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ANALYSIS OF BLOCK-PRECONDITIONERS FOR MODELS OF
COUPLED MAGMA/MANTLE DYNAMICS

SANDER RHEBERGEN*, GARTH N. WELLST, RICHARD F. KATZ!, AND ANDREW J.
WATHENS$

Abstract. This article considers the iterative solution of a finite element discretisation of
the magma dynamics equations. In simplified form, the magma dynamics equations share some
features of the Stokes equations. We therefore formulate, analyse and numerically test a Elman,
Silvester and Wathen-type block preconditioner for magma dynamics. We prove analytically and
demonstrate numerically the optimality of the preconditioner. The presented analysis highlights the
dependence of the preconditioner on parameters in the magma dynamics equations that can affect
convergence of iterative linear solvers. The analysis is verified through a range of two- and three-
dimensional numerical examples on unstructured grids, from simple illustrative problems through to
large problems on subduction zone-like geometries. The computer code to reproduce all numerical
examples is freely available as supporting material.
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1. Introduction. The mantle of Earth extends from the bottom of the crust to
the top of the iron core, some 3000 km below. Mantle rock, composed of silicate min-
erals, behaves as an elastic solid on the time scale of seismic waves but over geological
time the mantle convects at high Rayleigh number as a creeping, viscous fluid [31].
This convective flow is the hidden engine for plate tectonics, giving rise to plate bound-
aries such as mid-ocean ridges (divergent) and subduction zones (convergent). Plate
boundaries host the vast majority of terrestrial volcanism; their volcanoes are fed by
magma extracted from below, where partial melting of mantle rock occurs (typically
at depths less than ~100 km).

Partially molten regions of the mantle are of interest to geoscientists for their
role in tectonic volcanism and in the chemical evolution of the Earth. The depth
of these regions makes them inaccessible for direct observation, and hence studies of
their dynamics have typically involved numerical simulation. Simulations are often
based on a system of partial differential equations derived by McKenzie [27] and since
elaborated and generalised by other authors [e.g., 10} [33 [34]. The equations describe
two interpenetrating fluids of different density and vastly different viscosity: solid
and molten rock (i.e., mantle and magma). The grains of the rock form a viscously
deformable, permeable matrix through which magma can percolate. This is captured
in the theory by a coupling of the Stokes equations for the mantle with Darcy’s law
for the magma. Although each phase is independently incompressible, the two-phase
mixture allows for divergence or convergence of the solid matrix, locally increasing or
decreasing the volume fraction of magma. This process is modulated by a compaction
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viscosity, and gives rise to much of the interesting behaviour associated with coupled
magma,/mantle dynamics [35] [36, 20} B37].

The governing equations have been solved in a variety of contexts, from idealised
studies of localisation and wave behaviour [e.g. I, 8] to applied studies of plate-tectonic
boundaries, especially mid-ocean ridges [e.g. [I5] [I8]. These studies have employed fi-
nite volume techniques on regular, Cartesian grids [e.g. [2I]. Unlike mid-ocean ridges,
subduction zones have a plate geometry that is awkward for Cartesian grids; it is, how-
ever, conveniently meshed with triangles or tetrahedra, which can also focus resolution
where it is most needed [38]. Finite element simulations of pure mantle convection in
subduction zones are common in the literature, but it remains a challenge to model
two-phase, three-dimensional, magma/mantle dynamics of subduction, even though
this is an area of active research [22] B9]. Such models require highly refined compu-
tational meshes, resulting in very large systems of algebraic equations. To solve these
systems efficiently, iterative solvers together with effective preconditioning techniques
are necessary. Although the governing equations are similar to those of Stokes flow,
there has been no prior analysis of their discretisation and numerical solution by the
finite element method.

The most computationally expensive step in modelling the partially molten man-
tle is typically the solution of a Stokes-like problem for the velocity of the solid matrix.
To address this bottleneck in the context of large, unstructured grids for finite ele-
ment discretisations, we describe, analyse, and test a preconditioner for the algebraic
system resulting from the simplified McKenzie equations. The system of equations
is similar to the Stokes problem, for which the Silvester—Wathen preconditioner [32]
has been proven to be optimal, i.e., the iteration count of the iterative method is
independent of the size of the algebraic system for a variety of discretisations of the
Stokes equations (see also [26]). The key lies in finding a suitable approximation to
the Schur complement of the block matrix resulting from the finite element discreti-
sation. We follow this approach to prove and demonstrate numerically the optimality
of the preconditioner for coupled magma/mantle dynamics problems. The analysis
and numerical examples highlight some issues specific to magma/mantle dynamics
simulations regarding the impact of model parameters on the solver performance. To
the best of our knowledge, together with the work of Katz and Takei [19], we present
the first three dimensional computations of the (simplified) McKenzie equations, and
the first analysis of a preconditioner for this problem.

