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Abstract

We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal
rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group sym-
metries. These matrices define new symmetry-adapted rigidity matroids on group-
labeled quotient graphs. Using these new tools, we establish combinatorial character-
izations of infinitesimally rigid two-dimensional bar-joint frameworks whose joints are
positioned as generic as possible subject to the symmetry constraints imposed by a
reflection, a half-turn or a three-fold rotation in the plane. For bar-joint frameworks
which are generic with respect to any other cyclic point group in the plane, we provide
a number of necessary conditions for infinitesimal rigidity.

1 Introduction

A d-dimensional bar-joint framework is a straight-line realization of a finite simple graph
G in Euclidean d-space. Intuitively, we think of a bar-joint framework as a collection of
fixed-length bars (corresponding to the edges of G) which are connected at their ends
by joints (corresponding to the vertices of G) that allow bending in any direction of Rd.
Such a framework is said to be rigid if there exists no non-trivial continuous bar-length
preserving motion of the framework vertices, and is said to be flexible otherwise (see [23]
for basic definitions and background).

The theory of generic rigidity seeks to characterize the graphs which form rigid frame-
works for all generic (i.e., almost all) realizations of the vertices in Euclidean d-space. For
d = 2, this problem was first solved by Laman [8] in 1970: Laman proved that a generic
two-dimensional bar-joint framework is minimally rigid if and only if the underlying graph
G satisfies |E(G)| = 2|V (G)| − 3 and |E(G′)| ≤ 2|V (G′)| − 3 for any subgraph G′ of G
with |V (G′)| ≥ 2, where V (H) and E(H) denote the set of vertices and the set of edges of
a graph H, respectively. For dimensions d ≥ 3, however, the analogous questions remain
long-standing open problems, although there exist some significant partial results [23].

The theory of rigid and flexible frameworks has a wide variety of practical applications
in many areas of science, engineering and design, where frameworks serve as a suitable
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mathematical model for various kinds of physical structures, mechanical gadgets (such as
linkages or robots), sensor networks, biomolecules, etc. Since many of these structures
exhibit non-trivial symmetries, it is natural to explore the impact of symmetry on the
rigidity and flexibility properties of frameworks. Over the last decade, this research area
has gained an ever increasing attention in both the mathematical community and in the
applied sciences. Two separate fundamental research directions can be identified:

1. Forced symmetry: The framework starts in a symmetric position and must maintain
this symmetry throughout its motion.

2. Incidental symmetry: The framework starts in a symmetric position, but may move
in unrestricted ways.

Over the last few years, significant progress has been made in the rigidity analysis of
forced-symmetric frameworks [11, 10, 22, 6, 19, 20]. A key motivation for this research is
that for symmetry-generic frameworks (that is, for frameworks which are as generic as pos-
sible subject to the given symmetry constraints), the existence of a non-trivial symmetric
infinitesimal motion also guarantees the existence of a non-trivial finite (i.e., continuous)
symmetry-preserving motion of the framework [14]. To simplify the symmetry-forced
rigidity analysis of a symmetric framework a symmetric analog of the rigidity matrix,
called the orbit rigidity matrix, was recently established in [19]. In particular, this ma-
trix was used in [6] to formulate combinatorial characterizations of symmetry-forced rigid
symmetry-generic frameworks in terms of Henneberg-type construction moves on gain
graphs (group-labeled graphs), for all rotational groups Cn and for all dihedral groups Cnv
with odd n in the plane.

In contrast, for the more general question of how to analyze the rigidity properties of
an incidentally symmetric framework, there has not been any major progress in the last
few years. This paper proposes a systematic way to analyze this general case. The state
of the art in this research area is as follows.

The most fundamental result concerning the rigidity of symmetric frameworks is that
the rigidity matrix of a framework with non-trivial point group Γ can be transformed
into a block-decomposed form so that each block corresponds to an irreducible represen-
tation of Γ. This goes back to an observation of Kangwai and Guest [7], and was proved
rigorously in [14, 12]. Note that the submatrix block which corresponds to the trivial
irreducible representation of Γ describes the forced-symmetric rigidity properties of the
framework [19]. Using this block-decomposition of the rigidity matrix, necessary condi-
tions for a symmetric bar-joint framework to be isostatic (i.e., minimally infinitesimally
rigid) in Rd have been derived in [5, 4].

In [4] the necessary conditions were conjectured to be sufficient for 2-dimensional
symmetry-generic frameworks to be isostatic. This was confirmed for the groups C2, C3

and Cs in [16, 17], but it remains open for the dihedral groups.
However, note that in order to obtain combinatorial characterizations of symmetry-

generic infinitesimally rigid frameworks in the plane these symmetrized Laman-type results
are only of limited use since, by the conditions derived in [4], a symmetric infinitesimally
rigid framework usually does not contain an isostatic subframework on the same vertex set
with the same symmetry. For example, it turns out that there does not exist an isostatic
framework in the plane with point group C2 or Cs, where the group acts freely on the
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edges of the framework (see Figure 1) [4]. Moreover, there does not exist any isostatic
framework in the plane with k-fold rotational symmetry, for k > 3 [4].

Figure 1: Infinitesimally rigid symmetric frameworks in R2 with respective point groups Cs
and C2 which do not contain a spanning isostatic subframework with the same symmetry.

In this paper, we establish several new results concerning the infinitesimal rigidity of
(‘incidentally’) symmetric frameworks. First, for any Abelian point group Γ which acts
freely on the vertices of a d-dimensional framework, we extend the concept of the orbit
rigidity matrix described in [19] and show how to construct an ‘anti-symmetric’ orbit
rigidity matrix for each of the irreducible representations ρj of Γ (see Section 4). These
‘anti-symmetric’ orbit rigidity matrices are equivalent to their corresponding submatrix
blocks in the block-decomposed rigidity matrix, but their entries can explicitly be derived
in a transparent fashion.

For the reflection group Cs and for the rotational groups C2 and C3, we then use these or-
bit rigidity matrices in combination with Henneberg-type inductive construction moves on
their corresponding gain graphs to establish combinatorial characterizations of symmetry-
generic frameworks in R2 which do not have a non-trivial ρj-symmetric infinitesimal mo-
tion. Taken together, these results lead to the desired combinatorial characterizations of
infinitesimally rigid symmetry-generic frameworks for these groups (see Sections 5 and 6).

For the other cyclic groups Ck, k > 3, we provide a number of necessary conditions for
infinitesimal rigidity, and we also offer some conjectures.

Finally, in Section 7, we briefly discuss some further applications of our tools and
methods and outline some directions for future developments.

2 Rigidity of bar-joint frameworks

For a finite graph G, we denote the vertex set of G by V (G) and the edge set of G by
E(G). A bar-joint framework (or simply a framework) in Rd is a pair (G,p), where G is
a simple graph and p : V (G)→ Rd is a map such that p(u) 6= p(v) for all {u, v} ∈ E(G).
For v ∈ V (G), we say that p(v) is the joint of (G,p) corresponding to v, and for e =
{u, v} ∈ E(G), we say that the line segment between p(u) and p(v) is the bar of (G,p)
corresponding to e. For simplicity, we shall denote p(v) by pv for v ∈ V (G).

An infinitesimal motion of a framework (G,p) in Rd is a function m : V (G) → Rd
such that

〈pu − pv,mu −mv〉 = 0 for all {u, v} ∈ E(G), (1)

where mv = m(v) for each v.
An infinitesimal motion m of (G,p) is a trivial infinitesimal motion if there exists a

skew-symmetric matrix S and a vector t such that m(v) = Sp(v) + t for all v ∈ V (G).
Otherwise m is called an infinitesimal flex (or non-trivial infinitesimal motion) of (G,p).
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(G,p) is infinitesimally rigid if every infinitesimal motion of (G,p) is trivial. Otherwise
(G,p) is said to be infinitesimally flexible [23].

These definitions are motivated by the fact that if (G,p) is infinitesimally rigid, then
(G,p) is rigid in the sense that every continuous deformation of (G,p) which preserves
the edge lengths ‖pi − pj‖ for all {i, j} ∈ E(G), must preserve the distances ‖ps − pt‖ for
all pairs of vertices s and t of G.

A key tool to study the infinitesimal rigidity properties of a d-dimensional framework
(G,p) is the rigidity matrix of (G,p). For a vector x ∈ Rd, we denote the kth component
of x by (x)k. The rigidity matrix R(G,p) is a |E(G)| × d|V (G)| matrix associated with
the system of linear equations (1) with respect to m, in which each row is associated with
an edge and consecutive d columns are associated with a vertex as follows,


u v

...
e = {u, v} 0 . . . 0 (pu − pv) 0 . . . 0 (pv − pu) 0 . . . 0

...

,

where, for each edge {u, v} ∈ E(G), R(G,p) has the row with (pu− pv)1, . . . , (pu− pv)d in
the columns associated with u, (pv − pu)1, . . . , (pv − pu)d in the columns associated with
v, and 0 elsewhere [23].

