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Abstract. Nonlinear parametric inverse problems appear in several prominent applications; one
such application is Diffuse Optical Tomography (DOT) in medical image reconstruction. Such in-
verse problems present huge computational challenges, mostly due to the need for solving a sequence
of large-scale discretized, parametrized, partial differential equations (PDEs) in the forward model.
In this paper, we show how interpolatory parametric model reduction can significantly reduce the
cost of the inversion process in DOT by drastically reducing the computational cost of solving the
forward problems. The key observation is that function evaluations for the underlying optimization
problem may be viewed as transfer function evaluations along the imaginary axis; a similar observa-
tion holds for Jacobian evaluations as well. This motivates the use of system-theoretic model order
reduction methods. We discuss the construction and use of interpolatory parametric reduced models
as surrogates for the full forward model. Within the DOT setting, these surrogate models can ap-
proximate both the cost functional and the associated Jacobian with very little loss of accuracy while
significantly reducing the cost of the overall inversion process. Four numerical examples illustrate
the efficiency of the proposed approach. Although we focus on DOT in this paper, we believe that
our approach is applicable much more generally.
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1. Introduction. Nonlinear inverse problems, as exemplified by medical image
reconstruction or identification and localization of anomalous regions (e.g., tumors in
the body [18], contaminant pools in the earth [34], or cracks in a material sample [47]),
are commonly encountered yet remain very expensive to solve. In such inverse prob-
lems, one wishes to recover information identifying an unknown spatial distribution
(the image) of some quantity of interest within a given medium that is not directly
observable. For example, identifying anomalous regions of electrical conductivity in a
sample of muscle tissue aids in identification and localization of potential tumor sites.

The principal tool linking the images that are sought to correlated data that may
be observed and measured is a mathematical model, the forward model. Within the
context considered here, forward models are large-scale, discretized, 2D or 3D, partial
differential equations. These forward models constitute the functions to be evaluated
for the underlying optimization problem that fits images of interest to observed data,
so it is necessary to resolve these large-scale forward problems many times in order to
to recover and reconstruct an image to some desired resolution. This constitutes the
largest single computational impediment to effective, practical use of some imaging
modalities and low quality image resolution is an all too common and regrettable
outcome. Rapid advances in technology make it possible to take many more mea-
surements, which allows for higher resolution reconstructions in principle. Yet, the
advantage of these additional measurements may not be realized in practice, since
solving the forward problem at compatible resolutions may remain formidably ex-
pensive. The features outlined above apply to many inverse problems found in fields
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such as geophysics [58, 46], medical imaging [37, 54, 9], hydrology [56, 19, 48], and
nondestructive evaluation [38, 36]. The need for innovative, efficient, and accurate
algorithms for such problems is as great as ever.

In this paper, we propose to combine effective low-order parametric image rep-
resentations with techniques developed for interpolatory model reduction in order to
reduce drastically the computational cost of solving the nonlinear inverse problem.
We assume that the fundamental objective is the identification and characterization
of anomalous regions in an otherwise nearly homogeneous medium and that observa-
tions may be made only at the boundary of the medium. For such inverse problems,
low-order parametric image models are able to capture both the edge geometry of the
anomalies as well as the intensities of quantities of interest within the anomalies; one
need only recover a relatively small number (compared to the number of grid points)
of parameter values defining these edges and intensities. We adopt the Parametric
Level Set (PaLS) approach described in [1]. In this approach, the inverse problem
becomes one of finding a parameter vector p that satisfies

p := arg min
p∈R`

‖M(p)− D‖2, (1.1)

where M(p) denotes the synthetically generated data based on a (regularized) forward
model for a given input parameter vector p, and D is the data vector comprised of the
measurements at the detectors. In our application, the measurements are taken in the
frequency domain. The optimization problem is typically solved by some nonlinear
least squares method, in particular, we will use the TREGS algorithm [22]. Although
the inverse problem in this parametrized framework is considerably easier to solve
than solving for the values of the unknown function at every grid point in a 2D or 3D
grid, the forward solves required for function and Jacobian evaluations still lead to
significant computational effort. In this paper, model reduction is employed to bring
down the cost of forward solves, making the overall inversion process considerably
cheaper.

To maintain concreteness throughout our development, we focus on paramet-
ric imaging specifically for diffuse optical tomography (DOT); however, the frame-
work we develop applies to many other nonlinear inversion problems, such as electri-
cal impedance or resistance tomography (EIT/ERT). We observe first that function
and Jacobian evaluations in this inversion problem correspond to evaluations at se-
lected complex frequencies, of a system-theoretic frequency response function of a
parametrized dynamical system, together with its gradient. This observation imme-
diately motivates the use of interpolatory parametrized reduced models as inexpensive
surrogates for the full order forward model. For the DOT problem as expressed by the
optimization problem (1.1), these surrogate models are able to approximate both the
cost functional and the associated Jacobian with little loss of accuracy, while signifi-
cantly reducing the cost of the overall inversion process. For the use of model reduction
in other optimization applications, we refer the reader to [8, 33, 35, 4, 5, 25, 14, 57]
and the references therein.

In §2, we briefly discuss the medical application that motivates our work, and the
central role played by Parametric Level Set (PaLS) parametrization of the medium.
Notably, the PaLS parametrization in effect regularizes the inversion problem, so that
no further regularization is required. Interpolatory model reduction, as used in the
service of solving the forward problem of DOT-PaLS, is discussed in §3. We provide
some discussion describing why our approach appears to work so well for the problems
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of interest here, and give an overview of implementation issues and computational cost.
In §4, we provide four numerical experiments that demonstrate the effectiveness and
accuracy of our approach. We offer some discussion of future work together with our
concluding remarks in §5.

2. Background.

2.1. DOT. Image reconstruction using DOT typifies the inverse problem we
wish to solve, hence we describe the problem in some detail here. There are other
nonlinear inverse problems with similar structure as well, such as EIT and ERT.

