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Abstract. In this paper we propose a state estimation method for linear parabolic partial
differential equations (PDE) that accounts for errors in the model, truncation, and observations. It
is based on an extension of the Galerkin projection method. The extended method models projection
coefficients, representing the state of the PDE in some basis, by means of a differential-algebraic
equation (DAE). The original estimation problem for the PDE is then recast as a state estimation
problem for the constructed DAE using a linear continuous minimax filter. We construct a numerical
time integrator that preserves the monotonic decay of a nonstationary Lyapunov function along the
solution. To conclude we demonstrate the efficacy of the proposed method by applying it to the
tracking of a discharged pollutant slick in a 2D fluid.
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1. Introduction. Applications often give rise to new theoretical directions for
numerical analysis. One example of such an application is the tracking of environ-
mental slicks resulting from a discharge of a pollutant into the ocean. A simple
mathematical model describing transport phenomena is the linear advection-diffusion
equation:

∂tI + v · ∇I − ε∆I = f ,(1.1)

where I(x, t) models the concentration of a pollutant at time t and location x within a
given domain Ω, v(x, t) is a divergence-free vector-field representing the fluid flow, and
f(x, t) represents model error. In fact, (1.1) describes the diffusive linear transport of
the initial pollutant concentration I(x, 0) = f0(x) in the flow v. Widespread interest
in pollutant tracking problems stems from concerns of environmental agencies, energy
producers and governments worldwide: namely, one is interested in combining sensor
readings obtained in real time (for instance, satellite images) in a sensible manner
with the solution of equation (1.1) to generate reliable predictions of the pollutant’s
transport. Tracking pollutants based on sensor information is challenging because, on
the one hand, the measurements are sparse and noisy, and, on the other hand, there
is incomplete knowledge of the fluid flow v. In fact, v is usually inferred from a flow
identification procedure (see, for instance, [11]) and the resulting identification error f
is only quantifiable as a bounded signal. This motivates the work of the present paper.
Specifically, we are concerned with the following problem: estimate the state I(x, t)
of the infinite dimensional system (1.1) given incomplete and noisy observations yk
associated to I(x, t) by:

(1.2) yk(t) =

∫
Ω

gk(x, t)I(x, t)dx+ ek(t) ,

where gk models a sensor and ek represents the measurement error.
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There are two principal strategies to construct a numerical state estimate for a
partial differential equation (PDE). The first one is to consider the PDE (1.1) as a
dynamical system with an infinite dimensional state space [6], then derive the estima-
tor for the infinite dimensional system analytically, and finally reduce the resulting
estimator to a finite dimensional system in order to construct the numerical estimate.
The second strategy is to reduce a PDE to a finite-dimensional system and then esti-
mate the state of the reduced system. The first strategy applies either the semigroup
theory given in [18] or the concept of Sobolev spaces [7]. One such class of infinite
dimensional state estimators is based on optimal control theory for PDEs [15]. For
example, linear optimal estimates for parabolic PDEs were derived in [4, 17]. We
emphasize that to compute an optimal “off-line estimate” one needs to discretize the
so-called Euler-Lagrange equations. This entails the solution of a two-point boundary
value problem for (1.1) and its adjoint. On the other hand, obtaining an optimal
“on-line estimate” in the form of a linear filter requires solving a non-linear operator
equation which is, in fact, an infinite-dimensional counterpart of the matrix Riccati
equation [19]. Another class of state estimators based on Lyapunov stability theory
is represented by stable infinite dimensional observers with non-optimal gains [3].

In this paper we adopt the second strategy: namely, we reduce the PDE (1.1)
to a finite-dimensional system and then derive an estimator for the reduced model.
In order to do this systematically and to fully incorporate the reduction method
into the state estimation procedure we propose an extension of the classical Galerkin
projection method. Recall that the Galerkin projection method is built upon the
following requirement (see [12, p.43]):

(1.3) ∂tIN + v · ∇IN − ε∆IN − f ⊥ span{ϕ1 . . . ϕN} ,

where IN =
∑N
i=1 ai(t)ϕi approximates I solving equation (1.1) and {ϕ1 . . . ϕN} de-

notes a finite basis for the projection space. Condition (1.3) yields the following
reduced system for the vector of approximated projection coefficients a = (a1 . . . aN )′:

(1.4) 〈∂tIN + v · ∇IN − ε∆IN − f, ϕn〉 = 0 , n = 1, . . . , N .

If the exact solution I of (1.1) were known, we could project it onto span {ϕk}Nk=1

to obtain the vector of the exact projection coefficients atrueN . However, we stress
that atrueN satisfies (1.4) in a very special case, namely if span{ϕ1 . . . ϕN} is invariant
with respect to the differential operator A = v · ∇ − ε∆. In the general case, the
solution of ODE (1.4) deviates from atrueN for any finite N as the system (1.4) is not
closed: namely, it does not retain all the information which is necessary to describe
the evolution of atrueN . Although the solution of (1.4) converges to atrueN in the limit
N → ∞ provided the basis functions are consistent and stable (see [12, p.251] for
details), the limiting case N →∞ is less interesting for our purposes as in operational
practice one usually fixes N before deriving the state estimator.

In this paper we wish to explicitly account for the truncation error induced by
(1.4), combining knowledge of the regularity properties of the parabolic operator A
and information available from indirect observations of atrueN to control the error of
an approximate solution such that it resides within a known ellipsoid centered around
atrueN . Thus, for a finite N , it is necessary for us to have a closed system describ-
ing the evolution of atrueN , in contrast to the Galerkin projection methods discussed
in [2, 12, 16, 20] where the authors study the limiting behavior only of the approxi-
mation error for the non-closed system (1.4). Consequently, we propose the following
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extension of the Galerkin method: we close (1.4) by including an unknown input vec-
tor field em that models the impact of the truncated coefficients {aN+1, aN+2, . . . }
on a = (a1, . . . , aN )′. We allow em to take on values within an a priori determined
bounding set constructed using parabolic regularity theory [7]. Further, we introduce
an additional algebraic constraint that filters out inadmissible em. Assembling the
resulting differential and algebraic equations together we arrive at a reduced model for
atrueN in the form of a DAE. Formal derivation of the described reduction of PDE (1.1)
to the DAE is given in Proposition 3.1. The formulation is contrasted with the clas-
sical Galerkin method in Section 3.2.

Although the literature on projection methods and related control techniques is
very rich, to the best of our knowledge, the proposed extension of the Galerkin method
is new and has not been discussed in the literature yet. A preliminary version of the
minimax projection method appeared in [27]. With respect to [27] the main difference
is that our state equation is time-dependent and has unknown parameters, and the
time-discretization process has been incorporated into the state estimation procedure.

In our description the model error f and input em are unknown deterministic
functions that are bounded. The latter is natural as the input em represents the
truncation error which can be expanded in Fourier series. On the other hand, the
observation error ek is assumed to be a realization of a random process which is the
most commonly used uncertainty model for such errors. In practice, second moments
of ek are usually given with some error. Thus the state estimator should be robust
with respect to fluctuations of the covariance matrix. We propose to address this issue
by assuming that the covariance function of ek is unknown but bounded and belongs
to a given ellipsoid. As a result we need to deal with unknown bounded deterministic
parameters in the state equation and random noise in the observation equation, which
has unknown but bounded covariance function.

Within the context just sketched, it is natural to analyze the worst-case realization
of all the unknown parameters to derive the state estimate for atrueN . This may be
realized using the minimax state estimation approach [5, 14, 17], which was extended
to DAEs in [22–25]. To construct the minimax state estimate for a DAE we apply a
generalized Kalman duality principle [26] that converts the state estimation problem
into a dual control problem with quadratic cost. This cost is, in fact, the worst-case
estimation error and so, by minimizing it, we get the state estimate with the minimal
worst-case error. The dual control problem is derived in Proposition 3.6 and provides
a key component of the estimation procedure as it accumulates all the information
about the deterministic projection error em, model error f and random measurement
error ek, which are present in the original DAE. As a result, the solution of the
dual control problem has minimal worst-case error and is, therefore, robust to all
the aforementioned sources of errors. This solution provides a starting point for the
design of a numerical minimax estimate. Namely, we represent the minimax estimate
âN for atrueN in the form of a linear filter. We also build an ellipsoid which is centered
around âN and contains1 atrueN . This ellipsoid describes how the DAE propagates
all admissible errors enclosed in the a priori determined bounding set constructed in
Proposition 3.1. The ellipsoid is parametrized by a symmetric positive definite matrix-
valued function t 7→ KN (t) which is obtained by solving a differential Riccati equation
(DRE). Further, the largest eigenvalue of KN (t) defines the worst-case estimation
error. All these important details are summarized in Corollary 3.7.