Throughout the paper, for a finite set S and a finite dimensional vector space W over
some field, the set of all functions f : S → W is denoted by WS or by

⊕
s∈SW (taking

copies of W ). Then R(G,p) is regarded as a linear map from (Rd)V (G) to RE(G). Note that
m ∈ (Rd)V (G) is an infinitesimal motion if and only if R(G,p)m = 0, which means that
the kernel of the rigidity matrix R(G,p) is the space of all infinitesimal motions of (G,p).
It is well known that a framework (G,p) in Rd with n = |V (G)| is infinitesimally rigid if
and only if either the rank of its associated rigidity matrix R(G,p) is precisely dn−

(
d+1

2

)
,

or G is a complete graph Kn and the points pi, i = 1, . . . , n, are affinely independent [2].
A self-stress of a framework (G,p) is a function ω : E(G)→ R such that at each joint

pu of (G,p) we have ∑
v:{u,v}∈E(G)

ωuv(pu − pv) = 0,

where ωuv denotes ω({u, v}) for all {u, v} ∈ E(G). Note that ω ∈ RE(G) is a self-stress
if and only if R(G,p)>ω = 0. In structural engineering, the self-stresses are also called
equilibrium stresses as they record tensions and compressions in the bars balancing at
each vertex.

If (G,p) has a non-zero self-stress, then (G,p) is said to be dependent (since in this case
there exists a linear dependency among the row vectors of R(G,p)). Otherwise, (G,p) is
said to be independent. A framework which is both independent and infinitesimally rigid
is called isostatic [23].

A d-dimensional framework (G,p) with n vertices is called generic if the coordi-
nates of p are algebraically independent over Q, i.e., if there does not exist a polynomial
h(x1, . . . , xdn) with rational coefficients such that h((p1)1 . . . , (pn)d) = 0. Note that the
set of all generic realizations of G is a dense, but not an open subset of (Rd)V (G).

We say that (G,p) is regular if the rigidity matrix R(G,p) has maximal rank among
all realizations of G. It is easy to see that the set of all regular realizations of G is a dense
and open subset of (Rd)V (G) which contains the set of all generic realizations of G [2, 23].
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It is well known that for regular frameworks (and hence also for generic frameworks),
infinitesimal rigidity is purely combinatorial, and hence a property of the underlying graph.
Thus, we say that a graph G is d-rigid (d-independent, d-isostatic) if d-dimensional regular
realizations of G are infinitesimally rigid (independent, isostatic).

3 Rigidity of symmetric bar-joint frameworks

In this subsection, we review some recent approaches for analyzing the rigidity of sym-
metric frameworks. First, we introduce gain graphs, which turn out to be useful tools
for describing the underlying combinatorics of symmetric frameworks. We then provide
precise definitions of symmetric graphs and symmetric frameworks, and then explain the
block-diagonalization of rigidity matrices.

3.1 Gain graphs

Let H be a directed graph which may contain multiple edges and loops, and let Γ be
a group. A Γ-gain graph (or Γ-labeled graph) is a pair (H,ψ) in which each edge is
associated with an element of Γ via a gain function ψ : E(H) → Γ. See Figure 3.2(b)
for an example. A gain graph is a directed graph, but its orientation is used only for the
reference of the gains. That is, we can change the orientation of each edge as we like by
imposing the property on ψ that if an edge has gain g in one direction, then it has gain
g−1 in the other direction.

3.2 Symmetric graphs

Let G be a finite simple graph. An automorphism of G is a permutation π : V (G)→ V (G)
such that {u, v} ∈ E(G) if and only if {π(u), π(j)} ∈ E(G). The set of all automorphisms
of G forms a subgroup of the symmetric group on V (G), known as the automorphism group
Aut(G) of G. An action of a group Γ on G is a group homomorphism θ : Γ → Aut(G).
An action θ is called free on V (G) (resp., E(G)) if θ(γ)(v) 6= v for any v ∈ V (G) (resp.,
θ(γ)(e) 6= e for any e ∈ E(G)) and any non-identity γ ∈ Γ. We say that a graph G is
Γ-symmetric (with respect to θ) if Γ acts on G by θ. Throughout the paper, we only
consider the case when θ is free on V (G), and we omit to specify the action θ, if it is clear
from the context. We then denote θ(γ)(v) by γv.

For a Γ-symmetric graph G, the quotient graph G/Γ is a multigraph whose vertex set
is the set V (G)/Γ of vertex orbits and whose edge set is the set E(G)/Γ of edge orbits.
An edge orbit may be represented by a loop in G/Γ.

Several distinct graphs may have the same quotient graph. However, if we assume that
the underlying action is free on V (G), then a gain labeling makes the relation one-to-one.
To see this, we arbitrarily choose a vertex v as a representative vertex from each vertex
orbit. Then each orbit is of the form Γv = {gv | g ∈ Γ}. If the action is free, an edge
orbit connecting Γu and Γv in G/Γ can be written as {{gu, ghv} | g ∈ Γ} for a unique
h ∈ Γ. We then orient the edge orbit from Γu to Γv in G/Γ and assign to it the gain h.
In this way, we obtain the quotient Γ-gain graph, denoted by (G/Γ, ψ). (G/Γ, ψ) is unique
up to choices of representative vertices. Figure 3.2 illustrates an example, where Γ is the
reflection group Cs.
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Figure 2: A Cs-symmetric graph (a) and its quotient gain graph (b), where Cs = {id, s}.
For simplicity, we omit the direction and the label of every edge with gain id.

Conversely, let (H,ψ) be a finite Γ-gain graph. We simply denote a pair (g, v), where
g ∈ Γ and v ∈ V (H), by gv. The covering graph (also known as the derived graph) of
(H,ψ) is the simple graph with the vertex set Γ × V (H) = {gv | g ∈ Γ, v ∈ V (H)} and
the edge set {{gu, gψ(e)v} | e = (u, v) ∈ E(H), g ∈ Γ}.

Clearly, Γ acts freely on the covering graph with the action θ defined by θ(g) : v 7→ gv
for g ∈ Γ, under which the quotient graph comes back to (H,ψ). In this way, there is
a one-to-one correspondence between Γ-gain graphs and Γ-symmetric graphs with free
actions (up to the choices of representative vertices).

The map c : G → H defined by c(gv) = v and c({gu, gψ(e)v}) = (u, v) is called a
covering map. In order to avoid confusion, throughout the paper, a vertex or an edge in a
quotient gain graph H is denoted with the mark tilde, e.g., ṽ or ẽ. Then the fiber c−1(ṽ)
of a vertex ṽ ∈ V (H) and the fiber c−1(ẽ) of an edge ẽ ∈ E(H) coincide with a vertex
orbit and an edge orbit, respectively, in G.

3.3 Symmetric bar-joint frameworks

Given a finite simple graph G and a map p : V (G) → Rd, a symmetry operation of the
framework (G,p) in Rd is an isometry x of Rd such that for some αx ∈ Aut(G), we have

x(pi) = pαx(i) for all i ∈ V (G).

The set of all symmetry operations of a framework (G,p) forms a group under composition,
called the point group of (G,p). Since translating a framework does not change its rigidity
properties, we may assume wlog that the point group of a framework is always a symmetry
group, i.e., a subgroup of the orthogonal group O(Rd).

Given a symmetry group Γ and a graph G, we let R(G,Γ) denote the set of all d-
dimensional realizations of G whose point group is either equal to Γ or contains Γ as a
subgroup [15, 14, 16, 17]. In other words, the set R(G,Γ) consists of all realizations (G,p)
of G for which there exists an action θ : Γ→ Aut(G) so that

x
(
p(v)) = p(θ(x)(v)) for all v ∈ V (G) and all x ∈ Γ. (2)

A framework (G,p) ∈ R(G,Γ) satisfying the equations in (2) for θ : Γ → Aut(G) is said
to be of type θ, and the set of all realizations in R(G,Γ) which are of type θ is denoted by
R(G,Γ,θ) (see again [15, 14, 16] and Figure 3). It is shown in [15] that (G,p) is of a unique
type θ and θ is necessarily also a homomorphism, when p is injective.
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Figure 3: 2-dimensional realizations of K2,2 in R(K2,2,Cs) of different types: the framework
in (a) is of type θa, where θa : Cs → Aut(K2,2) is the homomorphism defined by θa(s) =
(1 4)(2 3), and the framework in (b) is of type θb, where θb : Cs → Aut(K2,2) is the
homomorphism defined by θb(s) = (1 3)(2 4).

For simplicity, we will assume throughout this paper that a framework (G,p) ∈ R(G,Γ)

has no joint that is ‘fixed’ by a non-trivial symmetry operation in Γ (i.e., (G,p) has no
joint pi with x(pi) = pi for some x ∈ Γ, x 6= id).

Let Γ be an abstract group, and G be a Γ-symmetric graph with respect to a free
action θ : Γ → Aut(G). Suppose also that Γ acts on Rd via a homomorphism τ : Γ →
O(Rd). Then we say that a framework (G,p) is Γ-symmetric (with respect to θ and τ) if
(G,p) ∈ R(G,τ(Γ),θ), that is, if

τ(γ)(p(v)) = p(θ(γ)v) for all γ ∈ Γ and all v ∈ V (G). (3)

Let H be the quotient graph of G with the covering map c : G→ H. It is convenient
to fix a representative vertex v of each vertex orbit Γv = {gv : g ∈ Γ}, and define the
quotient of p to be p̃ : V (H)→ Rd, so that there is a one-to-one correspondence between
p and p̃ given by p(v) = p̃(c(v)) for each representative vertex v.

