as follows. Assume that Ω ⊂ Rd and that {Bj}j∈Λ

is a set of N complex-valued functions defined on Ω, where Λ is an index set
with N := #Λ. A function

f =
∑

j∈Λ

cjBj

is called s-sparse with respect to {Bj}j∈Λ if at most s ≪ N coefficients of
{cj}j∈Λ are nonzero. We denote by Us the set of s-sparse functions with respect
to {Bj}j∈Λ, i.e.,

Us := Us({Bj}j∈Λ) := {f =
∑

j∈T

cjBj : T ⊂ Λ,#T ≤ s}. (1)
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The s-sparse interpolation with the functions {Bj}j∈Λ and the domain Ω is to
reconstruct f ∈ Us from m samples {xj , f(xj)}mj=1 where {x1, . . . , xm} ⊂ Ω are
m distinct points. In other words, one wants to find an index set T0 ⊂ Λ with
#T0 ≤ s and coefficients {cj}j∈T0 , such that

∑

j∈T0

cjBj(xj) = f(xj), j = 1, . . . ,m. (2)

The point set {x1, . . . , xm} is said to be unisolvent if

f(xj) = g(xj), j = 1, . . . ,m

implies f ≡ g whenever f, g ∈ Us.

1.1 Related work

Compressed sensing presents a theoretical framework for investigating the s-
sparse interpolation. Let A ∈ Cm×N be the interpolation matrix, namely,

A := [Bj(xt)]t=1,...,m, j∈Λ (3)

and set
b := [f(x1), . . . , f(xm)]⊤.

The s-sparse interpolation is equivalent to find a s-sparse vector in the following
set

{c ∈ CN : Ac = b}.
Based on compressed sensing theory, one can use the ℓ1 minimization to find
the sparse solution to Ac = b provided that A satisfies the RIP condition [7].
In fact, let

(P1) c# := argmin
c∈CN

{‖c‖1 subject to Ac = b}. (4)

Then one can reconstruct f =
∑

j c
#
j Bj successfully in many settings for A.

Thus, we can employ the methods in compressed sensing to investigate the
s-sparse interpolation.

We next review results for some special bases {Bj}j∈Λ and Ω, which are
obtained using techniques developed in compressed sensing. When Bj(t) =
exp(2πijt) (where i2 = −1) and Ω = [0, 1], the s-sparse interpolation is reduced
to the recovery of sparse trigonometric polynomials, which is an active research
topic in recent years [15–17, 21, 27]. In this direction, it is shown that one can
recover f ∈ Us via ℓ1 minimization from {xj , f(xj)}mj=1 with high probability

when x1, . . . , xm are m ≍ s(logN)4 random points in [0, 1]. In the area of un-
certainty quantification [12,18,25], one is interested in the cases where {Bj}j∈Λ

are orthogonal polynomials, such as Legendre polynomials and Chebyshev poly-
nomials etc. So, in [22], one investigates the case with Bj(t) being the jth order
Legendre polynomials defined on Ω = [−1, 1], and shows that m ≍ s log4 N
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sampling points (which are chosen randomly according to the Chebyshev mea-
sure) are enough to recover s-sparse Legendre polynomials with high probability.
In [28], this result is extended to the high dimensional cases with Bj being the
tensor product of one dimensional Legendre polynomials. Some key properties,
such as the RIP property of the interpolation matrix, are also investigated in
the above literatures. We remark that in the above works, the interpolation
points are all chosen by a random method. Deterministic sampling is also in-
vestigated for sparse trigonometric polynomials by taking the advantage of the
structure of exp(2πijt) [15,17,19]. In this direction, the classic Prony method is
also extended to investigate the sparse interpolation with the one dimensional
Chebyshev polynomial bases [20].

1.2 Our contribution

The aim of this paper is twofold. Despite many literatures on sparse interpo-
lation, there is little work on the theoretical limit of the number of unisolvent
points. We first provide a framework of sparse interpolation. Particularly, given
{Bj}j∈Λ and Ω, we are interested in the following problems:

Problem 1. What is the minimumm for which there exists a point set {x1, . . . , xm}
such that it is unisolvent for the s-sparse interpolation?

Problem 2. What is the minimum m for which any point set {x1, . . . , xm} with
m distinct points is unisolvent for the s-sparse interpolation?