To conclude the introduction we turn our attention to the numerical method. As

1In fact, the latter inclusion holds only on average as the measurements contain a random error.
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mentioned above, the key ingredients of the minimax estimation are the linear filter
âN and matrix KN defined in Corollary 3.7. It is worth noting that the DRE is
well understood from the theoretical point of view: for example, it is known (see [19]
for the details) that KN (t) = V (t)U−1(t), where V and U solve an associated linear
Hamiltonian ODE. The exact representation of this ODE is given in Corollary 3.7.
We make use of this fact to approximate V and U using a generic s-stage symplectic
Runge-Kutta (RK) method of order p. The corresponding numerical method is de-
rived in Proposition 4.1. Symplectic RK methods preserve quadratic invariants [10],
an important point as the proper choice of discretization method ensures that the
structure of the estimation error is preserved for the discrete filter ânN . Namely, the
estimation error admits a non-stationary Lyapunov function which is preserved by
the proposed discretization as it is discussed in Remark 3. The importance of this
is that the simulation results are trust-worthy and represent indeed what has been
predicted by the theory for the continuons case. To the best of our knowledge this is
the first result of this kind in the framework of minimax state estimation. We note
that symplectic RK methods were applied in [8] to obtain structure preserving dis-
cretization of Möbius integrators for DREs arising in the context of control problems
for ODEs. In this paper we generalize this result to DAEs. To illustrate our approach,
we represent the discrete filter ânN by means of the implicit midpoint rule and apply
it to the tracking problem assuming that a slick of a discharged pollutant moves in
the flow generated by the 2D incompressible Euler equation.

This paper is organized as follows. Subsection 1.1 gives the notations used in
the paper. Section 2 presents the formal problem statement. Our main results are
given in Section 3: subsections 3.1 and 3.2 contain minimax projection method and
comparisons to the classical Galerkin approach. Subsection 3.3 derives the minimax
estimate for the projection coefficients and provides the worst-case estimation error.
Section 4 introduces the structure-preserving discretization for the minimax estimate.
Finally, section 5 presents the case-study and conclusions are given in section 6.

1.1. Notation. N denotes the set of natural numbers {1, 2, . . . }; Rn denotes n-
dimensional Euclidean space; x ·w denotes the canonical inner product for x,w ∈ Rn,
‖x‖2Rn := x · x and, more generally, 〈f, g〉H denotes the canonical inner product in
a Hilbert space H for f, g ∈ H and ‖f‖2H := 〈f, f〉; L2(0, T,H) := {f : f(t) ∈
H and

∫ T
0
‖f(t)‖2H dt < +∞}; L∞(0, T,H) := {f : esssup0≤t≤T ‖f(t)‖H < +∞}; Ω

is an open subset of Rn with boundary ∂Ω; ΩT := Ω× (0, T ); ‖f‖2L2(Ω) =
∫

Ω
f2(x)dx

where L2(Ω) denotes the space of all measurable f such that ‖f‖2L2(Ω) < +∞;

L∞(Ω) is a space of measurable functions bounded almost everywhere in Ω; C(Ω)
is a space of continuous functions over the closure Ω of Ω; C∞c (Ω) is a space of all
infinitely-differentiable functions with compact support in Ω; ∂xif denotes the weak
derivative of f ; ∇f denotes the spatial gradient of f ; ∆f :=

∑n
i=1 ∂

2
x2
i
f ; H1(Ω) :=

{f ∈ L2(Ω) : ∇f ∈ L2(Ω)}; ‖f‖2H1(Ω) = ‖f‖2L2(Ω) + ‖∇f‖2L2(Ω); H
1
0 (Ω) is a closure

of C∞c (Ω) with respect to the norm of H1(Ω); I stands for an identity operator or
matrix; Jv(x) denotes Jacobian matrix for the vector-field v; ‖A‖22 :=

∑m,n
i,j=1 a

2
i,j is

the Frobenius norm for the matrix A ∈ Rm×n; the prime ′ denotes the operation of
taking the adjoint: A′ denotes the adjoint operator, A′ denotes the transposed matrix;
‖A‖ is the largest singular value of A; A

1
2 denotes the square root of a symmetric

semidefinite matrix A; δi,j = 1 if i = j and 0 otherwise. Finally E denotes the
expectation of a random variable in its associated probability measure.
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2. Problem statement. In this section we formalize the program laid out in
Section 1 to specify a problem statement. Assume ε > 0 and I(·, t) ∈ H1

0 (Ω) satisfies
for almost all t ∈ (0, T ) the following equation:

(2.1) ∂tI + v · ∇I − ε∆I = f , I(x, 0) = I0(x) , I(x, t) = 0 ,x ∈ ∂Ω ,

where x ∈ Ω ⊂ Rn, n ≥ 2, Ω is an open bounded convex set and v(x, t) =
(M1(x, t) . . .Mn(x, t))′ with Mi ∈ L∞(0, T,H1

0 (Ω)) for all i = 1, . . . , n.
Suppose also that the deterministic model error f ∈ L2(0, T, L2(Ω)) and initial con-
dition I0 ∈ H2(Ω) ∩H1

0 (Ω) satisfy the following inequality:

(2.2)

∫
Ω

Q0(x)∇I0(x) · ∇I0(x)dx+

∫
ΩT

Q(x, t)f2(x, t)dx dt ≤ 1 ,

where Q0(x) is a symmetric matrix such that Q0 ∈ C(Ω) and q
0
‖ξ‖2Rn ≤ Q0(x)ξ ·ξ ≤

q0‖ξ‖2Rn for all x ∈ Ω, ξ ∈ Rn and given 0 < q
0
≤ q0 < +∞, and Q ∈ C(0, T, C(Ω)) is

a weighting function such that 0 < q(t) ≤ Q(x, t) ≤ q(t) < +∞ for the given q, q. We
note that Q0 and Q may be considered as design parameters which quantify our level
of confidence in I0 and f : namely, Q0 may specify “zones” of Ω where our knowledge
of the initial condition is more precise or less so, and Q defines zones of Ω where (2.1)
holds almost exactly or only up to a significant error and these zones may vary over
time.

We assume that a vector y(t) = (y1(t) . . . yM (t))′ is observed in the form:

(2.3) yk(t) =

∫
Ω

gk(x, t)I(x, t)dx+ ek(t) , k = 1, . . . ,M ,

where gk ∈ L2(0, T, L2(Ω)) is a spatial averaging kernel that models the effect of
a measurement instrument, and e = (e1(t) . . . eM (t))′ is a realization of a random
process with zero mean and unknown but bounded covariance function cov(t, s) :=
Ee(t)e′(s), that is:

(2.4)

∫ T

0

trace(R(t) cov(t, t)) dt ≤ 1 ,

where t 7→ R(t) is a symmetric positive definite continuous matrix-valued function
with bounded inverse. In other words, the covariance function of e belongs to an
ellipsoid in the space of real symmetric positive definite matrices where the trace is
taken as the inner product. We note that, in practice, second moments of ek are
usually given with some error and this fact is reflected by assumption (2.4): indeed,
the inequality (2.4) represents a constraint on the weighted second moments of e as:∫ T

0
trace(R cov(t, t)) dt = E

∫ T
0
Re · e dt.

Now, assuming that functions {ϕk}k∈N form an orthonormal basis in L2(Ω), we
expand the solution I into the following series:

(2.5) I(x, t) =
∑
i∈N

ai(t)ϕi(x) , ai(t) := 〈I(·, t), ϕi〉L2(Ω) .

Note that I is completely defined by the coefficients {ai(t)}i∈N and IN = P†NPNI
represents the most natural approximation for I in the given basis {ϕk}Nk=1, provided
that

(2.6) PNI(·, t) = a(t) = (a1(t) . . . aN (t))′ and P†Na(t) =

N∑
i=1

ai(t)ϕi .
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The formal problem statement for our state estimation algorithm is:
(i) Construct matrices AN , HN , CN and a bounding set EN such that the vector of
exact projection coefficients atrueN := PNI satisfy for some (I0, f, e

m, eo,w) ∈ EN the
following DAE:

da

dt
= −ANa+ em + PNf ,

0 = HNa+ eo ,a(0) = PNI0 ,
y(t) = CN (t)a+w(t) + e(t) ,

(2.7)

where (em, eo,w) stand for the projection error. See Section 3.1.
(ii) Design a linear minimax estimate âN for the state of (2.7), that is, a vector-valued

function t 7→ âN (t) such that ` · âN (t) = û(y) :=
∫ t

0
û · ydt and

(2.8) E(` · atrueN (t)− û(y))2 ≤ σ(û, t, `) ≤ σ(u, t, `), ∀u ∈ L2(0, t) , ` ∈ RN ,

where σ(u, t, `) := sup(I0,f,em,eo,w)∈EN ,e E(` · a(t) − u(y))2 is the estimation error,
corresponding to the worst-case realizations of parameters (I0, f, e

m, eo,w) ∈ EN and
observation error e satisfying (2.4). See Section 3.3.
(iii) Introduce a discrete-time minimax estimate n → ânN such that (2.8) holds for
ânN and discretized error functional σ. See Section 4.