For a discrete point group Γ, let QΓ be the field generated by Q and the entries of the
matrices in Γ. We say that p (or p̃) is Γ-generic if the set of coordinates of the image of
p̃ is algebraically independent over QΓ. Note that this definition does not depend on the
choice of representative vertices. A Γ-symmetric framework (G,p) is called Γ-generic if p
is Γ-generic.

Further, we say that (G,p) is Γ-regular if the rigidity matrix R(G,p) has maximal
rank among all Γ-symmetric realizations of G (see also [15]). If a framework is Γ-generic,
then it is clearly also Γ-regular.

3.4 Block-diagonalization of the rigidity matrix

It is shown in [7, 14] that the rigidity matrix of a symmetric framework can be transformed
into a block-diagonalized form using techniques from group representation theory. In the
following, we will briefly present the details of this fundamental result in order to clarify
the combinatorics underlying our further analyses in the subsequent sections.

For an m × n matrix A and a p × q matrix B, A ⊗ B denotes the Kronecker product
of A and B. The following are well-known properties of this algebraic operation:

(A+B)⊗ C = A⊗ C +B ⊗ C and C ⊗ (A+B) = C ⊗A+ C ⊗B.

(A⊗B)(C ⊗D) = (AC)⊗ (BD).
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(A⊗B)> = A> ⊗B>.

Given two matrix representations ρ1 and ρ2 of a group Γ, the tensor product ρ1 ⊗ ρ2 is
defined by ρ1 ⊗ ρ2(γ) = ρ1(γ)⊗ ρ2(γ) for γ ∈ Γ.

A matrix M : Rd → Rh is called a Γ-linear map of ρ1 and ρ2 if Mρ1(γ) = ρ2(γ)M for
γ ∈ Γ. The set of all Γ-linear maps of ρ1 and ρ2 forms a linear space which is denoted by
HomΓ(ρ1, ρ2).

Let (G,p) be a Γ-symmetric framework with respect to a free action θ : Γ → Aut(G)
and a homomorphism τ : Γ → O(Rd). We denote by PV : Γ → GL(RV ) the linear
representation of Γ induced by θ over V (G), that is, PV (γ) is the permutation matrix of
the permutation θ(γ) of V (G). Specifically, PV (γ) = [δi,θ(γ)(j))]i,j , where δ denotes the

Kronecker delta symbol. Similarly, let PE : Γ → GL(RE) be the linear representation of
Γ consisting of permutation matrices of permutations induced by θ over E(G).

Let ~G be a directed graph obtained from G by assigning an orientation to each edge
so that it preserves the action θ (i.e., an edge {u, v} is directed from u to v if and only if
{γu, γv} is directed from γu to γv). The incidence matrix I ~G of ~G is the |E(G)| × |V (G)|
matrix, where the row of e = (i, j) ∈ E(~G) has the entries −1 and 1 in the columns of i
and j, respectively, and the other entries are zero.

It is important to notice that since θ is an action on G we have I ~G ∈ HomΓ(PV , PE).
To see this, we let for each e ∈ E(G), Ie be the |E(G)| × |V (G)| matrix obtained from I ~G
by changing each entry to zero except those in the row of e. Then I ~G =

∑
e∈E( ~G) Ie, and

we can easily verify that

PE(γ)IePV (γ)> = Iθ(γ)(e) for all γ ∈ Γ.

This relation can naturally be extended to rigidity matrices, as shown in [14, 12]. Here
we give a short proof.

Theorem 3.1. Let Γ be a finite group with τ : Γ → O(Rd), G be a Γ-symmetric graph
with a free action θ (on V (G)) and (G,p) be a Γ-symmetric framework with respect to θ
and τ . Then R(G,p) ∈ HomΓ(τ ⊗ PV , PE).

Proof. Let Re be the |E(G)| × d|V (G)| matrix obtained from R(G,p) by changing each
entry to zero except those in the row of e. As above, we consider the directed graph ~G,
and for each e = (u, v), we let p(e) = p(v) − p(u). Note that R(G,p) =

∑
e∈E( ~G)Re =∑

e∈E( ~G) p(e)> ⊗ Ie, where Ie is defined as above. For each e ∈ E(~G) and γ ∈ Γ, we now
have

PE(γ)(p(e)> ⊗ Ie)(τ(γ)⊗ PV (γ))> = PE(γ)(p(e)>τ(γ)>)⊗ (IePV (γ)>)

= (τ(γ)p(e))> ⊗ (PE(γ)IePV (γ)>)

= p(θ(γ)(e))> ⊗ Iθ(γ)(e)

= Rθ(γ)(e),

where for the third equation we used the fact that (G,p) is Γ-symmetric and hence
τ(γ)p(e) = τ(γ)(p(u) − p(v)) = p(θ(γ)(u)) − p(θ(γ)(v)) = p(θ(γ)(e)). Therefore, we
obtain PE(γ)R(G,p)(τ>(γ)⊗ PV (γ)) =

∑
e∈E( ~G)Rθ(γ)(e) = R(G,p).

8



Since R(G,p) ∈ HomΓ(τ⊗PV , PE), there are non-singular matrices S and T such that
T>R(G,p)S is block-diagonalized, by Schur’s lemma. If ρ0, . . . , ρr are the irreducible rep-
resentations of Γ, then for an appropriate choice of symmetry-adapted coordinate systems,
the rigidity matrix takes on the following block form

T>R(G,p)S := R̃(G,p) =

 R̃0(G,p) 0
. . .

0 R̃r(G,p)

 , (4)

where the submatrix block R̃i(G,p) corresponds to the irreducible representation ρi of Γ.
The kernel of R̃i(G,p) consists of all infinitesimal motions of (G,p) which are symmetric
with respect to ρi (see [14] for details).

3.5 Fully-symmetric motions and the orbit rigidity matrix

Suppose that ρ0 is the trivial irreducible representation of Γ, i.e., ρ0(γ) = 1 for all γ ∈ Γ.
The kernel of R̃0(G,p) consists of all infinitesimal motions of (G,p) which exhibit the full
symmetry of Γ (see also Fig. 4). Specifically, an infinitesimal motion m : V (G) → Rd of
(G,p) is called fully Γ-symmetric if

m(θ(γ)v) = τ(γ)m(v) for all v ∈ V (G) and γ ∈ Γ. (5)

We say that (G,p) is symmetry-forced (infinitesimally) rigid if every fully Γ-symmetric
infinitesimal motion is trivial.

p4

p1 p2

p3

(a)

p1 p4

p2 p3

(b)

Figure 4: Fully-symmetric infinitesimal motions of frameworks in the plane: (a) a C2-
symmetric non-trivial infinitesimal motion; (b) a Cs-symmetric trivial infinitesimal motion.

To simplify the detection of fully Γ-symmetric motions of (G,p), the orbit rigidity
matrix of (G,p) was introduced in [19]. The orbit rigidity matrix is equivalent to R̃0(G,p),
and has successfully been used for characterizing symmetry-forced rigid frameworks in [6,
20, 11]. In the next section, we will extend this concept to each irreducible representation
of Γ.

4 ‘Anti-symmetric’ orbit rigidity matrices for bar-joint frame-
works with Abelian point group symmetry

Let (G,p) be a Γ-symmetric framework in Rd with respect to θ : Γ → Aut(G) and
τ : Γ→ O(Rd). In general, the entries of each block R̃j(G, p) are not as simple as those of
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R̃0(G,p). However, if we restrict our attention to the case where Γ is an Abelian group,
then we can specifically describe an ‘anti-symmetric’ orbit rigidity matrix for each of the
irreducible representations of Γ.

For simplicity, we will first consider the case where Γ is cyclic (Section 4.1). The
argument is then easily extended to general Abelian groups in Section 4.2. Throughout
these two subsections we assume, again for the sake of simplicity, that θ acts freely on
E(G). In Section 4.3, we will discuss the case when θ may not be free on E(G). In
Section 4.4, we give several examples.

4.1 Case of cyclic groups

Throughout this subsection, Γ is assumed to be a cyclic group Z/kZ = {0, 1, 2, . . . , k− 1}
of order k, and θ acts freely on E(G). It is an elementary fact from group representation
theory that Γ = Z/kZ has k non-equivalent irreducible representations ρ0, ρ1, . . . , ρk−1,
and that each of these representations is one-dimensional. Specifically, for j = 0, 1, . . . , k−
1, we have

ρj : Γ→ C \ {0}
i 7→ ωij ,

where ω denotes e
2π
√
−1
k , a root of unity. To cope with such representations, we need to

extend the underlying field to C if k ≥ 3, and regard R(G,p) as a linear function from
(Ck)V (G) to CE(G). Next we show how each block R̃j(G,p) is described in the complex
field.

4.1.1 Decompositions of the regular representation of Γ

Let ρreg : Γ → GL(Rk) be the regular representation of Γ, that is, regarding Γ as a
subgroup of the symmetric group Sk, ρreg(γ) = [δi,γ+j ]i,j for any γ ∈ Γ. Recall that ρreg

is equivalent to
⊕k−1

j=0 ρj .