In this work, we shall employ the results in classical approximation theory to
investigate Problem 1, 2, and bridge a gap between the s-sparse interpolation
and the classical interpolation.

Our second aim is to design a point set {x1, . . . , xm} such that one can
recover efficiently the s-sparse function f from {(xj , f(xj))}mj=1. We state the
problem as follows:

Problem 3. How to choose a point set {x1, . . . , xm} such that one can recover
f ∈ Us efficiently from {(xj , f(xj))}mj=1?

Our original motivation for this work was the recovery of sparse multivariate
Chebyshev polynomials which is raised in uncertainty quantification [9, 12, 28].
So, for Problem 3, we focus on the case where {Bj}j∈Λ are high dimensional
Chebyshev polynomials. Motivated by the results in compressed sensing [27], we
present a deterministic method to produce the points x1, . . . , xm, and show that
the mutual incoherence constant of the interpolation matrix associated with the
deterministic points is small. Hence, one can recover the high dimensional s-
sparse Chebyshev polynomials by ℓ1 minimization (see Theorem 4.3, 4.6). The
numerical experiments show that the performance of our method is similar with
that of the random one. We believe that our deterministic points have potential
applications in the context of uncertainty quantification, especially in numerical
solving stochastic PDEs. The last, but not the least, the interpolation points
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presented in this paper are in an analytic form and hence they are easy to be
produced.

This rest of the paper is organized as follows. Section 2 provides some
necessary concepts and results to be used in our investigation. We study the
number of unisolvent points in Section 3. In Section 4, we present deterministic
points for the s-sparse interpolation in high dimensional Chebyshev bases and
analyze its recovery ability. In the last section, numerical experiments are given
to show the efficiency of the deterministic points.

2 Preliminaries

In this section, we introduce some preliminaries which will play important roles
in the following sections.

Chebyshev systems. A system of functions {f1, . . . , fm} defined on Ω ⊂
Rd is called a Chebyshev system if the determinant

det[fj(xk)]1≤k,j≤m

does not vanish for any m distinct points {x1, . . . , xm} ⊂ Ω. Chebyshev sys-
tems are important in many areas [8], such as approximation theory, moment
problems, etc.

Mutual Incoherence Constant. We suppose that A is a m ×N matrix
with column vectors A1, . . . ,AN . The mutual incoherence constant of A is
defined as

µ(A) := max
k 6=j

|〈Ak,Aj〉|
‖Ak‖2 · ‖Aj‖2

. (5)

Assume that c0 is a s-sparse vector in CN . Then, if

µ <
1

2s− 1
, (6)

the solution to (P1) with b = Ac0 is exactly c0, i.e.,

c0 = argmin
c∈CN

{‖c‖1 subject to Ac = Ac0}.

The result was first presented in [11] for the case with A being the union of
two orthogonal matrices, and was extended to general matrices by Fuchs [13]
and Gribonval & Nielsen [14]. In [3], Cai, Wang and Xu show that µ < 1

2s−1 is
sufficient for stably approximating c in the noisy case.

Restricted Isometry Property. (cf. [6])We say thatA ∈ Cm×N satisfies
the Restricted Isometry Property (RIP) of order s with constant δs ∈ [0, 1) if

(1− δs)‖c‖22 ≤ ‖Ac‖22 ≤ (1 + δs)‖c‖22 (7)

holds for all vectors c ∈ CN with ‖c‖0 ≤ s, where ‖c‖0 denotes the number of
nonzero entries of c. In fact, (7) is equivalent to require that the Grammian
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matrices A⊤
TAT has all of its eigenvalues in [1−δs, 1+δs] for all T with #T ≤ s,

where AT denotes the submatrix of A whose columns are those with indexes in
T .

In [5,7], it is shown that, with certain RIP constants δs, such as δs < 1/3 [4],
the vector c0 ∈ CN can be recovered in the following sense

‖c# − c0‖2 .
σs,1(c0)√

s
, (8)

where c# is given by the ℓ1-minimization problem (P1) with the vector b = Ac0
for the given c0 ∈ CN and

σs,1(c0) := min
c∈CN ,‖c‖0≤s

‖c0 − c‖1. (9)

Weil’s Exponential Sum Theorem (cf. [24]). Suppose that p is a prime
number. Let f(x) = m1x + m2x

2 + · · · + mdx
d, and assume that there is a

j, 1 ≤ j ≤ d, such that p ∤ mj , then
∣
∣
∣
∣
∣

p
∑

x=1

e
2πif(x)

p

∣
∣
∣
∣
∣
≤ (d− 1)

√
p.

