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Abstract

We consider the inverse problem of identifying an unknown inclu-
sion contained in an elastic body by the Dirichlet-to-Neumann map.
The body is made by linearly elastic, homogeneous and isotropic ma-
terial. The Lamé moduli of the inclusion are constant and different
from those of the surrounding material. Under mild a-priori regular-
ity assumptions on the unknown defect, we establish a logarithmic
stability estimate. Main tools are propagation of smallness arguments
based on three-spheres inequality for solutions to the Lamé system and
a refined asymptotic analysis of the fundamental solution of the Lamé
system in presence of an inclusion which shows surprising features.

1 Introduction

This paper deals with the inverse problem of determining an elastic inclusion
D contained in an elastic body Ω by measuring displacements and tractions
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at the boundary ∂Ω. More precisely, let Ω be a bounded domain in R3

and let D be an open set contained in Ω. Assume that both the body Ω
and the inclusion D are made by different homogeneous, isotropic, elastic
materials, with Lamé moduli µ, λ and µI , λI , respectively, satisfying the
strong convexity conditions µ > 0, 2µ + 3λ > 0, µI > 0, 2µI + 3λI > 0. For
a given g ∈ H 1

2 (∂Ω), consider the weak solution u ∈ H1(Ω) to the Dirichlet
problem {

div ((C + (CI − C)χD)∇u) = 0, in Ω,

u = g, on ∂Ω,

(1.1)

(1.2)

where C, CI are the elastic tensors of the body and of the inclusion, respec-
tively, and χD is the characteristic function of D. We denote by ΛD : H

1
2 →

H−
1
2 the Dirichlet-to-Neumann map associated to the problem (1.1)–(1.2),

that is the operator which maps the Dirichlet data u|∂Ω onto the correspond-
ing Neumann data ((C + (CI − C)χD)∇u)ν, taken in the weak sense (see
(3.3), (3.4) below), where ν is the outer unit normal to ∂Ω. The inverse
problem we are considering here is to determine D when ΛD is given.

This problem is one of the fundamental issues of inverse problems in
linear elasticity. In fact, the physical problem described by equations (1.1)–
(1.2) corresponds to a class of diagnostic problems very common in practical
applications, in which the inclusion is constituted by a faulty or damaged por-
tion of the elastic body and only the exterior boundary of the experimental
sample is accessible to measurements. The hypothesis of piecewise constant
coefficients is also realistic and describes practical situations in which there
is a jump of the elastic coefficients at the interface of the inclusion. How-
ever, despite the simplicity of its formulation and the relevant implications in
practical applications, few general results on this inverse problem are known.

The inverse problem of determining an elastic inclusion could be framed
as a special case of determination of the Lamé moduli from the Dirichlet-to-
Neumann map. In this case, however, most of the results currently available
concern only regular elastic coefficients. In [N-U1], Nakamura and Uhlmann
established that in two dimensions the Lamé moduli are uniquely deter-
mined by the Dirichlet-to-Neumann map, assuming that they are smooth
(e.g., C∞(Ω)) and sufficiently close to a pair of positive constants. For the
three-dimensional case, the uniqueness for both Lamé moduli was proved in
[N-U2], [E-R], [N-U3], provided that they are smooth and that the shear
modulus is close to a positive constant. Some of the above uniqueness re-
sults have been proved in the case of partial Cauchy data, see [I-U-Y] for
more details. Concerning results for less regular coefficients, quite recently,
the uniqueness and Lipschitz stability in the case of discontinuous piecewise
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constant Lamé tensors, with unknown constants, but with a known decom-
position of the domain, has been achieved in [B-F-V].

An alternative approach is the one based on identification of an unknown
boundary, namely the interface ∂D of the inclusion, by measurements taken
on ∂Ω. The extreme cases of a cavity or of a rigid inclusion in an isotropic
elastic body were considered in [M-R1] and in [M-R2], respectively. For
this class of inverse problems, under mild regularity assumptions on the un-
known interface, Morassi and Rosset established a stability estimate of log-log
type from a single pair of Cauchy data. For the elastic inclusion even the
uniqueness question from a finite number of boundary measurements, not to
mention stability, remains a largely open issue.

In connection with the problems discussed above, we wish to mention the
reconstruction issue that has drawn a lot of attention in recent years.

Ikehata developed in [Ik1] the so-called probe method for reconstructing
inclusions in elastic bodies by means of singular or fundamental solutions.
A key ingredient of the method is a Runge type approximation theorem,
which is useful to guarantee the existence of an approximating sequence to
the singular solution. The basic idea of this method comes from Isakov’s
fundamental paper [Is1], in which the uniqueness of the determination of an
inclusion in an electrical conductor from the Dirichlet-to-Neumann map was
proved. See also a corresponding result of uniqueness for elastic inclusions
[Ik-N-T]. Unfortunately, Runge type approximation theorems are typically
based on nonconstructive arguments and, therefore, they are not suitable for
stability estimates. Still along this line of research, interesting results for the
reconstruction of an unknown inclusion in two dimensions were obtained by
Ikehata in [Ik2].

Uhlmann and Wang proposed in [U-W] a method for constructing com-
plex geometrical optics (CGO) solutions with general phases for various sys-
tems with Laplacian principal part, which include the inhomogeneous Lamé
system in the plane. In particular, in [U-W-W], the authors provided a re-
construction algorithm to the inverse problem of determining D from ΛD.
The idea is to probe the medium with CGO solutions having polynomial-
type phase functions. The method works for bounded or unbounded planar
regions, made by inhomogeneous Lamé material, and does not need a Runge
type theorem. Using the CGO solutions, the authors develop an algorithm
to reconstruct the exact shape of a large class of inclusions, including star-
shaped domains. Numerical implementation of the method gave encouraging
results. Extension to three dimensions, however, does not seem to be easy
as this method heavily relies on the use of conformal mappings.

In this paper we prove, under suitable mild a-priori assumptions on the
regularity and on the topology of D, a continuous dependence of D from ΛD
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with a modulus of continuity of logarithmic type. Our proof is inspired by the
paper by Alessandrini and Di Cristo [A-DiC], in which a logarithmic stability
estimate for the corresponding problem in impedance tomography, which
involves a single scalar elliptic equation with piecewise constant coefficient,
was obtained. In this direction, we would like also to mention the recent
papers by Di Cristo and Vessella [DiC-V1], [DiC-V2], for analogous results
for the stable determination of a time varying inclusion within a thermal
conductor. The aforementioned papers are based on quantitative estimates
of unique continuation and on accurate study of the asymptotic behavior
of fundamental solutions when the singularity gets close to the unknown
interface.

The approach we follow here goes along the same line of reasoning but
there are several steps which present new difficulties and in which we have
been forced to introduce novel arguments. Let us outline the main steps of
the proof and the new challenges that we have encountered.

Consider two possible inclusionsD1, D2 and their corresponding Dirichlet-
to-Neumann maps ΛD1 , ΛD2 . The main steps are the following.

i) We introduce the fundamental solutions ΓD1 , ΓD2 for the Lamé system
(1.1) in the full space when D = D1, D2 respectively.

ii) We show that (ΓD1−ΓD2)(y, w) can be dominated linearly by ΛD1−ΛD2

when y, w are outside of Ω (see (6.5), (7.1)).
iii) We propagate the smallness of (ΓD1 − ΓD2)(y, w) as y, w are moved

inside of Ω in the connected component G of R3 \ (D1 ∪D2) which contains
R3 \ Ω.

iv) We examine the asymptotics of (ΓD1 −ΓD2)(y, w) as y, w approach to
a point P of ∂D1 \D2 (or ∂D2 \D1).

v) We evaluate the distance betweenD1 andD2 by matching the smallness
estimates of Step iii) with the blowup asymptotics of Step iv).

Let us now illustrate with some more details the character of such steps.
Step i) is based on a-priori regularity estimates of solutions of the Lamé

system with piecewise constant Lamé moduli. For this purpose we appeal to
the theory of existence developed by Hofmann and Kim [H-K] and to the a-
priori bounds due to Li and Nirenberg [L-N]. Details can be found in Section
5.

Step ii) is based on a version of the so-called Alessandrini’s identity,
Lemma 6.1.

Step iii) contains a complication of geometrical/topological character due
to the fact that quantitative estimates of unique continuation can be obtained
only in sets which are not only topologically connected, but also whose con-
nectedness is expressed in tight quantitative terms. Namely, pairs of points
need to be connected by chains of balls of controlled size and number, in
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such a way that the iteration of the three-spheres-inequality gives rise to
controlled constants and moduli of continuity in the estimates of propaga-
tion of smallness.

Note that D is contained in Ω with no constraint on the distance between
D and ∂Ω, actually we may even admit that ∂D ∩ ∂Ω 6= ∅.

Indeed, in previous studies, it was assumed dist(D, ∂Ω) ≥ const > 0, here
we show that this requirement is unnecessary since for our purposes the D–N
map is estimated only for solutions to (1.1) defined on a domain Ω̃ strictly
larger than Ω. See Section 7, Step 1.

Step iv) is the one in which the difference between the scalar conductivity
equation and the vector Lamé system becomes more evident and (in our view)
presents the most challenging and interesting features.

In fact, in the scalar case it was possible to pick y = w and prove that
(ΓD1 − ΓD2)(y, y) blows up as y tends nontangentially to P ∈ ∂D1 \D2, and
to evaluate quantitatively the blowup rate. In the present case the situation
is more complicated for a number of reasons. First of all the fundamental
solutions are matrix valued (not scalar) functions and, therefore, it is crucial
to understand which of the entries of ΓD1 − ΓD2 has the desired blowup
behavior. Second, we are assuming that either µI 6= µ or λI 6= λ with
no order condition between such parameters. Hence, we cannot expect, in
general, that the difference matrix ΓD1 − ΓD2 may satisfy any positivity
condition. For these reasons we have chosen to examine each diagonal entry
of ΓD1−ΓD2 separately. Similarly to the scalar case, we can show that, as y, w
tend to P ∈ ∂D1\D2, (ΓD1−ΓD2)(y, w) has, in a suitable reference frame, the
same asymptotic behavior of (Γ+ − Γ)(y, w). Here Γ is the standard Kelvin
fundamental solution with Lamé moduli µ, λ and Γ+ is the fundamental
solution ΓD when D is replaced by the upper half plane {x3 > 0}.

We can take advantage of the fact that Γ+ is explicitly known, in fact
its expression, although complicated, was calculated by Rongved [R] in 1955.
With the aid of Rongved’s formulas we have been able to estimate the blowup
rate of (Γ+ − Γ)ii(y, w), i = 1, 2, 3, as y, w → 0 vertically along the line
{x1 = x2 = 0} for suitable choices of y, w. A notable fact is that we are
obliged to pick very specific choices of y, w, w 6= y (see Proposition 9.3). In
fact we have found explicit examples of moduli (λ, µ) 6= (λI , µI) for which
(Γ+ − Γ)ii(y, y) = 0. We emphasize that such a precise analysis has been
possible on the grounds of the explicit (algebraic) character of Γ+ (see Section
10).

The organization of the paper is as follows. In Section 2 we introduce
some notation and the a-priori information needed for our stability result.
The main result of stability, Theorem 3.1, is stated in Section 3. Section 4
is devoted to some technical details of topological-metric character related
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to the evaluation of the distance between the inclusions and to estimates of
propagation of smallness. The main properties of the fundamental solution
of the Lamé system with discontinuous coefficients are presented in Section
5. In Section 6 we state two auxiliary estimates, Theorem 6.4 and Theorem
6.5, and in their basis we prove the main Theorem 3.1. Theorem 6.4 is proven
in the following Section 7. Section 8 contains evaluations of the asymptotic
behaviour of the fundamental solution ΓD, in preparation of the proof of
Theorem 6.5, which is completed in Section 9. Section 10 is devoted to
the analysis of Rongved’s fundamental solution Γ+. We also investigate the
peculiar behaviour of Γ+ − Γ (which shows remarkable differences with the
scalar case of the conductivity equations) by exploring explicit examples of
material parameters µ, λ and µI , λI . Finally, Section 11 contains the proof
of our main topological-metric lemma, Lemma 4.2.

2 Notation and a-priori information

2.1 Notation and definitions

Let us denote by R3
+ = {x ∈ R3 | x3 > 0} and R3

− = {x ∈ R3 | x3 < 0}. Given
x ∈ R3, we shall denote x = (x′, x3), where x′ = (x1, x2) ∈ R2, x3 ∈ R. Given
x ∈ R3, r > 0, we shall use the following notation for balls and cylinders.

Br(x) = {y ∈ R3 | |y − x| < r}, Br = Br(0),

B′r(x
′) = {y′ ∈ R2 | |y′ − x′| < r}, B′r = B′r(0),

Qa,b(x) = {(y′, y3)| |y′ − x′| < a, |y3 − x3| < b}, Qa,b = Qa,b(0),

Qa,b(x)+ = {(y′, y3)| |y′ − x′| < a, 0 < y3 − x3 < b}, Q+
a,b = Q+

a,b(0).

Definition 2.1. (Ck,α regularity) Let E be a domain in R3. Given k, α,
k ∈ N, 0 < α ≤ 1, we say that E is of class Ck,α with constants ρ0, M0 > 0,
if, for any P ∈ ∂E, there exists a rigid transformation of coordinates under
which we have P = 0 and

E ∩Bρ0(0) = {x ∈ Bρ0(0) | x3 > ϕ(x′)},

where ϕ is a Ck,α function on B′ρ0
satisfying

ϕ(0) = 0,

∇ϕ(0) = 0, when k ≥ 1,

‖ϕ‖Ck,α(B′ρ0 (0)) ≤M0ρ0.

When k = 0, α = 1, we also say that E is of Lipschitz class with constants
ρ0, M0.
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Remark 2.2. We use the convention to normalize all norms in such a way that
their terms are dimensionally homogeneous and coincide with the standard
definition when the dimensional parameter equals one. For instance, the
norm appearing above is meant as follows

‖ϕ‖Ck,α(B′ρ0 (0)) =
k∑
i=0

ρi0‖∇iϕ‖L∞(B′ρ0 (0)) + ρk+α
0 |∇kϕ|α,B′ρ0 (0),

where

|∇kϕ|α,B′ρ0 (0) = sup
x′, y′∈B′ρ0 (0)

x′ 6=y′

|∇kϕ(x′)−∇kϕ(y′)|
|x′ − y′|α

.

Similarly, for a vector function u : Ω ⊂ R3 → R3, we set

‖u‖H1(Ω,R3) =

(∫
Ω

u2 + ρ2
0

∫
Ω

|∇u|2
) 1

2

,

and so on for boundary and trace norms such as ‖ · ‖
H

1
2 (∂Ω,R3)

, ‖ · ‖
H−

1
2 (∂Ω,R3)

.