We assume that the region to be imaged is a rectangular prism (slab): Ω =
[−a1, a1] × [−a2, a2] × [−a3, a3]. Throughout, x = (x1, x2, x3)T will refer to spatial
location within Ω. The top surface of the slab (x3 = a3) and the bottom surface
(x3 = −a3) will be denoted as ∂Ω+ and ∂Ω−, respectively. The lateral surfaces
where either x1 = ±a1 or x2 = ±a2 will be denoted by Γ. Following Arridge [9],
we adopt a diffusion model for the photon flux/fluence η(x, t) driven by an input
source g(x, t) that is selected out of a set of nsrc possible sources, each of which are
(physically) stationary, independently driven, and positioned on the top surface, ∂Ω+.
We assume there to be functions, bj(x), j = 1, . . . , nsrc describing the transmittance
field (“footprint”) of the jth source, so that g(x, t) = bj(x)uj(t) for some j and given
pulse profile uj(t). We assume that observations, mi(t), are made with a limited
number of detectors, say ndet, that are presumed to be stationary as well, and located
on both the top and bottom surfaces, ∂Ω±. The response characteristics of the sensors
are presumed to be captured by functions, ci(x), so that mi(t) =

∫
∂Ω
ci(x)η(x, t) dx,

i = 1, . . . , ndet.
The model for the illumination of the region to be imaged then appears as

1

ν

∂

∂t
η(x, t) = ∇ · (D(x)∇η(x, t) )− µ(x)η(x, t) + bj(x)uj(t), for x ∈ Ω, (2.1)

0 = η(x, t) + 2AD(x)
∂

∂ξ
η(x, t), for x ∈ ∂Ω±, (2.2)

0 = η(x, t), for x ∈ Γ. (2.3)

mi(t) =

∫
∂Ω

ci(x)η(x, t) dx for i = 1, . . . , ndet (2.4)

(see [9, p. R56]). D(x) and µ(x) denote diffusion and absorption coefficients, respec-
tively; A is a constant related to diffusive boundary reflection (see [9, p. R50]); ξ
denotes the outward unit normal; and ν is the speed of light in the medium.

At best, the scalar fields defined by D(x) and µ(x) are only partially known. We
wish to utilize observations, m(t) = (m1(t), m2(t), . . . ,mndet

(t))T , made when the
system is illuminated by a variety of source signals, u(t) = (u1(t), u2(t), . . . , unsrc

(t))T ,
in order to more accurately determine D(x) and µ(x). Accurate determination of
D(x) and µ(x) is what constitutes “image reconstruction” for our purposes. For sim-
plicity, we assume in our discussion that the diffusivity D(x) is well specified and
that only the absorption field, µ(x), must be determined. We also assume that the
absorption field, µ(·), although unknown, is expressible in terms of a finite set of pa-
rameters, p = [p1, . . . , p`]

T . An effective parametrization of µ(·) is fundamental to
our undertaking, and we elaborate on the dependence µ(·) = µ(·,p) further in §2.2.
In our discussion of the inverse problem and in numerical experiments, we restrict
this model to two dimensions: we consider a2 → 0, so Ω becomes a rectangle in the
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x2-plane with Dirchlet conditions at x1 = ±a1 and Robin conditions on the top and
bottom edges where the sources and detectors are located, x3 = ±a3.

A variety of spatial discretizations may be applied to (2.1)-(2.4), finite element
methods and finite difference methods among them, that yield a differential algebraic
system of equations represented here as

1

ν
E ẏ(t;p) = −A(p)y(t;p) + Bu(t) with m(t;p) = Cy(t;p) (2.5)

where y denotes the discretized photon flux, m = [m1, . . . , mndet
]T is the vector

of detector outputs, Cy constitutes a set of quadrature rules for (2.4) applied to the
discretized photon flux; the columns of B are discretizations of the source “footprints”
bj(x) for j = 1, . . . , nsrc; A(p) = A0 + A1(p) with A0 and A1(p) discretizations
of the diffusion and absorption terms, respectively (A1(p) inherits the absorption
field parametrization, µ(·,p)). E is generally singular, reflecting the inclusion of the
discretized Robin condition (2.2) as an algebraic constraint.

Suppose Y(ω;p), U(ω), and M(ω;p) denote the Fourier transforms of y(t;p),
u(t), and m(t;p), respectively. Taking the Fourier transform of (2.5) and rearranging,
we find directly

M(ω;p) = Ψ(ω;p) U(ω) where Ψ(ω;p) = C
( ıω
ν

E + A(p)
)−1

B, (2.6)

where ω ∈ R, and Ψ(ω;p) is a mapping from sources (inputs) to measurements
(outputs) in the frequency domain; this is known as the frequency response function1

of the dynamical system defined in (2.5).
For any absorption field, µ(·,p), associated with p, the vector of (estimated)

observations for the ith input source at frequency ωj , as predicted by the forward
model in the frequency domain, will be denoted as Mi(ωj ;p) ∈ Cndet . If we stack all
the predicted observation vectors for the nsrc sources and nω frequencies, we obtain:

M(p) = [M1(ω1;p)T , . . . , M1(ωnω
;p)T , M2(ω1;p)T , . . . ,Mnsrc

(ωnω
;p)T ]T ,

which is a (complex) vector of dimension ndet·nsrc·nω. We construct the corresponding
empirical data vector, D, from acquired data. The main optimization problem that
must be solved is (cf. (1.1)):

min
p∈R`

‖M(p)− D‖2

2.2. PaLS. The concept of level sets was first introduced by Osher and Sethian
in [40] and has since gained momentum; see [45, 24, 17, 49, 50, 51]. Traditional level
set methods need specialized optimization and well-honed regularization to overcome
frequent sensitivity to ill-posedness or noise in the problem.

The use of parametric level set (PaLS) representations of images was recently
shown to be beneficial in a large number of inverse problems [1], in terms of drasti-
cally reducing the dimension of the search space (over typical voxel-based formula-
tions) and providing implicit regularization for a suitable number of basis functions

1In describing linear dynamical systems, usually the transfer function Ψ(s; p) =

C
(
s
ν

E + A(p)
)−1

B is used where s ∈ C and is not restricted to the imaginary axis. However,
for our application here, the measurements are made only on the imaginary axis and it is enough to
take s = ıω with ω ∈ R.
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(a) (b)

Fig. 2.1. (a) The CSRBF is given by ϕ(r) = (max(0, 1− r))2 (2r+ 1) with r =
√
x2 + y2 [55].

(b) Two graphical representations of Hε(r), our approximation to a Heaviside function. The width
of the transition region is defined by ε. The dashed line shows an Hε(r) for a larger value of ε.

in the representation (as opposed to Tikhonov regularization where one must handle
the difficult problem of choosing the regularization parameter). We use compactly
supported radial basis functions (CSRBF) for the PaLS representation, as in [1]. An
example of a CSRBF is given in Figure 2.1. See [55] for other choices.