High Dimensional Chebyshev Polynomials. We denote by φnj
(xj) the

one dimensional njth order Chebyshev polynomial with respect to the variable
xj , i.e.,

φnj
(xj) = cos(nj · arcos(xj)), xj ∈ [−1, 1].

High dimensional Chebyshev polynomials can be constructed by tensorizing the
one-dimensional polynomials. To do this, let us first define the following multi-
index:

n = (n1, . . . , nd) ∈ Nd, with |n| = n1 + · · ·+ nd.

With such definitions, every d-dimensional Chebyshev polynomial in multi-
variate x = (x1, x2, . . . , xd) can be written as

Φn(x) =

d∏

j=1

φnj
(xj).

Given q, d ∈ N, we define the following index sets

Λq,d
P

:= {n = (n1, . . . , nd) ∈ Nd : max
j=1,...,d

nj ≤ q},

and
Λq,d
D

:= {n = (n1, . . . , nd) ∈ Nd : |n| ≤ q}.
Under the above notions, the traditional full tensor product (TP) space yields

Pd
q := span

{
Φn(x) : n ∈ Λq,d

P

}
.
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That is, one requires in Pd
q that the polynomial degree in each variable less than

or equal to q. A simple observation is that the dimension of Pd
q is

dim(Pd
q) = #Λq,d

P
= (q + 1)d.

Note that when d ≫ 1 the dimension of TP polynomial spaces grows very fast
with the polynomial degree q, which is the so-called curse of dimensionality.
Thus, the TP spaces are rarely used in practice provided d ≥ 5 (see also [28]).
Therefore, when d is large, the following total degree (TD) polynomial space is
often used instead of the TP space [18, 28]

Dd
q := span

{
Φn(x) : n ∈ Λq,d

D

}
.

The dimension of Dd
q is

dim(Dd
q) = #Λq,d

D
=

(
q + d

d

)

.

Note that, when d ≥ 2,

(
q + d

d

)

=
( q

d
+ 1

)

·
(

q

d− 1
+ 1

)

· · · (q + 1) < (q + 1)d.

Hence, the growth of the dimension of Dd
q is much slower than that of Pd

q .

3 The number of unisolvent points for sparse

interpolation

In this section, we focus on the theoretical limit of the number of unisolvent
points for sparse interpolation. Particularly, we try to give solutions to Prob-
lem 1, 2. Based on compressed sensing theory, the point set {x1, . . . , xm} is
unisolvent for the s-sparse interpolation if and only if any 2s columns of the
interpolation matrix A ∈ Cm×N are linearly independent. And hence, a lower
bound is m ≥ 2s. In Section 3.1, we investigate Problem 1 and show that the
lower bound 2s is sharp provided that any 2s functions in {Bj}j∈Λ are strongly
linearly independent. We study Problem 2 in Section 3.2 and show that any 2s
distinct points in Ω are unisolvent if any 2s functions in {Bj}Nj=1 are a Cheby-
shev system.

3.1 The lower bound 2s is sharp

To this end, we first introduce the definition of strongly linearly independent on
Ω0 ⊂ Ω. Given c = (c1, . . . , ck) ∈ Ck and k functions f1, . . . , fk defined on Ω0,
set

Ic := Ic(Ω0, f1, . . . , fk) := {x ∈ Ω0 :
k∑

t=1

ctft(x) = 0}
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and denote by λ∗
d the d-dimensional Lebesgue outer measure. We say that the

k functions f1, . . . , fk are strongly linearly independent on Ω0 if

λ∗
d(Ic) > 0

implies that
c1 = c2 = · · · = ck = 0.

To state the following lemma, we view

x = (x1, . . . , xk) ∈ Ω0 × · · · × Ω0
︸ ︷︷ ︸

k

= Ωk
0

as a point in Rd·k. Then, we have

Lemma 3.1. The following properties are equivalent:

(i) The functions f1, . . . , fk are strongly linearly independent on Ω0.

(ii) For x := (x1, . . . , xk) ∈ Ωk
0 , set

S := {x := (x1, . . . , xk) ∈ Ωk
0 : det(Ax) = 0} ⊂ Rd·k,

where
Ax := [ft(xj)]j=1,...,k; t=1,...,k.