For any U ⊂ R3 and for any r > 0, we denote

Ur = {x ∈ U | dist(x, ∂U) > r}, (2.1)

U r = {x ∈ R3 | dist(x, U) < r}. (2.2)

We denote by Mm×n the space of m × n real valued matrices and by
L(X, Y ) the space of bounded linear operators between Banach spaces X
and Y . When m = n, we shall also denote Mn = Mn×n.

For every pair of real n-vectors a and b, we denote by a ⊗ b the n × n
matrix with entries

(a⊗ b)ij = aibj, i, j = 1, ..., n. (2.3)

For every 3× 3 matrices A, B and for every C ∈ L(M3,M3), we use the
following notation:

(CA)ij =
3∑

k,l=1

CijklAkl, (2.4)

A ·B =
3∑

i,j=1

AijBij, (2.5)

|A| = (A · A)
1
2 , (2.6)
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where Cijkl, Aij and Bij are the entries of C, A and B respectively.
Given two bounded closed sets A,B ⊂ R3, let us recall that the Hausdorff

distance dH(A,B) is defined as

dH(A,B) = max{max
x∈A

d(x,B),max
x∈B

d(x,A)}

2.2 A-priori information

Throughout the paper, we use the following a-priori assumptions.
i) Domain
Let Ω be a bounded domain in R3 such that

R3 \ Ω is connected, (2.7)

|Ω| ≤M1ρ
3
0, (2.8)

Ω is of class C1,α, with constants ρ0, M0, (2.9)

where ρ0, M0, M1 are given positive constants, and 0 < α < 1.
ii) Inclusion
Let D be a domain contained in Ω satisfying

R3 \D is connected, (2.10)

D is of class C1,α, with constants ρ0, M0, (2.11)

where ρ0, M0 are given positive constants, and 0 < α < 1.
iii) Material
The body Ω is assumed to be made of linearly elastic, isotropic and ho-

mogeneous material, with elastic tensor C of components

Cijkl = λδijδkl + µ(δkiδlj + δliδkj), (2.12)

where δij is the Kronecker’s delta. The constant Lamé moduli λ, µ satisfy
the strong convexity conditions

µ ≥ α0, 2µ+ 3λ ≥ γ0, (2.13)

where α0 > 0, γ0 > 0 are given constants. We shall also assume upper
bounds on the Lamé moduli

µ ≤ µ, λ ≤ λ, (2.14)
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where also µ > 0, λ ∈ R are known quantities. In some points of our analysis,
we will express the constitutive equation (2.12) in terms of µ and of Poisson’s
ratio ν, instead of the Lamé moduli µ, λ. Recalling that

ν =
λ

2(λ+ µ)
, (2.15)

by (2.13), (2.14) we have

− 1 < ν0 ≤ ν ≤ ν1 <
1

2
, (2.16)

where ν0, ν1 only depend on α0, γ0, µ, λ. Let us notice that (2.12) trivially
implies that

Cijkl = Cklij = Clkij, i, j, k, l = 1, 2, 3. (2.17)

We recall that the first equality in (2.17) is usually named as the major
symmetry of the tensor C, whereas the second equality is called the minor
symmetry.

Also we note that (2.13) is equivalent to

CA · A ≥ ξ0|A|2 (2.18)

for every 3× 3 symmetric matrix A, where ξ0 = min{2α0, γ0}.
Similarly, the inclusion D is made of isotropic homogeneous material hav-

ing elasticity tensor CI , with constant Lamé moduli λI , µI satisfying the
conditions (2.13), (2.14) and such that

(λ− λI)2 + (µ− µI)2 ≥ η2
0 > 0, (2.19)

for a given constant η0 > 0.

In what follows we shall refer to the constants M0, α, M1, α0, γ0, µ, λ,
η0 as to the a-priori data.

Observe that, in view of (2.15) and of the a-priori bounds on the Lamé
moduli, from (2.19) it also follows

(ν − νI)2 + (µ− µI)2 ≥ Cη2
0 > 0, (2.20)

where C only depends on α0, γ0, µ, λ.
Finally, note that the jump condition (2.19) does not imply any kind of

monotonicity relation between C and CI .
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3 Formulation of the inverse problem and sta-

bility result

For any f ∈ H1/2(∂Ω), let u ∈ H1(Ω) be the weak solution to the Dirichlet
problem {

div ((C + (CI − C)χD)∇u) = 0, in Ω,

u = f, on ∂Ω

(3.1)

(3.2)

where χD is the characteristic function of D.
Let us recall that the so-called Dirichlet-to-Neumann map

ΛD : H1/2(∂Ω)→ H−1/2(∂Ω), (3.3)

is defined in the weak form by

< ΛDf, v|∂Ω >=

∫
Ω

(C + (CI − C)χD)∇u · ∇v, (3.4)

for every v ∈ H1(Ω).
In what follows it will be convenient to write, with a slight, but customary,

abuse of notation,

< ΛDf, v|∂Ω >=

∫
∂Ω

vΛDf.

The inverse problem we are interested in consists in recovering the inclu-
sion D from the knowledge of the map ΛD and, more precisely, we want to
prove a stability estimate. Our main result is the following.

Theorem 3.1. Let Ω ⊂ R3 satisfy (2.8)–(2.9) and let D1, D2 be two inclu-
sions contained in Ω satisfying (2.10)–(2.11). Let C and CI be the constant
elastic tensors of the material of Ω and of the inclusions Di, i = 1, 2, re-
spectively, where C and CI satisfy (2.12)–(2.14) and (2.19). If, for some ε,
0 < ε < 1,

‖ΛD1 − ΛD2‖L(H1/2(∂Ω),H−1/2(∂Ω)) ≤
ε

ρ0

, (3.5)

then
dH(∂D1, ∂D2) ≤ ρ0ω(ε), (3.6)

where ω is an increasing function on [0,+∞) satisfying

ω(t) ≤ C| log t|−η, for every 0 < t < 1, (3.7)

where C > 0 and η, 0 < η ≤ 1, are constants only depending on the a-priori
data.
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Remark 3.2. In the case when D1, D2 are at a prescribed positive distance
from ∂Ω, it is also possible to obtain a result analogous to the above Theorem
when the Dirichlet-to-Neumann maps ΛD1 , ΛD2 are replaced with local maps.
For instance, fixing Q ∈ ∂Ω and given ρ1 > 0, denoting Σ = ∂Ω ∩ Bρ1(Q),
we introduce

H1/2
co (Σ) = {g ∈ H1/2(∂Ω) | supp g ⊂⊂ Σ}

and define
ΛΣ
Di

: H1/2
co (Σ)→ (H1/2

co (Σ))∗ ⊂ H−1/2(∂Ω)

as the restriction of ΛDi to H
1/2
co (Σ). Thus, replacing the assumption (3.5)

with
‖ΛΣ

D1
− ΛΣ

D2
‖L
(
H

1/2
co (Σ),

(
H

1/2
co (Σ)

)∗) ≤ ε

ρ0

,

we obtain (3.6)–(3.7) with constants only depending on the a-priori data and
on ρ1. Such a result is a nearly straightforward adaptation of the theory
developed in [A-K].

The proof of Theorem 3.1 will be given in Section 6. In the following two
sections, we introduce some auxiliary results, concerning the topological-
metric aspects of the problem and the main properties of the fundamental
solution of the Lamé system with discontinuous coefficients.

4 Metric lemmas

Let G be the connected component of R3 \ (D1 ∪D2) which contains R3 \ Ω
and let us denote

ΩD = R3 \ G. (4.1)

As we shall see later, one of the key ingredients of the stability proof consists
in propagating the smallness from the boundary ∂Ω inside Ω. Since the
value dH(∂D1, ∂D2) may be attained at some point not belonging to G and,
therefore, not reachable from the exterior, it is necessary to introduce a
modified distance following the ideas developed in [A-DiC]. Precisely, let us
introduce the modified distance between D1 and D2

dµ(D1, D2) = max

{
max

x∈∂D1∩∂ΩD
dist(x,D2), max

x∈∂D2∩∂ΩD
dist(x,D1)

}
. (4.2)

We remark here that dµ is not a metric and, in general, it does not dominate
the Hausdorff distance. However, under our a priori assumptions on the
inclusion, the following lemma holds true.
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Lemma 4.1 (Proposition 3.3 in [A-DiC]). Under the assumptions of The-
orem 3.1, there exists a constant c0 ≥ 1 only depending on M0 and α such
that

dH(∂D1, ∂D2) ≤ c0dµ(D1, D2). (4.3)

It is easy to verify that

max
x∈∂D1∩∂ΩD

dist(x,D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2)

max
x∈∂D2∩∂ΩD

dist(x,D1) = max
x∈∂D2∩∂ΩD

dist(x, ∂D1),

so that dµ(D1, D2) ≤ dH(∂D1, ∂D2), and therefore, in view of Lemma 4.1,
these two quantities are comparable.

Another obstacle comes out from the fact that the propagation of small-
ness arguments are based on an iterated application of the three-spheres
inequality for solutions to the Lamé system over chains of balls contained in
G and, in this step, it is crucial to control from below the radii of these balls.
In order to circumvent the case in which points of ∂ΩD are not reachable by
such chains of balls, we found it convenient to adapt to our case ideas first
presented in [A-S] in dealing with crack detection in electrical conductors,
which we summarize in the lemma below. We note, incidentally, that this
issue was somewhat underestimated in [A-DiC]. The procedure developed
here enables to fill the possible gaps in the proofs in [A-DiC] (and also in
[DiC], [DiC-V1], [DiC-V2]).

Let us premise some notation. Given O = (0, 0, 0), v a unit vector, h > 0
and ϑ ∈

(
0, π

2

)
, we denote

C(O, v, h, ϑ) =
{
x ∈ R3| |x− (x · v)v| ≤ sinϑ|x|, 0 ≤ x · v ≤ h

}
(4.4)

the closed truncated cone with vertex at O, axis along the direction v, height
h and aperture 2ϑ. Given R, d, 0 < R < d and Q = −de3, let us consider the

cone C
(
O,−e3,

d2−R2

d
, arcsin R

d

)
. We note that the lateral boundary of this

cone is tangent to the sphere ∂BR(Q) along the circumference of its base.
From now on, for simplicity, we assume that

dµ(D1, D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2) (4.5)

and we write dµ = dµ(D1, D2).
Let us define

S2ρ0 =
{
x ∈ R3 |ρ0 < dist(x,Ω) < 2ρ0

}
. (4.6)
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We shall make use of paths connecting points in order that appropriate
tubular neighbourhoods of such paths still remain within R3 \ ΩD.

Let us pick a point P ∈ ∂D1 ∩ ∂ΩD, let ν be the outer unit normal to
∂D1 at P and let d > 0 be such that the segment [(P + dν), P ] is contained
in R3 \ ΩD. Given P0 ∈ R3 \ ΩD, let γ be a path in R3 \ ΩD joining P0 to
P + dν. We consider the following neighbourhood of γ ∪ [(P + dν), P ] \ {P}
formed by a tubular neighbourhood of γ attached to a cone with vertex at
P and axis along ν

V (γ) =
⋃
S∈γ

BR(S) ∪ C
(
P, ν,

d2 −R2

d
, arcsin

R

d

)
. (4.7)

Note that two significant parameters are associated to such a set, the radius
R of the tubular neighbourhood of γ, ∪S∈γBR(S), and the half-aperture

arcsin R
d

of the cone C
(
P, ν, d

2−R2

d
, arcsin R

d

)
. In other terms, V (γ) depends

on γ and also on the parameters R and d. At each of the following steps,
such two parameters shall be appropriately chosen and shall be accurately
specified. For the sake of simplicity we convene to maintain the notation
V (γ) also when different values of R, d are introduced.

Also we warn the reader that it will be convenient at various stages to
use a reference frame such that P = O = (0, 0, 0) and ν = −e3.

Lemma 4.2. Under the above notation, there exist positive constants d, c1,
where d

ρ0
only depends on M0 and α, and c1 only depends on M0, α, M1, and

there exists a point P ∈ ∂D1 satisfying

c1dµ ≤ dist(P,D2), (4.8)

and such that, giving any point P0 ∈ S2ρ0, there exists a path γ ⊂ (Ωρ0 ∪
S2ρ0) \ ΩD joining P0 to P + dν, where ν is the unit outer normal to D1

at P , such that, choosing a coordinate system with origin O at P and axis
e3 = −ν, the set V (γ) introduced in (4.7) satisfies

V (γ) ⊂ R3 \ ΩD, (4.9)

provided R = d√
1+L2

0

, where L0, 0 < L0 ≤ M0, is a constant only depending

on M0 and α.

The proof of Lemma 4.2 is given in Section 11.
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5 Fundamental solution of the Lamé system

with discontinuous coefficients

In this Section, D is a domain of class C1,α with constants ρ0, M0, 0 < α < 1,
and C, CI satisfy (2.12)–(2.14).

Given y ∈ R3 and a concentrated force lδ(· − y) applied at y, l ∈ R3,
|l| = 1, let us consider the normalized fundamental solution uD ∈ L1

loc(R3,R3)
defined by div x

(
(C + (CI − C)χD)∇xu

D(x, y; l)
)

= −lδ(x− y), in R3 \ {y},

lim|x|→∞ u
D(x, y; l) = 0,

(5.1)
where δ(· − y) is the Dirac distribution supported at y, that is∫

R3

(C+(CI−C)χD)∇xu
D(x, y; l)·∇xϕ(x) = l·ϕ(y), for every ϕ ∈ C∞c (R3,R3).

(5.2)
It is well-known that

uD(x, y; l) = ΓD(x, y)l, (5.3)

where ΓD = ΓD(·, y) ∈ L1
loc(R3,L(R3,R3)) is the normalized fundamental

matrix for the operator div x((C + (CI − C)χD)∇x(·)). The existence of ΓD

is ensured by the following Proposition.

Proposition 5.1. Under the above assumptions, there exists a unique fun-
damental matrix ΓD(·, y) ∈ C0(R3 \ {y}). Moreover, we have

ΓD(x, y) = (ΓD(y, x))T , for every x ∈ R3, x 6= y, (5.4)

|ΓD(x, y)| ≤ C|x− y|−1, for every x ∈ R3, x 6= y, (5.5)

|∇xΓ
D(x, y)| ≤ C|x− y|−2, for every x ∈ R3, x 6= y, (5.6)

where the constant C > 0 only depends on M0, α, α0, γ0, λ, µ.

Let us premise the following Lemma due to Li and Nirenberg [L-N].

Lemma 5.2. Under the above hypotheses, let u ∈ H1(Qr,rM0) be a solution
to

div ((C + (CI − C)χD)∇u) = 0, in Qr,rM0 . (5.7)
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Then, u ∈ C0(Qr,rM0) and, for every x ∈ Qr,rM0 such that Q2ρ,2ρM0(x) ⊂
Qr,rM0, we have

‖∇u‖L∞(Qρ,ρM0
(x)) + ρβ|∇u|β,Qρ,ρM0

(x)∩D + ρβ|∇u|β,Qρ,ρM0
(x)\D ≤

≤ C

ρ1+ 3
2

(∫
Q2ρ,2ρM0

(x)

|u|2
) 1

2

, (5.8)

where | · |β denotes the usual Hölder seminorm, β = α
2(1+α)

and C > 0 only

depends on M0, α, α0, γ0, λ, µ.