Let ϕ : R+ → R denote a CSRBF; define ‖x‖† :=
√
‖x‖22 + γ2; and

φ(x,p−) :=

m0∑
j=1

αjϕ(‖βj(x− χj)‖†),

where p− denotes a vector of unknown parameter values comprised of the expansion
coefficients αj , dilation factors βj , and center locations χj . The CSRBF ϕ is assumed
to be sufficiently smooth and the value of γ is small and positive; γ is introduced here
to avoid complications of derivatives of the CSRBF parameters at zero. We assume
the absorption field is compatible with a level-set parametrization

µ(x,p) = µin(x)Hε(φ(x,p−)− c) + µout(x)(1−Hε(φ(x,p−)− c)), (2.7)

where Hε(r) denotes a continuous approximation to the Heaviside function, shown in
Figure 2.1, c is the height of the level set of interest, and p represents the concatenation
of p− and any additional parameters that define µin(x) and µout(x). The effect is
that µ(x,p) is very nearly piecewise-constant, having the value µin(x) if x is inside
the region defined by the c-level set, and having value µout(x) otherwise. In all that
follows, we assume p = p− for ease of discussion, since incorporating parameters for
µin and µout into the reduced order model (ROM) framework is straightforward. We
are able to model nonconstant diffusion similarly. Here, we assume that diffusion is
known for ease of exposition.

This PaLS formulation can capture edges and complex boundaries with relatively
few basis functions [1]. The compact support of the basis functions is an important
advantage for nonlinear optimization, since not all parameters may need to be updated
at each iteration (see [1]). The TREGS (pronounced tē reks) method [22] has proved
to be fast and reliable at solving the nonlinear least squares problem for the parameter
vector describing the absorption images, and we therefore use this algorithm for all
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our numerical results. The interested reader is directed to [22] for further details of
the optimization algorithm.

3. Interpolatory Model Reduction for DOT-PaLS.

3.1. A systems theoretic perspective. In the course of finding a minimizer
to (1.1), a single evaluation of M(p)− D involves computing (for all i and j)

Mi(ωj ;p) = CYi(ωj ;p) = C
(
ı
ωj
ν

E + A(p)
)−1

B Ui(ωj) = Ψ(ωj)Ui(ωj), (3.1)

where Ψ(ω;p) is the frequency response function defined in (2.6) and Ui(ωj) = ei, the
ith column of the identity matrix; Ui(ωj) excites the ith source location with a pure
sinusoid signal at frequency ω = ωj . From a systems theoretic perspective, the ob-
jective function evaluations are precisely evaluations of a frequency response function
on the imaginary axis. These function evaluations require solving large, sparse linear
systems

(
ı
ωj

ν E + A(p)
)
v = B ei, for all source locations ei and frequencies ωj . One

major advantage of the PaLS parametrization is that the work for a function evalua-
tion is independent of the number of parameters used, although it does depend on the
order of the system and the numbers of sources and detectors, so the computational
complexity will still be quite high. Consider, for example, an 8cm×8cm×4cm region
with detectors spaced 0.5mm apart and sources spaced 2mm apart on the top and
bottom (consistent with current systems). One function evaluation requires 40×40×2
linear systems with about 2× 106 unknowns for each frequency.

Similar observations hold for the Jacobian computation as well. The Jacobian is
constructed using an adjoint-type (or co-state) approach that exploits the fact that
the number of detectors is roughly equal to the number of sources, as discussed in
[31] and [53, p. 88]. Using (2.6) and (3.1) and differentiating Mi(ωj ;p) with respect
to p gives

∂

∂pk
Mi(ωj ;p) =

∂

∂pk
[Ψ(ωj ;p)] Ui(ωj) = −Z(ωj ;p)T

∂

∂pk
A(p) Yi(ωj ;p), (3.2)

where, for each ωj and any p we can compute Z(ωj ;p) from
(
ı
ωj

ν E + A(p)
)T

Z(ωj ;p) =
CT . Equation (3.2) reveals that Jacobian evaluations in this problem correspond to
evaluation of partial derivatives of the transfer function Ψ(s,p) with respect to the
parameters. The matrices ∂

∂pk
A(p) need to be computed only once. Thus, the com-

putational cost for evaluating the Jacobian with respect to p, apart from computing
Mi(ωj ;p) (which is also necessary for the function evaluation), consists mainly of the
cost of computing Z(ωj ;p), that is, solving ndet · nω linear systems of order equal to
the number of degrees of freedom.

In short, the solution of the nonlinear least squares problem (1.1) requires evalu-
ating both Ψ(ω;p) and ∇pΨ(ω;p) for many values of p and ω and hence solving a
substantial number of large, sparse linear systems. This is a critical bottleneck, and
effective strategies pivot on efficient solution of the forward problem. Our remedy
for this bottleneck has many features in common with methods of model reduction
(see [6, 7]): we seek a frequency response function Ψ̂(ω;p) that is easy to evaluate,
yet provides a high-fidelity approximation to Ψ(ω;p) over parameters and frequen-

cies of interest. Likewise, we require that ∇pΨ̂(ω;p) is easy to evaluate and that

∇pΨ(ω;p) ≈ ∇pΨ̂(ω;p) over the same range of arguments.
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3.2. Surrogate Forward Model via Parametric Model Reduction. Recall
the (time-domain) dynamical systems representation (2.5) of the “original” parametric
system, i.e., the forward model. With this in mind, we are seeking a much smaller
parametric model, of order r � n, that is able to replicate the input-output map of
the original model (2.5). So, we construct the small dynamical system

1

ν
Ê ˙̂yr(t;p) = −Â(p) ŷ(t;p) + B̂ u(t) with m̂(t;p) = Ĉ ŷ(t;p), (3.3)

where the new state vector ŷ(t;p) ∈ Rr, Ê, Â(p) ∈ Rr×r, B̂ ∈ Rr×nsrc , and Ĉ ∈
Rndet×r such that m(t;p) ≈ m̂(t;p). The surrogate (reduced) frequency response
function appears as

Ψ̂(ω;p) = Ĉ
( ıω
ν

Ê + Â(p)
)−1

B̂. (3.4)

Since B̂ has the same number of columns as B and Ĉ has the same number rows as
C, Ψ(ω;p) and Ψ̂(ω;p) have the same row and column dimension, although the state
vector ŷ(t;p) occupies a much lower dimensional space than does the original y(t;p).
However, evaluating Ψ(ω;p) requires the solution of linear systems of dimension n,

whereas evaluating Ψ̂(ω;p) requires the solution of linear systems only of dimension
r � n. This will reduce the cost of the forward problem drastically. A similar
discussion applies to evaluating ∇pΨ(ω;p) vs ∇pΨ̂(ω;p).

We construct the surrogate parametric model using projection. Suppose full rank
matrices V ∈ Cn×r and W ∈ Cn×r are specified. Using the approximation ansatz
that the full state y(t;p) evolves roughly near the r-dimensional subspace Range(V),
we write y(t;p) ≈ Vŷ(t;p) and enforce the Petrov-Galerkin condition

WT

(
1

ν
EV ˙̂y(t) + A(p)Vŷ(t)−B u(t)

)
= 0, m̂(t) = CVŷ(t).

to obtain the reduced-system given in (3.3) with the reduced matrices given by

Ê = WTEV, Â(p) = WTA(p)V, B̂ = WTB, Ĉ = CV. (3.5)

The computational advantages of using the surrogate model Ψ̂(ω;p) in place of the
full-model Ψ(ω;p) will be explained in more detail in §3.3, after we explain how we
choose model reduction bases.