Then
λ∗
d·k(S) = 0.

Proof. We first show (i) implies (ii). Suppose (ii) false, i.e.,

λ∗
d·k(S) > 0,

and we shall derive a contradiction. To state conveniently, we denote by Aj the
jth row of Ax. Let us keep in the mind that Aj only depends on the xj . Then
there exists a set S ′ ⊂ S with λ∗

d·k(S
′) > 0 and an integer, say k, such that

when x ∈ S ′, we have

Ak ∈ span{A1, . . . ,Ak−1}.
Hence, the solution to

Axc = 0 (10)

is independent with xk. Note that λ∗
d·k(S ′) > 0, and thus there exists a fixed

(x′
1, . . . , x

′
k−1) ∈ Ωk−1

0 such that

λ∗
d({xk ∈ Ω0 : (x′

1, . . . , x
′
k−1, xk) ∈ S ′}) > 0. (11)

We choose x := (x′
1, . . . , x

′
k−1, xk) in (10) and take a non-zero solution, say c# =

(c#1 , . . . , c
#
k ), which is independent with xk and only depends on x′

1, . . . , x
′
k−1.

A simple observation is that, for any xk with (x′
1, . . . , x

′
k−1, xk) ∈ S ′ one has

k∑

t=1

c#t ft(xk) = 0,
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which implies that

{xk ∈ Ω0 : (x′
1, . . . , x

′
k−1, xk) ∈ S ′} ⊂ Ic# . (12)

Combining (11) and (12), we have

λ∗
d(Ic#) > 0,

where c# is a non-zero vector. This leads to a contradiction by the definition
of strongly linearly independent.

We next show (ii) implies (i). Suppose (i) false, namely, there exists a non-
zero vector c such that

λ∗
d(Ic) > 0.

A simple observation is that

Ik
c = Ic × · · · × Ic

︸ ︷︷ ︸

k

⊂ S,

which implies that
λ∗
d·k(S) ≥ λ∗

d·k(Ik
c
) > 0.

This again leads to a contradiction.

We are now ready to give the following theorem

Theorem 3.2. Suppose that s ≤ N/2 and that there exits Ω0 ⊂ Ω ⊂ Rd such
that any 2s functions in {Bj}j∈Λ are strongly linearly independent on Ω0. Then
there exist 2s points {x1, . . . , x2s} ⊂ Ω0 such that they are unisolvent for the
s-sparse interpolation with the basis functions {Bj}j∈Λ and the domain Ω.

Proof. We consider the interpolation matrix

A = [Bj(xk)]1≤k≤2s, j∈Λ.

To this end, we only need prove that det(AT ) 6= 0 for any T ⊂ Λ with #T = 2s,
where AT denotes the submatrix of A whose columns are those with indexes in
T . Set

ST := {(x1, . . . , x2s) ∈ Ω2s
0 : det(AT ) = 0}.

Since {Bj}j∈T are strongly linearly independent on Ω0, by Lemma 3.1, we have

λ∗
2·d·s(ST ) = 0.

To state conveniently, set

S :=
⋃

T⊂{1,...,N}
#T=2s

ST .

Noting that λ∗
2·d·s(S) = 0, we have

λ∗
2·d·s

(
Ω0 \ S

)
> 0,
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which implies that Ω0 \ S is a nonempty set. Therefore, we can choose

{x1, . . . , x2s} ⊂ Ω0 \ S,

such that
det(AT ) 6= 0, for all T ⊂ {1, . . . , N}, #T = 2s,

and this completes the proof.

Remark 3.3. Suppose that Ω = [−1, 1] and Bj is a polynomial with degree j on
Ω. Then, a simple observation is that any 2s functions in {Bj}Nj=1 are strongly
linearly independent on Ω. Then, Theorem 3.2 implies that there are 2s points
{x1, . . . , x2s} ⊂ Ω such that they are unisolvent for the s-sparse interpolation
with the basis functions {Bj}Nj=1 and the domain Ω. In particular, if one takes
Bj as the one dimensional Chebyshev polynomial with degree j, the result implies
that 2s points can be used to theoretically recover s-sparse Chebyshev polynomial,
which implies the result in [20].