Proof of Proposition 5.1. In view of the results presented in [H-K], in order
to ensure the existence of ΓD and properties (5.4), (5.5), it is sufficient to
prove that there exist constants µ0 ∈ (0, 1], C > 0 such that, for every R > 0
and x ∈ R3, all weak solutions u ∈ H1(B2R(x)) of the equation

div ((C + (CI − C)χD)∇u) = 0 (5.9)

satisfy

|u|µ0,BR(x) ≤
C

Rµ0

(
1

|B2R(x)|

∫
B2R(x)

|u|2
) 1

2

, (5.10)

see Lemma 2.3 in [H-K]. In fact, we shall derive (5.10) with µ0 = 1.
By Lemma 5.2, u ∈ W 1,∞(BR(x)) and consequently it is Lipschitz con-

tinuous. By the results in [L-N], we have

|u|1,BR(x) = ‖∇u‖L∞(BR(x)) ≤
C

R
5
2

(∫
B2R(x)

|u|2
) 1

2

, (5.11)

where C > 0 only depends on α, M0, α0, γ0, λ, µ. By (5.11), we finally
obtain the desired estimate

|u|1,BR(x) ≤
C

R

(
1

|B2R(x)|

∫
B2R(x)

|u|2
) 1

2

, (5.12)

where C > 0 only depends on α, M0, α0, γ0, λ, µ.
It remains to prove estimate (5.6). By applying (5.11) to ΓD(·, y) in

Bs(x), where s = |x−y|
4

, we have

‖∇xΓ
D(·, y)‖L∞(Bs(x)) ≤

C

s
5
2

(∫
B2s(x)

|ΓD(ξ, y)|2dξ
) 1

2

.

Since |ξ − y| ≥ 2s, and by (5.5),we have

‖∇xΓ
D(·, y)‖L∞(Bs(x)) ≤

C

|x− y|2
, (5.13)

where C > 0 only depends on α, M0, α0, γ0, λ, µ.
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6 Proof of the main theorem

We begin with the following identity, the prototype of which can be attributed
to Alessandrini [A] in connection with the inverse conductivity problem.

Lemma 6.1. Under the assumptions of Theorem 3.1, let ui ∈ H1(Ω), i =
1, 2, be solutions to (3.1) with D = Di respectively. Then the following
identity holds∫

Ω

(C + (CI − C)χD1)∇u1 · ∇u2 −
∫

Ω

(C + (CI − C)χD2)∇u1 · ∇u2 =

=< (ΛD1 − ΛD2)u2, u1 > . (6.1)

Proof. Straightforward consequence of (3.4) and of the symmetry properties
of C, CI .

Let us choose y, w ∈ R3, y 6= w, and l, m ∈ R3 such that |l| = |m| = 1.
We define the functions

SD1(y, w; l,m) =

∫
D1

(CI − C)∇x(Γ
D1(x, y)l) · ∇x(Γ

D2(x,w)m), (6.2)

SD2(y, w; l,m) =

∫
D2

(CI − C)∇x(Γ
D1(x, y)l) · ∇x(Γ

D2(x,w)m), (6.3)

f(y, w; l,m) = SD1(y, w; l,m)− SD2(y, w; l,m). (6.4)

The following Lemma takes its inspiration from a result due to Beretta,
Francini and Vessella [B-F-V, Proposition 3.2].

Lemma 6.2. For every y, w ∈ R3, y 6= w, we have

f(y, w; l,m) = (ΓD2 − ΓD1)(y, w)m · l. (6.5)

Proof. Let us denote Γi = ΓDi and Ci = (C + (CI − C)χDi), i = 1, 2. Let
R > 0 be large enough so that Ω ⊂ BR(0) and |y|, |w| < R. By Green’s
formula we have∫

∂BR(0)

(C2∇xΓ2(x,w)m)ν·(Γ1(x, y)l)−
∫
BR(0)

C2∇x(Γ2(x,w)m)·∇x(Γ1(x, y)l) =

= −Γ1(w, y)l ·m,

and also∫
∂BR(0)

(C1∇xΓ1(x, y)l)ν·(Γ2(x,w)m)−
∫
BR(0)

C1∇x(Γ1(x, y)l)·∇x(Γ2(x,w)m) =

= −Γ2(y, w)m · l,
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By using the major symmetry of C2 and subtracting,

SD1(y, w; l,m)− SD2(y, w; l,m)+

+

∫
∂BR(0)

(C2∇xΓ2(x,w)m)ν·(Γ1(x, y)l)−
∫
∂BR(0)

(C1∇xΓ1(x, y)l)ν·(Γ2(x,w)m) =

= Γ2(y, w)m · l − Γ1(w, y)l ·m.

By (5.5), (5.6), the boundary integrals are infinitesimal as R → ∞ and, by
(5.4)

Γ1(w, y)l ·m = Γ1(y, w)m · l.

Let us fix y = y ∈ R3 \ ΩD and l ∈ R3, |l| = 1. Let us define

fk(w; l) = f(y, w; l, ek), k = 1, 2, 3, (6.6)

f = (f1, f2, f3). (6.7)

Similarly, let us fix w = w ∈ R3 \ ΩD and m ∈ R3, |m| = 1. We define

f̃j(y;m) = f(y, w; ej,m), j = 1, 2, 3, (6.8)

f̃ = (f̃1, f̃2, f̃3). (6.9)

Lemma 6.3. The vector-valued function f = f(w; l) satisfies the Lamé sys-
tem

div w(C∇wf) = 0, in R3 \ ΩD, (6.10)

for every l ∈ R3, |l| = 1.

The vector-valued function f̃ = f̃(y;m) satisfies the Lamé system

div y(C∇yf̃) = 0, in R3 \ ΩD, (6.11)

for every m ∈ R3, |m| = 1.

Proof. Since, by (5.4), f = (ΓD2 − ΓD1)(w, y)l and f̃ = (ΓD2 − ΓD1)(y, w)m,
the thesis is a straightforward consequence of Lemma 6.2.

Theorem 6.4 (Upper bound on the function f). Under the notation of
Lemma 4.2, let

yh = P − he3, (6.12)

wh = P − λwhe3, 0 < λw < 1, (6.13)
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with

0 < h ≤ d

(
1− sin ϑ̃0

4

)
, (6.14)

where ϑ̃0 = arctan 1
L0

and ν = −e3 is the outer unit normal to D1 at P .

Then, for every l, m ∈ R3, |l| = |m| = 1, we have

|f(yh, wh; l,m)| ≤ C

λwh
ε
C1

(
h
ρ0

)C2

, (6.15)

where ε is the error bound introduced in (3.5) and the constant C > 0 only
depends on M0, α, M1, α0, γ0, λ, µ;

C1 = γδ2+2
| logA|
| logχ| , C2 = 2

| log δ|
| logχ|

, A =
λw

d
ρ0

(1− ϑ∗ sin ϑ̃0

8
)
, χ =

1− sin ϑ̃0

8

1 + sin ϑ̃0

8

,

(6.16)
where δ, 0 < δ < 1, ϑ∗, 0 < ϑ∗ ≤ 1, only depend on α0, γ0, λ, µ; γ > 0 only
depends on M0, α, M1, α0, γ0, λ, µ.

Theorem 6.5 (Lower bound on the function f). Under the notation of
Lemma 4.2, let

yh = P − he3. (6.17)

For every i = 1, 2, 3, there exists λw ∈
{

2
3
, 3

4
, 4

5

}
and there exists h ∈

(
0, 1

2

)
only depending on M0, α, α0, γ0, λ, µ, η0, such that

|f(yh, wh; ei, ei)| ≥
C

h
, for every h, 0 < h < hρ, (6.18)

where
wh = P − λwhe3, (6.19)

ρ = min

{
dist(P,D2),

ρ0

12
√

1 +M2
0

·min{1,M0}

}
, (6.20)

and C > 0 only depends on M0, α, α0, γ0, λ, µ, η0.

Proof of Theorem 3.1. From the combination of the upper bound (6.15),
with l = m = ei for i ∈ {1, 2, 3}, and from the lower bound (6.18), we
have

C ≤ ε
C1

(
h
ρ0

)C2

, for every h, 0 < h ≤ hρ, (6.21)

18



where ρ is given in (6.20), the constants C1 > 0, C2 > 0 are defined in (6.16)
and depend only on M0, α, M1, α0, γ0, λ, µ, and the constants C ∈ (0, 1),
h ∈

(
0, 1

2

)
only depend on M0, α, α0, γ0, λ, µ, η0.

Passing to the logarithm and recalling that ε ∈ (0, 1), we have

h ≤ Cρ0

(
1

| log ε|

) 1
C2

, for every h, 0 < h ≤ hρ, (6.22)

In particular, choosing h = hρ, we have

ρ ≤ Cρ0

(
1

| log ε|

) 1
C2

. (6.23)

If ρ = dist(P,D2), by Lemma 4.1 and Lemma 4.2, the thesis follows. If,
otherwise, ρ = ρ0

12
√

1+M2
0

min{1,M0}, the thesis follows by noticing that

dH(∂D1, ∂D2) ≤ diam(Ω) ≤ Cρ0, with C > 0 only depending onM0, M1.

7 Proof of Theorem 6.4

The proof is divided into four steps.
Step 1. For any y, w ∈ S2ρ0 and for any l, m ∈ R3, |l| = |m| = 1, we have

|f(y, w; l,m)| ≤ C
ε

ρ0

, (7.1)

where C > 0 only depends on M0, α, M1, α0, γ0, λ, µ.
For any y ∈ S2ρ0, w ∈ Ωρ0 \ ΩD, and for every l, m ∈ R3, |l| = |m| = 1,

we have

|f(y, w; l,m)| ≤ C

ρ0

, (7.2)

where C > 0 only depends on M0, α, M1, α0, γ0, λ, µ.

Proof of Step 1. When y, w ∈ R3 \ Ω, we may apply the identity (6.1) with
u1(·) = ΓD1(·, y)l, u2(·) = ΓD2(·, w)m obtaining

f(y, w; l,m) =

∫
∂Ω

(ΓD1(x, y)l) · (ΛD1 − ΛD2)(ΓD2(x,w)m). (7.3)

By (7.3) and by (3.5), we have

|f(y, w; l,m)| ≤ ε

ρ0

‖ΓD1(·, y)l‖
H

1
2 (∂Ω)
‖ΓD2(·, w)m‖

H
1
2 (∂Ω)

.
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By (5.5) and (5.6), we have

‖ΓD1(·, y)l‖H1/2(∂Ω) ≤ ‖ΓD1(·, y)l‖H1(∂Ω) =

=

(∫
∂Ω

|ΓD1(x, y)|2 + ρ2
0|∇ΓD1(x, y)|2

) 1
2

≤

≤ C

(∫
∂Ω

|x− y|−2 + ρ2
0|x− y|−4

) 1
2

Noticing that, for any x ∈ ∂Ω, |x− y| ≥ ρ0, and estimating |∂Ω| as

|∂Ω| ≤ Cρ2
0, (7.4)

where C > 0 only depends on M0, α, M1, it follows that

‖ΓD1(·, y)l‖H1/2(∂Ω) ≤ C,

with C > 0 only depending on M0, α, M1, α0, γ0, λ, µ. Since for any
x ∈ ∂Ω, |x− w| ≥ ρ0, a similar estimate holds for ‖ΓD2(·, w)m‖H1/2(∂Ω), and
(7.1) follows.

Let y ∈ S2ρ0 , w ∈ Ωρ0 \ ΩD. By (5.6) we have

|f(y, w; l,m)| ≤ C
2∑
i=1

∫
Di

|x− y|−2|x− w|−2, (7.5)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Since |x − y| ≥ ρ0, we
have

|f(y, w; l,m)| ≤ Cρ−2
0

2∑
i=1

∫
Di

|x− w|−2 ≡ Cρ−2
0 (I1 + I2). (7.6)

Let R = diam(Ω) + ρ0 ≤ Cρ0, with C > 0 only depending on M0, α, M1.
Then, Ω ⊂ BR(w) and

Ii ≤
∫
BR(w)

|x− w|−2 = 2π2R ≤ Cρ0, i = 1, 2, (7.7)

and (7.2) follows.

Step 2. For any y ∈ S2ρ0, for every l, m ∈ R3, |l| = |m| = 1, we have

|f(y, wh; l,m)| ≤ C

ρ0

εη, (7.8)
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where

η = βδ
|log λwh

d∗ |
| logχ| +1, (7.9)

and γ0, λ, µ; χ, 0 < χ < 1, only depends on M0, α; d∗, 0 < d∗ < d, only
depends on M0, α, α0, γ0, λ, µ, where d has been introduced in Lemma 4.2;
β, 0 < β < 1, C > 0 only depend on M0, α, M1, α0, γ0, λ, µ.

Proof of Step 2. Let us fix y, w ∈ S2ρ0 .
By Lemma 4.2, there exists a path γ ⊂

(
Ωρ0 ∪ S2ρ0

)
\ ΩD joining w to

Q = P − de3, such that
V (γ) ⊂ R3 \ ΩD, (7.10)

when R = d√
1+L2

0

. Note that arcsin R
d

= ϑ̃0 as defined in the statement of

Theorem 6.4.
Recalling Lemma 6.3, we know that the vector-valued function f =

(f1, f2, f3), where fk(·; l) = f(y, ·; l, ek), k = 1, 2, 3, satisfies the Lamé system
with constant coefficients

div w(C∇wf) = 0, in R3 \ ΩD. (7.11)

At this stage, a basic tool is the following three spheres inequality for so-
lutions to the Lamé system (7.11) in Br(x) ⊂ R3 \ ΩD: there exists ϑ∗,
0 < ϑ∗ ≤ 1, only depending on α0, γ0, λ, µ, such that for every r1, r2, r3,
0 < r1 < r2 < r3 ≤ ϑ∗r, we have

‖f‖L∞(Br2 (x)) ≤ C‖f‖δL∞(Br1 (x)) · ‖f‖1−δ
L∞(Br3 (x)), (7.12)

where C > 0 and δ, 0 < δ < 1, only depend on α0, γ0, λ, µ, r2
r3

, r1
r3

.