3.3. Interpolatory Parametric Model Reduction. Several parametric model
reduction methods exist to select V ∈ Cn×r and W ∈ Cn×r; see, e.g., [43, 44, 15, 39,
10, 30, 32, 52, 16] and the references therein. Recall that our function and Jacobian
evaluations correspond to transfer function evaluations and their derivatives. Thus,
given a parameter vector p̂ ∈ R` and a frequency ω̂ ∈ R, we would like to use a re-
duced parametric model of the form (3.3) whose frequency response function Ψ̂(ω;p)
satisfies

Ψ̂ (ω̂; p̂) = Ψ (ω̂; p̂) and ∇pΨ̂ (ω̂; p̂) = ∇pΨ (ω̂; p̂) . (3.6)

This perfectly fits in the context of interpolatory parametric model reduction ([13, 11,
21, 29, 26]). The following theorem, from [11, 7], shows how to construct the reduction
bases V and W, so that the reduced transfer function satisfies (3.6). In [11, 7], all
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the matrices in the original system are assumed to have parametric dependency, not
only A(p). We present the theorem in the context of the DOT-PaLS problem.

Theorem 3.1. Suppose A(p) is continuously differentiable in a neighborhood of

p̂ ∈ R`. Let ω̂ ∈ C, and both ıω̂
ν E + A(p̂) and ıω̂

ν Ê + Â(p̂) be invertible.

If

(
ıω̂

ν
E + A(p̂)

)−1

B ∈ Range(V) and

(
C

(
ıω̂

ν
E + A(p̂)

)−1
)T
∈ Range(W),

then, the reduced parametric model of (3.5) satisfies

Ψ(ω̂, p̂) = Ψ̂(ω̂, p̂) , ∇pΨ(ω̂, p̂) = ∇pΨ̂(ω̂, p̂) , and Ψ′(ω̂, p̂) = Ψ̂
′
(ω̂, p̂) ,

where ′ denotes the derivative with respect to ω.
So, we can match both function and gradient values exactly without explicitly

computing them, requiring only that Range(V) and Range(W) contain particular
vectors, see [11, 7]. Thus, by constructing V and W as in Theorem 3.1, we satisfy
the desired interpolation conditions (3.6) for the inverse problem. This means that
for the frequency and parameter interpolation points selected to construct V and W,
an optimization algorithm based on the Gauss-Newton approach (such as TREGS)
would proceed identically for the reduced forward model as for the full-order forward
model. In other words, if, by chance, the optimization algorithm were to pick only
parameter vectors that are in the set of interpolations points used to construct V
and W, there would be no difference between using the full forward model and the
surrogate forward model.

We are able to avoid recomputing the projection bases, V and W, as the optimiza-
tion process generates new parameter vectors. Instead, we use parametrized reduced
order models that can be updated (relatively) cheaply for each new parameter vector
and the same projection bases are reused (typically) in each step. (see §3.3.1). Pro-
jection bases are constructed that are able to provide parametrized reduced models
that retain high fidelity over the range of parameter values that are needed to capture
features of the full forward model that emerge in the course of optimization. This
approach ensures that optimization using the surrogate model will provide solutions
of the same quality as would occur had the full model been used instead. As will be
discussed below and demonstrated in the numerical experiments, this turns out to be
possible at very low cost.

3.3.1. Using Global Basis Matrices for Projection. In this paper, we use
a global basis approach to construct the model reduction bases: we construct two
constant matrices V and W, built by sampling at multiple parameter values, that
capture sufficient information to produce near interpolants across the needed range
of parameter values. This approach contrasts with local bases methods where V and
a W must be updated as p varies; see, e.g., [2, 41, 3, 23], and the references therein.

Given parameter sample points π1, . . . ,πK , following Theorem 3.1, we construct,
for i = 1, . . . ,K, the local basis matrices

Vi = [Vi,1,Vi,2, . . . ,Vi,nω
] (3.7)

=

[(
ı
ω1

ν
E + A(πi)

)−1

B, . . . ,
(
ı
ωnω

ν
E + A(πi)

)−1

B

]
,

where Vi,j =
(
ı
ωj

ν E + A(πi)
)−1

B and ω1, . . . , ωnω
are the frequency interpolation

points. Note that the frequency interpolation points in this context are predetermined
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by the experimental set-up, and we do not need to search for optimal frequency
interpolation, as usually required in rational interpolation based model reduction;
see, e.g., [28, 11]. Since the local basis matrices might have common components
among each other, we eliminate those components by taking the left singular vectors
of the concatenated local basis matrices [V1,V2, . . . ,VK ] as the global basis V; thus
the reduced order r becomes the number of non-zero singular values. Similar steps
are applied to construct W, but using the adjoint system with columns of CT on the
right-hand side (see Theorem 3.1). We are then assured that the reduced parametrized

model with Ê = WTEV, Â(p) = WTA(p)V, B̂ = WTB, and Ĉ = CV will satisfy
(3.6) at every (ω,p) = (ωj ,πi) for j = 1, . . . , nω and i = 1, . . . ,K.

Now, consider the efficient evaluation of Ψ̂(ω;p) = Ĉ
(
ıω
ν Ê + Â(p)

)−1

B̂ given

global projection bases V and W. Since Ê, B̂ and Ĉ are fixed, we need to consider
only the efficient computation of Â(p), the cost of solving small r × r systems being
negligible. In our current setting, A(p) = A0 + A1(p), where A0 is constant and

A1(p) carries the parametric dependency. Hence, Â(p) = WTA0V + WTA1(p)V,
and WTA0V can be precomputed. Only WTA1(p)V needs to be recomputed after
updating the parameter vector. Notice that this holds even if the diffusion is also a
function of p.

Assume that a finite difference discretization is used for the underlying PDE. In
that case, A1(p) is diagonal, making A1(p)V very cheap. So, the main cost is the
computation of in WT (A1(p)V). If diffusion also depends on p, the multiplication
A1(p)V will be 7 times as expensive as multiplying V by a diagonal matrix in the 3D
case and only 5 times as expensive in the 2D case. So, the computation of WTA1(p)V
is very cheap compared with the solution of many large, sparse linear systems for
the full forward model. Similar computational costs will occur with finite element
discretizations, although in that case we would not have a diagonal matrix even when
inverting only for the absorption.