We next show that, without the condition of strongly linearly independent
on some Ω0, it is possible that any 2s points are not unisolvent. We consider the
sparse interpolation for B-spline basis which is useful in signal processing [23].
The first order B-spline on the interval [j, j + 1) is defined by

B1,j(x) :=

{

1, j ≤ x < j + 1,

0, otherwise.

Then we consider the s-sparse interpolation for the basis functions {B1,j}Nj=1

and the domain Ω = [1, N + 1]. A simple argument shows that {B1,j}Nj=1 are
not strongly linearly independent on any Ω0 ⊂ Ω. Then, we have

Proposition 3.4. Suppose s = 1. If the points {x1, . . . , xm} ⊂ Ω are unisolvent
for the s-sparse interpolation with the basis {B1,1, . . . , B1,N} and the domain
Ω = [1, N + 1]. Then m ≥ N .

Proof. To this end, we assume m < N . Then there exists j0 ∈ [1, N ] ∩ Z, such
that

[j0, j0 + 1) ∩ {x1, . . . , xm} = ∅.
Thus, B1,j0(xt) = 0 for t = 1, . . . ,m. Therefore,

B1,j0(xt) = 2B1,j0(xt) = 0, for any 1 ≤ t ≤ m.

Note that B1,j0 , 2B1,j0 ∈ U1 (see definition (1)) and B1,j0 6= 2B1,j0 . Hence,
{x1, . . . , xm} is not unisolvent. As a result, m ≥ N .
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3.2 Sparse interpolation for Chebyshev systems

We now turn to Problem 2. We shall prove that any 2s distinct points in Ω
are unisolvent for the s-sparse interpolation provided that any 2s functions in
{Bj}Nj=1 is Chebyshev system.

Theorem 3.5. The following properties are equivalent:

(i) Suppose that f, g ∈ Us and x1, . . . , x2s are any 2s distinct points in Ω. If

f(xj) = g(xj), j = 1, . . . , 2s,

then f ≡ g.

(ii) For any index set T with #T = 2s, the function system {Bj}j∈T is a
Chebyshev system.

Proof. We first show (i) implies (ii). Suppose (ii) is false, namely, there exists an
index set T = {j1, . . . , j2s} ⊂ [1, N ], and a set of distinct points {x1, . . . , x2s} ⊂
Ω such that

det[Bj(xk)]k=1,...,2s,j∈T = 0,

which implies that there exists [cj1 , . . . , cj2s ] 6= 0 such that

2s∑

t=1

cjtBjt(xk) = 0, k = 1, . . . , 2s. (13)

Set

f =

s∑

t=1

cjtBjt , g = −
2s∑

t=s+1

cjtBjt .

Statement (i) implies that any 2s functions in {Bj}Nj=1 are linearly independent
and hence f 6≡ g. Also, according to (13) we have

f(xj) = g(xj), j = 1, . . . , 2s,

which implies f ≡ g. This leads to a contradiction.
We next show (ii) implies (i). We take f, g ∈ Us with

f(xk) = g(xk), k = 1, . . . , 2s.

To this end, we suppose that f 6≡ g. We write f, g in the form of

f =
∑

j∈T0

cjBj , g =
∑

j∈T1

cjBj

with #T0 = #T1 = s. Without loss of generality, we suppose T0∩T1 = ∅. Then
f(xk) = g(xk) implies that

∑

j∈T0

cjBj(xk)−
∑

j∈T1

cjBj(xk) = 0, k = 1, . . . , 2s. (14)

The fact that det[Bj(xk)] 6= 0 implies that the solution to (14) is 0, and this
contradicts to f 6≡ g.
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Remark 3.6. We list in the following some function systems which satisfy (ii)
in Theorem 3.5.

1. We take Bj(x) = eλjx, j = 1, . . . , N and Ω = R, where λ1 < λ2 < · · · <
λN .

2. We take Bj(x) = xλj , j = 1, . . . , N and Ω = (0,∞), where λ1 < λ2 <
· · · < λN .

3. We take Bj(x) = (x + λj)
−1, j = 1, . . . , N and Ω = (0,∞), where 0 ≤

λ1 < λ2 < · · · < λN .

4 Deterministic sampling for sparse high dimen-

sional Chebyshev polynomials

Throughout the rest of this paper, we consider sparse interpolation for the high
dimensional Chebyshev polynomials on the domain Ω = [−1, 1]d. Recall that
we use φnj

(xj) to denote the one dimensional Chebyshev polynomial in variable
xj with degree nj and

Φn(x) =

d∏

j=1

φnj
(xj).