For j = 0, 1, . . . , k − 1, let bj = (1, ω̄j , ω̄2j , . . . , ω̄(k−1)j)> be a vector in Ck, where ω̄ is
the complex conjugate of ω. Then we have

ρreg(i)bj = ωijbj = ρj(i)bj .

This says that bj is a common eigenvector of {ρreg(i) | i = 0, 1, . . . , k − 1}, and the
one-dimensional subspace Ij spanned by bj is an invariant subspace corresponding to ρj .

Hence, by decomposing Ck into
⊕k−1

j=0 Ij , ρreg is diagonalized to
⊕k−1

j=0 ρj .
Next, consider τ ⊗ ρreg. Since the character of the Kronecker product of two repre-

sentations is written by the coordinate-wise product of the corresponding two characters,
we see that the multiplicity of ρj in τ ⊗ ρreg is equal to Trace(τ(0)), that is, equal to d.

Hence, τ ⊗ ρreg is equivalent to
⊕k−1

j=0 dρj .

For j = 0, 1, . . . , k − 1, we define a d-dimensional subspace Jj of Cdk by

Jj =




τ(0)
ω̄jτ(1)

...

ω̄j(k−1)τ(k − 1)

x : x ∈ Cd

 (6)
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(where

 τ(0)
...

ω̄j(k−1)τ(k − 1)

 denotes a dk × d matrix). Then observe that for each i ∈ Γ,

(τ ⊗ ρreg(i))y = ρj(i)y for all y ∈ Jj ,

and hence Jj is a common eigenspace of {τ ⊗ ρreg(i) : i = 0, . . . , k − 1}, and Jj is an
invariant subspace corresponding to ρj . Cdk is thus decomposed into invariant subspaces⊕k−1

j=0 Jj .

4.1.2 Decompositions of PE and τ ⊗ PV

Since our goal is to characterize the infinitesimal rigidity of symmetric frameworks in
terms of their quotient graphs, let us introduce a quotient Γ-gain graph (H,ψ) of G with
a covering map c : G→ H.

Observe, then, that since Γ acts freely on V (G), PV is the direct sum of |V (H)| copies of
ρreg, each of which represents an action of Γ over a fiber c−1(v). Thus, PV =

⊕
ṽ∈V (H) ρreg,

and PV is equivalent to
⊕k−1

j=0 |V (H)|ρj . Similarly, if we assume that Γ acts freely on E(G),

then PE =
⊕

ẽ∈E(H) ρreg, and PE is equivalent to
⊕k−1

j=0 |E(H)|ρj . (We will treat the case
where Γ does not act freely on the edge set of G in Section 4.3.)

Observe also that τ ⊗ PV = τ ⊗ (
⊕

ṽ∈V (H) ρreg) =
⊕

ṽ∈V (H) τ ⊗ ρreg. Thus, τ ⊗ PV is

equivalent to
⊕k−1

j=0 d|V (H)|ρj . In total, each block R̃j(G, p) corresponding to ρj has the
size |E(H)| × d|V (H)|.

The decompositions of PE and τ ⊗ PV give us further information about R̃j(G,p).
Since Γ acts freely on G, each vertex orbit is associated with a dk-dimensional subspace of
(Cd)V (G), while each edge orbit is associated with a k-dimensional subspace of CE(G). In
other words, CV (G) and CE(G) can be written as

⊕
ṽ∈V (H) Cdk and

⊕
ẽ∈E(H) Ck in terms

of the quotient graph H.
Since τ ⊗ PV =

⊕
ṽ∈V (H) τ ⊗ ρreg and PE =

⊕
ẽ∈E(H) ρreg, it follows that Jmo

j :=⊕
ṽ∈V (H) Jj is an invariant subspace of CV (G) while Ist

j :=
⊕

ẽ∈E(H) Ij is an invariant

subspace of CE(G) with respect to ρj . Therefore R̃j(G,p) is a linear mapping from Jmo
j

to Ist
j .

An infinitesimal motion m : V (G)→ Cd contained in Jmo
j is said to be ρj-symmetric.

By definition (6), m is ρj-symmetric if and only if

m(γv) = ω̄jγτ(γ)m(v) for all γ ∈ Γ and v ∈ V (G). (7)

Recall that m : V (G)→ Cd is an infinitesimal motion of (G,p) if

〈p(u)− p(v),m(u)−m(v)〉 = 0 for all {u, v} ∈ E(G). (8)

This system of linear equations for m is redundant if m is restricted to be ρj-symmetric,
and we now eliminate such redundancy as follows.

Recall that each edge orbit is written as a set c−1(ẽ) = {{γu, γψẽv} : γ ∈ Γ} of edges
of G, where ψẽ is the label assigned to ẽ in (H,ψ). So (8) can be written as

〈p(γu)− p(γψẽv),m(γu)−m(γψẽv)〉 = 0 (γ ∈ Γ) (9)
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for each ẽ ∈ E(H). By the symmetry of p and m with respect to Γ, these k equations
can be simplified to one equation

〈p(u)− τ(ψẽ)p(v),m(u)− ω̄jψẽτ(ψẽ)m(v)〉 = 0 (10)

for each edge orbit.
Let us define the joint p̃(w̃) and the motion m̃(w̃) of a vertex w̃ ∈ V (H) to be the

joint p(v) and the motion m(v) of the representative vertex v of the vertex orbit c−1(w̃).
Then the analysis can be done on the quotient graph (H,ψ). More formally, for a Γ-gain
graph (H,ψ) and p̃ : V (H) → Rd, a map m̃ : V (H) → Cd is said to be a ρj-symmetric
motion of (H,ψ, p̃) if

〈p̃(ũ)− τ(ψẽ)p̃(ṽ), m̃(ũ)− ω̄jψẽτ(ψẽ)m̃(ṽ)〉 = 0 for all ẽ = (ũ, ṽ) ∈ E(H). (11)

We define the ρj-orbit rigidity matrix, denoted byOj(H,ψ, p̃), as the |E(H)|×d|V (H)|ma-
trix associated with the system (11), where each vertex has the corresponding d columns,
each edge has the corresponding row, and the row corresponding to ẽ = (ũ, ṽ) ∈ E(H) is
given by

ũ︷ ︸︸ ︷ ṽ︷ ︸︸ ︷
0 . . . 0 p̃(ũ)− τ(ψẽ)p̃(ṽ) 0 . . . 0 ωjψẽ(p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)) 0 . . . 0
,

where each vector is assumed to be transposed, and if ẽ is a loop at ṽ the entries of ṽ
become the sum of the two entries given above.

Due to the one-to-one correspondence between Jmo
j and (Cd)V (H), we conclude the

following.

Proposition 4.1. Let Γ be a cyclic group of order k, (G,p) be a Γ-symmetric framework
in Rd, and (H,ψ) be the quotient Γ-gain graph. Then, for each j = 0, . . . , k − 1

rank R̃j(G,p) = rank Oj(H,ψ, p̃).

4.2 Case of non-cyclic groups

It is well known that any finite Abelian group Γ is isomorphic to Z/k1Z× · · · ×Z/klZ for
some positive integers k1, . . . , kl. Thus, we may denote each element of Γ by i = (i1, . . . , il),
where 0 ≤ i1 ≤ k1, . . . , 0 ≤ il ≤ kl, and regard Γ as an additive group.

Let k = |Γ| = k1k2 . . . kl. Γ has k non-equivalent irreducible representations which are
denoted by {ρj : j ∈ Γ}. Specifically, for each j ∈ Γ, ρj is defined by

ρj : Γ→ C/{0}
i 7→ ωi1j11 · ωi2j22 · . . . · ωiljll , (12)

where ωt = e
2π
√
−1

kt , t = 1, . . . , l.
We now apply the analysis for cyclic groups by simply replacing each index with a

tuple of indices. By Theorem 3.1, R(G,p) is decomposed into k blocks, and the block
corresponding to ρj is denoted by R̃j(G,p).
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For each j = (j1, . . . , jl) ∈ Γ, let bj be the k-dimensional vector such that each coordi-

nate is indexed by a tuple i ∈ Γ and its i-th coordinate is equal to ω̄i1j11 · . . . · ω̄iljll . Then,
for the regular representation ρreg of Γ, we have

ρreg(i)bj = ωi1j11 · . . . · ωiljll bj = ρj(i)bj ,

and hence bj is a common eigenvector of {ρreg(i) | i ∈ Γ}. Hence, the one-dimensional
subspace Ij spanned by bj is an invariant subspace of Ck corresponding to ρj .

A similar analysis determines the common eigenspace Jj of {τ ⊗ ρreg(i) | i ∈ Γ} for
the eigenvalue ρj(i) as a counterpart to the one defined in (6).

Following the analysis given in the previous subsection, we see that R̃j(G,p) is a
linear mapping from Jmo

j :=
⊕

ṽ∈V (H) Jj to Ist
j :=

⊕
ẽ∈E(H) Ij . If we define the ρj-orbit

rigidity matrix, denoted by Oj(H,ψ, p̃), as the |E(H)| × d|V (H)| matrix, where each
ẽ = (ũ, ṽ) ∈ E(H) has the associated row

ũ︷ ︸︸ ︷ ṽ︷ ︸︸ ︷
0 . . . 0 p̃(ũ)− τ(ψẽ)p̃(ṽ) 0 . . . 0 ρj(ψe)(p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)) 0 . . . 0
,

then we have the following result.