Further cost reductions are possible due to the approximate Heaviside function,
Hε, in (2.7). When the change in the parameter vector is small, which is typically
enforced step-wise in nonlinear optimization, only a small subset of the coefficients
of A1(p) will change. We can exploit this in the update of WTA1(p)V. Let ∆ =
A1(p2) − A1(p1); typically ∆k,k = 0 for all but a modest number of entries, say,

∆k1,k1 , . . . ,∆kq,kq . We have Â(p2) = Â(p1) + WT∆V, where only WT∆V must
be computed. This requires the multiplication of a modest number of entries of W
and ∆V with computational cost of only O(r2q) flops, a constant cost in terms of
n. Again, this would also be true if the diffusion depended on p or when using finite
element discretization, except that ∆ would not be diagonal (but still mostly zero).

The Jacobian can be evaluated cheaply in a similar way. For the kth parameter
pk, we obtain

∇pkΨ̂(ω;p) = −Ĉ
( ıω
ν

Ê + Â(p)
)−1

(
∂

∂pk
Â(p)

)( ıω
ν

Ê + Â(p)
)−1

B̂,

where

∂

∂pk
Â(p) = WT

(
∂

∂pk
A1(p)

)
V,

which can be computed efficiently due to the structure explained above.
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3.4. Analysis of Global Bases Approach. In this section, we motivate why
the approach discussed above is likely to be very effective for our problem and similar
problems, leaving details and proofs to a follow-up paper. In particular, we argue
that for our problem the global projection bases for the reduced model, (3.7) for V
and similar for W, are not expected to change much as a function of the parameters.
This means that (1) we need to compute local bases only for a modest number of
interpolation points to obtain a good approximation of the full forward model, thus
keeping both the number of full size linear systems to solve and the size of the reduced
model small to modest; (2) it might be possible to compute the global projection bases
once (off-line) and use them for a range of distinct image reconstructions; and (3) the
difference in optimization using the full model and using the reduced model is small,
leading to an effective optimization. In Section 4, we demonstrate that at least for
our proof-of-concept problems, this indeed seems to be the case.

For ease of discussion, we consider only finite difference discretizations and invert
only for absorption (not an unreasonable assumption for DOT). For simplicity, we
assume our model uses an exact Heaviside function in (2.7). Typically, |ω| is small
relative to ν and the mesh width h is small.

Under these assumptions, the matrix (ıω/ν)E + A(p) = A0 + (ıω/ν)E + A1(p)
varies only on the diagonal, and changes are quite small relative to the magnitude of
the matrix coefficients as p changes. The matrix A0 represents the discretization of
−∇· (D(x)∇η) for a particular choice of diffusion field D(x) scaled by h2, so that the
diagonal coefficients of A0 are O(1). The matrix A1(p) represents the discretization
of the absorption term µ(x;p)η scaled by h2, and E is the identity scaled by h2, except
for the diagonal coefficients corresponding to the top and bottom grid points, which
are zero. Hence, we can write

ıω

ν
E + A(p) = A0 + h2D(ω,p), where D(ω,p) =

ıω

ν
E + A1(p) (3.8)

and the coefficients Djj are O(1). Suppose µ1 corresponds to the absorption coefficient
in normal tissue and µ2 corresponds to the absorption coefficient in anomalous tissue,
respectively µout and µin in (2.7). Let I1(p) be a diagonal matrix representing the
discrete indicator, or characteristic function, for normal tissue, meaning it contains
zeros on the diagonal for indices corresponding to pixels with anomalous tissue and
ones on the diagonal otherwise. Then define I2(p) = I− I1(p) as the diagonal matrix
representing the indicator function for anomalous tissue. Note that in general we
expect that I2(p) has mostly zeros on the diagonal, reflecting the assumption of a
relatively small anomaly in mostly healthy tissue. Using the definitions above, we
may decompose D(s,p) as

D(ω,p) =
ıω

ν
E + µ1I1(p) + µ2I2(p), (3.9)

Now, we can show that the matrices Vi,k in (3.7), where pk is the approximate
solution at step k in the nonlinear optimization, will generally stay close to each other.
This suggests that global projection bases computed, for example, using the parameter
vectors from the first few iterations are close to local projection bases that could be
computed for other parameter vectors later in the optimization. Hence, the reduced
transfer function remains accurate for the duration of the optimization. We show
the close proximity of these spaces numerically in Figure 3.1 for two test problems
discussed in more detail in the next section. This also suggests that the computation
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of the reduced transfer function is not sensitive to the choice of interpolation points
in parameter space.

First, consider the matrices Vi,1 = ( ıω1

ν E + A(pi))
−1B, for i = 1, . . . ,K, where

ω1 = 0,

Vi,1 = A(pi)
−1B =

(
A0 + h2µ1I + h2(µ2 −m1)I2(pi)

)−1
B,

where we have used the fact that µ1I1(p) + µ2I2(p) = µ1I + µ2I2(p) − µ1I2(p).
We attempt to show that Range(Vi,1) is close to Range((A0 + h2µ1I)−1B), where
A0 +h2µ1I is the operator for constant absorption of healthy tissue. Factoring A(pi)
gives(

A0 + h2µ1I + h2(µ2 − µ1)I2(pi)
)

=(
A0 + h2µ1I

) (
I + h2(µ2 − µ1)

(
A0 + h2µ1I

)−1
I2(pi)

)
,

and we get

Vi,1 =
[(

A0 + h2µ1I
) (

I + h2(µ2 − µ1)
(
A0 + h2µ1I

)−1
I2(pi)

)]−1

B

=
(
I + h2(µ2 − µ1)

(
A0 + h2µ1I

)−1
I2(pi)

)−1 (
A0 + h2µ1I

)−1
B

=
(
I− h2(µ2 − µ1)

[
(A0 + h2µ1I)−1I2(pi)

]
+h4(µ2 − µ1)2

[
(A0 + h2µ1I)−1I2(pi)

]2
− · · · )

(
A0 + h2µ1I

)−1
B. (3.10)

Although the result depends on the rate of convergence of the series, (3.10) shows
that the spaces Range(Vi,1) will be close to each other for a large range of parameter
vectors pi, since they are all close to Range((A0 + h2µ1I)−1B)). Regarding the rate
of convergence of the series, notice that the large eigenvalues of (A0 +h2µ1I)−1 corre-
spond to globally smooth, low frequency eigenvectors, whereas the nonzero columns
of I2 are Cartesian basis vectors. Hence, the series converges rapidly. Considering
more generally the matrices Vi,j = (

ıωj

ν E + A(pi))
−1B, where ωj/ν is small for

j = 2, 3, . . . , nω, a similar argument holds. An analogous discussion holds for the W
basis.