Let us choose r1 = ϑ∗d
4

, r2 = 3r1, r3 = 4r1. Let x1 = w and let us
define {xi}, i = 1, ..., s, as follows: x1 = w, xi+1 = γ(ti), where ti =
max {t| |γ(t)− xi| = r1} if |xi − Q| > 2r1; otherwise, let i = s and stop the
process. By construction, the balls Br1(xi) are pairwise disjoint, |xi+1−xi| =
2r1 for i = 1, ..., s− 1, |xs −Q| ≤ 2r1. Hence, we have

s ≤ C

(
ρ0

r1

)3

≤ C ′, (7.13)

where C ′ > 0 only depends on M0, α, M1, α0, γ0, λ, µ. An iterated applica-
tion of (7.12) and estimates (7.1), (7.2) give

‖f(·; l)‖L∞(Br1 (Q)) ≤ C

(
1

ρ0

)(1−δs)

· ‖f(·; l)‖δsL∞(Br1 (w)) ≤
C

ρ0

εβ, (7.14)
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where the constant C > 0 depends only on M0, α, M1, α0, γ0, λ, µ, and the
constant β, 0 < β < 1, only depends on M0, α, M1, α0, γ0, λ, µ.

Let us denote
λ1 = d, (7.15)

ϑ1 = arcsin

(
sin ϑ̃0

4

)
, (7.16)

w1 = Q = P − λ1e3, (7.17)

ρ1 = ϑ∗λ1 sinϑ1. (7.18)

In order to approach wh, we construct a sequence of balls contained in the

cone C
(
P,−e3,

d
2−R2

d
, arcsin R

d

)
, with R = d√

1+L2
0

, as follows. Let us define,

for k ≥ 2,
wk = P − λke3, (7.19)

λk = χλk−1, (7.20)

ρk = χρk−1, (7.21)

with

χ =
1− sinϑ1

1 + sinϑ1

. (7.22)

We have that
ρk = χk−1ρ1, (7.23)

λk = χk−1λ1, (7.24)

Bρk+1
(wk+1) ⊂ B3ρk(wk). (7.25)

Denoting
d(k) = |wk − P | − ρk, (7.26)

we have
d(k) = χk−1d∗, (7.27)

with
d∗ = λ1(1− ϑ∗ sinϑ1). (7.28)

For any t, 0 < t < d∗, let k(t) the smallest positive integer such that d(k) ≤ t,
that is ∣∣∣log t

d∗

∣∣∣
| logχ|

≤ k(t)− 1 ≤

∣∣∣log t
d∗

∣∣∣
| logχ|

+ 1. (7.29)
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By applying the three spheres inequality (7.12) over the balls centered at wj
with radii ρj, 3ρj, 4ρj, for j = 1, ..., k(t)− 1, we obtain

‖f(·; l)‖L∞(Bρk(t)
(wk(t))) ≤

C

ρ0

εβδ
k(t)−1

, (7.30)

where the constant C > 0 only depends on M0, α, M1, α0, γ0, λ, µ. In
particular, in view of (6.14), inequality (7.30) holds with t = λwh, and we
have

|f(wh; l)| ≤
C

ρ0

εη, (7.31)

with η given by (7.9).
For any m ∈ R3, |m| = 1, by linearity of f(y, wh; l,m) with respect to the

last variable, we have

|f(y, wh; l,m)| =

∣∣∣∣∣
3∑

k=1

mkfk(wh; l)

∣∣∣∣∣ ≤ |m| · |f(wh; l)|, (7.32)

and, by (7.31), the thesis follows.

At this stage, in order to estimate f(yh, wh; l,m) when yh, wh are defined
by (6.12), (6.13), we shall propagate the smallness with respect to the first
variable, by iterating the three spheres inequality over suitable chains of
balls. As in Step i), we need a preliminary rough estimate of f(y, wh; l,m)
for any y ∈ R3 \ ΩD. However, since such an estimate degenerates when y
approaches ΩD, we have to restrict our analysis to points y sufficiently far
from ΩD. Precisely, we consider the set V̂ (γ) obtained reducing the width

of the set V (γ) appearing in (7.10) by replacing in its definition R = d√
1+L2

0

with R̂ = d

2
√

1+L2
0

. Let us denote ϑ̂0 = arcsin R̂
d

= 1

2
√

1+L2
0

.

In Step 4, we shall apply the three-spheres inequality on a chain of balls
contained in V̂ (γ) and centered at points belonging either to the arc γ or to
the segment joining Q to yh = P − he3. By a straightforward computation,
the distance from ΩD of the points of all these balls is, at least,

h sin ϑ̂0 =
1

2
h sin ϑ̃0. (7.33)

Step 3. For any y ∈ Ωρ0 \ Ωh sin ϑ̂0
D and for any l, m ∈ R3, |l| = |m| = 1,

we have

|f(y, wh; l,m)| ≤ C

ρ0λw

(ρ0

h

)
, (7.34)

where C > 0 only depends on M0, α, M1, α0, γ0, λ, µ.
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Proof of Step 3. By (5.6) and (6.4) we have

|f(y, wh; l,m)| ≤ C

2∑
i=1

∫
Di

|x− y|−2|x− wh|−2, (7.35)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. By Hölder inequality we
have∫

Di

|x− y|−2|x− wh|−2 ≤
(∫

Di

|x− y|−4

) 1
2
(∫

Di

|x− wh|−4

) 1
2

, (7.36)

i = 1, 2. Let R = diam(Ω) + ρ0 ≤ Cρ0, with C > 0 only depending on M0,

α, M1. Then, Ω ⊂ BR(y) and Ω ⊂ BR(wh). Since |x− y| ≥ sin ϑ̂0h for every
x ∈ ΩD, we have∫

Di

|x− y|−4 ≤
∫
BR(y)\B

sin ϑ̂0h
(y)

|x− y|−4 ≤ C

h
, i = 1, 2, (7.37)

where C > 0 only depends on M0, α. Similarly, since |x− wh| ≥ λw sin ϑ̂0h,
we have ∫

Di

|x− wh|−4 ≤ C

λwh
, i = 1, 2, (7.38)

and (7.34) follows.

Step 4. Conclusion.
Let ỹ ∈ S2ρ0 such that dist(ỹ, ∂Ω) = 3

2
ρ0, so that B ρ0

2
(ỹ) ⊂ S2ρ0 and, by

(7.8) of Step 2,

‖f(·, wh; l,m)‖L∞(B ρ0
2

(ỹ)) ≤
C

ρ0

εη, (7.39)

where

η = βδ
|log λwh

d∗ |
| logχ| +1. (7.40)

By Lemma 4.2, there exists a path γ ⊂ (Ωρ0 ∪ S2ρ0) \ ΩD joining ỹ to Q =
P − de3, such that V (γ) ⊂ R3 \ ΩD, where V (γ) is defined by (7.10).

By Lemma 6.3, the vector-valued function f̃ = (f̃1, f̃2, f̃3), where f̃k(·,m) =
f(·, wh; ek,m), k = 1, 2, 3, satisfies the Lamé system (7.11), with constant co-
efficients λ, µ. Then, we can repeat the propagation of smallness arguments
of Step 2 with the following modifications

r1 =
ϑ∗d

8
, ϑ1 = arcsin

(
sin ϑ̃0

8

)
, (7.41)
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ensuring that the geometrical construction takes place inside the set V̂ (γ) as
specified in the previous Step 2. Therefore, estimate (7.34) holds for every
point y belonging to the chain of balls.

By repeating the arguments of Step 2, in view of the estimates (7.34) and
(7.39), the analogous of (7.14) becomes

‖f̃(·, wh)‖L∞(Bρ(Q)) ≤
C

ρ0λw

(ρ0

h

)
εη̃, (7.42)

where

η̃ = β̃δ
|log λwh

d∗ |
| logχ| +1, (7.43)

and C > 0 and β̃, 0 < β̃ < 1, only depend on M0, α, M1, α0, γ0, λ, µ, and
δ, χ, d∗ are the quantities appearing in (7.8).

Finally, by adapting the geometrical construction seen above to the chain
of balls joining Q to yh inside V̂ (γ), recalling (7.33) and noticing that the
new values of χ and d∗ are bigger than the previous ones, we have

|f̃(yh, wh)| ≤
C

ρ0λw

(ρ0

h

)
εη̂, (7.44)

where

η̂ = γδ

2+ 2
| logχ|

∣∣∣∣∣∣∣log λwh(
1−ϑ∗ sin ϑ̃0

8

)
d

∣∣∣∣∣∣∣
, (7.45)

and χ =
1− sin ϑ̃0

8

1+
sin ϑ̃0

8

; γ > 0 only depends on M0, α, M1, α0, γ0, λ, µ; and C > 0

only depends on M0, α, M1, α0, γ0, λ, µ.
By linearity of f̃(y, w; l,m) with respect to the third argument, the bound

(7.44) holds also for f(yh, wh; l,m), for every l, m ∈ R3, |l| = |m| = 1.
Introducing

A =
λw

d
ρ0

(1− ϑ∗ sin ϑ̃0

8
)
, B =

2

| logχ|
, (7.46)

we may rewrite the second factor in the right hand side of (7.44) as

εγδ
2δ
B|logA( h

ρ0 )|
≤ ε

γδ2+B| logA|
(
h
ρ0

)B| log δ|

, (7.47)

which gives the desired estimate (6.15).
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8 Asymptotics of ΓD

Given a bounded domain D with boundary ∂D of class C1,α, with constants
ρ0, M0, 0 < α ≤ 1, let O ∈ ∂D and ν = ν(O) the outer unit normal to D at
O.

Let us choose a coordinate system with origin O and axis e3 = −ν, and
let Γ+(x, y) = ΓR3

+(x, y) the normalized fundamental matrix associated to
D = R3

+. We recall that its explicit expression was found by Rongved [R].
See also Section 10 where Rongved’s formulas shall be used in more detail.

Recalling the notation uD(x, y) = ΓD(x, y)l (see (5.3)) and defining simi-
larly u+(x, y) = Γ+(x, y)l, for any l ∈ R3, |l| = 1, let us prove an asymptotic
approximation of uD in terms of u+.

Theorem 8.1. Let y = (0, 0,−h), 0 < h < ρ0M0

8
√

1+M2
0

. Under the above

assumptions and notation, we have

|uD(x, y)− u+(x, y)| ≤ C

ρ0

(
|x− y|
ρ0

)−1+α

, ∀x ∈ Q ρ0

8
√

1+M2
0

,
ρ0M0

8
√

1+M2
0

∩D,

(8.1)

|∇xu
D(x, y)−∇xu

+(x, y)| ≤ C

ρ2
0

(
|x− y|
ρ0

)−2+ α2

3α+2

, ∀x ∈ Q+
ρ0

12
√

1+M2
0

,
ρ0M0

12
√

1+M2
0

∩D,

(8.2)
where C > 0 only depends on M0, α, α0, γ0, λ, µ.

Proof. Let us set
R(x, y) = uD(x, y)− u+(x, y). (8.3)

The estimate of R is based on a local flattening of the boundary ∂D, which is
realized through the following transformation Φ (see, for instance, [A-DiC]).

Let us consider a cut-off function ϑ ∈ C∞(R) such that 0 ≤ ϑ(t) ≤ 1 in
R, ϑ = 1 if |t| ≤ 1, ϑ(t) = 0 if |t| ≥ 2, |ϑ′(t)| ≤ 2 and |ϑ′′(t)| ≤ 4 for every
t ∈ R. Let

ρ =
ρ0√

1 +M2
0

= ρ0 cosϑ0, (8.4)

where tanϑ0 = M0. Let us introduce the following transformation

Φ : R3 → R3, (8.5)
ξ1 = x1,

ξ2 = x2,

ξ3 = x3 − ϕ(x1, x2)ϑ
(

x3

5ρM0

)
ϑ
(
|x′|
ρ

)
, (8.6)
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where ϕ is the C1,α function that represents locally ∂D.
It is easy to prove that Φ is a C1,α-diffeomorphism satisfying the following

properties:

Φ = Id in R3 \Q2ρ,10ρM0 , (8.7a)

Φ(Q2ρ,10ρM0) = Q2ρ,10ρM0 ; (8.7b)

Φ(x) = (x′, x3 − ϕ(x′)), in Qρ,ρM0 , (8.8a)

Φ(Qρ,ρM0 ∩ ∂D) = Qρ,ρM0 ∩ {x3 = 0}, (8.8b)

Φ(Qρ,ρM0 ∩D) ⊃ {(ξ′, ξ3)| |ξ′| < ρ, 0 < ξ3 < M0(ρ− |ξ′|)}, (8.8c)

Φ(Qρ,ρM0 \D) ⊃ {(ξ′, ξ3)| |ξ′| < ρ, −M0(ρ− |ξ′|) < ξ3 < 0}; (8.8d)

c−1|x− x̃| ≤ |Φ(x)− Φ(x̃)| ≤ c|x− x̃|, for every x, x̃ ∈ R3; (8.9)

|Φ(x)− x| ≤ c

ρα0
|x′|1+α, for every x ∈ R3; (8.10)

|J(x)− Id| ≤ c

ρα0
|x′|α, for every x ∈ R3, (8.11)

where J(x) = ∇Φ(x) and c > 0 is a constant only depending on M0.
Denoting

ξ = Φ(x), η = Φ(y) = y, (8.12)

and defining

Γ̃D(ξ, η) = ΓD(x, y), χ̃D(ξ) = χD(x), J̃(ξ) = J(x), (8.13)

we have that

div ξ

{[
(C + (CD − C)χ̃D(ξ))(∇ξ(Γ̃

D(ξ, η)l)J̃(ξ))
] J̃T (ξ)

det J̃(ξ)

}
= −lδ(ξ−η),

for every ξ ∈ R3 and for every l ∈ R3, |l| = 1. (8.14)
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By (8.8c), (8.8d), χ̃D(ξ) = χ+(ξ) for every ξ ∈ {(ξ′, ξ3)| |ξ′| < ρ, |ξ3| <
M0(ρ− |ξ′|)} and, therefore,

div ξ

{[
(C + (CD − C)χ+(ξ))(∇ξ(Γ̃

D(ξ, η)l)J̃(ξ))
] J̃T (ξ)

det J̃(ξ)

}
= −lδ(ξ−η),

in Q ρ
2
,
ρM0

2
and for every l ∈ R3, |l| = 1. (8.15)

Let us define the function

R̃(ξ, η) = ũD(ξ, η)− u+(ξ, η), in Q ρ
2
,
ρM0

2
, (8.16)

where
ũD(ξ, η) = Γ̃D(ξ, η)l, (8.17)

u+(ξ, η) = Γ+(ξ, η)l. (8.18)

The function R̃(ξ, η) satisfies the equation

div ξ

[
(C + (CD − C)χ+(ξ))∇ξR̃(ξ, η)

]
= F(ξ, η), in Q ρ

2
,
ρM0

2
, (8.19)

where

F(ξ, η) = div ξ

{[
(C + (CD − C)χ+(ξ))∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
−

− div ξ

{[
(C + (CD − C)χ+(ξ))(∇ξũ

D(ξ, η)(J̃(ξ)− Id))
] J̃T (ξ)

det J̃(ξ)

}
.

(8.20)

We want to estimate R̃(z, η) for z ∈ Q+
ρ
4
,
ρM0

4

and η = (0, 0,−h) ∈ Q−ρ
4
,
ρM0

4

.