Proposition 4.2. Let Γ be a finite Abelian group, (G,p) be a Γ-symmetric framework in
Rd, and (H,ψ) be the quotient Γ-gain graph. Then, for each j ∈ Γ,

rank R̃j(G,p) = rank Oj(H,ψ, p̃).

4.3 Group actions which are not free on the edge set

In the previous sections, we restricted ourselves to the situation, where the group Γ acts
freely on both the vertex set and the edge set of the graph G. Let us now also consider the
case, where Γ acts freely on the vertex set, but not on the edge set of G. In other words,
there exists an element γ ∈ Γ with θ(γ)(u) = v and θ(γ)(v) = u for some {u, v} ∈ E(G).
Since Γ still acts freely on V (G), it follows that if Γ does not act freely on c−1((ũ, ṽ)),

then the edge orbit of (ũ, ṽ) is of size |Γ|2 , that is, Γ/(Z/2Z) acts freely on c−1((ũ, ṽ)).
Now, let (G,p) be a Γ-symmetric framework, where Γ is a finite Abelian group of order

k, and suppose there are n edge orbits of size k and m edge orbits of size k
2 . Let g1, . . . , gt

be the non-trivial elements of Γ which fix an edge of G, and let mi be the number of edge
orbits whose representatives are fixed by gi. (Note that if an edge e of G is fixed by an
element of Γ, then so is every other element in the orbit of e, because Γ is Abelian.) So
we have m =

∑t
i=1mi, and the character of PE is the vector χ(PE) which has nk+mk

2 in

the first entry corresponding to id ∈ Γ, mi
k
2 in the entry corresponding to gi, i = 1, . . . , t,

and 0 elsewhere.
Now, let ρj be an irreducible representation of Γ. Then, since each gi must be an

involution, ρj(gi) is 1 or −1. Without loss of generality assume ρj(gi) = 1 for 1 ≤ i ≤ s
and ρj(gi) = −1 for s + 1 ≤ i ≤ t. It is a well known result from group representation
theory that the dimension of the invariant subspace Istj of C|E(G)| is given by 1

k (χ(PE) ·ρj).
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Thus,

dim(Istj ) =
1

k

(
nk +m

k

2
+

s∑
i=1

mi
k

2
−

t∑
i=s+1

mi
k

2

)
=

1

k
(nk +

s∑
i=1

mik)

= n+
s∑
i=1

mi.

It follows that the submatrix block R̃j(G,p) has n+
∑s

i=1mi many rows.

Although the size of R̃j (G,p) and that of Oj(H,ψ, p̃) are different, we can still use

Oj(H,ψ, p̃) to compute the rank of R̃j(G,p), as Proposition 4.2 still holds. To see this,
observe that if gi fixes c−1(ẽ) for some ẽ ∈ E(H), then ẽ is a loop with ψ(ẽ) = gi. Since
g2
i = id, if ρj(gi) = −1, the row corresponding to ẽ in Oj(H,ψ, p̃) turns out to be a zero

vector. The following proposition implies that the reverse implication is also true, where
a loop ẽ is called a zero loop in Oj(H,ψ, p̃) if the row of ẽ is a zero vector in Oj(H,ψ, p̃).

Proposition 4.3. Let Γ be an Abelian group along with a faithful representation τ :
Γ→ O(Rd), (G,p) be a Γ-symmetric framework with respect to θ and τ , and (H,ψ) be a
quotient Γ-gain graph. Then, for each j ∈ Γ, a loop ẽ is a zero loop in Oj(H,ψ, p̃) if and
only if ρj(ψẽ) = −1 and ψ2

ẽ = id.

Proof. For simplicity, let ω = ρj(ψẽ) and A = τ(ψẽ) 6= Id. By definition, the row of ẽ is a
zero vector if and only if Id + ωId − A− ωA−1 = 0. The latter condition is equivalent to
(A− Id)(A− ωId) = 0. This holds if ω = −1 and A2 = Id, which implies the sufficiency.

To see the necessity, let µA be the minimal polynomial of A. Since A is diagonalizable
(as Γ is Abelian) and µA divides (t − 1)(t − ω), an elementary theorem of linear algebra
implies that the eigenvalues of A are only 1 and ω. Since Γ is Abelian and A 6= Id, we
have ω = −1. This also implies A2 = Id, and hence ψ2

ẽ = id.

It follows from Proposition 4.3 and the remarks above that the number of rows of
R̃j(G,p) equals the number of non-zero rows of Oj(H,ψ, p̃). Moreover, these two matrices
clearly have the same number of columns, and by the same reasoning as in the previous
sections, Propositions 4.1 and 4.2 still hold.

4.4 Examples

4.4.1 Reflection symmetry Cs

The symmetry group Cs has two non-equivalent real irreducible representations each of
which is of dimension 1. In the Mulliken notation, they are denoted by A′ and A′′ (see
Table 1).

It follows that the block-decomposed rigidity matrix R̃(G,p) of a Cs-symmetric frame-
work (G,p) consists of only two blocks: the submatrix block R̃0(G,p) corresponding to
the trivial representation ρ0, and the submatrix block R̃1(G,p) corresponding to the rep-
resentation ρ1. The block R̃0(G,p) is equivalent to the (fully symmetric) orbit rigidity
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Cs id s

A′ = ρ0 1 1

A′′ = ρ1 1 -1

Table 1: The irreducible representations of Cs.

matrix (see also [19]). The block R̃1(G,p) describes the ρ1-symmetric (or simply ‘anti-
symmetric’) infinitesimal rigidity properties of (G,p), where an infinitesimal motion m of
(G,p) is anti-symmetric if

τ(s)
(
mi

)
= −mθ(s)(i) for all i ∈ V (G),

i.e., if all the velocity vectors of m are reversed by s (see also Fig. 5). As shown in Propo-
sition 4.1, R̃1(G,p) is equivalent to the anti-symmetric orbit rigidity matrix O1(H,ψ, p̃).

p3

p1

p2

p6

p4

p5

(a)

p1 p4

p2 p3

(b)

p1 p4

p2 p3

(c)

Figure 5: Anti-symmetric infinitesimal motions of frameworks with mirror symmetry in
the plane: (a), (b) anti-symmetric infinitesimal motions; (c) an anti-symmetric trivial
infinitesimal motion.

For example, consider the framework (G,p) shown in Fig. 5(a) which is Cs-symmetric
with respect to θ and τ , where θ : Cs → Aut(G) is the action defined by θ(s) =

(1 4)(2 5)(3 6) and τ : Cs → O(R2) is the homomorphism defined by τ(s) =

(
−1 0
0 1

)
.

The corresponding quotient Cs-gain graph (H,ψ) is depicted in Fig. 6, and the anti-
symmetric orbit rigidity matrix O1(H,ψ, p̃) of (G,p) is the following 6× 6 matrix:



1 2 3

(1, 3; id) p̃(1)− p̃(3) 0 0 p̃(3)− p̃(1)
(1, 2; s) p̃(1)− τ(s)p̃(2) −(p̃(2)− τ(s)−1p̃(1)) 0 0
(2, 3; id) 0 0 p̃(2)− p̃(3) p̃(3)− p̃(2)
(1, 1; s) 0 0 0 0 0 0
(2, 2; s) 0 0 0 0 0 0
(3, 3; s) 0 0 0 0 0 0


where an edge (u, v) with label g is denoted by (u, v; g).

Recall from Proposition 4.3 that each loop in (H,ψ) gives rise to a zero vector in
O1(H,ψ, p̃), and hence O1(H,ψ, p̃) has only three non-trivial rows. Geometrically, this is
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also obvious, as any loop in (H,ψ) clearly does not constitute any constraint if we restrict
ourselves to anti-symmetric infinitesimal motions (see again Fig. 5(a)).

3

1

2
s

s

s s

Figure 6: The Cs-gain graph (H,ψ) of the framework in Fig. 5(a), where the directions
and labels of edges with gain id are omitted.

4.4.2 Rotation symmetry C3

Over the complex numbers, the symmetry group C3 has three non-equivalent one-dimensional
irreducible representations. In the Mulliken notation, they are denoted by A, E(1) and
E(2) (see Table 2).

C3 id C3 C2
3

A = ρ0 1 1 1

E(1) = ρ1 1 ω ω2

E(2) = ρ2 1 ω2 ω

Table 2: The irreducible representations of C3, where ω = 2π
√
−1

3 .

It follows that the block-decomposed rigidity matrix R̃(G,p) of a C3-symmetric frame-
work (G,p) consists of three blocks: the submatrix block R̃0(G,p) corresponding to the
trivial representation ρ0, the submatrix block R̃1(G,p) corresponding to ρ1, and the sub-
matrix block R̃2(G,p) corresponding to ρ2. By Proposition 4.1, each block R̃j(G,p) is
equivalent to its corresponding orbit rigidity matrix Oj(H,ψ, p̃).