We demonstrate this experimentally for two model problems: Cup Image (shown
in Figure 4.4(a)) and Amoeba Image (shown in Figure 4.5(b)). Let V1,V2, . . . be the
right projection spaces for the parameter vectors p1,p2, . . . obtained in steps 1 (initial
guess), 2, and so on, of the nonlinear least squares optimization, that is,

Vk =

[(
ı
ω1

ν
E + A(pk)

)−1

B , . . . ,
(
ı
ωnω

ν
E + A(pk)

)−1

B

]
.

In Figure 3.1, we show how close these (right) projection spaces remain to the initial
space V1 for two separate test problems. We give the sine of the largest canonical
angle (the subspace gap) at each optimization step. As can be seen, for both problems
the sine of the largest canonical angle remains quite small. Figure 3.2 shows the
changes of the absorption image over the first six distinct approximate solutions, pk.
The first image corresponds to the initial guess for the parameter vector, p1. Note
how drastic changes in the image correspond to quite small changes in the (right)
projection spaces.
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Fig. 3.1. Evolution of the subspace gap (sine of the largest canonical angle Θ) between initial
and subsequent reduction spaces over the course of the optimization.
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Fig. 3.2. Initial image (1) and the first five distinct reconstructions.

Next, we provide an estimate of the accuracy of the transfer function based di-
rectly on such canonical angles. For the discussion below, we assume for simplicity
that the sines of the maximum canonical angles for the Wk spaces are similar to those
for the Vk. Now consider using, at step k, the reduced model computed from Vj and
Wj obtained from pj in (3.5) for the frequency interpolation points ω1, . . . , ωnω ,

Ψ̂j(ω;p), and the resulting error at (ωi,pk), Ψ(ωi;pk) − Ψ̂j(ωi;pk). Denote the re-
duced model that would be computed from Vk and Wk obtained from pk in (3.5),

by Ψ̂k(ω;p). By Theorem 3.1, Ψ̂k(ωi;pk) = Ψ(ωi;pk); the reduced model Ψ̂k(ω;p)

is exact at pk (for all ωi). Furthermore, Theorem 3.1 states that Ψ̂j(ωi;pk) would be
exact if Range(Vj) = Range(Vk) and Range(Wj) = Range(Wk). This will generally
not be the case; however, the computed results in Figure 3.1 suggest that these spaces
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Fig. 3.3. Evolution of the relative interpolation error over the course of the optimization. Note
that larger model reduction spaces carrying more global information are used in the actual numerical
experiments in the next section, leading to much smaller interpolation errors.

may be very close.
Theorem 3.3 in [12] provides a bound on the relative error in approximating

Ψ̂k(ωi;pk) by Ψ̂j(ωi;pk) based on the canonical angles between Range(Vk) and
Range(Vj) and the canonical angles between Range(Wk) and Range(Wj). In ad-

dition, using that Ψ̂k(ωi;pk) = Ψ(ωi;pk) for the frequency interpolation points
ω1, . . . , ωnω , we obtain the following result. For i = 1, . . . , nω,

‖Ψ(ωi;pk)− Ψ̂j(ωi;pk)‖2
1
2

(
‖Ψ̂k( · ;pk)‖H∞ + ‖Ψ̂j( · ;pk)‖H∞

) ≤M max (sin Θ(Vk,Vj), sin Θ(Wk,Wj)) ,

(3.11)

where M depends on the conditioning of the reduced order model with respect to B
and C and the angles between some of the spaces associated with the reduced order
model (see [12]), and ‖Ψ̂i( · ;pk)‖H∞ = supω∈R ‖Ψ̂i(ω;pk)‖2 is the H∞ norm.

Using (3.11), the results given in Figure 3.1, and (assuming) similar bounds for the
spaces Wk, we can assess the errors from using a reduced model computed from V1

for each step in the optimization (with parameter vectors p1,p2, . . .). The usefulness,
of course, depends on the condition number M . To test how descriptive the subspace
gaps are, we also compute the relative interpolation errors given in the left-hand side
of (3.11) for the Cup and Amoeba image reconstructions, and we compare these with
the subspace gaps given Figure 3.1. For both test cases, the interpolation errors,
shown in Figure 3.3, follow a pattern very similar to that of the subspace gaps. These
numbers suggest the possibility of a modest condition number M ; thus illustrating
that, at least for these examples, the gaps could be a good indicator for the behavior
of the interpolation error.

Note that the interpolation errors in our numerical experiments with reduced
models will be much smaller than what is shown here. Here, we report results as
if only the V subspace is used in the reduction step, and the adjoint information
due to W is ignored. Moreover, for our numerical experiments, the subspaces V
and W will be constructed by sampling more than one parameter value (up to five).
Therefore, they carry much more global information than is used in our simple analysis
of the subspace gaps, here. The effectiveness of interpolatory reduced-models for the
inversion problem is illustrated in Section 4 using four numerical examples.

The results of our analysis suggest that using parameter vectors from the first
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few steps of the optimization to compute global bases for a reduced order model will
lead to a reduced model that can be used effectively throughout the optimization and
likely also for distinct image reconstructions as well (as the initial parameter vectors
would all be close to the initial guess). The numerical experiments presented in the
next section suggest this as well.

3.5. Implementation and Cost Overview. As in most parametric model
reduction approaches, the offline phase of our method consists of sampling the pa-
rameter space and constructing the model reduction bases V and W corresponding
to the sampled parameter points. Let {πi}Ki=1 denote the parameter samples. In our
numerical examples, as explained in Section 4 below, we use the leading K ≤ 5 iter-
ations of the full optimization algorithm to obtain the sample points. However, the
samples can come from any effective sampling technique. Once the parameter samples
are determined, the local bases Vi, for i = 1, . . . ,K, are constructed as in (3.7), and

a basis Ṽ is obtained by concatenating these local bases, i.e. Ṽ = [V1,V2, . . . ,VK ].

However, in most cases, Ṽ will contain linearly dependent columns. Thus, the final
global basis V is taken as the leading left singular vectors of Ṽ corresponding to the
singular values bigger than a given tolerance. If the SVD removes small, but non-
zero, singular values below the given tolerance, then the interpolation at the sampled
frequency and parameter points will be approximate. The same steps are repeated to
construct W. Construction of V and W concludes the offline stage.

In the online stage, we use the parametric reduced model to replace the expen-
sive large-scale function and Jacobian evaluations. Using V and W, for the current
iterate pk of the optimization problem, we need Ê = WTEV, B̂ = WTB, Ĉ = CV,

which are constant matrices and are computed only once, and Â(pk) = WTA(pk)V,
which must be updated for each new iterate pk. Then, in the optimization algorithm,
the large-scale function evaluation Ψ(pk) and (if necessary) the Jacobian evaluation

∇pΨ(pk) are replaced with reduced-model evaluations Ψ̂(pk) and ∇pΨ̂(pk), respec-
tively.