In this work we incorporate analysis, subduction zone-inspired examples, and soft-
ware implementation. The analysis is confirmed by numerical examples that range
from illustrative cases to large, representative models of subduction zones solved using
parallel computers. The computer code to reproduce all presented examples is paral-
lelised and is freely available under the Lesser GNU Public License (LGPL) as part of
the supporting material [30]. The proposed preconditioning strategies have been im-
plemented using libraries from the FEniCS Project [2| 24] 25| 28] and PETSc |5, [6, [7].
The FEniCS framework provides a high degree of mathematical abstraction, which
permits the proposed methods to be implemented quickly, compactly and efficiently,
with a close correspondence between the mathematical presentation in this paper and
the computer implementation in the supporting material.

The outline of this article is as follows. In Section [2] we introduce the simplified
McKenzie equations for coupled magma/mantle dynamics, followed by a finite element
method for these equations in Section A preconditioner analysis is conducted in
Section[dand its construction is discussed in Section[5} Through numerical simulations
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in Section [6] we verify the analysis; conclusions are drawn in Section [7]

2. Partially molten magma dynamics. Let Q C R? be a bounded domain
with 2 < d < 3. The McKenzie [27] model on 2 reads

2.1) 06—V - ((1- 6)u) =0,
(2.2) -V - 2ne(u) + Vps =V ((C -2 V- u> — pges,
(2.3) V-u=V- EV (pe + pegz)

where ¢ is porosity, u is the matrix velocity, e(u) = (Vu + (Vu)?)/2 is the strain
rate tensor, x is permeability, u is the melt viscosity, n and ¢ are the shear and bulk
viscosity of the matrix, respectively, g is the constant acceleration due to gravity, es
is the unit vector in the z-direction (i.e., e = (0,1) when d = 2 and e3 = (0,0,1)
when d = 3), pr is the melt pressure, pr and ps are the constant melt and matrix
densities, respectively, and p = pgd + ps(1 — ¢) is the phase-averaged density. Here
we assume that u, n and  are constants and that x is a function of ¢. The magma
(fluid) velocity us can be obtained from u, ¢ and p¢ through:

(2.4) u=u-— d%v (pe + prgz) -

It will be useful to decompose the melt pressure as pr = p — psgz, where p is the

dynamic pressure and psgz the ‘lithostatic’ pressure. Equations (2.2)), (2.3) and ([2.4)
may then be written as

(2.5) -V - 2ne(u)+Vp=V ((C - 2n) V- u) + gApges,
(2.6) V«u:V-gV(pprgz),
K
2.7 u=u——V(p—Apgz),
(2.7) . ™ ( Pgz)
where Ap = ps — ps. Constitutive relations are given by
(28) K = Ko <¢> ) C =Tren,
bo

where ¢ is the characteristic porosity, ¢ the characteristic permeability, n > 1 is a
dimensionless constant and r¢ is the ratio between matrix bulk and shear viscosity.

We non-dimensionalise ([2.1)), (2.5, (2.6) and (2.7 using

(2.9) u=uou', x=Hx', t = (H/up)t', k = kor', p= ApgHYp',
where primed variables are non-dimensional, ug is the velocity scaling, given by
ApgH?
2.10 = —
(2.10) wo = S

and H is a length scale. Dropping the prime notation, the McKenzie equations ((2.1),
(2.5) and (2.6)), in non-dimensional form are given by

(2.11) oo —V-((1—¢)u)=0,

(2.12) —V-€(u)+Vp= V( (re —2) u)+c/>e3,

V-
_ ¢ e
(2.13) v-u_rc+4/3 <<¢0> (Vp 3)>,
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where R = §/H with § the compaction length defined as

(r¢ +4/3)k01

2.14 6=
(2.14) .
and (2.7) becomes
oOR? 1 (¢ \"
2.15 =u- ——— = Vo — i
(215) w—n- 2t (2) -

When solving the McKenzie model numerically for time-dependent simulations,
is usually decoupled from and . Porosity is updated with (2.11)
after which the velocity and pressure are determined by solving and (2.13));
iteration can be used to better capture the coupling. The most expensive part of this
procedure is solving and . In this work we study an optimal solver for
equations (2.12)) and (2.13) for a given porosity field. We remark that an alternative
to decoupling (2.11) from (2.12)) and is to use a composable linear solver for
the full system —@ see Brown et al. [I2]. In this case, our optimal solver
may be used as a preconditioner for part of this composable linear solver.

For the rest of this paper we replace (r¢ —2/3)/2 by a constant . Furthermore,
we replace

R? "
10 (9

by a spatially variable function k(x) (independent of a and ¢) and we obtain the
problem

(2.17a) -V -€(u) + Vp =V(aV - u) + ges,
(2.17b) V-u=V-(k(Vp—e3)).