As an example, consider the C3-symmetric framework (G,p) shown in Figure 7, where
θ : C3 → Aut(G) is the action defined by θ(C3) = (1 2 3)(4 5 6), and τ : C3 → O(R2) is the

homomorphism defined by τ(C3) =

(
−1

2 −
√

3
2√

3
2 −1

2

)
. Note that for this example, each of

the three orbit rigidity matrices is a 3× 4 matrix.
The orbit rigidity matrix O1(H,ψ, p̃) is the 3× 4 matrix


2 5

p̃(2)− p̃(5) p̃(5)− p̃(2)
p̃(2)− τ(C3)p̃(2) + ω

(
p̃(2)− τ(C3)−1p̃(2)

)
0 0

0 0 p̃(5)− τ(C3)p̃(5) + ω2
(
p̃(5)− τ(C3)−1p̃(5)

)
,

where the first row corresponds to the edge (2, 5; id), the second row to the loop (2, 2;C3),
and the third row to the loop (5, 5;C3).
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p1

p2 p3

p4

p5
p6

(a)

5

2
C3

C3

(b)

Figure 7: A C3-symmetric framework and its corresponding C3 quotient gain graph.

The orbit rigidity matrix O2(H,ψ, p̃) is the 3× 4 matrix


2 5

p̃(2)− p̃(5) p̃(5)− p̃(2)
p̃(2)− τ(C3)p̃(2) + ω2

(
p̃(2)− τ(C3)−1p̃(2)

)
0 0

0 0 p̃(5)− τ(C3)p̃(5) + ω
(
p̃(5)− τ(C3)−1p̃(5)

)
,

where the first row corresponds to the edge (2, 5; id), the second row to the loop (2, 2;C3),
and the third row to the loop (5, 5;C3).

4.4.3 Dihedral symmetry C2v

Finally, we consider the dihedral group C2v = {id, C2, sh, sv} of order four which is the
only non-cyclic Abelian point group in the plane. In the following, we think of C2v as the
additive group Z/2Z × Z/2Z, where id = (0, 0), C2 = (0, 1), sh = (1, 0), and sv = (1, 1).
This group has four non-equivalent irreducible linear representations each of which is real
and one-dimensional. In the Mulliken notation, these representations are denoted by A1,
A2, B1, and B2 (see Table 3).

C2v id C2 sh sv

A1 = ρ(0,0) 1 1 1 1

A2 = ρ(1,0) 1 1 -1 -1

B1 = ρ(0,1) 1 -1 1 -1

B2 = ρ(1,1) 1 -1 -1 1

Table 3: The irreducible representations of C2v.

Thus, for the dihedral group C2v, the block-decomposed rigidity matrix R̃(G,p) consists
of four blocks, each of which corresponds to one of the four irreducible representations
of C2v. The submatrix block corresponding to ρ0 is of course again equivalent to the
(fully symmetric) orbit rigidity matrix. In the following, we give an example of a B1-
symmetric orbit rigidity matrix O(0,1)(H,ψ, p̃) which, by Proposition 4.2, is equivalent to

its corresponding submatrix block R̃(0,1)(G,p).
Consider the C2v-symmetric framework (G,p) shown in Figure 8(a), where θ : C2v →

Aut(G) is the action defined by θ(sh) = (1 4)(2 3)(5 8)(6 7) and θ(sv) = (1 2)(3 4)(5 6)(7 8),
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and τ : C2v → O(R2) is the homomorphism defined by τ(sh) =

(
1 0
0 −1

)
and τ(sv) =(

−1 0
0 1

)
.

p4 p3

p2p1

p8 p7

p6p5

(a)

1

5

C2

sh sv

(b)

Figure 8: A framework in R(K4,4,C2v) with a fully symmetric infinitesimal flex (a) and its
corresponding quotient C2v-gain graph (b), where the direction and label of the edge with
gain id is omitted.

The B1-symmetric orbit rigidity matrix O(0,1)(H,ψ, p̃) of (G,p) is the 4× 4 matrix


1 5

(1, 5) p̃(1)− p̃(5) p̃(5)− p̃(1)
(1, 5;C2) p̃(1)− τ(C2)p̃(5) −

(
p̃(5)− τ(C2)−1p̃(1)

)
(1, 5; sh) p̃(1)− τ(sh)p̃(5) p̃(5)− τ(sh)−1p̃(1)
(1, 5; sv) p̃(1)− τ(sv)p̃(5) −

(
p̃(5)− τ(sv)

−1p̃(1)
)
.

The other orbit rigidity matrices Oj(H,ψ, p̃) can be obtained analogously.
Note that the framework in Figure 8(a) has a non-trivial fully symmetric infinitesimal

motion which even extends to a continuous C2v-preserving motion [19, 6]. (In the engineer-
ing literature, this motion is known as Bottema’s mechanism.) It was shown in [6] that
this framework is falsely predicted to be forced-symmetric rigid by the matroidal counts
for the fully symmetric orbit rigidity matrix. Thus, the problem of finding combinatorial
characterizations for forced-symmetric rigidity (and hence also for incidentally symmetric
rigidity) of C2v-generic frameworks (or C2nv-generic frameworks, n ≥ 1) remains open.

5 Gain-sparsity and constructive characterizations

We now turn our attention to combinatorial characterizations of infinitesimally rigid sym-
metric frameworks in the plane. In this section we first present some preliminary facts
concerning gain graphs and matroids on gain graphs which will be used in the next section
to derive the desired combinatorial characterizations.

5.1 Gain-sparsity

Let (H,ψ) be a Γ-gain graph. A cycle is called balanced if the product of its edge gains
is equal to the identity. (If Γ is an additive group, we take the sum instead of the
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product.) More precisely, a cycle of the form ṽ1, ẽ1, ṽ2, ẽ2, ṽ3, . . . , ṽk, ẽk, ṽ1, is balanced if
Πk
i=1ψ(ẽi)

sign(ẽi) = id, where sign(ẽi) = 1 if ẽi is directed from ṽi to ṽi+1, and sign(ẽi) = −1
otherwise.

We say that an edge subset F ⊆ E(H) is balanced if all cycles in F are balanced;
otherwise it is called unbalanced. The following is a slightly generalized concept to the one
proposed in [6].

Definition 1. Let (H,ψ) be a Γ-gain graph and k, `,m be nonnegative integers with m ≤ `.
(H,ψ) is called (k, `,m)-gain-sparse if

• |F | ≤ k|V (F )| − ` for any nonempty balanced F ⊆ E(H);

• |F | ≤ k|V (F )| −m for any nonempty F ⊆ E(H).

Similarly, an edge set E is called (k, `,m)-gain-sparse if it induces a (k, `,m)-gain-sparse
graph.

Let Ik,`,m be a family of (k, `,m)-gain-sparse edge sets in (H,ψ). As noted in [6], Ik,`,m
forms the family of independence sets of a matroid on E(H) for certain (k, `,m), which
we denote by Mk,`,m(H,ψ), or simply by Mk,`,m. Let us take a closer look at this fact.

If (k, `,m) = (1, 1, 0), then M1,1,0 is known as the frame matroid (or bias matroid) of
(H,ψ), which is extensively studied in matroid theory (see, e.g., [24]). It is known that
F ⊆ E(H) is independent inM1,1,0 if and only if each connected component of F contains
no cycle or just one cycle, and the cycle is unbalanced if it exists. When Γ = {id},M1,1,0

is equal to the graphic matroid of H, where F ⊆ E(H) is independent if and only if F is
cycle free.

If k = `,Mk,k,m is the union of m copies of the graphic matroid of H and (k−m) copies
of the frame matroid of (H,ψ). In other words, F ⊆ E(H) is independent inMk,k,m if and
only if F can be partitioned into k sets F1, . . . , Fk such that Fi is a forest for 1 ≤ i ≤ m
and Fi is independent inM1,1,0 for m+1 ≤ i ≤ k. In particular, if |E(H)| = k|V (H)|−m,
then E(H) can be partitioned into k sets E1, . . . , Ek such that Ei is a spanning tree for
1 ≤ i ≤ m and Ei is a spanning edge set such that each connected component contains
exactly one unbalanced cycle.

If (k, `,m) = (k, k+ `′,m′+ `′) for some 0 ≤ m′ ≥ k and `′ ≥ 0, thenMk,`,m is `′ times
Dilworth truncations ofMk,k,m′ , and it forms a matroid. In particular, for k = 2 and ` = 3,
M2,3,m implicitly or explicitly appeared in the study of symmetry-forced rigidity. The
generic symmetry-forced rigidity of Cs-symmetric frameworks or Ck-symmetric frameworks
is characterized by the (2, 3, 1)-gain-sparsity of the underlying quotient gain graphs [9, 10,
11, 22, 6]. We shall extend this result in Section 6. For infinite periodic graphs, it
was proved by Ross that the (2, 3, 2)-gain-sparsity of Z2-gain graphs characterizes the
symmetry-forced rigidity of periodic frameworks on a fixed lattice [13].

For other triples (k, `,m) very little properties are known for (k, `,m)-gain-sparse
graphs. Csaba Kiraly recently pointed out that M2,3,0 is not a matroid in general. A
number of different (or generalized) sparsity conditions of gain graphs are also discussed
in [11, 9, 6, 20].