The major computational cost results from constructing the model reduction
bases V and W. Assuming nω frequency interpolation points, nsrc sources, ndet de-
tectors, and K parameter samples, constructing V and W requires solving Knωnsrc+
Knωndet large, sparse, n × n, linear systems. In our examples, ndet = nsrc, so the
total number of large linear systems to be solved equals 2Knωnsrc. As explained
above, the cost of the online stage is modest, since it only requires r × r linear
solves and the multiplication WTA(p)V can be performed at a cost independent
of n; thus the main computational complexity is due to solving 2Knωnsrc large linear
systems. On the other hand, the optimization using the full model requires solving
Kfunnωnsrc +KJacnωndet large linear systems, where Kfun is the number of objec-
tive function evaluations and KJac is the number of computations of the Jacobian
over the entire optimization. In our numerical examples, the ratio (Kfun+KJac)/2K
is always larger than three; thus the full parameter inversion requires at least three
times more large-scale linear solves than the reduced-model based parameter inversion
does; thus the offline costs are quickly amortized. Indeed, as we explain in Section
4 below, the computational gains are even much higher, since we are able to recycle
the model reduction bases for reconstructing different images; in other words, there
are no offline costs for subsequent reduced-model based parameter inversions for the
same mesh with the same source and detector locations.
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4. Numerical Experiments. The purpose of our numerical experiments is to
provide a proof of concept of our approach and some analysis and insight. We discuss
four distinct reconstructions in two groups of two. Within each group, the same mesh,
the same number of basis functions, and the same sources and detector locations are
used. However, the two original images to be (approximately) reconstructed within
each group are very different. Apart from showing that the reconstruction using
the reduced model is very close to that using the full model, we demonstrate that
the second reconstruction can be done using the same projection bases as computed
for the first reconstruction, supporting the discussion of section 3.4. This means
that no further solves with large systems are required, i.e., without any further off-
line cost. Of course, some computational effort is required computing the reduced
model, however these are a modest number of additional matrix-vector products with
a diagonal matrix and a modest number of dot-products. See sections 3.3.1 and 3.5
for a detailed discussion of the cost. These examples strongly suggest that after good
bases have been computed, they can be used for many distinct reconstructions. This
would be of significant practical importance, as it may make the cost of computing
the bases, which does require a number of iterative solves with large matrices, more
or less insignificant.

The experiments are set up as follows. We generate synthetic data by first con-
structing one or more anomalies in a standard 0−1 pixel basis. Then, this 0−1 image
is mapped to an image having pixel-wise the absorption value µout for healthy tissue
(for the 0 pixels) and the absorption value µin for anomalous tissue (for the 1 pixels).
Next, the absorption values inside the anomaly are given a small normally distributed
random variation. This pixel-based image of absorption is then used for solving the
forward problem for each source and frequency and computing the measured values.
These measurements are further perturbed by adding white noise (0.1%). Finally,
we reconstruct the shape of the absorption images using the compactly supported
radial basis functions described in §2.2. The optimization problem is solved using the
TREGS algorithm [22] with both the exact objective function (full model) and the
approximate objective function represented by the reduced order model.

Small Mesh. The first two problems are solved on a uniform 50 × 50 grid,
physically corresponding to a domain of 5cm× 5cm. We use standard centered finite
differences to discretize the DOT problem (2.1–2.4). We use 15 CSRBFs to reconstruct
the absorption image, leading to 60 parameters (four per 2D basis function). The
model has 24 sources and 24 detectors, i.e., B ∈ R2500×24 and C ∈ R24×2500.

To compute a reduced model for the first problem, we choose the parameter
vectors, p1 and p2, from the first two iterations of the optimization using the exact
objective function.2 Next we solve, for each parameter point and one frequency, for
the 24 right hand sides given by the sources, Vi,1 = ( ıω1

ν E + A(pi))
−1B, and the 24

right hand sides given by the detectors, Wi,1 = ( ıω1

ν E+A(pi))
−TCT , for i = 1, 2. To

maintain the symmetry of the full model in the reduced model, we employ one-sided
projection, i.e., W = V. We achieve this by first combining the local basis matrices
together, Ṽ = [V1 V2 W1 W2] ∈ R2500×96, and then reducing the dimension using

a rank-revealing decomposition of Ṽ with some modest tolerance (here, we use an
SVD, but cheaper approaches will be used for larger systems). This results in a final

2This is a reasonable approach in practice, as it allows us to switch to the reduced model in the
optimization after a few steps of optimization using the full model. Alternatively, one can choose
a number of parameter interpolation points a priori. A brief discussion of approaches is given in
section 3.5.
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Fig. 4.1. Reconstruction of a simple test anomaly on a small mesh with 24 sources and 24
detectors

reduction basis W = V ∈ R2500×80 and therefore a reduced model of dimension
r = 80. The results of the reconstruction are given in Figure 4.1.

The reconstructions using the exact objective function and the approximate ob-
jective function (reduced model) converge to the same tolerance, and are very similar.
Both reconstructions approximate the original shape well. Note that an exact or
very accurate reconstruction is not possible, as we are not reconstructing in the pixel
basis, and our model does not reconstruct the small heterogeneity in the anomaly.
The result clearly suggests that reconstructions using a reduced model can obtain
a quality similar to those using the full model. This means that the bases V and
W, constructed using the two parameter vectors from the first two iterations, have
provided accurate interpolations and thus accurate function and Jacobian evaluations
for the rest of the optimization validating the discussion of section 3.4. Using the
full model, the optimization algorithm solves 768 linear systems of dimension 2500
to reconstruct the absorption image. Using the reduced model, the optimization al-
gorithm solves only 96 linear systems of dimension 2500 to compute the projection
basis for the reduced model and 816 linear systems of dimension 80 to reconstruct
the absorption image. Hence, the number of ‘full size’ linear systems that must be
solved is drastically reduced. For this problem the full system size is small anyway,
but for large matrices (a large forward problem) the computational savings will be
significant. This will be all the more so, if many sources and detectors are used and
multiple frequencies.