Note that, for any finite index set Λ ⊂ Nd, the functions {Φn}n∈Λ are strongly
linearly independent on [−1, 1]d. Then, Theorem 3.2 implies that there are 2s
points {x1, . . . , x2s} ⊂ [−1, 1]d such that they are unisolvent. A well-known re-
sult in approximation theory is that there is no Chebyshev systems of continuous
functions on [−1, 1]d provided d ≥ 2 [8]. Therefore, based on Theorem 3.5, one
cannot hope that an arbitrary pointset with 2s distinct points on [−1, 1]d is uni-
solvent when d ≥ 2. So, we shall identify m ≥ 2s points {x1, . . . , xm} ⊂ [−1, 1]d

such that one can recover f ∈ Us efficiently from {(xj , f(xj))}mj=1.
We next present a deterministic point set for the s-sparse interpolation in

high dimensional Chebyshev polynomial spaces. Suppose that M is a prime
number. We define the point set ΘM ⊂ [−1, 1]d as follows

ΘM :=
{
xj = cos(pj) : pj = 2π

(
j, j2, . . . , jd

)
/M, j = 0, . . . , ⌊M/2⌋

}
.

To state conveniently, throughout the rest of this paper, we set

m := #ΘM = ⌊M/2⌋+ 1.

The next lemma shows the reason why one takes 0 ≤ j ≤ ⌊M/2⌋ instead of
0 ≤ j ≤ M in the definition of ΘM .

Lemma 4.1. For any integer M and m = ⌊M/2⌋+ 1, we have

cos(2πjk/M) = cos(2π(M − j)k/M), for all k ∈ N and 0 ≤ j ≤ m− 1.

11



Proof. We first consider the case with k being an even number. Note that

(M − j)k =

k−1∑

t=0

(
k

t

)

Mk−t(−j)t + jk,

and hence
(M − j)k − jk = 0 mod M,

which implies
cos(2πjk/M) = cos(2π(M − j)k/M).

We next turn to the case with k being an odd number. Using similar derivations,
we have

(M − j)k =

k−1∑

t=0

Mk−t(−j)t − jk.

Then
(M − j)k + jk = 0 mod M.

Thus we obtain
cos(2πjk/M) = cos(2π(M − j)k/M).

This completes the proof.

4.1 Spares interpolation in TP Chebyshev polynomial spaces

We now choose the point set ΘM as the interpolation points for the s-sparse
interpolation with the function system {Φn : n ∈ Λq,d

P
} and employ the ℓ1

minimization as the recovery method. Recall that pj = 2π
(
j, j2, . . . , jd

)
/M .

Note that
Φn(xj) = Cn(pj),

where

Cn(pj) :=

d∏

t=1

cos(2πntj
t/M).

Then the interpolation matrix is

AP :=
[
Cn(pj)

]

j=1,...,m;n∈Λq,d

P

∈ Rm×(q+1)d . (15)

The following lemma gives an estimation of µ(AP).

Lemma 4.2. Suppose that M ≥ max{2q + 1, (2d(d− 1))2} is a prime number.
Then

µ(AP) ≤
1√
M

2d · d
1− 2d(d−1)√

M

.
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Proof. Let us first consider
∣
∣
∣
∣
∣
∣

m−1∑

j=0

Cn(pj)Ck(pj)

∣
∣
∣
∣
∣
∣

, (16)

where n,k ∈ Λq,d
P

and n 6= k. By repeatedly using the fact cos(α) cos(β) =
1
2 (cos(α+ β) + cos(α− β)), we have

Cn(pj)Ck(pj) =
d∏

t=1

cos(2πntj
t/M) cos(2πktj

t/M)

=
1

22d−1

∑

ǫ∈{−1,1}2d−1

cos(t(ǫ,pj)),

where

t(ǫ,pj) = 2π((n1 + ǫ1k1)j + (ǫ2n2 + ǫ3k2)j
2 + · · ·+ (ǫ2d−2nd + ǫ2d−1kd)j

d)/M.

Note that there are totally 22d−1 possible ǫ. The Weil’s theorem implies that
for a fixed ǫ ∈ {−1, 1}d, there holds

∣
∣
∣
∣
∣
∣

M∑

j=1

cos(t(ǫ,pj))

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

M∑

j=1

exp(it(ǫ,pj))

∣
∣
∣
∣
∣
∣

≤ (d− 1)
√
M. (17)

Based on Lemma 4.1, we have

2
m−1∑

j=0

cos(t(ǫ,pj))− 1 =
M∑

j=1

cos(t(ǫ,pj)).