Using Green’s formulas one finds

R̃(z, η) ·m = I1 + I2 + I3 + I4 + I5, (8.21)

where

I1 = −
∫
∂Q ρ

2 ,
ρM0

2

Γ+(ξ, z)m ·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
νξ dσξ,

(8.22)

I2 =

∫
∂Q ρ

2 ,
ρM0

2

Γ+(ξ, z)m·

{[
C̃(ξ)

(
∇ξũ

D(ξ, η)(J̃(ξ)− Id)
)] J̃T (ξ)

det J̃(ξ)

}
νξ dσξ,

(8.23)
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I3 = −
∫
∂Q ρ

2 ,
ρM0

2

[
R̃(ξ, η) · (C̃(ξ)∇ξ(Γ

+(ξ, z)m))νξ − Γ+(ξ, z)m · (C̃(ξ)∇ξR̃(ξ, η))νξ

]
dσξ,

(8.24)

I4 =

∫
Q ρ

2 ,
ρM0

2

∇ξ(Γ
+(ξ, z)m) ·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
dξ,

(8.25)

I5 = −
∫
Q ρ

2 ,
ρM0

2

∇ξ(Γ
+(ξ, z)m)·

{[
C̃(ξ)

(
∇ξũ

D(ξ, η)(J̃(ξ)− Id)
)] J̃T (ξ)

det J̃(ξ)

}
dξ,

(8.26)

where C̃ = C + (CD − C)χ+.
Let us estimate I1. By Proposition 5.1 and by the properties of the

transformation Φ defined by (8.6), we have

|I1| ≤ Cρ−α0

∫
∂Q ρ

2 ,
ρM0

2

|ξ − z|−1|ξ − η|−2|ξ|αdσξ, (8.27)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Since ξ ∈ ∂Q ρ
2
,
ρM0

2
and z,

η ∈ Q ρ
4
,
ρM0

4
, then

|ξ − η| ≥ Cρ, |ξ − z| ≥ Cρ, (8.28)

with C = 1
4

min{1,M0}. Therefore,

|I1| ≤
C

ρ0

(
ρ

ρ0

)α−1

, (8.29)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
Similarly, one finds

|I2| ≤
C

ρ0

(
ρ

ρ0

)α−1

, (8.30)

|I3| ≤
C

ρ0

(
ρ

ρ0

)α−1

, (8.31)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
In order to estimate I4, let us write

I4 = I ′4 + I ′′4 , (8.32)

where

I ′4 =

∫
Q ρ

2 ,
ρM0

2

\Q 3ρ
8 ,

3ρM0
8

∇ξ(Γ
+(ξ, z)m)·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
dξ,

(8.33)
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I ′′4 =

∫
Q 3ρ

8 ,
3ρM0

8

∇ξ(Γ
+(ξ, z)m) ·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
dξ.

(8.34)
Arguing similarly as in estimating I1, we have

|I ′4| ≤
C

ρ0

(
ρ

ρ0

)α−1

, (8.35)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Note that in the above
formulas the factor ρ

ρ0
is a constant which only depends on M0. We found

it convenient for the following calculations to keep such a constant factor in
evidence (see (8.47) below).

For simplicity, let us denote Q = Q 3ρ
8
,
3ρM0

8
. We have

I ′′4 = I ′′4a + I ′′4b, (8.36)

where

I ′′4a =

∫
Q∩{|ξ|<4|η−z|}

∇ξ(Γ
+(ξ, z)m)·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
dξ,

(8.37)

I ′′4b =

∫
Q∩{|ξ|≥4|η−z|}

∇ξ(Γ
+(ξ, z)m)·

{[
C̃(ξ)∇ξũ

D(ξ, η)
](

Id− J̃T (ξ)

det J̃(ξ)

)}
dξ.

(8.38)
By Proposition 5.1 and introducing the change of variables

ξ = |z − η|w, (8.39)

we have

|I ′′4a| ≤ Cρ−α0 |z − η|α−1

∫
|w|<4

∣∣∣∣w − z

|z − η|

∣∣∣∣−2 ∣∣∣∣w − η

|z − η|

∣∣∣∣−2

dw. (8.40)

Since the integral on the right hand side is bounded by an absolute constant,
see, for instance, [M, Chapter 2, Section 11] , we have

|I ′′4a| ≤
C

ρ0

(
|z − η|
ρ0

)α−1

, (8.41)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.

30



By Proposition 5.1, and noticing thatQ ⊂ {|ξ| < 3
8
ρ
√

1 +M2
0 < 2ρ

√
1 +M2

0}
and that 4|z − η| < 2ρ

√
1 +M2

0 , we have

|I ′′4b| ≤ Cρ−α0

∫
4|η−z|≤|ξ|≤2ρ

√
1+M2

0

|ξ − z|−2|ξ − η|−2|ξ|αdξ, (8.42)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Since, trivially, |z−η| ≥ |z|,
|z − η| ≥ |η|, we have

|ξ| ≤ |ξ − η|+ |η| ≤ |ξ − η|+ |z − η| ≤ |ξ − η|+ |ξ|
4
, (8.43)

so that

|ξ| ≤ 4

3
|ξ − η|. (8.44)

Similarly,

|ξ| ≤ 4

3
|ξ − z|. (8.45)

By inserting (8.44), (8.45) in (8.42), we have

|I ′′4b| ≤ Cρ−α0

∫
4|η−z|≤|ξ|≤2ρ

√
1+M2

0

|ξ|α−4dξ ≤ C

ρ0

(
|z − η|
ρ0

)α−1

, (8.46)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
By (8.35), (8.41), (8.46) and taking into account that

|z − η| < ρ
√

1 +M2
0

2
=
ρ0

2
, (8.47)

we have

|I4| ≤
C

ρ0

(
|z − η|
ρ0

)α−1

, (8.48)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
An estimate analogous to (8.48) holds for I5.

By the above estimates and choosing in (8.21) m = R̃(z,η)

|R̃(z,η)|
, for every

z ∈ Q+
ρ
4
,
ρM0

4

and for every η = (0, 0,−h) ∈ Q−ρ
4
,
ρM0

4

we have

|R̃(z, η)| ≤ C

ρ0

(
|z − η|
ρ0

)α−1

, (8.49)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Notice that, by (8.47),

2 |z−η|
ρ0

< 1.
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Let us get back to the original variables in order to obtain the estimate
for R(x, y). Since

Φ−1(ξ) = (ξ′, ξ3 + ϕ(ξ′)), in Φ(Qρ,ρM0), (8.50)

it easy to see that

Φ−1(Q ρ
4
,
ρM0

4
∩ {x3 = 0}) = Q ρ

4
,
ρM0

4
∩ ∂D, (8.51)

Φ−1(Q+
ρ
4
,
ρM0

4

) ⊂ D, (8.52)

Φ−1(Q−ρ
4
,
ρM0

4

) ∩D = ∅, (8.53)

Q ρ
8
,
ρM0

8
⊂ Φ−1(Q ρ

4
,
ρM0

4
), (8.54)

Q ρ
8
,
ρM0

8
∩D ⊂ Φ−1(Q+

ρ
4
,
ρM0

4

), (8.55)

Q ρ
8
,
ρM0

8
\D ⊂ Φ−1(Q−ρ

4
,
ρM0

4

). (8.56)

Therefore, for every x ∈ Q ρ
8
,
ρM0

8
∩ D and for every y ∈ Q ρ

8
,
ρM0

8
\ D, y =

(0, 0,−h), with h ∈
(
0, ρM0

8

)
, we have

|R̃(Φ(x),Φ(y))| ≤ C

ρ0

(
|Φ(x)− Φ(y)|

ρ0

)α−1

, (8.57)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
Recalling that Φ(y) = y, we have

R(x, y) = uD(x, y)− u+(Φ(x),Φ(y)) + u+(Φ(x),Φ(y))− u+(x, y) =

= R̃(Φ(x),Φ(y)) +
(
u+(Φ(x),Φ(y))− u+(x, y)

)
. (8.58)

In order to estimate the second addend in (8.58), let us distinguish two cases.
Case i): x3 ≥ 0, that is x ∈ R3+.
By the results in [L-N], u+(·, y) ∈ C1(R3+) and, since the segment S =

[x,Φ(x)] is contained in R3+, by (5.6), (8.10) and noticing that |x′| ≤ |x−y|,
we have

|u+(Φ(x),Φ(y))− u+(x, y)| ≤ ‖∇u+(·, y)‖L∞(S)|Φ(x)− x| =
= |∇u+(w, y)| · |Φ(x)− x| ≤ Cρ−α0 |w − y|−2|x− y|1+α, (8.59)

where w ∈ [x,Φ(x)] and C > 0 only depends on M0, α, α0, γ0, λ, µ.
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Since either |w − y| ≥ |x − y| or |w − y| ≥ |Φ(x) − y| and, by (8.9),
|Φ(x)− y| = |Φ(x)− Φ(y)| ≥ C|x− y|, we have that

|u+(Φ(x),Φ(y))− u+(x, y)| ≤ C

ρ0

(
|x− y|
ρ0

)−1+α

, (8.60)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.

Case ii): x3 < 0, that is x ∈ R3−.
Let x̃ = (x′, ϕ(x′)) ∈ ∂D and x = Φ(x̃) = (x′, 0). By using the C1-

regularity of u+ separately in R3+ and in R3−, we have

|u+(Φ(x), y)−u+(x, y)| ≤ |u+(Φ(x), y)−u+(x, y)|+ |u+(x, y)−u+(x, y)| ≤
≤ |∇u+(w+, y)| · |Φ(x)− x|+ |∇u+(w−, y)| · |x− x|, (8.61)

where w+ ∈ S+ = [Φ(x), x], w− ∈ S− = [x, x]. Let w̃+ = Φ−1(w+). Since
w+ ∈ [x,Φ(x)], by (8.50) we have that w̃+ ∈ [Φ−1(x),Φ−1(Φ(x))] = [x̃, x].
Therefore, x ∈ [w̃+, w+], so that either |w+−y| ≥ |x−y| or |w̃+−y| ≥ |x−y|.
Noticing that |w+−y| = |Φ(w̃+)−Φ(y)| ≥ C|w̃+−y|, in both cases, by (5.6),
we have

|∇u+(w+, y)| ≤ C|x− y|−2, (8.62)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
Now, let w̃− = Φ−1(w−). Recalling (8.50) and considering the third com-

ponents, from w−3 < [Φ(x)]3 it follows that w−3 = [Φ−1(w−)]3 < [Φ−1(Φ(x))]3 =
x3. On the other hand, x3 < w−3 , so that x ∈ [w−, w̃−]. Therefore, ei-
ther |w− − y| ≥ |x − y| or |w̃− − y| ≥ |x − y|. Noticing that |w− − y| =
|Φ(w̃−)− Φ(y)| ≥ C|w̃− − y|, in both cases, by (5.6), we have

|∇u+(w−, y)| ≤ C|x− y|−2, (8.63)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
By (8.61)–(8.63) and (8.10), we have

|u+(Φ(x), y)− u+(x, y)| ≤ C|x− y|−2(|Φ(x)− x|+ |x− x|) =

= C|x− y|−2|Φ(x)− x| ≤ C

ρ0

(
|x− y|
ρ0

)−1+α

, (8.64)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
By (8.57)–(8.58), (8.64) and (8.10), estimate (8.1) follows.

In order to obtain (8.2), let x, y ∈ Q ρ
12
,
ρM0
12

, x ∈ D ∩ {x3 ≥ 0}, y =

(0, 0,−h), h > 0, and let

∆(x) =
|x− y|

8
√

1 +M2
0

. (8.65)
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Since |x− y| ≤ ρ
6

√
1 +M2

0 , for every x, y ∈ Q ρ
12
,
ρM0
12

, it follows that

∆(x) ≤ ρ

48
, (8.66)

so that
Q2∆(x),2∆(x)M0(x) ⊂ Q ρ

8
,
ρM0

8
,∀x ∈ Q ρ

12
,
ρM0
12
. (8.67)

Let us define Q+
D(x) = Q+

∆(x),∆(x)M0
(x) ∩D. Let β = α

2(1+α)
.

By a standard interpolation inequality, we have

‖∇R(·, y)‖L∞(Q+
D(x)) ≤

≤ C

(
‖R(·, y)‖

β
1+β

L∞(Q+
D(x))
|∇R(·, y)|

1
1+β

β,Q+
D(x)

+
1

∆(x)
‖R(·, y)‖L∞(Q+

D(x))

)
,

(8.68)

where C > 0 only depends on M0 and α.

By Lemma 5.2, and noticing that Q+
D(x) ⊂ R3+ ∩D,

|∇R(·, y)|β,Q+
D(x) ≤ |∇u

D(·, y)|β,Q+
D(x) + |∇u+(·, y)|β,Q+

D(x) ≤

≤ C

∆(x)1+β

(
‖uD(·, y)‖L∞(Q2∆(x),2∆(x)M0

(x)) + ‖u+(·, y)‖L∞(Q2∆(x),2∆(x)M0
(x))

)
,

(8.69)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Noticing that for any
w ∈ Q2∆(x),2∆(x)M0(x),

|w − y| ≥ |x− y| − |w − x| ≥ |x− y| − 2∆(x)
√

1 +M2
0 =

3

4
|x− y|, (8.70)

and by applying (5.5) to both uD and u+, we have

‖uD(·, y)‖L∞(Q2∆(x),2∆(x)M0
(x)) ≤ C|x− y|−1, (8.71)

‖u+(·, y)‖L∞(Q2∆(x),2∆(x)M0
(x)) ≤ C|x− y|−1, (8.72)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
From (8.69),(8.71), (8.72), we have

|∇R(·, y)|β,Q+
D(x) ≤ C|x− y|−2−β, (8.73)

with C > 0 only depending on M0, α, α0, γ0, λ, µ.
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By (8.68), (8.73), (8.1) and (8.70), we obtain

|∇xu
D(x, y)−∇xu

+(x, y)| ≤ ‖∇R(·, y)‖L∞(Q+
D(x)) ≤

≤ C

ρ2
0

[(
|x− y|
ρ0

)−2+ αβ
β+1

+

(
|x− y|
ρ0

)−2+α
]
, (8.74)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Taking into account that
0 < β

β+1
< 1, we obtain (8.2).