In fact, âN represents a robust estimate of atrueN with minimal worst-case esti-
mation error σ and its discrete analog ânN has a minimal worst-case error in discrete
time.

3. Minimax estimate for the projection coefficients.

3.1. Minimax projection method. We begin with specifying basis functions
used in (2.6) to define the projection operator PN . Recall that the Laplacian operator
−∆ possesses an orthonormal set of eigenfunctions {ϕk}k∈N in L2(Ω):

−∆ϕk = λkϕk , ϕk ∈ C∞(Ω) ∩H1
0 (Ω) , ϕk = 0 on ∂Ω ,

where 0 < λ1 ≤ λ2 ≤ . . . and limk→∞ λk = +∞ (see [7, p.355]).
Define the differential operator Aϕ = v · ∇ϕ− ε∆ϕ associated with (2.1) and its

projection AN := PNAP†N . Note that PNP†N = I as the {ϕk}k∈N are orthogonal.

Let CN (t) := {〈gk(·, t), ϕs〉L2(Ω)}M,N
k,s=1 correspond to the projection of the observation

operator. We also introduce SN = {〈Aϕi,Aϕj〉}Ni,j=1 and set2 HN := (SN−A′NAN )
1
2 .

Next we formulate the main theoretical result of this article. It states that the
projection coefficients of the exact solution I(x, t) solve the finite dimensional DAE
(2.7) depending on error terms that can be bounded within a certain ellipsoid EN .

Proposition 3.1. Assume that I solves (2.1) for some I0 and f satisfying (2.2)
and y(t) is associated to I through (1.2). Then there exist em ∈ RN , eo ∈ RN and
w ∈ RM such that the vector of the exact projection coefficients atrueN = PNI ∈ RN
solves the following DAE:

da

dt
= −ANa+ em + PNf ,

0 = HNa+ eo ,a(0) = PNI0 ,
y(t) = CN (t)a+w(t) + e(t) ,

(3.1)

2The square root of SN −A′NAN is well defined as follows from (3.7).
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where (I0, f, e
m, eo,w) belong to the ellipsoid EN :

(3.2)

EN := {(I0, f, em, eo,w) :

∫
Ω

Q0(x)∇I0(x) · ∇I0(x)dx+

∫
ΩT

Q(x, t)f2(x, t)dx dt

+ λ
1
2

N+1

∫ T

0

‖S 1
2 em‖2RN + ‖S 1

2 eo‖2RN + λ
1
2

N+1‖V
1
2w‖2RM dt ≤ µN}

for certain positive constants S, V and µN := 1 + λ
− 1

2

N+1 + λ−1
N+1, S and V .

We postpone the proof of this proposition until the end of this section.
Remark 1. On the one hand, the DAE (3.1) does not seem to be useful from the

computational stand-point as em, eo are linear functions of atrueN which is unknown.
Therefore, in practice, em and the 2nd equation in (3.1) are usually dropped and only
the 1st equation of (3.1) is used in numerical computations to approximate atrueN .
However, if we change our point of view and construct a bounding set EN for em, eo

by using the fact that em, eo are linear functions of atrueN and applying the energy
method, then em, eo may be considered as elements of EN , which are independent
of atrueN , and represent the unknown projection error. Specifically3, em represents
the error of projecting the differential operator A and the 2nd equation in (3.1) is
necessary to filter out in-admissible em, eo. From this stand-point, the DAE (3.1)
serves as grounds for deriving a robust estimate for atrueN and so every term in (3.1)
provides information which is then used in the actual numerical computations.

The proof of Proposition 3.1 relies on three Lemmas, the proofs of which are
technical and not needed in further calculations. They are provided in the appendix.
We make use of the following definitions: define ρ1(x, t) := ‖v(x, t)‖2Rn , ρ2(x, t) :=
‖Jv(x, t)‖22 and set:

µ1(t) := ‖ρ1(·, t)‖L∞(Ω) + 2‖λ−1
1 ρ2(·, t) + ρ1(·, t)‖L∞(Ω) ,

C(ε,v) =
9

ε2

(
1 +

2

ε

∫ T

0

‖ρ1(·, t)‖L∞(Ω) exp{2

ε

∫ t

0

‖ρ1(·, s)‖L∞(Ω)ds} dt
)
,

S−1 := ‖µ1‖L∞(0,T )C(ε,v) max{q−1
0
,max

t
q−1} ,

V −1 :=

M∑
k=1

‖(I − P†NPN )gk‖2L2(0,T,L2(Ω))C(ε,v) max{q−1
0
,max

t
q−1} .

Since Ω may have non-smooth boundary (for instance, a rectangular domain used in
the case study), we need to assure that (2.1) has a unique solution I such that ∆I(·, t)
is well defined for almost all t ∈ (0, T ). This is demonstrated by the following lemma.

Lemma 3.2. (2.1) has a unique solution I(·, t) ∈ H1
0 (Ω) such that ∆I(·, t) ∈

L2(Ω) for almost all t ∈ (0, T ), provided f ∈ L2(0, T, L2(Ω)), I0 ∈ H2(Ω) ∩ H1
0 (Ω)

and Ω is a convex bounded open domain.
We also require the following estimate for eo · eo:
Lemma 3.3.

(3.3) eo · eo ≤ 2λ−1
N+1‖λ

−1
1 ρ2(·, t) + ρ1(·, t)‖L∞(Ω)‖∆I(·, t)‖2L2(Ω) .

3We refer the reader to subsection 3.2 where the detailed interpretation of em, eo is provided.
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Finally, we require a bound on ‖∆I(·, t)‖2L2(Ω):
Lemma 3.4.

(3.4) ‖∆I‖2L2(0,T,L2(Ω)) ≤ C(ε,v)(‖∇I0‖2L2(Ω) + ‖f‖2L2(0,T,L2(Ω))) .

Now we turn to the proof of Proposition 3.1.
Proof. Formally, the first claim is almost obvious. Indeed, let us define

e(x, t) := AP†NPNI(x, t)− P†NPNAI(x, t) .(3.5)

Since atrueN (t) = PNI(·, t) we show that atrueN solves:

∂tP†Na = P†NPN∂tI = −AP†Na+ e+ P†NPNf .(3.6)

Multiplying (3.6) by PN and noting PNP†N = I, we find that atrueN solves the first
equation in (3.1) for em = PNe. On the other hand, (3.6) has a solution if and only if

−AP†Na+ e is in the range of P†N . This holds true, in turn, if (I − P†NPN )AP†Na =

(I −P†NPN )e. By (3.5), (I −P†NPN )e(t) = (I −P†NPN )AP†NatrueN and, recalling that

(P†N )′ = PN , we compute:

(3.7) ‖(I − P†NPN )AP†Na
true
N ‖2L2(Ω) = (SN −A′NAN )atrueN · atrueN = ‖HNa

true
N ‖2RN .

Thus atrueN solves the second equation in (3.1) for eo = −HNa
true
N . To see that the

3rd equation in (3.1) holds for atrueN it is sufficient to set w = (v1 . . . vM )′ where

vk(t) := 〈gk(·, t), (I − P†NPN )I(·, t)〉L2(Ω).
Let us prove that em, eo and w satisfy (3.2). In order to estimate em · em we

recall that IN := P†NPNI and so em · em = ‖PNA(IN − I)‖2RN . Let us compute
A(IN − I). Noting that, by Lemma 3.2, ∆I(·, t) ∈ L2(Ω) we write:

(3.8) −∆I(x, t) =
∑
i∈N
〈ϕi,−∆I(·, t)〉L2(Ω)ϕi(x) =

∑
i∈N

λiai(t)ϕi(x) .

To prove this we apply integration by parts formula [9, p.52] (we omit the argument
(x, t) below to make the notation more convenient):

(3.9)

∫
Ω

(∂xi
u)vdx+

∫
Ω

u(∂xi
v)dx =

∫
∂Ω

tr(u) tr(v)νidσ ,∀u, v ∈ H1(Ω) ,

where tr(u) denotes the trace of u on ∂Ω and ν = (ν1 . . . νn)′ denotes the out-
ward pointing normal vector for ∂Ω. Namely, recalling that I(·, t) ∈ H1

0 (Ω) by
Lemma 3.2, ϕ ∈ H1

0 (Ω) by definition and u ∈ H1
0 (Ω)⇔ tr(u) = 0 (see, for instance, [9,

p.39]), we integrate 〈ϕi,∆I(·, t)〉L2(Ω) by parts twice to get: 〈ϕi,−∆I(·, t)〉L2(Ω) =
〈−∆ϕi, I(·, t)〉L2(Ω) = λiai(t). Now, the orthogonality condition 〈ϕk, ϕs〉L2(Ω) = δks
and (3.8) imply that for almost all t ∈ (0, T ):

(3.10) 〈∆I(·, t),∆I(·, t)〉L2(Ω) =
∑
i∈N

λ2
i a

2
i (t) < +∞ ,

and so −∆(I − IN ) =
∑
i>N λiaiϕi for IN =

∑
i≤N aiϕi. Combining the obtained

representation with the orthogonality condition 〈ϕk, ϕs〉L2(Ω) = 0 for k ≤ N < s we
get that 〈ϕk,−∆(I − IN )〉2L2(Ω) = 0 and so:

(3.11) 〈ϕk,A(I − IN )〉L2(Ω) = 〈ϕk,v · ∇(I − IN )〉L2(Ω) ,∀k ≤ N .
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Now, recalling that ‖ϕk‖2L2(Ω) = 1 and ‖v · ∇(I − IN )‖2L2(Ω) =
∑∞
k=1〈ϕk,v · ∇(I −

IN )〉2L2(Ω), we estimate em · em:

em · em = ‖PNA(IN − I)‖2RN =

N∑
k=1

〈ϕk,v · ∇(I − IN )〉2L2(Ω)

≤ ‖ρ1(·, t)‖L∞(Ω)‖∇(I − IN )‖2L2(Ω)

= ‖ρ1(·, t)‖L∞(Ω)〈−∆(I − IN ), I − IN 〉L2(Ω)

= ‖ρ1(·, t)‖L∞(Ω)

∑
i>N

λia
2
i (t) ≤ ‖ρ1(·, t)‖L∞(Ω)λ

−1
N+1

∑
i>N

λ2
i a

2
i (t)

≤ ‖ρ1(·, t)‖L∞(Ω)λ
−1
N+1‖∆I(·, t)‖2L2(Ω) .

(3.12)

An estimate for eo · eo is provided by lemma 3.3.
Let us estimate w. Define g⊥k := (I − P†NPN )gk. Recalling the definition of vk

given above we compute: vk(t) = 〈gk, (I−P†NPN )I(·, t)〉L2(Ω) =
∑
s>N 〈gk, ϕs〉L2(Ω)as(t)

and so, by applying the Cauchy-Schwarz-Bunyakovsky inequality we obtain:

(3.13) vk(t) =
∑
s>N

〈gk, ϕs〉L2(Ω)as(t) ≤

(∑
s>N

λ−2
s 〈gk, ϕs〉2L2(Ω)

) 1
2
(∑
s>N

λ2
sa

2
s(t)

) 1
2

≤ λ−1
N+1‖g

⊥
k ‖L2(Ω)‖∆I(·, t)‖L2(Ω) .

Let us note that, by definition of Q0, Q, we have:

(3.14) ‖∇I0‖2L2(Ω) + ‖f‖2L2(0,T,L2(Ω)) ≤ max{q−1
0
,max

t
q−1} .

Now, by integrating (3.13) and using (3.4) from Lemma 3.4 followed by (3.14) and the

definition of V we get
∫ T

0
v2
k(t) dt ≤ λ−2

N+1‖g⊥k ‖2L2(0,T,L2(Ω))C(ε,v) max{q−1
0
,maxt q

−1}
and so

(3.15)

∫ T

0

λN+1‖V
1
2w‖2RM dt ≤ λ−1

N+1 .

To conclude the proof we note that ‖∇I0‖2L2(Ω) ≤ q
−1
0
‖Q

1
2
0∇I0‖2L2(Ω) and ‖f‖2L2(0,T,L2(Ω)) ≤

maxt q
−1‖Q 1

2 f‖2L2(0,T,L2(Ω)). Finally, to get (3.2) we add (3.12) to (3.3) from Lemma
3.3, integrate from 0 to T and bound the right hand side of the resulting inequality by
using the definition of µ1,(3.4) and (3.14). Then we multiply the resulting inequality

by Sλ
− 1

2

N+1 and add the result to the sum of (2.2) and (3.15). This completes the
proof.

3.2. Comparison to the classical Galerkin approach. In this section we
briefly contrast the extended Galerkin formulation of the previous section with the
classical Galerkin method. To simplify the presentation we assume for a moment that
f = 0 in (2.1). The classical Galerkin projection approach is built upon the following
requirement [12, p.43]:

(3.16)
dIN

dt
+AIN ⊥ span{ϕ1 . . . ϕN} ,
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where IN = P†NPNI =
∑N
i=1 aiϕi approximates I solving (2.1). This condition yields

the following ODE for determining a = (a1 . . . aN )′:

(3.17)
da

dt
= −ANa, a(0) = PNI0 .

Let us investigate the connection between (3.1) and (3.17). We note that the basic
assumption (3.16) of the Galerkin method holds true for atrueN if and only if

dP†NatrueN

dt
+AP†Na

true
N ⊥ span{ϕ1 . . . ϕN} .

Now, by (3.6), the latter is true if and only if PNe(t) = 0. Recalling (3.5), we rewrite
e as follows:

e = (I − P†NPN )AP†NPNI + P†NPNA(P†NPN − I)I .(3.18)

Now, we compute PNe(t) = PNA(P†NPN − I)I and so a(t) = atrueN if and only

if PNA(P†NPN − I)I = 0. In other words, a(t) = atrueN (t) if the A-image of the

projection error (P†NPN − I)I is orthogonal to the span of {ϕk}Nk=1 and, therefore,
has no impact on the dynamics of atrueN . We stress that PNe(t) 6= 0 in the general case
but there are important special cases when this holds true: namely, e = 0 provided
that Aϕk = αkϕk. This suggests the following interpretation for (3.18): the norm
of e quantifies the degree to which the subspace generated by {ϕk}Nk=1 differs from

an eigenspace of A. More generally, PNe = 0 if P†NPN commutes with A. In this
case, (3.17) gives a closed system for atrueN : it contains all the required information to
describe how the exact projection coefficients evolve over time. We emphasize that,
in practice, the assumption PNe = 0 is not easy to check (for a given set of basis
functions) as e depends on the solution I which is unknown. Therefore, in practice,
the Galerkin system (3.17) is usually non-closed.

In contrast to the classical Galerkin method, the solution proposed by Proposi-
tion 3.1 is to consider em = PNe as an unknown deterministic input for (3.17) and
construct an a priori estimate for em = PNe in the form (3.2) using information
about the coefficients of A, domain Ω and data I0, f . As a result, the true coefficients
atrueN belong to the set of solutions of (3.1). The information provided by the second
equation in (3.1) allows filtering out inadmissible em. In fact, it bounds the norm of

(I−P†NPN )AP†N âN , representing the energy of the A-image of the projected solution

P†N âN in the orthogonal complement of span{ϕ1 . . . ϕN}.This allows one, in turn, to
narrow down the set of all admissible a solving (3.1). Finally, the resulting DAE (3.1)
together with ellipsoid (3.2) represents a closed system for atrueN .

3.3. Minimax projection coefficients. In this section we construct the min-
imax approximation of the solution of the DAE (3.1). This solution minimizes the
maximum error over the parameter set EN containing the true projection coefficients.
Subsequently we show that the minimax solution can be obtained as the solution of
an equivalent optimal control problem. Finally, we cast the optimal control problem
in a form that facilitates its numerical solution.

Following the definition of the minimax estimate given in Section 2 we will be
looking for an estimate of a linear function ` · a(T ) of the state of (2.7) within the
class of linear functionals:

u(y) =

∫ T

0

u(t) · y(t) dt ,u ∈ L2(0, T,RM ) .
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Definition 3.5. A linear estimate û(y) =
∫ T

0
û · y dt is called a minimax

estimate if infu σ(u, T, `) = σ(û, T, `) where

(3.19) σ(u, T, `) := sup
(I0,f,em,eo,w)∈EN ,e

E(` · a(T )− u(y))2 .

The number σ̂(T, `) = σ(û, T, `) is called a minimax error.
In fact, σ(u, T, `) can be interpreted as yielding the “worst” realization of the

unknown deterministic parameters satisfying (3.2) and covariance operator of e sat-
isfying (2.4). Since û possesses minimal worst-case error σ̂, it follows that û is robust
with respect to any realization of unknown parameters.

Following [26] we apply the generalized Kalman duality principle to construct the
minimax estimate û for the DAE (3.1). DefineQ0N := {λ−1

k λ−1
s 〈Q0∇ϕk,∇ϕs〉L2(Ω)}Nk,s=1

and set QN := (PNQP†N )−1 + λ
− 1

2

N+1S
−1I, RN := 1

µN
R−1 + λ−1

N+1V
−1I.

Proposition 3.6. The minimax estimate û is the unique minimum point of
σ(u, T, `) where:

1

µN
σ(u, T, `) = min

g
Q−1

0,Nz(t0) · z(t0) +

∫ T

0

(QNz · z +RNu · u+ λ
− 1

2

N+1S
−1g · g) dt

(3.20)

dz

dt
= A′Nz −H ′Ng + C ′Nu , z(T ) = ` .(3.21)

Proof. Let us compute σ(u, T, `). By recalling the 3rd equation in (3.1) we
compute: u(y) = 〈u, CNa + w〉L2(0,T ) + 〈u, e〉L2(0,T ). Combining this with the
assumption Ee = 0 we get:

E(` · a(T )− u(y))2 = E〈u, e〉2L2(0,T ) +
(
` · a(T )− 〈u, CNa+w〉L2(0,T )

)2
.