Next, we investigate a reconstruction problem at the same discretization level
(i.e. n = 2500) and with the same source and detector locations as before, but
for a very different image, as shown in Figure 4.2-(a). Since our experiments and
analysis in § 3.4 suggest that the projection bases vary only modestly with p, for
this second problem, we do not compute new model reduction bases; instead, we
use the same basis V = W from the previous example, even though the image to
reconstruct is quite different (in the pixel basis). Thus, there is no offline cost for
constructing the model reduction basis for the second image reconstruction. However,
we want to clarify that recycling the model reduction basis does not mean that we
are using the same parametric reduced model. As the optimization goes through
different parameter iterates, pk, the matrices A(pk) will differ from those arising for
the first image; therefore, the reduced quantity Ar(p) = WTA(p)V, and thus the
reduced parametric model, will be different. As can be seen from Figure 4.2, the use
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Fig. 4.2. Results for Problem 2. Reconstruction of a simple test anomaly on a small mesh
with 24 sources and 24 detectors using the same bases computed for Problem 1. So, only the reduced
model was used. The discretization and sources and detector locations are the same as for Problem 1.
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Fig. 4.3. Initial configuration with 25 basis functions arranged in a 5×5 grid with alternatingly
negative and positive α’s.

of a reduced model as an approximate objective function yields a reconstruction that
is as good as that using the exact objective function, even using a reduced system
basis that was computed for a substantially different reconstruction. As we use a
precomputed basis (from the previous problem), no solves (direct or iterative) with
the full matrix are needed. Only small (reduced system size) linear systems have to
be solved. Of course, for this (small) problem size, the difference is not so large, but
for the next two problems of substantially larger size the difference in computational
cost is very large. For Matlab code, it is the difference between an iterative solver
for a moderately large system versus a quick solve using ‘backslash’.

Using the exact objective function (full model), the algorithm solved 528 full size
linear systems (of size 2500× 2500). Using the reduced model, the algorithm did not
solve any full size system and only solved 576 reduced size systems (of size 80× 80).

Large Mesh. Next we consider two substantially larger problems. We now work
on a 401× 401 mesh resulting in 160801 degrees of freedom in the forward problem.
The model in this case has 36 sources and 36 detectors. We use 25 CSRBFs for
the parameterization of the medium, which gives 100 parameters for the nonlinear
optimization problem. The initial parameter vector is such that it produces the initial
absorption image given in Figure 4.3. We use 5 interpolation points in parameter
space, once again chosen from the first five iterations of the optimization using the
full-order model. Therefore, we solve 360 large, sparse linear systems; one for each
parameter point and each source as well as each detector. Combining both sets of
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Fig. 4.4. Results for Problem 3. Reconstruction of a test anomaly on a 401 × 401 mesh,
resulting in 160801 degrees of freedom in the forward model, with 36 sources and detectors, and 25
basis functions. The reduced model has 250 degrees of freedom for the forward model.
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Fig. 4.5. Results for Problem 4. Reconstruction of a test anomaly on a 401×401 mesh, 160801
degrees of freedom in the forward model, with 36 sources and detectors, and 25 basis functions. This
reconstruction used the projection bases computed for the previous problem. So, only the reduced
model from the previous test case was used (250 degrees of freedom for the forward model).

solutions and using a rank revealing decomposition leads to a projection basis of
250 vectors. So, the reduced model has order 250, and using the reduced model
to approximate the objective function requires the solution of linear systems of size
250×250 rather than 160801×160801. The original absorption image and the results of
the reconstruction for Problem 3 are given in Figure 4.4. Solving the full-size forward
problem, the exact objective function, for each step in the optimization requires the
solution of 1120 linear systems of dimension 160801 versus only 360 for the computing
the reduced model. Then, using the reduced model for the forward problem requires
only the solution of small linear systems of dimension 250. The optimization using
the reduced model takes 1216 iterations. As the number of large linear systems is
the main computational cost, we see that the computational cost solving a single
image reconstruction problem is reduced by more than a factor three. Moreover, if
multiple image reconstruction systems can be solved using the same reduced model,
the computational savings are much higher. The solution of Problem 4, which comes
next, demonstrates that this is indeed the case.

For Problem 4, again we work with the same discretization of the forward problem,
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full model dimension (n) reduced model dimension (r)
2500 80
10201 100
40401 150
160801 250

Table 4.1
Table of reduced model dimensions versus full model dimensions for the forward model.

the same number of radial basis functions to model the absorption image, and the
same number (and positions) of sources and detectors as for Problem 3. We also
use the same initial guess for the parameter vector. Figure 4.5 gives (a) the original
absorption image as well as (b) the reconstruction using the exact objective function
(or full model) and (c) the reconstruction using the reduced model. As before, we
did not need to compute a new basis for the reduced model; we used the same basis
as computed for Problem 3. The optimization using the full model required the
solution of 896 large linear systems of dimension 160801, whereas the optimization
using the reduced model required only the solution of 992 small linear systems of
dimension 250. No large linear systems needed to be solved in the optimization using
the reduced model.

Several types of scaling will determine the usefulness of our approach. For this
problem, we demonstrate one, the ratio between the number of degrees of freedom in
the full model (exact objective function) and those in the reduced model (approximate
objective function). In table 4.1, we give the size of the reduced model required to
get a similar error reduction in the image reconstruction. As the table shows, the
dimension of the reduced model grows only modestly as a function of the dimension
of full model. This comparison was carried out for a fixed number of sources and
detectors.

5. Conclusions and Future Work. We have shown here how parametrized
interpolatory model reduction can significantly reduce the cost of the inversion process
in Diffuse Optical Tomography by reducing dramatically the computational cost of
forward problems. The key observation is that function and Jacobian evaluations
arising in the inversion process correspond to evaluations of a frequency response
function and its gradient. This motivated consideration of system-theoretic reduction
methods and the use of parametrized interpolatory reduced models as surrogates
for the full forward model. Four numerical examples illustrate the efficiency of our
approach. These interpolatory reduced models were found to reduce significantly
the computational cost of the overall inversion process while producing negligible
degradation in the quality of outcomes. Section 3.4 offers some motivation and the
outlines of an analysis that describes why these methods may be expected to be
effective.

In this paper, we have used global reduction bases for constructing the reduced
order models. This approach is simple and effective. In our setting, once the reduc-
tion bases V and W are constructed, the main online cost is the computation of the
reduced matrix Ar(p) using WTA(p)V. As we explained in §3.3.1, due to the special
structure of A(p) in the DOT setting, this computation is still very cheap compared
to solving large linear systems. To improve further the efficiency of our method (espe-
cially for larger 3D imaging problems), we are investigating incorporation of Discrete
Empirical Interpolation Methods (DEIM) [20] and Local-DEIM [42] in the construc-
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tion of affine approximations of A(p). We are also investigating direct interpolation
of local reduced-order quantities, as in [41, 3, 23].

As an alternative to the full matrix interpolation of the frequency response func-
tion, Ψ(ω;p), that is employed here, we are also investigating the use of tangential
interpolation [10, 27] of Ψ(ω;p) for cases with large numbers of detectors and sources.
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