9 Proof of Theorem 6.5

Let ρ = min

{
dist(O,D2), ρ0

12
√

1+M2
0

·min{1,M0}
}

, and h ≤ hρ, with h ∈

(0, 1
2
) to be chosen later, where O ≡ P denotes the origin of the cartesian

coordinate system, with e3 = −ν, ν being the outer unit normal to D1 at O.
This choice ensures that estimates (8.1), (8.2) hold for D = D1 in Bρ(O)∩D1

and B+
ρ (O)∩D1, respectively. For simplicity, in the following we shall denote

Bρ = Bρ(O), B+
ρ = B+

ρ (O).
By (6.4) we have

|f(yh, wh; l,m)| ≥ |SD1(yh, wh; l,m)| − |SD2(yh, wh; l,m)|. (9.1)

In order to estimate |SD1| from below, we write

SD1(yh, wh; l,m) =

∫
D1∩Bρ

(CI − C)∇x(Γ
+(x, yh)l) · ∇x(Γ(x,wh)m)+

+

∫
D1∩Bρ

(CI−C)∇x((Γ
D1(x, yh)−Γ+(x, yh))l)·∇x((Γ

D2(x,wh)−Γ(x,wh))m)+

+

∫
D1∩Bρ

(CI − C)∇x((Γ
D1(x, yh)− Γ+(x, yh))l) · ∇x(Γ(x,wh)m)+

+

∫
D1∩Bρ

(CI − C)∇x(Γ
+(x, yh)l) · ∇x((Γ

D2(x,wh)− Γ(x,wh))m)+

+

∫
D1\Bρ

(CI − C)∇x(Γ
D1(x, yh)l) · ∇x(Γ

D2(x,wh)m), (9.2)

where Γ(x, y) is the Kelvin fundamental solution in R3 of the Lamé operator
with constant coefficients λ, µ. It is well known (see [G]) that

Γ(x, y) =
1

16πµ(1− ν)
· 1

|x− y|

(
(x− y)⊗ (x− y)

|x− y|2
+ (3− 4ν)Id

)
. (9.3)
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Since the leading term of SD1 , as h → 0, is the first integral in the right
hand side of (9.2), it is convenient to represent the domain of integration as
follows

D1 ∩Bρ = B+
ρ ∪ (D1 ∩B−ρ ) \ (B+

ρ \D1) (9.4)

and rewrite (9.2) as

SD1(yh, wh; l,m) = I1 +R1 +R2 +R3, (9.5)

where

I1 =

∫
B+
ρ

(CI − C)∇x(Γ
+(x, yh)l) · ∇x(Γ(x,wh)m), (9.6)

R1 =

∫
D1∩B−ρ

(CI − C)∇x(Γ
+(x, yh)l) · ∇x(Γ(x,wh)m)−

−
∫
B+
ρ \D1

(CI − C)∇x(Γ
+(x, yh)l) · ∇x(Γ(x,wh)m), (9.7)

R2 =

∫
D1\Bρ

(CI − C)∇x(Γ
D1(x, yh)l) · ∇x(Γ

D2(x,wh)m), (9.8)

R3 =

∫
D1∩Bρ

(CI − C)∇x((Γ
D1(x, yh)− Γ+(x, yh))l) · ∇x(Γ(x,wh)m)+

+

∫
D1∩Bρ

(CI − C)∇x(Γ
D1(x, yh)l) · ∇x((Γ

D2(x,wh)− Γ(x,wh))m). (9.9)

Lemma 9.1.

I1 =
1

h

∫
R3

+

(CI − C)∇x(Γ
+(x,−e3)l) · ∇x(Γ(x,−λwe3)m)−

− 1

h

∫
R3

+\B
+
ρ
h

(CI − C)∇x(Γ
+(x,−e3)l) · ∇x(Γ(x,−λwe3)m). (9.10)

Proof. Let us start with proving the following identities, which hold for any
h > 0, ξ, y0 ∈ R3, ξ 6= y0:

Γ(ξ, y0) = hΓ(hξ, hy0), Γ+(ξ, y0) = hΓ+(hξ, hy0). (9.11)

Let us prove the first identity. By the definition of Γ(·, y), we have∫
R3

C∇x(Γ(x, y)l) · ∇xϕ(x) = l · ϕ(y), for every ϕ ∈ C∞0 (R3). (9.12)
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By choosing y = hy0 and performing the change of variables ξ = x
h
, we have∫

R3

C∇ξ(hΓ(hξ, hy0)l) · ∇ξψ(ξ) = l ·ψ(y0), for every ψ ∈ C∞0 (R3), (9.13)

where ψ(ξ) = φ(hξ), that is the first identity in (9.11) holds. The second
identity in (9.11) can be derived similarly, taking into account that χ+(hx) =
χ+(x) for every h > 0.

By applying the change of variables ξ = x
h

to I1, recalling (6.17), (6.18)
and using (9.11), we obtain the identity (9.10).

Let us set
I1 = I ′1 − I ′′1 , (9.14)

where

I ′1 =
1

h

∫
R3

+

(CI − C)∇x(Γ
+(x,−e3)l) · ∇x(Γ(x,−λwe3)m), (9.15)

I ′′1 =
1

h

∫
R3

+\B
+
ρ
h

(CI − C)∇x(Γ
+(x,−e3)l) · ∇x(Γ(x,−λwe3)m). (9.16)

Let us first estimate from above I ′′1 . By recalling (5.6) and observing that
|ξ + e3| ≥ |ξ|, |ξ + λwe3| ≥ |ξ|, we have

|I ′′1 | ≤
C

ρ
, (9.17)

where C > 0 only depends on α0, γ0, λ, µ.
In order to evaluate I ′1, let us premise the following identity.

Lemma 9.2.∫
R3

+

(CI−C)∇x(Γ
+(x, y0)l) ·∇x(Γ(x,w0)m) = (Γ(y0, w0)−Γ+(y0, w0))m · l,

for every y0, w0 ∈ R3, y0 6= w0. (9.18)

Proof. This is a special case of [B-F-V, Proposition 3.2], the proof is analo-
gous to the one of Lemma 6.2.

Proposition 9.3. Let y0 = (0, 0,−1), w0 = (0, 0,−λw). For every i = 1, 2, 3,
there exists λw ∈

{
2
3
, 3

4
, 4

5

}
such that∣∣(Γ+(y0, w0)− Γ(y0, w0))ei · ei

∣∣ ≥ C, (9.19)

where C > 0 only depends on α0, γ0, λ, µ, η0.
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The proof is postponed to the next Section 10.

Remark 9.4. We note that for the present purposes it would suffice to prove
that (9.19) holds true for at least one i = 1, 2, 3. We believe that such a
result, slightly stronger than necessary, may be instructive because we shall
show by examples (Section 10) that there may be values of λw for which
(Γ+(y0, w0)− Γ(y0, w0))ei · ei may indeed equal zero.

On the other hand, taking advantage of the explicit character of Γ+, we
shall prove that (Γ+(y0, w0) − Γ(y0, w0))ei · ei may vanish only for finitely
many values of λw.

Finally, let us note that we restrict the choice of λw to three specific values
just for the sake of definiteness and also with the purpose of having (9.19) in
a constructive form.

Choosing l = m = ei, i = 1, 2, 3, and taking into account (9.10), (9.17),
(9.18) and (9.19), we have

I1 ≥
C
h

+ I ′′1 , with |I ′′1 | ≤
C

ρ
, (9.20)

where C > 0 and C > 0 only depend on α0, γ0, λ, µ, η0.
Let us estimate |R1| from above. By recalling (9.7), by using (5.6), (9.3),

and by the change of variables y = x
h
, we have

|R1| ≤ C

∫
R2

∫ M0
ρα0
|x′|1+α

−M0
ρα0
|x′|1+α

|x− yh|−2|x− wh|−2dx3

 dx1dx2 =

= C

∫
R2

∫ M0
ρα0
|x′|1+α

−M0
ρα0
|x′|1+α

1

(|x′|2 + (x3 + h)2)(|x′|2 + (x3 + λwh)2)
dx3

 dx1dx2 =

=
C

h

∫
R2

∫ M0
ρα0

hα|y′|1+α

−M0
ρα0

hα|y′|1+α

1

(|y′|2 + (y3 + 1)2)(|y′|2 + (y3 + λw)2)
dy3

 dy1dy2,

(9.21)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
It is convenient to split R2 as the union of the sets A = {y′ ∈ R2 | |y′| ≥(

2M0

ρα0

)− 1
1+α

h−
α

1+α}, B = {y′ ∈ R2 | |y′| <
(

2M0

ρα0

)− 1
1+α

h−
α

1+α} and to estimate

the integral in the right hand side of (9.21) separately in A and B. We
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obviously have

C

h

∫
A

∫ M0
ρα0

hα|y′|1+α

−M0
ρα0

hα|y′|1+α

1

(|y′|2 + (y3 + 1)2)(|y′|2 + (y3 + λw)2)
dy3

 dy1dy2 ≤

≤ C

ρα0
hα−1

∫
A

|y′|1+α

|y′|4
dy1dy2 =

C

ρ0

(
h

ρ0

)α−1 ∫ +∞(
2M0
ρα0

)− 1
1+α

h
− α

1+α

rα−2dr =
C

ρ0

(
h

ρ0

)α−1
α+1

,

(9.22)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
In B we have that |y3| < 1

2
, so that |y3 + 1| > 1

2
and |y3 +λw| ≥ λw− 1

2
≥

2
3
− 1

2
= 1

6
. Therefore

C

h

∫
B

∫ M0
ρα0

hα|y′|1+α

−M0
ρα0

hα|y′|1+α

1

(|y′|2 + (y3 + 1)2)(|y′|2 + (y3 + λw)2)
dy3

 dy1dy2 ≤

≤ C

ρα0
hα−1

∫
B

|y′|1+α

(|y′|2 + 1
36

)2
≤ C

ρ0

(
h

ρ0

)α−1 ∫
R2

|y′|1+α

(|y′|2 + 1
36

)2
=
C

ρ0

(
h

ρ0

)α−1

,

(9.23)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. By (9.21)–(9.23), and
recalling that h

ρ0
≤ 1, we have

|R1| ≤
C

ρ0

(
h

ρ0

)α−1

, (9.24)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.

Let us estimate R2 from above. By (5.6), we have

|R2| ≤ C

∫
R3\Bρ

|x− yh|−2|x− wh|−2, (9.25)

where C > 0 only depends on M0, α, α0, γ0, λ, µ. Since h ≤ ρ
2

and λw ∈
(0, 1), we have Bh(yh) ⊂ Bρ, Bh(wh) ⊂ Bρ, so that |x− yh| ≥ h, |x−wh| ≥ h
for every x ∈ R3 \ Bρ. Moreover, |x− yh| ≥ |x| − h, |x− wh| ≥ |x| − λwh ≥
|x|−h. Passing to spherical coordinates, denoting by r the radial coordinate
and taking into account that, since h ≤ ρ

2
≤ r

2
, we have r − h ≥ r

2
, it follows

that

|R2| ≤ C

∫ ∞
ρ

r2

(r − h)4
dr ≤ C

∫ ∞
ρ

dr

r2
=
C

ρ
, (9.26)
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where C > 0 only depends on M0, α, α0, γ0, λ, µ.
Let us estimate R3 from above. To this aim, let us set

R3 = R′3 +R′′3, (9.27)

where

R′3 =

∫
D1∩Bρ

(CI −C)∇x((Γ
D1(x, yh)− Γ+(x, yh))l) · ∇x(Γ(x,wh)m), (9.28)

R′′3 =

∫
D1∩Bρ

(CI−C)∇x(Γ
D1(x, yh)l) ·∇x((Γ

D2(x,wh)−Γ(x,wh))m). (9.29)

Noticing that D1 ∩Bρ ⊂ R3
+ ∪

(
R3 ∩

{
−M0

ρα0
|x′|1+α ≤ x3 ≤ 0

})
, by (8.2),

(9.3), (5.6) we have

R′3 ≤
C

ργ0

∫
R3

+

|x−yh|−2+γ|x−wh|−2+C

∫
R3∩

{
−M0
ρα0
|x′|1+α≤x3≤0

} |x−yh|−2|x−wh|−2,

(9.30)

where γ = α2

3α+2
< 1

2
and C > 0 only depends on M0, α, α0, γ0, λ, µ.

By passing to cylindrical coordinates and applying Hölder inequality
twice, we have

1

ργ0

∫
R3

+

|x− yh|−2+γ|x− wh|−2 ≤

≤ C

ργ0

∫ ∞
0

(∫ ∞
0

r(r2 + (x3 + h)2)−1+ γ
2 (r2 + (x3 + λwh)2)−1dr

)
dx3 ≤

≤ C

ργ0

∫ ∞
0

(x3 + h)γ−1(x3 + λwh)−1dx3 =
C

ρ0

(
h

ρ0

)γ−1

, (9.31)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.
On the other hand, by (9.21), (9.24) we have∫
R3∩

{
−M0
ρα0
|x′|1+α≤x3≤0

} |x− yh|−2|x− wh|−2 ≤

≤
∫
R2

∫ M0
ρα0
|x′|1+α

−M0
ρα0
|x′|1+α

|x− yh|−2|x− wh|−2dx3

 dx1dx2 ≤
C

ρ0

(
h

ρ0

)α−1

,

(9.32)
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where C > 0 only depends on M0, α, α0, γ0, λ, µ.
In order to estimate R′′3, let us notice that, by (6.20), D2 ∩ Bρ = ∅, so

that, by λwh ≤ h ≤ ρ
2
, D2 ∩B ρ

2
(wh) = ∅. Therefore, the function

v(x,wh) = (ΓD2(x,wh)− Γ(x,wh))m (9.33)

satisfies the Lamé system with constant coefficients λ, µ

div x(C∇xv(x,wh)) = 0, in B ρ
2
(wh). (9.34)

By standard regularity estimates, we have

sup
B ρ

4
(wh)

|∇xv(x,wh)| ≤
C

ρ
5
2

(∫
B ρ

2
(wh)

|v(x,wh)|2
) 1

2

, (9.35)

where C > 0 only depends on α0, γ0, λ, µ.
At this stage, we apply the Maximum Modulus Theorem by Fichera [F],

which asserts that

sup
B ρ

2
(wh)

|v(x,wh)| ≤ C sup
∂B ρ

2
(wh)

|v(x,wh)|, (9.36)

where C > 0 only depends on α0, γ0, λ, µ.
By (9.35), (9.36), (5.6), (9.3), we have

sup
B ρ

4
(wh)

|∇xv(x,wh)| ≤
C

ρ2
, (9.37)

where C > 0 only depends on M0, α0, γ0, λ, µ.
It is convenient to split the integral R′′3 as follows

R′′3 = R′′3a +R′′3b, (9.38)

where

R′′3a =

∫
B ρ

4
(wh)∩D1

(CI−C)∇x(Γ
D1(x, yh)l)·∇x((Γ

D2(x,wh)−Γ(x,wh))m),

(9.39)

R′′3b =

∫
(D1∩Bρ)\B ρ

4
(wh)

(CI−C)∇x(Γ
D1(x, yh)l)·∇x((Γ

D2(x,wh)−Γ(x,wh))m).