Clearly, for any u ∈ L2(0, T ) we can find at least one z, g such that z, g and u satisfy
the adjoint equation (3.21). Using this observation and integrating by parts the term
〈u, CNa+w〉L2(0,T ) we find:

σ(u, T, `) = sup
(I0,f,em,eo,w)∈EN

α2 + sup
e

E〈u, e〉2L2(0,T ) ,

α := 〈I0,P†Nz(t0)〉L2(Ω) +

∫ T

0

(〈f,P†Nz〉L2(Ω) + em · z + eo · g − u ·w) dt .

(3.22)

By the Cauchy-Schwartz-Bunyakovsky inequality we get: E〈u, e〉2L2(0,T ) ≤ 〈R
−1u,u〉2L2(0,T )E〈Re, e〉

2
L2(0,T ).

Noting that E〈Re, e〉L2(0,T ) =
∫ T

0
trace(RE e′(t)e(t)) dt and recalling (2.4) we obtain:

(3.23) sup
e

E〈u, e〉2L2(0,T ) = 〈R−1u,u〉2L2(0,T ) .

Let us estimate supEN
α. We first note that:

〈I0,P†Nz(t0)〉L2(Ω) =

N∑
k=1

〈I0, ϕk〉L2(Ω)zk(t0) = −
N∑
k=1

λ−1
k 〈I0,∆ϕk〉L2(Ω)zk(t0)

=

N∑
k=1

λ−1
k 〈∇I0,∇ϕk〉L2(Ω)zk(t0) .
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Now, by using the latter representation and (3.2) we compute supEN
α by applying

the generalized Cauchy-Schwartz-Bunyakovsky inequality:
(3.24)

1

µN
sup

I0,f,em,eo,w
α2 = Q−1

0Nz(t0) ·z(t0)+

∫ T

0

QNz ·z+λ
− 1

2

N+1S
−1g ·g+V −1λ−1

N+1u ·u dt .

Combining this with (3.23) and recalling (3.22) we find that 1
µN
σ(u, T, `) is repre-

sented by (3.24). Now, we note that z is uniquely defined by g and u through (3.21)
and g may be considered as a “free parameter” which belongs to the “null-space”
of the linear operator associated to (3.21) (see [22] for the further details). In other
words, the adjoint DAE (3.21) is overdetermined as the original DAE (3.1) is un-
derdetermined. Since the minimax estimate û should have the minimal worst-case
estimation error, the latter is represented by σ and σ depends on the “free parameter”
g, it follows that we can determine the minimax estimate û by minimizing σ with
respect to u, g, provided z solves the adjoint equation (3.21). This completes the
proof.

Corollary 3.7. The unique solution of (3.20) is given by: û = R−1
N CNV U

−1(T )`

and ĝ = −λ
1
2

N+1SHNV U
−1(T )`. The optimal value of the cost is σ(u, T, `) =

µNKN (T )` · `, provided KN = V U−1 and the matrix-valued functions V,U solve the
following linear Hamiltonian ODE:

U̇ = A′NU + (λ
1
2

N+1SH
′
NHN + C ′NR

−1
N CN )V ,

V̇ = −ANV +QNU , V (t0) = Q−1
0N , U(0) = I.

(3.25)

The minimax estimate û(y) may be represented as an output of the linear system,
that is û(y) = ` · âN (T ) where âN solves the following ODE:

dâN
dt

=−AN âN −KN

(
λ

1
2

N+1SH
′
NHN + C ′NR

−1
N CN

)
âN

+KNC
′
NR
−1
N y , âN (0) = 0 .

(3.26)

In particular, we have that for all `: E(` · atrueN (t)− ` · âN (t)))2 ≤ µNKN (t)` · `.
Proof. Proof of the first part of the Corollary follows from the well-known re-

sults of LQ-control theory [19]. The existence of U−1 follows from [19, p.121,L.4.1].
Now, to prove that û(y) = ` · âN (T ) one needs to use the representation û(t) =
R−1
N CN (t)V (t)U−1(T )`, equations (3.25)-(3.26) and integration by parts. Detailed

derivation for DAEs may be found in [26].

Remark 2. Let us note that limk→∞
λ

n
2
k

k = (2π)n

α(n)|Ω| by Weyl’s Law [7, p.356],

where |Ω| denotes the volume of Ω and α(n) is the volume of the unit ball in Rn.

This observation makes it clear that QN = (PNQP†N )−1 +λ
− 1

2

N+1S
−1I ≈ (PNQP†N )−1

and R−1
N = ( 1

µN
R−1 + λ−1

N+1V
−1I)−1 ≈ R for large enough N . On the other hand,

λ
1
2

N+1SH
′
NHN → 0 by (A.3), (3.3) and so, for large enough N , we have that U , V

can be made arbitrarily close to the solutions of the following system:

U̇ = A′NU + C ′NRCNV ,U(0) = I ,

V̇ = −ANV + (PNQP†N )−1U , V (t0) = Q−1
0N

(3.27)

and the minimax filter âN becomes arbitrarily close to the solution of
dâN
dt

= −AN âN−
KNC

′
NRCN âN + KNC

′
NRy, âN (0) = 0. In other words, the minimax projection
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method guarantees that (3.26) converges to the minimax estimate of the infinite-
dimensional system (2.1). On the other hand, the constant C(ε,v) in the esti-
mate (3.4) for the Laplacian ∆I(x, t) is very conservative: the errors em, eo de-
cay faster than λ−1

N+1‖∆I(·, t)‖2L2(Ω) as can be seen from (3.12) and (A.3). There-

fore, in practice, it is not necessary (but, of course, is sufficient) to choose N so

that λ
− 1

2

N+1S
−1, λ−1

N+1V
−1 become negligible when compared with (PNQP†N )−1 and R.

A practical way to choose N would be to make sure that µN ≈ 1, ‖H ′NHN‖ ≈ 0,

‖(I − P†NPN )gk‖L2(Ω) ≈ 0 and N is large enough to numerically resolve the sys-
tem (2.1) for the anticipated model error f . Then the estimate may be obtained
from (3.27). We will apply this method in Section 5.

4. Structure preserving discretization. In this section we discretize the cost
function σ using a quadrature rule and compute the discrete-time minimax estimate
n 7→ ûn which is the unique minimum point of the discretized cost. As a result, the
discrete minimax estimate n 7→ ûn inherits the key geometric property of the continu-
ous one: it can be represented in terms of the solution of a discrete Hamiltonian system
which is, in turn, a discrete version of the continuous Hamiltonian system (3.25). This
allows us, in particular, to represent ûn in the form of discrete minimax filter n 7→ ânN
and derive a representation for discrete σ which is similar to the continuous one given
in Corollary 3.7. Also we prove that non-stationary Lyapunov function is preserved
along the trajectories of n 7→ ânN .

We introduce a uniform grid tn := nh, n = 1, . . . , L, h := T
L on (0, T ) and

let {aij}si,j=1, {bi}si=1 denote the coefficients of s-stage implicit Runge-Kutta (RK)

method [10, p.29] for s ≥ 1. Now, we set ci :=
∑s
j=1 aij , and introduce the discrete

cost:

1

µN
σL({un}, `, T ) = Q−1

0Nz0 · z0 + h

L∑
n=0

s∑
i=1

biQN (i, n)zin · zin

+ h

L∑
n=0

s∑
i=1

biRN (i, n)uin · uin + biλ
− 1

2

N+1S
−1gin · gin ,

(4.1)

where RN (i, n) := RN (tn + cih) and AN (i, n), HN (i, n), CN (i, n), QN (i, n),y(i, n) are
defined analogously, and

zn+1 = zn + h
s∑
i=1

biδzin , zin = zn + h
s∑
i=1

aijδzjn , zL = ` ,

δzin = A′N (i, n)zin −H ′N (i, n)gin + C ′N (i, n)uin .

(4.2)

We set by definition FN (i, n) := λ
1
2

N+1SH
′
N (i, n)HN (i, n)+C ′N (i, n)R−1

N (i, n)CN (i, n).
In the next proposition we construct the linear discrete minimax filter n 7→ ânN .

Proposition 4.1. Assume that the coefficients akj , bj correspond to an s-stage
implicit RK method of order p and Mjk := bjbk − bkakj − bjajk = 0 for 1 ≤ j, k ≤ s,
and let ânN solve the following discrete system:

ân+1
N = ânN + h

s∑
i=1

biδx̂in , x̂in = ânN + h

s∑
j=1

aijδx̂jn ,

δx̂in =−AN (i, n)x̂in −Kin
N FN (i, n)x̂in

+Kin
N C

′
N (i, n)R−1

N (i, n)y(i, n) , âN (0) = 0 ,

(4.3)
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where Kn
N = VnU

−1
n and Kin

N = VinU
−1
in , and Un, Vn and Uin, Vin are defined as

solutions of the variational equations:

Un+1 = Un + h

s∑
i=1

biδUin , Uin = Un + h

s∑
j=1

aijδUjn , U0 = I ,

Vn+1 = Vn + h

s∑
i=1

biδVin , Vin = Vn + h

s∑
j=1

aijδVjn , V0 = Q−1
0N ,

δUin = A′N (i, n)Uin + FN (i, n)Vin, δVin = −AN (i, n)Vin +QN (i, n)Uin .