For coupled magma/mantle dynamics problems, o may range from —1/3 to approxi-
mately 1000. For this reason we will assume in this paper that —1/3 < a < 1000. We
also bound k: 0 < k. < k(x) < k* for all x € . In the infinite-dimensional setting,
we note that if k(x) = 0 everywhere in 2, the compaction stress V(a'V -u) vanishes as
the velocity field is divergence free and reduces to the Stokes equations. This
will not generally be the case for a finite element formulation, as will be discussed in
the following section.
On the boundary of the domain, 92, we impose

(2.18) u=g,
(2.19) —k(Vp—e3) - n=0,

where g : 90 — R? is given boundary data satisfying the compatibility condition
(2.20) 0= / g-nds.
oQ

3. Finite element formulation. In this section we assume, without loss of
generality, homogeneous boundary conditions on u.
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Let 7, be a triangulation of Q with associated finite element spaces Xj; C

(H () “and M), C HY(Q) N LE(Q). The finite element weak formulation for (2.17))
and (2.18)) is given by: find uy, pp € Xy X M} such that

(3.1) B(uy; pn,v;q) = / des - vdr —/ kes - Vqdx Vv, q € Xp, X My,
Q Q

where
(3.2) B(u;p,v;q) = a(u,v) + b(p, v) + b(q, u) — ¢(p, 9),
and

a(u,v) = /Qe(u) ce(v) +a(V-u)(V-v)de,
(3.3) b(p,v) = — /Q PV vz,

c(p,q) = /Q kVp-Vgdaz.

PROPOSITION 3.1. For a > —1, there exists a co > 0 such that

(3.4) a(v,v) > ca||v|\f Vve (Hé(Q))d

Proof. The proposition follows from
2 2 2 d
(3.5) IV -vIP <lle)|” <IVvI® v ve (H(9)

(see Ref. [16, Eq. (3.4)]) and the application of Korn’s inequality. O
We will consider finite elements that are inf-sup stable [I1] in the degenerate limit
of k =0, i.e, a(u,v) is coercive (see Proposition , c(p,p) > 0 Vp € M), and for
which there exists a constant ¢; > 0 independent of h such that
b(qh> Vh)

3.6 max ————— > ¢ Yaqn € Mjy,.
( ) vheXy |VVh|| = 1||qhH qn h

In particular, we will use Taylor-Hood (P?-P!) finite elements on simplices. We note
that while in the infinite-dimensional setting the Stokes equations are recovered from
(2.17) when k = 0, this is not generally the case for the discrete weak formulation
when o # 0. Obtaining the Stokes limit in the finite element setting when
a # 0 requires the non-trivial property that the divergence of functions in X, lie in
the pressure space Mj,. This is not the case for Taylor—-Hood finite elements.

The discrete system can be written in block matrix form as

5L
p 9]’
where uw € R™ and p € N™ = {q € R™|q # 1} are, respectively, the vectors of

the discrete velocity and pressure variables with respect to appropriate bases for Xy,
and M. The space N™» satisfies the zero mean pressure condition.

A BT

(3.7) 5 e
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For later convenience, we define the negative of the ‘pressure’ Schur comple-
ment S:

(3.8) S =BA'BT 4 Cy,
and the scalar pressure mass matrix () such that

(3.9) lanl* = (Qq, a),

for g, € M} and where ¢ € R™ is the vector of the coefficients associated with the
pressure basis and (-, -) denotes the standard Euclidean scalar product.

The differences between the matrix formulation of the magma/mantle equa-
tions and the Stokes equations lie in the matrices A and Cy. In the case
of the magma/mantle dynamics, A includes the discretisation of compaction stresses:
a ‘grad-div’ term weighted by the factor a. Such ‘grad-div’ terms are known to be
problematic in the context of multigrid methods as the modes associated with lowest
eigenvalues are not well represented on a coarse grid [3]. There have been a num-
ber of investigations into this issue for H(div) finite element problems, e.g. [4, 23].
The second matrix which differs from the Stokes discretisation is C. For sufficiently
large k, this term provides Laplace-type pressure stabilisation for elements that would
otherwise be unstable for the Stokes problem.

4. Optimal block diagonal preconditioners. To model three-dimensional
magma/mantle dynamics of subduction, efficient iterative solvers together with pre-
conditioning techniques are needed to solve the resulting algebraic systems of equa-
tions. The goal of this section is to introduce and prove optimality of a class of block
diagonal preconditioners for .

To prove optimality of a block preconditioner for the McKenzie problem, we first
present a number of supporting results.

PROPOSITION 4.1. The bilinear form c in satisfies

(4.1) (g, q) > k.|| Vg Vg € M".