(9.40)
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By (5.6), (9.37) and noticing that, by h ≤ ρ
2
, B ρ

4
(wh) ⊂ B 3ρ

4
(yh), we have

R′′3a ≤
C

ρ2

∫
B ρ

4
(wh)

|x− yh|−2 ≤ C

ρ2

∫
B 3ρ

4
(yh)

|x− yh|−2 ≤ C

ρ
, (9.41)

where C > 0 only depends on M0, α0, γ0, λ, µ.
By (5.6), by Hölder inequality and requiring that h ≤ 1

8
, so that h ≤ ρ

8

and B ρ
8
(yh) ⊂ B ρ

4
(wh), we have

R′′3b ≤ C

∫
R3\B ρ

4
(wh)

|x− yh|−2|x− wh|−2 ≤

≤ C

(∫
R3\B ρ

4
(wh)

|x− wh|−4

) 1
2
(∫

R3\B ρ
8

(yh)

|x− yh|−4

) 1
2

≤ C

ρ
, (9.42)

where C > 0 only depends on M0, α0, γ0, λ, µ.
By (9.9), (9.31), (9.38), (9.41), (9.42), we have

|R3| ≤
C

ρ0

((
h

ρ0

)γ−1

+

(
h

ρ0

)α−1
)

+
C

ρ
, (9.43)

where C > 0 only depends on M0, α0, γ0, λ, µ.
Let us estimate from above |SD2(yh, wh)|. By (5.6) and recalling that

D2 ∩Bρ = ∅, we have

|SD2(yh, wh)| ≤ C

∫
R3\Bρ

|x− yh|−2|x− wh|−2, (9.44)

where C > 0 only depends on M0, α0, γ0, λ, µ. Noticing that

|x− yh| ≥ |x| − h, |x− wh| ≥ |x| − h, (9.45)

and passing to spherical coordinates, we have

|SD2(yh, wh)| ≤ C

∫ ∞
ρ

r2

(r − h)4
dr, (9.46)

where C > 0 only depends on M0, α0, γ0, λ, µ. By h ≤ ρ
2
≤ r

2
, we have

r − h ≥ r
2
, so that

|SD2(yh, wh)| ≤ C

∫ ∞
ρ

dr

r2
=
C

ρ
, (9.47)
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where C > 0 only depends on M0, α0, γ0, λ, µ.
Finally, by (9.1), (9.5), (9.20), (9.24), (9.26), (9.43), (9.47), we have

|f(yh, wh; ei, ei)| ≥
C
h

(
1− C1

(
h

ρ0

)α
− C2

(
h

ρ0

)γ
− C3

h

ρ

)
, i = 1, 2,

(9.48)
where γ = α2

3α+2
and the constants Ci > 0, i = 1, 2, 3, only depend on M0, α,

α0, γ0, λ, µ. Therefore, there exists h > 0, only depending on M0, α, α0, γ0,
λ, µ, η0, such that, for any h, 0 < h < hρ, estimate (6.18) follows.

10 Rongved’s fundamental solution and proof

of Proposition 9.3

In this section, in order to prove Proposition 9.3, we investigate whether
there exist directions l, m for which there exists w0 = (0, 0,−c), 0 < c < 1,
such that

(Γ+(y0, w0)− Γ(y0, w0))m · l 6= 0 (10.1)

for any couple of Lamé materials with moduli (µ, ν), (µI , νI), where y0 =
(0, 0,−1). To this aim, we introduce the closed-form expression of Γ+ derived
by Rongved [R].

Let us choose a coordinate system (0, ex, ey, ez). Consider the two half-
spaces R3+ = {(x, y, z) | z > 0}, R3− = {(x, y, z) | z < 0} made by homo-
geneous Lamé materials with moduli (µ, ν), (µI , νI), respectively. The two
half-spaces are glued together on the interface z = 0, that is the traction
and the displacement both are continuous across the interface z = 0. The
problem of determining the displacement field

u+(·, P ) = Γ+(·, P )l (10.2)

in R3 caused by a force l ∈ R3, |l| = 1, acting at the point P ≡ (0, 0, c),
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0 < c < 1, is described by the following boundary value problem

µ∆u+ + µ
1−2ν
∇(divu+) = −lδ(P ), in z > 0,

µI∆u+ + µI

1−2νI
∇(divu+) = 0, in z < 0,(

µ(∇u+ + (∇u+)T ) + 2µν
1−2ν

(divu+)Id
)
ez|(x,y,0+) =

=
(
µI(∇u+ + (∇u+)T ) + 2µIνI

1−2νI
(divu+)Id

)
ez|(x,y,0−), on z = 0,

u+|(x,y,0+) = u+|(x,y,0−), on z = 0,

lim|(x,y,z)|→∞ u
+(x, y, z) = 0.

(10.3)

Case 1. Force l = ez normal to the interface:

Γ+(·, P )ez · ex = Γ+
xz(·, P ) = − 1

4(1− ν)

(
∂β

∂x
+ z

∂Bz

∂x

)
, (10.4)

Γ+(·, P )ez · ey = Γ+
yz(·, P ) = − 1

4(1− ν)

(
∂β

∂y
+ z

∂Bz

∂y

)
, (10.5)

Γ+(·, P )ez ·ez = Γ+
zz(·, P ) =

3− 4ν

4(1− ν)
Bz−

1

4(1− ν)

(
∂β

∂z
+ z

∂Bz

∂z
,

)
, (10.6)

where

for z > 0:

Bz =
1

4πµ

{
1

R1

+
µ− µI

µ+ µI(3− 4ν)

(
3− 4ν

R2

+
2c(z + c)

R3
2

)}
, (10.7)

β = − 1

4πµ

{
c

R1

+
µ− µI

µ+ µI(3− 4ν)

[
c(3− 4ν)

R2

−

−4µ(1− ν)

µ− µI

(
µ(1− 2ν)(3− 4νI)− µI(1− 2νI)(3− 4ν)

µI + µ(3− 4νI)

)
log(R2 + z + c)

]}
,

(10.8)

with

R1 = (x2 + y2 + (z − c)2)
1
2 , R2 = (x2 + y2 + (z + c)2)

1
2 ; (10.9)
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for z < 0:

Bz =
1− νI

πR1(µI + µ(3− 4νI))
, (10.10)

β =
1− νI

1− ν

(
− b1

R1

+ b2 log(R1 − z + c)

)
, (10.11)

where

b1 =
c(1− ν)

π(µ+ µI(3− 4ν))
, (10.12)

b2 =
1− ν

π(µ+ µI(3− 4ν))
·µ(1− 2ν)(3− 4νI)− µI(1− 2νI)(3− 4ν)

µI + µ(3− 4νI)
. (10.13)

Case 2. Force l = ex parallel to the interface:

Γ+(·, P )ex·ex = Γ+
xx(·, P ) =

3− 4ν

4(1− 2ν)
Bx−

1

4(1− ν)

(
∂β

∂x
+ x

∂Bx

∂x
+ z

∂Bz

∂x

)
,

(10.14)

Γ+(·, P )ex · ey = Γ+
yx(·, P ) = − 1

4(1− ν)

(
∂β

∂y
+ x

∂Bx

∂y
+ z

∂Bz

∂y

)
, (10.15)

Γ+(·, P )ex · ez = Γ+
zx(·, P ) =

3− 4ν

4(1− ν)
Bz−

1

4(1− ν)

(
∂β

∂z
+ x

∂Bx

∂z
+ z

∂Bz

∂z

)
,

(10.16)
where

for z > 0:

Bx =
1

4πµ

(
1

R1

+
1− µI

µ

1 + µI

µ

1

R2

)
, (10.17)

Bz =
µ− µI

2π(µ+ µI(3− 4ν))

(
− cx

µR3
2

+
(1− 2ν)x

(µ+ µI)R2(R2 + z + c)

)
, (10.18)

β =
1

2π(µ+ µI)(µ+ µI(3− 4ν))

(
(1− 2ν)(µ− µI)cx
R2(R2 + z + c)

+ A∗
x

R2 + z + c

)
,

(10.19)
with

A∗ =
{

(µ− µI)(1− 2ν)
[
µI(3− 4ν)(1− 2νI)− µ(3− 4νI)(1− 2ν)

]
−

−2µI(ν − νI)(µ+ µI(3− 4ν))
}
· 1

µI + µ(3− 4νI)
; (10.20)
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for z < 0:

Bx =
1

2πµ
(

1 + µI

µ

) · 1

R1

, (10.21)

Bz =
(1− 2νI)(µ− µI)

2π(µ+ µI)(µI + µ(3− 4νI))
· x

R1(R1 − z + c)
, (10.22)

β =
1− νI

2π(1− ν)(µ+ µI)(µ+ µI(3− 4ν))
·

·
{[

(1− 2ν)(µ− µI) +
(ν − νI)(µ+ µI(3− 4ν))

1− νI

]
cx

R1(R1 − z + c)
+

+

[
A∗ +

(ν − νI)(µ+ µI(3− 4ν))

1− νI

]
· x

R1 − z + c

}
. (10.23)

In order to adapt these results to our notation, we find convenient to intro-
duce the following change of the coordinate system:

e1 = ey,

e2 = ex,

e3 = −ez, (10.24)

associated to the rotation

R =

0 1 0

1 0 0

0 0 −1

 . (10.25)

Then, we have Γ+
11 Γ+

12 Γ+
13

Γ+
21 Γ+

22 Γ+
23

Γ+
31 Γ+

32 Γ+
33

 =

 Γ+
yy Γ+

yx −Γ+
yz

Γ+
xy Γ+

xx −Γ+
xz

−Γ+
zy −Γ+

zx Γ+
zz

 . (10.26)

and a relationship analogous to (10.26) holds for the Kelvin fundamental
matrix Γ.

Let us analyze the main cases.

i) m = e3, l = e3.
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In this case, by (10.6)–(10.8), (9.3), and denoting Q = (0, 0, 1) = −y0, we
have

Γ+
33(y0, w0)−Γ33(y0, w0) = Γ+

zz(Q,P )−Γzz(Q,P )) =
1

4πµ(1− ν)
· P(t)

t3(µ+ µI(3− 4ν))
,

(10.27)
where

P(t) = (1− ν)
[
(µ− µI)(3− 4ν)− γµ

]
t2 + (µI − µ)(t− 1), (10.28)

with t = 1 + c, 1 < t < 2, and

γ =
µ(1− 2ν)(3− 4νI)− µI(1− 2νI)(3− 4ν)

µI + µ(3− 4νI)
. (10.29)

We note that P is a second degree polynomial

P(t) = αt2 + βt+ γ, (10.30)

whose coefficients can be estimated as follows

α2 + β2 + γ2 = (Aδµ+Bδν)2 + C2(δµ)2, (10.31)

where we have denoted

δµ = µ− µI , δν = ν − νI , (10.32)

and the quantities A, B, C satisfy

C2, B2 ≥ 1

K
, A2 ≤ K, (10.33)

where K > 0 only depends on the a-priori data.
Furthermore we observe that, being the space of real second degree poly-

nomials a 3-dimensional linear space, for any three distinct values t1, t2,
t3 ∈ R we have

(P(t1))2 + (P(t2))2 + (P(t3))2 ≥ C(α2 + β2 + γ2), (10.34)

where C > 0 is a computable quantity only depending on t1, t2, t3.
Thus, in view of (2.20), we obtain

(P(t1))2 + (P(t2))2 + (P(t3))2 ≥ Q2 > 0, (10.35)

where Q > 0 only depends on t1, t2, t3 and on the a-priori data.
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In conclusion, picking any three distinct values c1, c2, c3 ∈ [2
3
, 4

5
] (for the

sake of concreteness we may choose c1 = 2
3
, c2 = 3

4
, c3 = 4

5
), we obtain that

there exists i ∈ {1, 2, 3} such that w0 = (0, 0,−ci) satisfies

|Γ+
33(y0, w0)− Γ33(y0, w0)| ≥ C > 0, (10.36)

where C only depends on the a-priori data.

ii) m = l = e2.
By (10.26) and the analogous for Γ, by (10.14), (10.17)–(10.20) we have

Γ+
22(y0, w0)−Γ22(y0, w0) = Γ+

xx(Q,P )−Γxx(Q,P )) =
1

4(1− ν)
·P(t)

t3
, (10.37)

where

P(t) =
3− 4ν

4πµ
· µ− µ

D

µ+ µD
· t2 − (1− 2ν)(µ− µD)

4π(µ+ µD)(µ+ µD(3− 4ν))
· t2−

− A∗

4π(µ+ µD)(µ+ µD(3− 4ν))
· t2 +

µ− µD

2πµ(µ+ µD(3− 4ν))
· (t− 1)

(10.38)

and

A∗ =
{

(µ− µD)(1− 2ν)
[
µD(3− 4ν)(1− 2νD)− µ(3− 4νD)(1− 2ν)

]
−

−2µD(ν − νD)(µ+ µD(3− 4ν))
}
· 1

µD + µ(3− 4νD)
. (10.39)

An inspection of the polynomial P analogous to the one performed above
leads again to the conclusion that, picking c1 = 2

3
, c2 = 3

4
, c3 = 4

5
, there

exists i ∈ {1, 2, 3} such that w0 = (0, 0,−ci) satisfies

|Γ+
22(y0, w0)− Γ22(y0, w0)| ≥ C > 0, (10.40)

where C only depends on the a-priori data.
A similar result holds when m = l = e1, namely

|Γ+
11(y0, w0)− Γ11(y0, w0)| ≥ C > 0, (10.41)

where C only depends on the a-priori data.

Proof of Proposition 9.3. This is an immediate consequence of (10.36), (10.40)
and (10.41).

Remark 10.1. Observe that

Γ+
ij(y0, w0) = Γij(y0, w0) = 0, i 6= j, i, j = 1, 2, 3. (10.42)

Hence only diagonal terms of Γ+ − Γ appear to be relevant.
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10.1 Examples

Let us conclude the present section with a remark emphasizing an interesting
difference with respect to the electrostatic case. For the analogous inverse
problem in electrostatics, which involves the Laplace operator, from the ex-
plicit expression of Γ+ given, for instance, by (3.11) in [A-DiC], it easy to see
that

(Γ+ − Γ)(y0, y0) 6= 0, for y0 = (0, 0,−1), (10.43)

for any choice of different constant values of the conductivity within the
inclusion D and in Ω \ D. On the contrary, an analogous result does not
hold in the isotropic elastic case. Since for current materials, the Poisson
coefficient takes positive value, let us restrict our analysis to the cases in
which 0 < ν < 1

2
and 0 < νI < 1

2
.