(4.4)

Then minσL = µNKN (L)`·` and the minimax error and estimate admit the following
approximation:

(4.5) |σ̂(T, `)−minσL| = O(hp) , |û(y)− ` · âLN | = O(h) .

Proof. Let us prove that minσL = µNKN (L)` · `. To this end we define zn :=
UnU

−1
L ` and pn := Vnz0 and set δzin := δUinz0, δpin := δVinz0, zin := Uinz0 and

pin := Vinz0. Define ûn = R−1
N (n)CN (n)pn and ĝn = −λ

1
2

N+1SHN (n)pn, where
CN (n) stands for CN (tn) and similarly for RN (n), HN (n), with intermediate values

ûin = R−1
N (i, n)CN (i, n)pin and ĝin = −λ

1
2

N+1SHN (i, n)pin. We claim that ûn and
ĝn minimize the discrete cost function σL defined by (4.1) over solutions of (4.2). To
see this one needs to check that σL({un}, `, T )−σL({ûn}, `, T ) ≥ 0 for any {un, gn}.
The latter can be proved by plugging the expressions for pn, zn into the right hand
side of the following sub-gradient inequality:

1

µN
σL({un}, `, T )− 1

µN
σL({ûn}, `, T ) ≥ ∇{un,gn}σL({ûn}, `, T ) ·

L∑
n=0

(
un−ûn

gn−ĝn

)
,

and integrating the resulting expression by parts using the following formulae:

(4.6) zL · pL − z0 · p0 = h

L∑
n=0

s∑
i=1

biδzin · pin + bizin · δpin ,

which holds for any RK method satisfying Mjk ≡ 0. Now, recalling the definitions of
pn and pin given at the very beginning of the proof, we note that pn = Kn

Nzn where
Kn
N = VnU

−1
n and pin = Kin

N zin where Kin
N = VinU

−1
in . Plugging these formulas

into (4.6) and using (4.4) one easily gets:

1

µN
σL({ûn}, `, T ) = ` ·KN (L)` .(4.7)

To prove (4.5) we recall that, by Corollary 3.7 σ(u, T, `) = µNKN (T )` · `, provided
KN = V U−1 where the matrix-valued functions V , U solve (3.25). We stress that the
assumption Mjk ≡ 0 is precisely the necessary condition that (4.4) be a symplectic
s-stage RK method (see for instance [10, p.192]) for (3.25). In addition, we have
‖U(tn) − Un‖2 = O(hp) and ‖V (tn) − Vn‖2 = O(hp), as the RK-method has order
p by assumption. Now, we note that, although U−1(T ) is well defined, it can be ill-
conditioned numerically. To overcome this we note that under the change of variables
U(t) := Û(t)X, V (t) := V̂ (t)X, where Û , V̂ solve (3.25), one would get that K̂N (t) =
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V̂ (t)Û−1(t) = V (t)U−1(t) = KN (t). Therefore, we are free to re-initialize Un, Vn
at each time-step tn, that is we can compute Kn+1

N as Kn+1
N = Vn+1U

−1
n+1, where

Vn+1, Un+1 are obtained through (4.4) with Vn = Kn
N and Un = I. Computed

in this way UL is well-conditioned as it is close to the identity matrix I and so
‖U−1(T ) − U−1

L ‖2 = O(hp) implying that ‖KN (T ) − KL
N‖2 = O(hp) for KN (T ) =

V (T )U−1(T ) and Kn
N = VnU

−1
n . This and (4.7) proves the first equality in (4.5). Let

us prove the second equality in (4.5). To this end we recall that the minimax estimate
û(y) = ` · âN (T ) by Corollary 3.7 where âN solves (3.26). On the other hand, we
note that (4.3) is an s-stage symplectic RK method for (3.26) and so one has at least
‖âN (T ) − âLN‖RN = O(h). If t 7→ y(t) is smooth then the previous estimate can be
improved.

Corollary 4.2. Assume that the coefficients aij , bi are chosen so that RK-
method corresponds to a Gauss-Legendre method (see [10, p.34]). Then the order of
the method is p = 2s, and for s = 1 the discrete system (4.3) reads as the implicit
midpoint rule:

x̂1n = ânN −
h

2
(AN (tn+ 1

2
) + λ

1
2

N+1SK
1n
N H ′N (tn+ 1

2
)HN (tn+ 1

2
))x̂1n

+
h

2
K1n
N C ′N (tn+ 1

2
)R−1

N (tn+ 1
2
)(y(tn+ 1

2
)− CN (tn+ 1

2
)x̂1n) ,

ân+1
N = 2x̂1n − ânN , â0

N = 0 , tn+ 1
2

:= tn +
h

2
,

(4.8)

where K1n
N = V1nU

−1
1n and V1n, U1n solve (4.4) with s = 1. If the coefficients aij , bi

are chosen so that the RK method corresponds to a diagonally implicit RK method
of order p (see [10, p.147]) then the s-stage method (4.3) may be represented as a
composition of implicit midpoint steps [10, p.192].

Remark 3. Let us define the estimation error ξ(t) := atrueN (t) − âN (t). Then,
by differentiating ξ and using (3.1) and (3.26) it is easy to derive that

dξ

dt
= −(AN +K−1

N DN )ξ +m(t) , ξ(0) = PNI0 ,

where DN := λ
1
2

N+1SH
′
NHN + C ′NR

−1
N CN , m = em + PNf −KNC

′
NR
−1
N (w + e) −

KNλ
1
2

N+1SH
′
Ne

o. Now, by using (3.25) it is not hard to note that

dK−1
N

dt
= K−1

N AN +A′NK
−1
N +DN −K−1

N QNK
−1
N ,K−1

N (0) = V (0) .

Then we have:
d

dt
K−1
N ξ · ξ = −(DN +K−1

N QNK
−1
N )ξ · ξ+ 2K−1

N ξ ·m and so K−1
N ξ · ξ

decays along t 7→ ξ(t) given that 2K−1
N ξ ·m is dominated by the quadratic term. Now,

by using argument of [8] it may be demonstrated that (KN )−1ξn · ξn decays.

5. Case study. As proof of concept for the minimax projection method, in
this section we compute an idealized experiment with specifications similar to real
pollutant tracking problems. In particular, we assume that the observations of a
discharged pollutant are available in the form of images in which observation data
is either lacking or occluded by moving clouds, making it impossible to track and
predict the pollutant from the image data only. Specifically, we will consider two test
cases in which the observations differ. In Case I, we impose incomplete observations
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as well as a moving cloud profile over the domain. In Case II, we consider a situation
in which observations have large error over part of the domain. We first describe Case
I in detail, then point out the differences with Case II.

5.1. Test Case I. The pollutant is discharged in the center of the domain
Ω = (0, 2π)2. The initial concentration I0(x, y) is a radial Gaussian profile cen-
tered at (π, π) with standard deviation 2. The pollutant concentration I(x, y, t)
evolves according to the linear transport equation (2.1) with ε = 0. The fluid flow
v = (u(x, y, t), v(x, y, t))′ is computed by solving the 2D incompressible Euler equa-
tion in vorticity-stream function form as suggested in [11] with homogeneous Dirichlet
boundary conditions for vorticity and stream functions. The initial vorticity field is
obtained from the Matlab peaks function. The vorticity field is then approximated by
using a Fourier pseudospectral discretization on a uniform 128 x 128 grid, denoted Γ,
with 4th order explicit Runge-Kutta time stepping. For each time step we project the
vorticity field onto a span of eigenfunctions of the Laplacian, {ϕks = sin(kx2 ) sin( sy2 )},
that allows us to find the exact stream function by solving the Poisson equation.

The above approach yields a semi-analytical representation of v(x, nh) which is

inserted in (2.1). The latter is then projected onto span{ϕks}N
1
2

k,s=1 to compute the
stiffness matrix AN (t). Model error f was represented as a linear combination of
ϕks with random coefficients uniformly distributed in (0, 1). Finally, the resulting
non-stationary, non-homogeneous linear system for the projection coefficients atrueN

was integrated in time using the implicit midpoint rule to obtain semi-analytical

representation for I(x, y, t) =
∑N

1
2

k,s=1 a
true
ks (t)ϕks. We used 55 basis functions in each

direction (x, y) so that N = 552. Snapshots of I(x, y, hn) are displayed in Fig. 5.1c-
5.1i for the case of L = 8000, h = T

L ≈ 0.0002 and T ≈ 1.36. Roughly speaking, the
flow v is represented by 2 vortices which move clockwise inside the domain Ω and
transform the initial concentration I0 into a mushroom-like shape as shown in the
figures.