Proof. This follows directly from
2 2
(4.2) c(q,q) =Hk1/2VqH > Hki/QVqH :

]

LEMMA 4.2. For the matrices A, B and C}, given in (3.7), the pressure Schur
complement S in (3.8) and the pressure mass matriz Q in (3.9)), for an inf-sup stable
formulation satisfying (3.6]), the following bounds hold

(Se.9)  _ 4

(4.3) O<e<Tgroneg ="

Vg € N"»,

where c? is given by

(4.4) a_ JU/(A=la) if —1/3<a<0,
| 1 if a>0,
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and cq by

2
_ o A eph(1l+ o)
(4.5) cq—mln<(1+|a|)(1+cpk*), 1],

where ¢y 1s the inf-sup constant and cp the Poincaré constant.
Proof. Since A is symmetric and positive definite, and from the definition of .S

(Sq,q) = (A"'B"q, BTq) + (Crq. q)
(4.6) (v, BT q)?

= C
vzﬁgu <A’U, ’U> + < k4, q>,
for all ¢ € N™. From the definition of matrices A, B, Cy and @ it then follows that

(qh? A Vh)2
evi)||” + allV - va

(4.7) (8q,q) = sup

vpeEXp

+ (EVan, Van).

Using (3.5) and the Cauchy—Schwarz inequality,

(4.8) (4, V- vi)? < llanl[[e(v)]|*.

For —1/3 < a <0,

1
o leva)[* = 1 (leva)|* + afletva)])
4.9

1

< 1o (e + el -vil?)
and for o > 0,
(4.10) le(vi)||” < |leva)|]” + allV - val*.
Hence,
(4.11) (.Y -vi)* < an* (leCvn)|* + 0V -vall)
where
(4.12) = 1/(1—la]) if —1/3<a<0,
’ 1 if a > 0.

Combining and ,

(413) (Sq,q) < lanll® + (kVan, Var) = ¢1(Qq, q) + (Crq, q) < {(Q + Ci)g, q)

This proves the upper bound in (4.3)).
Next we determine the lower bound. Using (3.5 and the inf-sup condition (3.6)),

(qn, V - vp)? (qn, V - vp)?
ma. 5 5 > max ————————
Vi€Xnle(va)||” + a| V- val* T VX (1t [a) [V
i
1+ |af

(4.14)
>

2
llanll™
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which leads to

2
C
4.15 Sq,q) > —1
(4.15) <th>_1+|a|

(Qq,q) + (Ckaq,q).

Using Proposition [.1] and the Poincaré inequality,

2
(Cra, q) = (1 = §)clgn, qn) + fHkl/QthH

> (1= &)c(qn, an) + Ecphallgn])?
= (1 - §)<Cl€Qa q> + SCPI/”'* <Qqa q>7

for any £ € [0, 1]. Combining (4.15) and (4.16)),

(4.16)

62

and setting &€ = (1 — ¢2/(1 + |a]))/(1 + cpk.) in the case that ¢Z/(1 + |a|) < 1, and
otherwise setting £ = 0,

et + cpki(1 + |a)
(L +Jaf)(1+cpk.)’

(4.18) (Sq,q) > min ( 1) (Q+ Cr)a,q),

from which ¢, is deduced. O

For the discretisation of the Stokes equations, it was shown that the pressure
mass-matrix is spectrally equivalent to the Schur complement [32]. This is recovered
from Lemma [4.2| when k£ = 0 everywhere and o = 0.

LEMMA 4.3. For the matrices A, B and Cy in (3.7), S in (3.8) and the pressure
mass matriz Q in (3.9), if the inf-sup condition in (3.6) is satisfied, then
((B"(Q + Cy)~ "B, v)

(Av,v)

where c? is the constant from in (4.4).

Proof. From Lemma [£.2] symmetry of A and positive semi-definiteness of C,
¢"BAT'BTq _ q" (BAT'BT + Cy) q
" (@+Ckla ™ " (Q@+Ck)g
Inserting g « (Q + Cx)Y?q,

¢"(Q+Cy) "' ?BAT'BT(Q + Ci) g
q'q
Defining H = (Q + C%)"/2BA~'BT(Q + C))~*/? and denoting the maximum eigen-

value of H by Anax and associated eigenvector z, since H is symmetric it follows that
Amax > vTHv/(vT0) Vo € R™ and Apax = 27 Hz/(2Tz). Hence, Apax < ¢4, and

(4.22) (Q+Crp) Y2BATIBT(Q + C) Y22 = Apaxt,
and pre-multiplying both sides by A='/2BT(Q 4 Cy)~ /2,

(4.19) <c? VveR"™,

(4.20) <c? Vge N".

(4.21) <! Vge N™.