Thus, we have
∣
∣
∣
∣
∣
∣

m−1∑

j=0

cos(t(ǫ,pj))

∣
∣
∣
∣
∣
∣

≤ (d− 1)
√
M + 1

2
, (18)

which implies
∣
∣
∣
∣
∣
∣

m−1∑

j=0

Cn(pj)Ck(pj)

∣
∣
∣
∣
∣
∣

≤ (d− 1)
√
M + 1

2
. (19)

Let us now consider the column norm ofAP. Using repeatedly the fact cos(2α) =
2 cos2(α) − 1 and the similar procedure above, we can obtain that

M∑

j=1

|Cn(pj)|2 ≥ M

2d
− (d− 1)

√
M.

13



Based on Lemma 4.1, we have

m−1∑

j=0

|Cn(pj)|2 ≥ M

2d+1
− (d− 1)

√
M

2
. (20)

Then the desired result can be obtained by combining (19) and (20).

We now arrive at one of the main results of this paper, which shows that one
can use ℓ1 minimization to recover f ∈ Us({Φn : n ∈ Λq,d

P
}) from the function

values of the points xj ∈ ΘM .

Theorem 4.3. Suppose that M ≥ max{2q+1, 9 ·4d ·d2 ·s2} is a prime number.
Let

f =
∑

n∈Λq,d

P

cnΦn,

and assume that c# is given by the ℓ1-minimization problem (4) with the ma-
trix A := AP · C and the vector b := (f(x1), . . . , f(xm))⊤, where xj ∈ ΘM ,
m = ⌊M/2⌋ + 1 and C is a diagonal matrix such that the columns of A are
standardized to have unit ℓ2 norm. Then we have

‖c# − c‖2 .
σs,1(c)√

s
. (21)

Proof. According to the results in [2, 10], the matrix A satisfies s-order RIP
property with RIP constant

δs ≤ (s− 1)µ(A) = (s− 1)µ(AP ).

The result in [4] shows that (21) holds provided δs < 1/3. According to Lemma
4.2, if M ≥ max{2q + 1, 9 · 4d · d2 · s2}, then

δs ≤ (s− 1) · µ(AP ) < 1/3,

which implies (21).

Remark 4.4. If we suppose that f ∈ Us in Theorem 4.3, i.e., the vector c is
s-sparse, then Theorem 4.3 implies that (P1) can recover the s-sparse function
f exactly from the function values on the point set ΘM provided the number of
interpolation points m ≥ max{q, 9/2 · 4d · d2 · s2}+1 and M is a prime number.

4.2 Sparse interpolation in TD Chebyshev polynomial spaces

In uncertainty quantification, the dimension d is often determined by the number
of random parameters and can be very large. One often encounters practical
stochastic problems with the dimension d on the order of hundreds [18, 28].
In such cases, one can not afford to construct high-degree TP polynomial ap-
proximations. We now consider the sparse interpolation in the TD spaces. In

14



other words, we study the s-sparse interpolation with the function system is
{Φn : n ∈ Λq,d

D
}.

The use of TD spaces is promising for cases where the dimensionality is high
such that one can not afford to construct high-degree polynomial approxima-
tions, that is, we usually consider the cases where d ≫ q. Similar with before,
the interpolation matrix is

AD :=
[
Cn(pj)

]

j=1,...,m;n∈Λq,d

D

. (22)

We have the following lemma:

Lemma 4.5. Suppose that d ≥ q and M ≥ max{2q+1, (2q(d−1))2} is a prime
number. Then

µ(AD) ≤ 1√
M

2q · d
1− 2q(d−1)√

M

.

Proof. Take n,k ∈ Λq,d
D

,n 6= k and consider

∣
∣
∣
∣
∣
∣

m−1∑

j=0

Cn(pj)Ck(pj)

∣
∣
∣
∣
∣
∣

.

Using a similar method as the proof of Lemma 4.2, we have
∣
∣
∣
∣
∣
∣

m−1∑

j=0

Cn(pj)Ck(pj)

∣
∣
∣
∣
∣
∣

≤ (d− 1)
√
M + 1

2
. (23)

Let us now investigate the column norm of AD, e.g.

m−1∑

j=0

|Cn(pj)|2 .