To generate observations y(hn) we projected the continuous in space snapshots
I(x, y, hn) onto the grid Γ, so that y(nh) is anM := 1282-vector: y(nh) = I(xi, yj , nh)

for xi, yj in Γ. Accordingly, we set gij := ε−2B(x−xi

ε )B(
y−yj
ε ), where B denotes the

quadratic B-spline concentrated at 0, so that 〈gij , I(·, ·, nh)〉L2(Ω) ≈ I(xi, yj , nh). As
a result, the (k−1+s)th column of CN is composed of the values taken by ϕks over the
grid Γ. We define a region O1 = {(x, y) |x, y > 5

4} in the upper right part of the grid
where observations are lacking, so CN does not contain rows corresponding to that
part. We also introduced non-stationary observational noise η in a form mimicking
slowly translating clouds. The clouds are defined with respect to a periodic function
composed of two Fourier modes, where the occluded regions are enclosed by a chosen
level set. The clouds advect slowly over the domain with uniform wind vector (1, 1).
In all, 400 observations were extracted (1 image per 20 time-steps) and occluded.
The observed images y(nh) together with the relative norm of the resulting observa-

tion error, that is
‖y(nh)−I(xi,yj ,nh)‖RM
‖I(xi,yj ,nh)‖RM

, are shown on Fig. 5.1a–5.1g. The weighting

matrix R is set up so that the occluded regions have variance 10000 and the rest of
the observed image has variance 0.01. We assume that the “pixels” are uncorrelated
according to the hyperbolic nature of (2.1) and so R is diagonal.

For the minimax projection method we followed the procedure given in Remark 2.
Namely, we checked that µN ≈ 1 and ‖H ′NHN‖, ‖(I − P†NPN )gij‖L2(Ω) ≈ 0 for
N = 552. We also ensured that (2.1) was well-resolved numerically as can be as-
sessed visually looking at Fig. 5.1c-5.1i. For the state equation we chose the diffusive
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(a) y(nh),
relative error: 266%.

(b) Estimate CN ân
N ,

relative error: 100%.
(c) Ground truth I(x, y, nh),
n = 1001.

(d) y(nh),
relative error: 251%.

(e) Estimate CN ân
N ,

relative error: 49%.
(f) Ground truth I(x, y, nh),
n = 3001.

(g) y(nh),
relative error: 224%.

(h) Estimate CN ân
N ,

relative error: 20%.
(i) Ground truth I(x, y, nh),
n = 8001.

Fig. 5.1: Test Case I: observed images y(nh), minimax estimates CN â
n
N and ground

truth I(x, y, nh).

version of the transport equation,(2.1) with ε = 0.01, which is equivalent to adding
εdiag(λ1 . . . λN ) to the stiffness matrix −AN computed for (2.1) as described above.
The latter introduces non-additive model error which is taken into account together
with additive model error f by setting Q(x, t) ≡ 1. We also used Q0(x) ≡ 0.01I
reflecting the fact that we do not have any information about the initial condition
(the place and amount of the discharge). The discrete minimax estimate ânN was im-
plemented by using the implicit midpoint rule (4.8) and the discrete gain KN (n+ 1)
was computed using (4.4) with s = 1 and re-initialization Un = I, Vn = Kn

N discussed
in the proof of Proposition 4.1. As was suggested in Remark 2 we dropped all the
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(a) Estimates aM1...aM5 vs. true coeffi-
cients aT1...aT5.

(b) Relative estimation and
observation errors for images.

(c) Uncertainty map: mini-
max error in the image space.

Fig. 5.2: Test Case I: convergence measures.

terms involving λ
− 1

2

N+1S
−1 and λ−1

N+1V
−1.

The discrete filter ânN starts from zero and KN (0) = 100I. Hence, the relative
error in the initial condition is 100%. Observations y(nh) are assimilated at time-
steps nh, n = 21, 41, . . . , 8001. For other n we set CN (n) = 0, which corresponds to
the case of no observations, and so ânN evolves according to (4.8) with zero innovation
term (2nd line in (4.8)). Since the observations are discrete in time and observation
noise together with model error are non-stationary, the filter ânN converges to the
“true” projection coefficients only at the end of the time window: Fig. 5.2a compares
estimates of the first 5 projection coefficients against the truth. The estimation results
(in the “space of images”) are shown on Fig. 5.1b,5.1e,5.1h, where we can see how
the convergence in the “space of coefficients” corresponds to the convergence in the
“image’s space”.

We note that after the transition phase the estimate reconstructs the solution

occluded by clouds and in the unobserved region:
‖I(xi,yj ,T )−CN âL

N‖RM
‖I(xi,yj ,T )‖RM

≤ 20% (see

Fig. 5.1g, 5.1h, 5.1i). The reason for this is that the flow v is quite strong across the
boundary of O1 and so the “trusted” observations from the adjacent regions flow into
the unobserved region. The latter allows the filter to pick-up the right shape and the
magnitude of the image in O1. We also observe that the model error is smoothed
out which explains the 20% relative error of the final estimate. Finally, the dynamics

of the relative estimation error
‖I(xi,yj ,T )−CN âL

N‖RM
‖I(xi,yj ,T )‖RM

is compared against the relative

observation error in Fig. 5.2b: estimation error drops from 100% to 20% as opposed
to the observation error which stays above 200%.

5.2. Test Case II. The second test case simulates a scenario in which obser-
vations are unreliable in a part of the domain, e.g. due to an instrument failure. To
model this situation, the domain was partitioned into a 3 × 3 array, and two subdo-
mains occluded: the centermost subdomain O2 = {(x, y) | 5

8π ≤ x, y < 5
4π} and the

lower left subdomain O3 = {(x, y) |x, y < 5
8π}. This test case is challenging because

a dynamically interesting part of the solution is obscured for much of the simulation.

For Case II, the true solution was computed at higher resolution, using a 75-
mode truncation in each direction, i.e. N = 752. Furthermore, the model was assumed
perfect: f ≡ 0. Imperfect observations of the square regions O2 and O3 were obtained
from the discrete images y(nh) by setting I(xi, yj , nh) = 0 for (xi, yj) ∈ O2,3 ⊂ Γ. The
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observed images y(nh) together with the relative norm of the resulting observation
error are shown on Fig. 5.3a–5.3g. Observation uncertainty was again defined by
diagonal R with occlusion patches having variance 10000 compared to variance 0.01
elsewhere. We also used Q0(x) ≡ 0.01I reflecting the fact that we do not have any
information about the initial condition (the place and amount of the discharge), and
Q(x, t) ≡ 100, to indicate high confidence in our PDE model (2.1).

The estimation results (in the “space of images”) are shown on Fig. 5.3b, 5.3e,
5.3h. We note that again after the transition phase the estimate perfectly reconstructs

the central occluded region O2; i.e.
‖I(xi,yj ,T )−CN âL

N‖RM
‖I(xi,yj ,T )‖RM

≤ 0.08 (see Fig. 5.3g, 5.3h,

5.3i) thanks to the very strong flow v over O2. In contrast, v is not strong in the
lower-left region O3 and so the reconstruction is imperfect. This intuitive description
is in full agreement with Fig. 5.4c were the uncertainty map (minimax errors in the
“space of images”) and the corresponding occlusion pattern are shown: as we can see
the uncertainty is quite high in O3 as opposed to O2. Finally, the relative estimation
error drops from 100% to 8% as opposed to the relative observation error which stays
above 45% (see Fig. 5.4b).

6. Conclusion. In this paper we solve the state estimation problem for lin-
ear parabolic PDEs using a “discretize and optimize” strategy. That is, to project
PDE (2.1) and its solution I onto a finite-dimensional space, to bound the truncation
error, and then derive the DAE for the projection coefficients. Using the minimax ap-
proach we derive the state estimate for the DAE in the form of the linear filter (3.26)
which depends on the number of the basis functions N and the norm of ∆I through

the terms involving λ
− 1

2

N+1S
−1 and λ−1

N+1V
−1. Consequently, for large enough N these

terms have little or no impact and the constructed estimate converges to the infinite-
dimensional state estimator. We conclude that the “discretize and optimize” strategy
adopted in the paper is equivalent to “optimize and discretize” in the limit N →∞.

Appendix A. Proofs of Lemmas.
In this appendix we provide the proofs of Lemmas 3.2, 3.3 and 3.4.