5.2 Constructive characterizations of (2, 3,m)-gain-sparse graphs

In this subsection we will review a constructive characterization of (2, 3,m)-gain-sparse
graphs given in [6]. We define three operations, called extensions, that preserve (2, 3,m)-
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gain-sparsity. The first two operations generalize the well-known Henneberg operations [23]
to gain graphs.

Let (H,ψ) be a Γ-gain graph. The 0-extension adds a new vertex ṽ and two new non-
loop edges ẽ1 and ẽ2 to H such that the new edges are incident to ṽ and the other end-
vertices are two not necessarily distinct vertices of V (H). If ẽ1 and ẽ2 are not parallel, then
their labels can be arbitrary. Otherwise the labels are assigned such that ψ(ẽ1) 6= ψ(ẽ2),
assuming that ẽ1 and ẽ2 are directed to ṽ (see Fig.9 (a)).

The 1-extension (see Fig.9 (b)) first chooses an edge ẽ and a vertex z̃, where ẽ may
be a loop and z̃ may be an end-vertex of ẽ. It subdivides ẽ, with a new vertex ṽ and new
edges ẽ1, ẽ2, such that the tail of ẽ1 is the tail of ẽ and the tail of ẽ2 is the head of ẽ. The
labels of the new edges are assigned such that ψ(ẽ1) · ψ(ẽ2)−1 = ψ(ẽ). The 1-extension
also adds a third edge ẽ3 oriented from z̃ to ṽ. The label of ẽ3 is assigned so that it is
locally unbalanced, i.e., every two-cycle ẽiẽj , if it exists, is unbalanced.

The loop 1-extension (see Fig.9 (c)). adds a new vertex ṽ to H and connects it to a
vertex z̃ ∈ V (H) by a new edge with any label. It also adds a new loop l̃ incident to ṽ
with ψ(l̃) 6= id.

(a) (b)

(c)

Figure 9: (a) 0-extension, where the new edges may be parallel. (b) 1-extension, where
the removed edge may be a loop and the new edges may be parallel. (c) loop-1-extension.

Theorem 5.1 (Jordán et al. [6]). Let m ∈ {1, 2} and let (H,ψ) be a Γ-gain graph with
|E(H)| = 2|V (H)| −m. Then (H,ψ) is (2, 3,m)-gain-sparse if and only if it can be built
up from a Γ-gain graph with one vertex without any edge if m = 2 and with an unbalanced
loop if m = 1 by a sequence of 0-extensions, 1-extensions, and loop-1-extensions.

The theorem is proved for m = 1 in [6, Theorem 4.4], and exactly the same proof can
be applied in the case of m = 2. For special cases, Theorem 5.1 was proved by Schulze
[16], Ross [13], and Theran [22].

In the covering graph these operations can be seen as graph operations that preserve
the underlying symmetry. Some of them can be recognized as performing standard -
non-symmetric - Henneberg operations [23] simultaneously [6].

5.3 Subgroups induced by edge sets

We have introduced the balancedness of an edge set in (H,ψ) in order to define gain-
sparsity matroids on E(H). However, we sometimes need to extract more information on
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the underlying group from (H,ψ). Such information is represented as subgroups induced
by edge sets, which we are about to introduce. For simplicity, we will assume that Γ is
Abelian. (See [6] for the general treatment.)

Recall that for a cycle C of the form ṽ1, ẽ1, ṽ2, . . . , ẽk, ṽ1 in (H,ψ), the gain ψ(C) of C
is ψ(C) = Πk

i=1ψ(ẽi)
sign(ẽi). For F ⊆ E(H), define 〈F 〉 to be the subgroup of Γ generated

by the elements in the set {ψ(C)| C is a cycle in the subgraph induced by F}. Note that
F is balanced if and only if 〈F 〉 is trivial.

A switching at a vertex ṽ with γ ∈ Γ is an operation that constructs a new labeling
ψ′ : E(H)→ Γ from ψ by setting

ψ′(ẽ) =


γψ(ẽ) if ẽ is directed to ṽ

ψ(ẽ)γ−1 if ẽ is directed from ṽ

ψ(ẽ) otherwise

We say that ψ′ is equivalent to ψ if ψ′ can be obtained from ψ by a sequence of switchings.
Then it can easily be checked that for any F ⊆ E(H), 〈F 〉 is invariant up to equivalence
(see, e.g., [6, Proposition 2.2] for the proof).

In the proof of [6, Lemma 5.2], it was shown that the rank of fully-symmetric orbit
rigidity matrices (i.e., the case when ρj is trivial) is invariant up to equivalence. Exactly
the same proof can be applied to show the following.

Proposition 5.2. Let (H,ψ) be a Γ-gain graph with Abelian group Γ, let p̃ : V (H)→ Rd
be Γ-generic, and let ψ′ be a gain function equivalent to ψ. Then rank Oj(H,ψ, p̃) =
rank Oj(H,ψ′, p̃).

The following proposition is very useful to compute 〈F 〉.

Proposition 5.3. Let (H,ψ) be a Γ-gain graph with Abelian Γ.

• For any forest T in E(H), there exists a ψ′ equivalent to ψ such that ψ′(ẽ) = id for
every ẽ ∈ T .

• For any F ⊆ E(H) and a maximal forest T in F , if ψ(ẽ) = id holds for every ẽ ∈ T ,
then 〈F 〉 is the subgroup generated by {ψ(ẽ)| ẽ ∈ F \ T}.

The proof is given in [6, Proposition 2.3, Lemma 2.4].

6 Combinatorial characterizations for bar-joint frameworks
in the plane

Based on the theory of block-diagonalizations of rigidity matrices, in this section we present
combinatorial characterizations of infinitesimally rigid frameworks which are generic mod-
ulo cyclic symmetry in the plane. By (4) and Proposition 4.2 our task of computing the
rank of the rigidity matrix is reduced to computing the rank of each orbit rigidity matrix.

Recall that each orbit rigidity matrix is defined for any Γ-gain graph (H,ψ) with
p̃ : V (H) → Rd, and its rows define a matroid on the edge set of H. We will show
that when p̃ is τ(Γ)-regular, this orbit-rigidity matroid is isomorphic to the (2, 3,m)-gain-
sparsity matroid of (H,ψ) given in Section 5 if the underlying symmetry is Cs, C2 or C3.
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If the underlying symmetry is Ck for k ≥ 4, then it turns out that orbit-rigidity matroids
have more complicated combinatorial structures and the problem of characterizing them
is still unsolved. However, we will present some non-trivial necessary conditions in the
last subsection.

The following lemma implies that the row independence of an orbit rigidity matrix is
preserved by the three operations given in Section 5.

Lemma 6.1. Let Γ be an Abelian group of order k, j ∈ Γ, and τ : Γ → O(R2) be a
faithful orthogonal representation. Let (H ′, ψ′) be a Γ-gain graph obtained from (H,ψ) by
a 0-extension, 1-extension, or loop-1-extension. If there is a mapping p̃ : V (H)→ R2 such
that Oj(H,ψ, p̃) is row independent, then there is p̃′ : V (H ′)→ R2 such that Oj(H ′, ψ, p̃′)
is row independent, unless the new loop is a zero loop in the case of a loop-1-extension.

Proof. The proof is basically the same as the one given in [6, Lemma 6.1] for symmetry-
forced rigidity. Due to the definition of genericity, we may assume that p̃ is Γ-generic.
Then it is easy to prove the statement for a 0-extension and a loop-1-extension (see the
proof of [6, Lemma 6.1] for a formal proof). We therefore focus on the case, where H ′ is
obtained from H by a 1-extension. This is the only nontrivial case.

Suppose that H ′ is obtained from H by a 1-extension which removes an existing edge
ẽ and adds a new vertex ṽ with three new non-loop edges ẽ1, ẽ2, ẽ3 incident to ṽ. We
may assume that ẽi is outgoing from ṽ. Let ũi be the other end-vertex of ẽi, and let
gi = τ(ψ′(ẽi)) and p̃i = p̃(ũi) for i = 1, 2, 3. By the definition of the 1-extension, we have
τ(ψ(ẽ)) = g−1

1 g2. We also denote ωi = ρj(ψ′(ẽi)) for i = 1, 2, 3.
Note that the three points gip̃i (i = 1, 2, 3) never lie on a line due to the Γ-genericity

of p̃ (see [6, Lemma 6.1] for a formal proof). We take p̃′ : V (H ′) → R2 such that
p̃′(w̃) = p̃(w̃) for all w̃ ∈ V (H), and p̃′(ṽ) is a point on the line through g1p̃1 and g2p̃2,
but distinct from g1p̃1 and g2p̃2. For the simplicity of the description, we assume ũ1 6= ũ2

in the subsequent discussion, but exactly the same proof can be also applied if ũ1 = ũ2.
Then Oj(H ′, ψ′, p̃′) has the form

ṽ ũ1 ũ2

ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 p̃′(ṽ)− g1p̃1 ω1(p̃1 − g−1

1 p̃′(ṽ)) 0 0

ẽ2 p̃′(ṽ)− g2p̃2 0 ω2(p̃2 − g−1
2 p̃′(ṽ)) 0

E(H)− ẽ 0 Oj(H − ẽ, ψ, p̃)

where the bottom right block Oj(H− ẽ, ψ, p̃) denotes the ρj-orbit rigidity matrix obtained
from Oj(H,ψ, p̃) by removing the row of ẽ.