In case m = l = e3, taking the limit in (10.27) as w0 tends to y0, that is
choosing t = 2, one finds

(Γ+
33 − Γ33)(y0, y0) =

Q(µ, ν, µI , νI)

32πµ(1− ν)(µ+ µI(3− 4ν))(µI + µ(3− 4νI))
,

(10.44)

Q(µ, ν, µI , νI) = 32µ2ν2νI − 32µµIν2νI − 24µ2ν2 − 64µ2ννI+

+ 16µµIν2 + 56µµIννI + 16(µI)2ν2 + 48µ2ν + 28µ2νI − 28µµIν−
− 20µµIνI − 28(µI)2ν − 21µ2 + 10µµI + 11(µI)2. (10.45)

The polynomial Q is homogeneous of degree 2 in µ and µI , and of degree 1
in νI . Setting s = µ

µI
and dividing by (µI)2, we obtain

Q(µ, ν, µI , νI)

(µI)2
= Q2(ν, νI , s), (10.46)

where

Q2(ν, νI , s) = 32ν2νIs2 − 32ν2νIs− 24ν2s2 − 64ννIs2 + 16ν2s+ 56ννIs+

+ 48νs2 + 28νIs2 + 16ν2 − 28νs− 20νIs− 21s2 − 28ν + 10s+ 11. (10.47)

Solving Q2 = 0 with respect to νI , we have

νI =
3(8ν2 − 16ν + 7)s2 − 2(8ν2 − 14ν + 5)s− 16ν2 + 28ν − 11

4[(8ν2 − 16ν + 7)s2 − (8ν2 − 14ν + 5)s]
(10.48)

From (10.48) it is possible to determine triples of values (ν, νI , s) satisfying
(10.48) and such that 0 < ν < 1

2
, 0 < νI < 1

2
, 0 < s 6= 1, for instance
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Figure 1: Case m = l = e3: Intersection of the surface Q2 = 0 with the set
{(ν, νI , s) | 0 < ν < 1

2
, 0 < νI < 1

2
, 0 < s < 2}

(1
8
, 17

36
, 6

5
), (1

4
, 661

1628
, 11

10
), (3

8
, 17

36
, 11

10
). Therefore there exist infinitely many pairs

of materials {µ, ν}, {µI , νI} such that (Γ+
33 − Γ33)(y0, y0) = 0.

Figure 1 shows the intersection of the surface Q2 = 0 with the set
{(ν, νI , s) | 0 < ν < 1

2
, 0 < νI < 1

2
, 0 < s < 2}. It is evident from this

graph that for each couple (ν, νI) of Poisson coefficients such that 0 < ν <
1
2
, 0 < νI < 1

2
, there exists a positive value of s such that Q2(ν, νI , s) = 0.

Moreover, substituting s = 1 in the expression of Q2, one finds

Q2(ν, νI , 1) = 8(ν − 1)(ν − νI), (10.49)

which has no zero when ν 6= νI . This implies that for each couple (ν, νI) of
Poisson coefficients such that 0 < ν < 1

2
, 0 < νI < 1

2
, ν 6= νI , there exists s,

0 < s 6= 1 such that Q2(ν, νI , s) = 0, that is Q2(ν, νI , sµI , µI) = 0 for any
µI > 0. Moreover, from (10.49) it follows that if µ = µI , then for any choice
of the Poisson coefficients, such that ν 6= νI , then Q2 6= 0 and therefore
(Γ+

33 − Γ33)(y0, y0) 6= 0.
Next, putting νI = ν in the expression of Q2, one finds

Q2(ν, ν, s) = (s− 1) · [(32ν3 − 88ν2 + 76ν − 21)s+ (−16ν2 + 28ν − 11)],
(10.50)

that is the intersection of the surface Q2 = 0 with the plane ν = νI , when
represented in the plane (νI , s), splits in the line s = 1 and in an algebraic
curve of degree 3. Figure 2, which contains the graph of this curve and of the
line s = 1, shows that in our set of interest, 0 < ν < 1

2
, the only solution is
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-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: Case m = l = e3: Representation of the curve Q2(ν, ν, s) = 0 for
ν ∈ [−2, 2], s ∈ [−2, 2]

s = 1, that is if the Poisson coefficients coincide, but µ 6= µI (that is s 6= 1),
then (Γ+

33 − Γ33)(y0, y0) 6= 0.

In case m = l = e2 and taking the limit in the complete expression of
(10.37) as w0 tends to y0, that is choosing t = 2, one finds

(Γ+
22 − Γ22)(y0, y0) =

1

16(1− ν)
· Q(µ, ν, µI , νI)

R(µ, ν, µI , νI)
, (10.51)

where R(µ, ν, µI , νI) 6= 0 for µ > 0, µI > 0, and

Q(µ, ν, µI , νI) = 32µ3ν2νI+64µ2µIν2νI−96µ(µI)2ν2νI−24µ3ν2−48µ3ννI−
−56µ2µIν2−104µ2µIννI +64µ(µI)2ν2 +136µ(µI)2ννI +32(µI)3ν2 +36µ3ν+

+ 28µ3νI + 88µ2µIν + 40µ2µIνI − 92µ(µI)2ν − 52µ(µI)2νI−
− 48(µI)3ν − 21µ3 − 35µ2µI + 37µ(µI)2 + 19(µI)3. (10.52)

The polynomial Q is homogeneous of degree 3 in µ and µI , and of degree 1
in νI . Setting s = µ

µI
and dividing by (µI)3, we obtain

Q(µ, ν, µI , νI)

(µI)3
= Q2(ν, νI , s), (10.53)

where

Q2(ν, νI , s) = 32ν2νIs3 +64ν2νIs2−24ν2s3−48ννIs3−96ν2νIs−56ν2s2−
− 104ννIs2 + 36νs3 + 28νIs3 + 64ν2s+ 136ννIs+ 88νs2+

+ 40νIs2 + 32ν2 − 21s3 − 92νs− 52νIs− 35s2 − 48ν + 37s+ 19. (10.54)
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Figure 3: Case m = l = e2: Intersection of the surface Q2 = 0 with the set
{(ν, νI , s) | 0 < ν < 1

2
, 0 < νI < 1

2
, 0 < s < 2}

Solving Q2 = 0 with respect to νI , we have

νI =
ND

DD
, (10.55)

where

ND = 3
(
8ν2 − 12ν + 7

)
s3 +

(
56ν2 − 88ν + 35

)
s2−

−
(
64ν2 − 92ν + 37

)
s− 32ν2 + 48ν − 19, (10.56)

DD = 4
((

8ν2 − 12ν + 7
)
s3 + 2

(
8ν2 − 13ν + 5

)
s2 −

(
24ν2 − 34ν + 13

)
s
)
.

(10.57)
From this expression of νI it is possible to determine triples of values

(ν, νI , s) satisfying (10.55) and such that 0 < ν < 1
2
, 0 < νI < 1

2
, 0 <

s 6= 1, for instance (1
5
, 331

663
, 17

15
), (1

4
, 1951

47348
, 19

20
), ( 7

20
, 317

1596
, 19

20
). Therefore there

exist infinitely many pairs of materials {µ, ν}, {µI , νI} such that (Γ+
22 −

Γ22)(y0, y0) = 0.
Figure 3 shows the intersection of the surface Q2 = 0 with the set

{(ν, νI , s) | 0 < ν < 1
2
, 0 < νI < 1

2
, 0 < s < 2}. It is evident from this

graph that for each couple (ν, νI) of Poisson coefficients such that 0 < ν <
1
2
, 0 < νI < 1

2
, there exists a positive value of s such that Q2(ν, νI , s) = 0.

Moreover, substituting s = 1 in the expression of Q2, one finds

Q2(ν, νI , 1) = 16(ν − 1)(ν − νI), (10.58)
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Figure 4: Case m = l = e2: Representation of the curve Q2(ν, ν, s) = 0 for
ν ∈ [−2, 2], s ∈ [−2, 2]

which has no zero when ν 6= νI . This implies that for each couple (ν, νI) of
Poisson coefficients such that 0 < ν < 1

2
, 0 < νI < 1

2
, ν 6= νI , there exists s,

0 < s 6= 1 such that Q2(ν, νI , s) = 0, that is Q2(ν, νI , sµI , µI) = 0 for any
µI > 0. Moreover, from (10.58) it follows that if µ = µI , then for any choice
of the Poisson coefficients, such that ν 6= νI , then Q2 6= 0 and therefore
(Γ+

22 − Γ22)(y0, y0) 6= 0.
Next, putting νI = ν in the expression of Q2, one finds

Q2(ν, ν, s) = (s− 1) · [32ν3s2 + 96ν3s− 72ν2s2−
− 232ν2s+ 64νs2 − 32ν2 + 192νs− 21s2 + 48ν − 56s− 19], (10.59)

that is the intersection of the surface Q2 = 0 with the plane ν = νI , when
represented in the plane (ν, s), splits in the line s = 1 and in an algebraic
curve of degree 5. Figure 4, which contains the graph of this curve and of the
line s = 1, shows that in our set of interest, 0 < ν < 1

2
, the only solution is

s = 1, that is if the Poisson coefficients coincide, but µ 6= µI (that is s 6= 1),
then (Γ+

22 − Γ22)(y0, y0) 6= 0.
Analogous considerations hold, for symmetry evidence, when studying

(Γ+
11 − Γ11)(y0, y0).

11 Metric lemmas, proofs

In order to prove Lemma 4.2, we shall use the following results.
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Lemma 11.1. [Lemma 5.5 in [A-R-Ro-Ve]] Let U be a Lipschitz domain in
R3 with constants ρ0, M0. There exists h0, 0 < h0 < 1, only depending on
M0, such that

Uhρ0 is connected for every h, 0 < h ≤ h0. (11.1)

Theorem 11.2. [Theorem 3.6 in [A-B-Ro-Ve]] There exist positive constants
d0, r0, L0, L0 ≤M0, with d0

ρ0
, r0
ρ0

only depending on M0 and L0 only depending
on α and M0, such that if

dH(∂D1, ∂D2) ≤ d0, (11.2)

then ∂ΩD is Lipschitz with constants r0 and L0. Moreover, for every P ∈
∂ΩD ∩ ∂D1, up to a rigid transformation of coordinates which maps P into
the origin and e3 = −ν, where ν is the outer unit normal to D1 at P , we
have

Di ∩Br0(P ) = {x ∈ Br0(0)| x3 > ϕi(x
′)} , i = 1, 2, (11.3)

ϕ1(0) = 0, ∇ϕ1(0) = 0, (11.4)

‖ϕi‖C0,1(B′r0 (0)) ≤ L0r0, i = 1, 2. (11.5)

An analogous representation holds for every P ∈ ∂ΩD ∩ ∂D2.

Proof of Lemma 4.2. Let

d1 =
d0

c0

, (11.6)

where c0 is the constant introduced in Lemma 4.1, and let

d2 = min{d1, h0ρ0}, (11.7)

where h0, 0 < h0 < 1, only depending on M0, has been introduced in Lemma
11.1. We shall distinguish two cases.

Case i) Let dµ ≤ d1.
Then, by Lemma 4.1 we have dH(∂D1, ∂D2) ≤ d0. Therefore, by Theorem

11.2, ∂ΩD is Lipschitz with constants r0, L0, where r0
ρ0

only depends on M0,

and L0 only depends on M0 and α. We may apply Lemma 11.1 to R3 \ ΩD

obtaining that there exists h̃0, 0 < h̃0 < 1, only depending on α and M0,
such that (R3 \ ΩD)hr0 is connected for every h ≤ h̃0.

Let P ∈ ∂D1 ∩ ∂ΩD be such that

dµ(D1, D2) = dist(P,D2). (11.8)
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Under the coordinate system introduced in Theorem 11.2, let us consider the

point Q = P − h̃0r0
2
e3. We have that

dist(Q,ΩD) ≥ h̃0r0

2
√

1 + L2
0

. (11.9)

Let us denote h1 = h̃0

2
√

1+L2
0

. Since h1 < h̃0, the set (R3 \ ΩD)h1r0 is connected

and contains Q. Therefore, there exists a path γ ⊂ (R3 \ ΩD)h1r0 joining any
point P0 ∈ S2ρ0 with Q. Therefore, in the above coordinate system, the set
V (γ) satisfies

V (γ) ⊂ R3 \ ΩD, (11.10)

provided

d =
h̃0r0

2
, R =

d√
1 + L2

0

. (11.11)

Case ii) Let dµ ≥ d1.

Then, trivially, dµ ≥ d2. Let P̃ ∈ ∂D1 ∩ ∂ΩD be such that

dµ(D1, D2) = dist(P̃ , D2). (11.12)

Since d2 ≤ h0ρ0, by Lemma 11.1, (R3 \D2)d2 is connected. Therefore, given
any point P0 ∈ S2ρ0 , there exists a path γ, γ : [0, 1] → (R3 \ D2)d2 such

that γ(0) ∈ S2ρ0 and γ(1) = P̃ . Let t = inft∈[0,1]

{
t| dist(γ(t), ∂D1) > d2

2

}
.

By definition, dist(γ(t), ∂D1) = d2

2
, so that there exists P ∈ ∂D1 satisfying

|P − γ(t)| = d2

2
. We have that

dist(P,D2) ≥ dist(γ(t), D2)− |γ(t)− P | ≥ d2 −
d2

2
=
d2

2
. (11.13)

Let γ = γ|[0,t] and let us choose a cartesian coordinate system with origin O
at P , and e3 = −ν, where ν is the outer unit normal to D1 at P . We have
that

V (γ) ⊂ R3 \ ΩD, (11.14)

assuming

d =
d2

2
, R =

d√
1 +M2

0

. (11.15)

Let

d = min

{
h̃0r0

2
,
d0

2c0

,
h0ρ0

2

}
, (11.16)
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and let us notice that d
ρ0

only depends on M0, α. Observing that L0 ≤ M0,

formula (4.9) follows with d given in (11.16). Since there exists a positive
constant C only depending on M0, M1 such that diam(Ω) ≤ Cρ0, we have
that

dµ ≤

(
diam(Ω)

d2

2

)
d2

2
≤ c̃1

d2

2
, (11.17)

with c̃1 only depending on M0, α and M1. Letting c1 = min
{

1, 1
c̃1

}
, inequal-

ity (4.8) follows.

Acknowledgements. The collaboration of Professor Alessandro Logar in
preparing the numerical simulations of the last section by means of the open
source software package Sage is gratefully acknowledged.

The second and the third author began to work on this topic during a
visit at the Department of Mathematics of Hokkaido University. They wish
to thank Professor Gen Nakamura for supporting their visit and for the warm
hospitality in Sapporo.

References

[A] G. Alessandrini, Stable determination of conductivity by boundary mea-
surements, Appl. Anal. 27 (1988), pp.153–172.

[A-B-Ro-Ve] G. Alessandrini, E. Beretta, E. Rosset, and S. Vessella, Op-
timal stability for inverse elliptic boundary value problems with unknown
boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), pp.755–806.

[A-DiC] G. Alessandrini and M. Di Cristo, Stable determination of an inclu-
sion by boundary measurements, SIAM J. Math. Anal. 37 (2005), pp.200–
217.

[A-K] G. Alessandrini and K. Kim, Single-logarithmic stability for the
Calderón problem with local data, J. Inverse Ill-Posed Probl. 20 (2012),
pp.389–400.

[A-M] G. Alessandrini and A. Morassi, Strong unique continuation for the
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