A.1. Proof of Lemma 3.2. Proof. The first part of the claim follows from
the standard results on second-order parabolic equations [7, p.374]. To show that
∆I(·, t) ∈ L2(Ω) for almost all t ∈ (0, T ) we employ the following assertion. There
exists the unique I ∈ B(T ) := L2(0, T,H2(Ω)∩H1

0 (Ω)) such that ∀g ∈ L2(0, T, L2(Ω)):

∂tI − ε∆I = g , I(x, 0) = 0 ,(A.1)

‖I‖2L∞(0,T,H1
0 (Ω)) ≤ (2ε)−1‖g‖2L2(0,T,L2(Ω)) .(A.2)

Existence and uniqueness of I ∈ B(T ) solving (A.1) was proved in [21]. The esti-

mate (A.2) can be verified projecting (A.1) on the span of {ψk := λ
− 1

2

k ϕk}, which
form an orthonormal basis in H1

0 (Ω) with respect to the inner product 〈u, v〉1 :=
〈∇u,∇v〉L2(Ω), and estimating the projection coefficients by applying the Cauchy-
Schwatrz-Bunyakovsky inequality. Let us now prove that ∆I(·, t) ∈ L2(Ω) for al-
most all t ∈ (0, T ). Indeed, we introduce a linear operator v 7→ I assigning v ∈
X(T ) := L∞(0, T,H1

0 (Ω)) the solution I ∈ B(T ) of (A.1) which corresponds to
g = g(v) := f − v · ∇v ∈ L2(0, T, L2(Ω)). Then, by applying the same argument
as in [7, p.425], we prove that v 7→ I has a fixed point I∗ ∈ X(T ∗) for small enough
0 < T ∗ ≤ T . Therefore, the parabolic equation ∂tI + AI = f , I(x, 0) = 0 has a
unique solution I ∈ B(T ∗) and so ∆I(·, t) ∈ L2(Ω) for almost all t ∈ (0, T ∗). In
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(a) y(nh),
relative error: 66%.

(b) Estimate CN ân
N ,

relative error: 90%.
(c) Ground truth I(x, y, nh),
n = 1001.

(d) y(nh),
relative error: 59%.

(e) Estimate CN ân
N ,

relative error: 67%.
(f) Ground truth I(x, y, nh),
n = 3001.

(g) y(nh),
relative error: 44%.

(h) Estimate CN ân
N ,

relative error: 8%.
(i) Ground truth I(x, y, nh),
n = 8001.

Fig. 5.3: Test Case II: observed images y(nh), minimax estimates CN â
n
N and ground

truth I(x, y, nh).

the case I(x, 0) = I0 6= 0 we have that AI0 ∈ L2(0, T ∗, L2(Ω)) and so the PDE
∂tI1 + AI1 = f − AI0, I1(x, 0) = 0 has the unique solution I1 ∈ B(T ∗). But then
I := I1 + I0 solves ∂tI + AI = f , I(x, 0) = I0 and ∆I(·, t) = ∆I1 + ∆I0 ∈ L2(Ω)
for almost all t ∈ (0, T ∗). Now, to conclude the proof, we split up the original in-
terval (0, T ) into sub-intervals (0, T ∗), (T ∗, 2T ∗) and so forth, and repeat the above
argument to prove that ∆I(·, t) ∈ L2(Ω) for almost all t ∈ (0, T ).

A.2. Proof of Lemma 3.3. Proof. Noting that (see, for instance [7, p.357])

{λ−
1
2

k ϕk} form an orthonormal basis in H1
0 (Ω) with respect to the inner product
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(a) Estimates aM1...aM5 vs. true coeffi-
cients aT1...aT5.

(b) Relative estimation and
observation errors for images.

(c) Uncertainty map: mini-
max error in the image space.

Fig. 5.4: Test Case II: convergence measures.

〈u, v〉1 := 〈∇u,∇v〉L2(Ω), and recalling that IN = P†NatrueN =
∑N
i=1 aiϕi we derive:

eo · eo = ‖HNa
true
N ‖2RN = ‖(I − P†NPN )AIN (·, t)‖2L2(Ω)

=
∑
k>N

〈ϕk, AIN (·, t)〉2L2(Ω) =
∑
k>N

〈ϕk,v(·, t) · ∇IN (·, t)〉2L2(Ω)

=
∑
k>N

λ−2
k 〈−∆ϕk,v(·, t) · ∇IN (·, t)〉2L2(Ω) .

(A.3)

Now, we claim that:

(A.4) 〈−∆ϕk,v(·, t) · ∇IN (·, t)〉2L2(Ω) = 〈ϕk,v(·, t) · ∇IN (·, t)〉1
Indeed, it is sufficient to apply integration by parts (3.9) to the left hand side of (A.4)
and note that tr(v(·, t) · ∇IN (·, t)) = 0. The latter can be shown, in turn, by
approximating Mi(·, t) ∈ H1

0 (Ω) with smooth functions ψji ∈ C∞c (Ω) such that

limj→∞ ‖ψji − Mi(·, t)‖H1(Ω) = 0 and tr(ψji ) = 0 for almost all t (see [7]). Now,
combining (A.4) with (A.3) we get:

eo · eo = λ−1
N+1

∑
k>N

λN+1

λk
〈λ−

1
2

k ϕk,v(·, t) · ∇IN (·, t)〉21

≤ λ−1
N+1‖v(·, t) · ∇IN (·, t)‖21 .

(A.5)

Let us now estimate the last term in (A.5). (3.10) implies:

(A.6) ‖∇IN (·, t)‖2L2(Ω) ≤ λ
−1
1 ‖∆IN (·, t)‖2L2(Ω) ≤ λ

−1
1 ‖∆I(·, t)‖2L2(Ω) .

Denote vj := (ψj1 . . . ψ
j
n)′ where ψji is a smooth function approximating Mi as sug-

gested above. Then vj ∈ C∞c (Ω) and consequently we can write:

‖vj · ∇IN (·, t)‖21 =

n∑
i=1

∫
Ω

(
n∑
k=1

∂xi
ψjk∂xk

IN (x, t) + ψjk∂
2
xixk

IN (x, t)

)2

dx .

Now, recalling that
∑n
i,k=1

∫
Ω

(∂2
xixk

IN (x, t))2dx ≤ ‖∆IN (·, t)‖2L2(Ω) for a convex open

bounded domain Ω (see [1, 13]), we bound ‖vj · ∇IN (·, t)‖21 by applying Cauchy-
Schwarz-Bunyakovsky inequality:

‖vj · ∇IN (·, t)‖21 ≤ 2

∫
Ω

(‖Jvj (x, t)‖22‖∇IN (x, t)‖2Rn + ‖vj(x, t)‖2Rn‖∆IN (x, t)‖2RN )dx .
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Now, recalling that vj → v(·, t) in H1(Ω) and taking limits in the above inequality, we
deduce that it holds true for v(·, t) ∈ H1

0 (Ω) (for almost all t). This latter observation,
equation (A.6) and equation (A.3) prove (3.3).

A.3. Proof of Lemma 3.4. Proof. Let I solve (2.1). Then, ε∆I = ∂tI + v ·
∇I − f in Ω and so:

ε2‖∆I(·, t)‖2L2(0,T,L2(Ω)) =

∫ T

0

〈∂tI + v · ∇I − f, ε∆I〉L2(Ω) dt

≤3

∫ T

0

‖f‖2L2(Ω) + ‖ρ1(·, t)‖L∞(Ω)‖∇I(·, t)‖2L2(Ω) + ‖∂tI‖2L2(Ω) dt .

(A.7)

Applying the energy method [7, p.372] we obtain:∫ T

0

‖∂tIN‖2L2(Ω) dt+ ε‖∇IN (·, T )‖2L2(Ω) ≤ ε‖∇I
N (·, 0)‖2L2(Ω)

+ 2‖f‖2L2(0,T,L2(Ω)) + 2

∫ T

0

‖ρ1(·, t)‖L∞(Ω)‖∇IN (·, t)‖2L2(Ω) dt .

(A.8)

By (A.6) we get: ‖∇IN (·, 0)‖2L2(Ω) ≤ ‖∇I0‖
2
L2(Ω) and ‖∇IN (·, t)‖L2(Ω) ≤ ‖∇I(·, t)‖L2(Ω).

This and (A.8) imply that the sequence {∂tIN}N∈N is bounded in L2(0, T, L2(Ω)) and
so we can find a subsequence {∂tINk} weakly converging to ∂tI in L2(0, T, L2(Ω)).
As the norm in L2(0, T, L2(Ω)) is weakly lower-semicontinuous we get:∫ T

0

‖∂tI‖2L2(Ω) dt ≤ lim

∫ T

0

‖∂tINk‖2L2(Ω) dt ≤ 2‖f‖2L2(0,T,L2(Ω))

+ ε‖∇I0‖2L2(Ω) + 2

∫ T

0

‖ρ1(·, t)‖L∞(Ω)‖∇I(·, t)‖2L2(Ω) dt .

(A.9)

Since (A.8) holds for any T > 0, it follows by the Gronwall inequality in the integral
form that:

‖∇IN (·, t)‖2L2(Ω) ≤
(

2

ε
‖f‖2L2(0,T,L2(Ω)) + ‖∇I0‖2L2(Ω)

)
exp{

∫ t

0

2

ε
‖ρ1(·, t)‖L∞(Ω)ds} .

and by the weak convergence argument we get the same estimate for ∇I(·, t). Com-
bining this latter estimate with (A.7) and (A.9) gives (3.4).
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