Note that |n| ≤ q provided that n ∈ Λq,d
D

. Then ‖n‖0 ≤ q provided that d ≥ q.
This gives the following estimate

m−1∑

j=0

|Cn(pj)|2 ≥ M

2q+1
− (d− 1)

√
M

2
. (24)

Combining (23) and (24), we complete the proof.

Note that 4q > 2q + 1. Using Lemma 4.5 and a similar method in Theorem
4.3, we have

Theorem 4.6. Suppose that M ≥ 9 · 4q · d2 · s2 is a prime number. Let

f =
∑

n∈Λq,d
D

cnΦn.

15



Assume that c# is given by the ℓ1-minimization problem (4) with the matrix
A := AD · C and the vector b = (f(x1), . . . , f(xm))⊤, where xj ∈ ΘM ,
m = ⌊M/2⌋ + 1 and C is a diagonal matrix such that the columns of A are
standardized to have unit ℓ2 norm. Then we have

‖c# − c‖2 .
σs,1(c)√

s
.

Remark 4.7. Similar with before, if we suppose that f ∈ Us in Theorem 4.6,
i.e., the vector c is s-sparse, then Theorem 4.6 implies that (P1) can recover
the s-sparse function f exactly from the function values on the point set ΘM

provided the number of interpolation points m ≥ 9/2 · 4q · d2 · s2 +1 and M is a
prime number.

Remark 4.8. When M is divided by 4, the set of the first entry of pj is Cheby-
shev nodes set where j runs over all odd integers in [1,M/2]. And hence, the
points pj can be considered as an extension of Chebyshev nodes. We hope to
investigate multivariate Lagrange Interpolation on the points pj in future work
(see [26]).

5 Numerical examples

In this section we make numerical experiments to compare the performance
of the determinant points ΘM and that of the random points. The random
interpolation points are chosen based on the continuous probability model, i.e.
x1, . . . , xm are independent random variable having the uniform distribution
on [−1, 1]d. Given the function system {Bj}j∈Λ, the support set of f ∈ Us is
drawn from the uniform distribution over the set of all subset of Λ of size s. The
non-zero coefficients of f have the Gaussian distribution with mean zero and
standard deviation one. To solve the ℓ1 minimization, we employ the available
tools SPGL1 from [1] that was implemented in the MATLAB. We repeat the
experiment 100 times for each fixed sparsity s and calculate the success rate.
We will conduct two groups of tests, namely, the TP Chebyshev spaces and the
TD Chebyshev spaces.

5.1 Tests for the TP Chebyshev spaces

We first choose the function system as

{Φn : n ∈ Λq,d
P

}.

As we discussed before, TP spaces are not frequently used in real applications
due to the curse of dimensionality. Thus, we consider low dimensional cases of
d = 2 and d = 3, and we also choose the degree q as 9 and 6, respectively. We
remark that the parameters d and q chosen in ours numerical examples bear
no special meaning, as the results from other parameters demonstrate similar
behavior. The left graph in Fig. 1 depicts the success rate when d = 2, q = 9
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Figure 1: Numerical results for the comparison of the random sampling and
the deterministic sampling of the sparse interpolation in TP spaces. Left: d = 2,
q = 9, m = 49, and Right: d = 3, q = 6, m = 69.
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Figure 2: Numerical results for the comparison of the random sampling and
the deterministic sampling of the sparse interpolation in TD spaces (m = 69).
Left: d = 10, q = 3, and right: d = 30, q = 2.

and m = 49 points are used, while the right graph shows the success rate for
d = 3, q = 6, and m = 69. The numerical results show that the performance of
the deterministic points is similar with that of the random points.

5.2 Tests for the TD Chebyshev spaces

Now we choose the function system as

{Φn : n ∈ Λq,d
D

}

and test the recovery properties in the TD spaces, which are very useful when
dealing with high dimensional problems. In this part, we will consider high
dimensional cases with d = 10 and d = 30. The numerical treatment is the same
as in TP spaces and the recovery results are demonstrated in Fig. 2. The right
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plot is for d = 30, q = 2, and m = 69, while the left plot is for d = 10, q = 3 and
m = 69. Again, the performance of the deterministic points is comparable with
that of the random points.
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