(4.23) ATVEBT(Q+Cp)VA(Q + Cp)TPBATPATIEBT(Q + Cn) e
= )\maxA_l/QBT(Q + Ck;)_l/QiC.
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Letting v = A~'/2BT(Q + C})~'/?z, the above becomes
(4.24) ATY2BT(Q 4 CL)T'BATY 20 = Apaxv,
and it follows from M. < ¢? that

WTA=V2BT(Q + C),) "' BA~Y/2y

4.2
(4.25) Ty

<c? VYveR"™,

or, taking v < A~1/2y,

vIBT(Q + Cy) ™' Bv
vT Av

(4.26) <c? VYveR"™,

and the Lemma follows. O
We now consider diagonal block preconditioners for (3.7) of the form

(4.27) P= Fg % , PeR™ " T g R™ ",

We assume that P and T are symmetric and positive-definite, and that they satisfy

(Av,v) _ cap n (Q@+Ck)g,q)
. < < w < Xz m oo
(4 28) 5AP < <P’U,’U> <4 Yv € R s (SQT < <Tq,q)

where d4p, 647, dor and 09T are independent of h, but may depend on model
parameters.

The discrete system in is indefinite, and hence has both positive and neg-
ative eigenvalues. The speed of convergence of the MINRES Krylov method for the

preconditioned system
u] [P 07N [f
p] [0 T |g]’

-1
(4.29) {P 0}
depends on how tightly the positive and negative eigenvalues of the generalised eigen-

0 T
value problem
v P 0f |v
R

are clustered [I3], Section 6.2]. Our aim now is to develop bounds on the eigenvalues
in that are independent of the mesh parameter h.

THEOREM 4.4. Let ¢4 and c? be the constants in Lemma and the matrices
A, B and Cy be those given in , S be the pressure Schur complement in
and Q the pressure mass matriz in , If P and T satisfy , all eigenvalues

A <0 of (4.30) satisfy

< 69T vg e N,

A BT
B —-C;

A BT

(4.30) B _c,

(4.31) — 1597 <AL % (5AP — \/512413 + 4cq5QT6AP> ,

and eigenvalues A > 0 of (4.30)) satisfy

(4.32) dap <A< 84 4 1597,
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Proof. Lemmas and provide the bounds

¢ < (Sq,q) <, (BT(Q + Cy)~'Bu,v) <
(Q+Cx)g,q) (Av,v)

for all ¢ € N and Vv € R™. Using these bounds together with the bounds given
in , the result follows directly by following the proof of Theorem 6.6 in Elman
et al. [I3], or more generally Pestana and Wathen [29]. O

The main result of this section, Theorem [£.4] states that the eigenvalues of the
generalised eigenvalue problem are independent of the problem size. From
Theorem 4] we see that

1
(4.34) A S [—CqéQT, 5 <5Ap - \/5%13 +4Cq6QT6AP>] U [5,4]3, 5AP + Cq(SQT} s

(4.33)

c?,

in which all constants are independent of the problem size (independent of h). This
tells us that if we can find a P and T that are spectrally equivalent to A and @ +
C}, respectively, then an iterative method with preconditioner will be optimal
for .

The interval in shows the dependence of the eigenvalues on o and k. The
upper and lower bounds on the positive eigenvalues are well behaved, as is the lower
bound on the negative eigenvalues, for all o and k. It is only when ¢, < 1 that the
upper bound on the negative eigenvalues tends to zero. If this is the case, the rate of
convergence of the iterative method may slow. From , we see that ¢, < 1 only if
a > 1 and, at the same time, k, < 1.

5. Preconditioner construction. Implementation of the proposed precondi-
tioner requires the provision of symmetric, positive definite matrices P and T that
satisfy . Obvious candidates are P = A and T = @Q + C, with a direct solver
used to compute the action of P~! and T'. We will use this for small problems
in the following section to study the performance of the block preconditioning; the
application of a direct solver is not practical, however, when P and T are large, in
which case we advocate the use of multigrid approximations of the inverse.

To provide more general guidance, we first reproduce the following Lemma from
Elman et al. [I3] Lemma 6.2].

LEMMA 5.1. If u is the solution to the system Au = f and

(51) Uit1 = (I - PflA)ui + Pilf,

then if the iteration error satisfies (A(u —uitr1), u—wir1) < p{A(u—u;), u—u;), with
p<1,

(Av,v)

(Pv,v)

Proof. See Elman et al. [13, proof of Lemma 6.2]. O

Lemma implies that a solver that is optimal for Au = f will satisfy ,
and is therefore a candidate for P, and likewise for T'. The obvious candidates for P
and T are multigrid preconditioners applied to A and @ + C, respectively. However,
as we will show by example in Section [0} as « increases, and therefore the compaction
stresses (a ‘grad-div’ term) become more important, multigrid for P becomes less
effective as a preconditioner. More effective treatment of the large « case is the
subject of ongoing investigations.

(5.2) 1—-p<

<l+4+p Vo



ANALYSIS OF PRECONDITIONERS FOR COUPLED MAGMA/MANTLE DYNAMICS 11

6. Numerical simulations. In this section we verify the analysis results through
numerical examples. In all test cases we use P?>~P! Taylor-Hood finite elements on
simplices. The numerical examples deliberately address points of practical interest
such as spatial variations in the parameter k, a wide range of values for « and large
problem sizes on unstructured grids of subduction zone-like geometries.

We consider two preconditioners. For the first, we take P = A and T = Q +
Cy in and apply a direct solver to compute the action of the inverses. This
preconditioner will be referred to as the ‘LU’ preconditioner. For the second, we use
P71l = AAMG and T71 = (Q + Cx)*ME | where we use (-)*M¢ to denote the use
of algebraic multigrid to approximate the inverse of (-). This preconditioner will be
referred to as the ‘AMG’ preconditioner. The LU preconditioner is introduced as a
reference preconditioner to which the AMG preconditioner can be compared. The LU
preconditioner is not suitable for large scale problems. Note that we never construct
the inverse of P or T, but that we just use the action of the inverse.

All tests use the MINRES method, and the solver is terminated once a relative true
residual of 1078 is reached. For multigrid approximations of P!, smoothed aggrega-
tion algebraic multigrid is used via the library ML [14]. For multigrid approximations
of T71, classical algebraic multigrid is used via the library BoomerAMG [17]. Unless
otherwise stated, we use multigrid V-cycles, with two applications of Chebyshev with
Jacobi smoothing on each level (pre and post) in the case of smoothed aggregation,
and symmetric Gauss—Seidel for the classical algebraic multigrid. The computer code
is developed using the finite element library DOLFIN [24], with block preconditioner
support from PETSc [12] to construct the preconditioners. The computer code to
reproduce all examples is freely available in the supporting material [30].

6.1. Verification of optimality. In this test case we verify optimality of the
block preconditioned MINRES scheme by observing the convergence of the solver
for varying h, o, k* and k.. We solve and on the unit square domain
Q = (0,1)? using a regular mesh of triangular cells. For the permeability, we consider

k* — k.

6.1) k= 4tanh(5)

(tanh(10z — 5) + tanh(10z — 5)

+

2(k* — k) —k2 tar;}:(5)(k* SN 2) |

We ignore body forces but add a source term f to the right hand side of (2.17a)). The
Dirichlet boundary condition g and the source term f are constructed such that the
exact solution pressure p and velocity u are:

(6.2) p = — cos(4mz) cos(27mz),
(6.3) Uy = kOgp + sin(mz) sin(27z) + 2,
1
(6.4) u, = k0,p+ 3 cos(mx) cos(2mz) + 2.

Table shows the number of iterations the MINRES method required to con-
verge using the LU and AMG preconditioners with k, = 0.5 and k* = 1.5, when
varying « from —1/3 to 1000. We clearly see that the LU preconditioner is optimal
(the iteration count is independent of the problem size), as predicted by the analysis
(see Theorem . Using the AMG preconditioner, there is a very slight dependence
on the problem size. The results in Table indicate that the LU preconditioner
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Table 6.1: Number of iterations for the LU and AMG preconditioned MINRES for
the unit square test with different levels of mesh refinement and for different values
of . The number of degrees-of-freedom is denoted by N. For the ae = 1000 case, four
applications of a Chebyshev smoother, with one symmetric Gauss-Seidel iteration for
each application, was used.

a:—% a=0 a=1 a=10 a = 1000
N LU AMG | LU AMG | LU AMG | LU AMG | LU AMG*
9,539 9 29 9 30 9 35 8 67 7 202
37,507 9 33 9 36 9 40 8 80 6 283
148,739 8 39 8 40 9 47 7 96 6 366
592,387 | 8 42 8 44 7 52 7 106 6 432
z
I'y
L,
r L 15
L
(0,0) I3 ’

Fig. 6.1: Description of the wedge geometry for a two-dimensional subduction zone.

is uniform with respect to a. Theorem [£4] indicates a possible dependence on «
through the constant c,. However, for o sufficiently small or sufficiently large, the
dependence of ¢, on o becomes negligible, and o has only a small impact on the itera-
tion count. The AMG preconditioner, on the other hand, shows a strong dependence
on «. The issue with the ‘grad-div’ for multigrid solvers was discussed in Section
and is manifest in Table [6.Il It has been observed in tests that the effectiveness of
a multigrid preconditioned solver for the operator A deteriorates with increasing a.
This is manifest in an increasing p in for increasing a.

Results for the case of large spatial variations in permeability k are presented in
Tables and for the cases a = 1 and o = 100, respectively. A dependence of
the iteration count on the permeability is observed. The smaller k*, the larger the
iteration counts for both the AMG and the LU preconditioners. We also observe that
for a given k* there is little influence of k, on the iteration count. Comparing the
results in Tables [6.2) and [6.3] we see that the LU preconditioner shows no dependence
on . For the AMG preconditioner the iteration count increases as « increases from
1 to 100.

6.2. A magma dynamics problem in two dimensions. In this test case we
solve and on a domain (2, depicted in Figure using unstructured
meshes with triangular cells. We take LY = 1.5, LY = 0.5 and L, = 1. We set the
permeability as k = 0.9(1 4 tanh(—2r)) with r = Va2 4 22 and the porosity ¢ = 0.01.
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Table 6.2: Number of iterations to reach a relative tolerance of 10~% using precondi-
tioned MINRES for the unit square test with varying levels of mesh refinement and
varying (k., k*) pairs for a = 1. The number of degrees of freedom is denoted by N.

k* =104 k.=0 k. =108 k. =106 k,=5-10"°
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 32 88 32 88 32 88 32 80
37,507 35 108 35 108 35 108 35 97
148,739 38 130 37 130 38 127 33 111
592,387 36 143 36 143 35 135 33 122
k*=1 k.=0 k. =0.1 ki =0.5 k.=09
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 27 67 10 37 9 36 9 36
37,507 28 78 10 44 9 42 9 42
148,739 28 93 10 50 9 48 7 47
592,387 27 101 10 54 9 52 7 52
k* = 1000 k=0 ke =1 k. =10 k. =100
N LU AMG | LU AMG | LU AMG |LU AMG
9,539 3 24 3 26 3 24 3 24
37,507 3 27 3 27 3 27 3 30
148,739 3 34 3 33 3 34 3 33
592,387 3 37 3 37 3 37 3 40
k* =108 k. =0 k=1 k. =103 k. = 10°
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 1 15 1 15 1 15 1 15
37,507 2 18 2 18 2 18 2 18
148,739 2 21 2 21 2 21 2 21
592,387 2 21 2 21 2 21 2 21

We consider two test cases for this geometry. The first test problem we denote as
the analytical corner flow test problem and the second as the traction-free test prob-
lem. In both problems we prescribe the following conditions: u = ugap, = (1,-1)/ V2
onTj,u=0o0nTy and —k(Vp —e3) -n =0 on 9.

6.2.1. Analytic corner flow. For the analytical corner flow problem we pre-
(g, u) on I's, which is the analytic expression for corner-flow [9]
Section 4.8]. The corner-flow velocity components u, and u, are given by

scribe U = Ueorner =

(6.5)

Uy = cos(0)u, + sin(f)uyg,

where § = —arctan(Z/x), Z =2z —1 and

(6.6) u, = COsin(8) + D(sin(0) + 0 cos()),

with

(6.7)

C:

Bsin(pB)
32 —sin®(8)’

D=

u, = —sin(0)u, + cos(9)uy,
ug = C(sin(f) — 0 cos(0)) + DOsin(6),

_ Beos() — sin(B).

B2 —sin®(f)
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Table 6.3: Number of iterations to reach a relative tolerance of 10~% using precondi-
tioned MINRES for the unit square test with varying levels of mesh refinement and
varying (k., k*) pairs for o = 100. The number of degrees of freedom is denoted by N.

k* =10"% k.=0 k., =108 k. =106 k,=5-10"°
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 67 1605 | 67 1598 | 66 1557 | 58 1385
37,507 75 1922 | 75 1922 | 71 1909 | 62 1730
148,739 76 2179 | 76 2177 | 72 2146 | 59 1972
592,387 73 2356 | 73 2356 | 68 2311 | 59 2156

k*=1 k.=0 k. =0.1 ki =0.5 k.=09
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 28 350 9 179 8 171 7 169
37,507 28 445 9 212 8 205 8 202
148,739 28 545 9 247 8 236 8 234
592,387 28 097 9 271 8 265 8 265
k* = 1000 k=0 ke =1 k. =10 k. =100
N LU AMG | LU AMG | LU AMG |LU AMG
9,539 3 (0] 3 () 3 75 3 ()
37,507 3 94 3 94 3 94 3 94
148,739 3 116 3 116 3 116 3 116
592,387 3 139 3 139 3 139 3 139
k* =108 k. =0 ke =1 k. =103 k. =106
N LU AMG | LU AMG |LU AMG | LU AMG
9,539 1 11 1 11 1 11 1 11
37,507 1 13 1 13 1 13 1 13
148,739 1 20 1 20 1 20 1 20
592,387 1 23 1 23 1 23 1 23

Here 8 = 7 /4 is the angle between I'; and I's. In Figure we show the computed
streamlines of the magma and matrix velocity fields for this problem.

Table [6.4] presents the number of solver iterations for the LU and AMG precondi-
tioners for different values of . We observe very similar behaviour as we saw for the
test in Section [6.1} The LU preconditioner is optimal and uniform. The AMG pre-
conditioner again shows slight dependence on the problem size, and as « is increased
the iteration count grows.

6.2.2. Traction-free problem. For the traction-free problem, instead of pre-
scribing Ueorner, We prescribe the zero-traction boundary condition, (e(u) — pI+ aV -
ul) -n = 0 on I's. Figure shows the computed streamlines of the magma and
matrix velocity fields for this problem.

The solver iteration counts for this problem with different levels of mesh refine-
ment and for different values of a are presented in Table As for the analytic
corner flow problem of Section the LU-based preconditioner is optimal and uni-
form. As expected, using the AMG-based preconditioner, the solver is not uniform
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Fig. 6.2: Streamlines of the magma (light) and matrix (dark) velocity fields in the
wedge of a two-dimensional subduction zone using the corner flow boundary condition
on I'3. The solution was computed on a mesh with 116176 elements.

Table 6.4: Number of iterations required for the corner flow problem using LU and
AMG preconditioned MINRES for different levels of mesh refinement and varying c.
For the a = 1000 case, four applications of a Chebyshev smoother, with one symmetric
Gauss-Seidel iteration for each application, was used.

a=1 a=10 a =100 a = 1000

N LU AMG | LU AMG | LU AMG | LU AMG*
34,138 | 26 69 30 140 30 367 28 572
133,777 | 26 75 29 151 27 390 27 669
526,719 | 24 81 29 171 26 446 27 758

with respect to a.

6.3. Magma dynamics problem in three dimensions. In the final case we
test the solver for a three-dimensional problem that is geometrically representative of a
subduction zone. We solve and on the domain ) depicted in Figure
We set LE = 1.5, Lg =05, L, = 1and L, = 1, and use unstructured meshes of
tetrahedral cells. Again we set the permeability as k = 0.9(1 + tanh(—2r)), with
r = vx? + 22, and the porosity ¢ = 0.01.

As boundary conditions, we prescribe u = ugap, = (1,0.1,-1)/v/2on T';, u =0
on Iy, (€(u) —pI+aV-ul) - n=0onT35and —k(Vp—e3) -n =0 on dQ In
Figure we show computed vector plots of the matrix and magma velocities for
a =1 and a = 1000.

Table shows the number of iterations needed for the AMG preconditioned
MINRES method for the three-dimensional wedge problem. The LU preconditioned
solver is not practical for this problem when using reasonable mesh resolutions. All
cases have been computed in parallel using 16 processes. The computed examples
span a range of problem sizes, and only relatively small changes in the iteration count
are observed for changes in the number of degrees of freedom. Again, as o becomes
larger, so too does the iteration count.

7. Conclusions. In this work we introduced and analysed an optimal precon-
ditioner for a finite element discretisation of the simplified McKenzie equations for
magma/mantle dynamics. Analysis of the preconditioner showed that the Schur com-



16 S. RHEBERGEN, G. N. WELLS, R. F. KATZ AND A.J. WATHEN
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Fig. 6.3: Streamlines of the magma (light) and matrix (dark) velocity fields in the
wedge of a 2D subduction zone using no stress boundary conditions on I's. The
solution was computed on a mesh with 116176 elements.

Table 6.5: Number of iterations to reach a relative tolerance of 10~8 using LU and
AMG preconditioned MINRES for different values of « for the no-stress test. For
the v = 1000 case, four applications of a Chebyshev smoother, with one symmetric
Gauss-Seidel iteration for each application, was used.

a=1 a=10 a =100 a = 1000

N LU AMG | LU AMG | LU AMG | LU AMG*
34,138 | 24 65 29 143 27 375 25 626
133,777 | 23 73 27 159 27 424 24 718
526,719 | 23 80 26 175 27 475 24 798

plement of the block matrix arising from the finite element discretisation of the sim-
plified McKenzie equations may be approximated by a pressure mass matrix plus a
permeability matrix. The analysis was verified through numerical simulations on a
unit square and two- and three-dimensional wedge flow problems inspired by subduc-
tion zones. For all computations we used P2—~P! Taylor-Hood finite elements as they
are inf-sup stable in the degenerate limit of vanishing permeability. Numerical tests
demonstrated optimality of the solver. We observed that the multigrid version of the
preconditioner was not uniform with respect to the bulk-to-shear-viscosity ratio «.
As « is increased, the iteration count for the solver increases. We observe a similar
behaviour as k* increases.

The analysis and testing of an optimal block preconditioning method for magma/mantle
dynamics presented in this work lays a basis for creating efficient and optimal sim-
ulation tools that will ultimately be put to use to study the genesis and transport
of magma in plate-tectonic subduction zones. Optimality has been demonstrated,
but some open questions remain regarding uniformity with respect to some model
parameters.
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Fig. 6.5: Vector plots of the magma and matrix velocities in the wedge of a three-
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conditions on I's.
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