Since p̃′(v) lies on the line through g1p̃1 and g2p̃2, p̃′(ṽ)− gip̃(ũi) is a scalar multiple
of g1p̃1 − g2p̃2 for i = 1, 2. Hence, by multiplying the rows of ẽ1 and ẽ2 by an appropriate
scalar, O(H ′, ψ′, p̃′) becomes

ṽ ũ1 ũ2

ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 g1p̃1 − g2p̃2 −ω1g

−1
1 (g1p̃1 − g2p̃2) 0 0

ẽ2 g1p̃1 − g2p̃2 0 −ω2g
−1
2 (g1p̃1 − g2p̃2) 0

E(H)− ẽ 0 Oj(H − ẽ, ψ, p̃)
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Subtracting the row of ẽ1 from that of ẽ2, we get

ṽ ũ1 ũ2

ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 g1p̃1 − g2p̃2 −ω1g

−1
1 (g1p̃1 − g2p̃2) 0 0

ẽ2 0 p̃1 − g−1
1 g2p̃2 ω−1

1 ω2(p̃2 − g−1
2 g1p̃1) 0

E(H)− ẽ 0 O(H − ẽ, ψ, p̃)

Since τ(ψ(ẽ)) = g−1
1 g2, the row of ẽ2 is equal to the row of ẽ in Oj(H,ψ, p̃). This means

that the right-bottom block together with the row of ẽ2 forms Oj(H,ψ, p̃), which is row
independent. Thus, the matrix is row independent if and only if the top-left block is row
independent. Since gip̃i (i = 1, 2, 3) are not on a line, the line through p̃′(v) and g3p̃3 is
not parallel to the line through g1p̃1 and g2p̃2. This implies that the top-left 2 × 2-block
is row independent, and consequently Oj(H ′, ψ′, p̃′) is row independent.

6.1 Characterizations for bar-joint frameworks with reflection symme-
try

We now give a combinatorial characterization of infinitesimally rigid bar-joint frameworks
with reflection symmetry Cs in the plane. The following characterization of rigid frame-
works with forced Cs symmetry was already established in [10, 6].

Theorem 6.2 (Malestein and Theran [10, 22], Jordán et al. [6]). Let τ : Z/2Z → Cs be
a faithful representation, (H,ψ) be a Z/2Z-gain graph, and p̃ : V (H)→ R2 be Cs-regular.
Then O0(H,ψ, p̃) is row independent if and only if (H,ψ) is (2, 3, 1)-gain-sparse.

We now show that the independence of the other submatrix block is characterized by
(2, 3, 2)-gain-sparsity.

Theorem 6.3. Let τ : Z/2Z → Cs be a faithful representation, (H,ψ) be a Z/2Z-gain
graph, and p̃ : V (H)→ R2 be Cs-regular. Then O1(H,ψ, p̃) is row independent if and only
if (H,ψ) is (2, 3, 2)-gain-sparse.

Proof. First we show that if O1(H,ψ, p̃) is row independent then (H,ψ) is (2, 3, 2)-gain-
sparse. Suppose to the contrary that there exists a balanced F ⊆ E(H) with |F | >
2|V (F )|−3. Then, by Proposition 5.2 and Proposition 5.3, we may assume that ψ(ẽ) = id
for every ẽ ∈ F . Then O1(H,ψ, p̃) has a row dependency, because the submatrix of
O1(H,ψ, p̃) obtained by deleting all rows in O1(H,ψ, p̃) that do not correspond to edges in
F is a standard 2-dimensional rigidity matrix with 2|V (F )| columns and |F | > 2|V (F )|−3
edges. Suppose next that there exists an unbalanced subset F of E(H) with |F | >

2|V (F )|−2, and assume wlog that the reflection is given by

(
−1 0
0 1

)
. Then O1(H,ψ, p̃)

again has a row dependency since it is easy to check that the infinitesimal translation

m̃ : V (H) → R2 defined by m̃(ṽ) =

(
1
0

)
for ṽ ∈ V (H) and the infinitesimal rotation

m̃′ : V (H) → R2 defined by m̃′(ṽ) =

(
−(pṽ)2

(pṽ)1

)
for ṽ ∈ V (H) both lie in the kernel of

O1(H,ψ, p̃), and hence the kernel of O1(H,ψ, p̃) is of dimension at least 2.
To prove that (2, 3, 2)-gain-sparsity is sufficient for O1(H,ψ, p̃) to be row independent,

we may employ induction on |V (H)|. Suppose that (H,ψ) is (2, 3, 2)-gain-sparse. If
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|V (H)| = 1, then |E(H)| = 0, and there is nothing to prove. If |V (H)| > 1, we may
assume that |E(H)| = 2|V (H)|−2. Combining Theorem 5.1 and Lemma 6.1, we conclude
that O1(H,ψ, p̃) is row independent for a Cs-regular p̃.

It is easy to see that the same proof can be applied to show Theorem 6.2 (which is the
proof given in [6]).

Theorem 6.4. Le τ : Z/2Z → Cs be a faithful representation, G be a Z/2Z-symmetric
graph with θ : Z/2Z → Aut(G), and (G,p) be a Cs-regular framework with respect to θ
and τ . Then the rank of R(G,p) is equal to the sum of the rank of M2,3,1(H,ψ) and that
of M2,3,2(H,ψ), where (H,ψ) denotes the quotient gain graph.

Proof. We may assume that p is Cs-generic. By (4) and Proposition 4.1, we have

rank R(G,p) = rank O0(H,ψ, p̃) + rank O1(H,ψ, p̃)

for the quotient p̃ of p. By Theorems 6.2 and 6.3, the rank of Oj(H,ψ, p̃) is equal to the
rank of M2,3,1+j(H,ψ) for j = 0, 1.

Corollary 6.5. Let τ : Z/2Z → Cs be a faithful representation, G be a Z/2Z-symmetric
graph with θ : Z/2Z → Aut(G), and (G,p) be a Cs-regular framework with respect to θ
and τ . Then (G,p) is infinitesimally rigid if and only if the quotient gain graph (H,ψ)
contains a spanning (2, 3, i)-gain-sparse subgraph (Hi, ψi) with |E(Hi)| = 2|V (Hi)| − i for
each i = 1, 2.

For example, using Corollary 6.5, it is easy to verify that the framework shown in
Figure 5(a) is infinitesimally flexible (with an anti-symmetric infinitesimal flex): while the
corresponding gain graph (H,ψ) shown in Figure 6 is (2, 3, 1)-gain-sparse with |E(H)| =
6 > 5 = 2|V (H)| − 1, it does not contain a spanning subgraph (H ′, ψ′) which is (2, 3, 2)-
gain-sparse with |E(H ′)| = 2|V (H ′)|−2. (Note that a loop violates (2, 3, 2)-gain sparsity.)

6.2 Characterizations for bar-joint frameworks with rotational symme-
try

We now discuss combinatorial characterizations of infinitesimally rigid frameworks with
rotational symmetry Ck in the plane. A characterization of the row independence of
O0(H,ψ, p̃) was already established in [9]. (See also [6] for a simpler proof).

Theorem 6.6 (Malestein and Theran [9]). Let k ≥ 2, τ : Z/kZ → Ck be a faithful
representation, (H,ψ) be a Z/kZ-gain graph, and p̃ : V (H) → R2 be Ck-regular. Then
O0(H,ψ, p̃) is row independent if and only if (H,ψ) is (2, 3, 1)-gain-sparse.

For frameworks with an arbitrary rotational symmetry Ck, it is not as easy as for
frameworks with reflection symmetry to extend Theorem 6.6 to the other orbit matrices.
However, the following result holds for all rotational groups Ck.

Lemma 6.7. Let k ≥ 3, τ : Z/kZ → Ck be a faithful representation, (H,ψ) be a Z/kZ-
gain graph, and p̃ : V (H) → R2 be Ck-regular. If Oj(H,ψ, p̃) is row independent, then
(H,ψ) is (2, 3, 0)-gain-sparse. Moreover, if j = 1 or j = k − 1, then Oj(H,ψ, p̃) has a
kernel of dimension at least 1, and (H,ψ) is (2, 3, 1)-gain-sparse.

Similarly, if k = 2, then the independence of O1(H,ψ, p̃) implies that (H,ψ) is (2, 3, 2)-
gain-sparse.

24



Proof. Suppose that Oj(H,ψ, p̃) is row independent. It is easy to see that |F | ≤ 2|V (F )|
for any F ⊆ E(H).

If F is balanced, then, by Proposition 5.2 and Proposition 5.3, we may assume that
ψ(ẽ) = id for every ẽ ∈ F . Then the submatrix of Oj(H,ψ, p̃) corresponding to the edges
in F is a standard 2-dimensional rigidity matrix. Thus, |F | ≤ 2|V (F )| − 3 holds, and
hence (H,ψ) is (2, 3, 0)-gain-sparse.

Suppose further that j = 1 or j = k − 1. We will show that Oj(H,ψ, p̃) always has a
kernel of dimension at least 1. To see this, recall that for any γ ∈ Z/kZ,

τ(γ)

(
1√
−1

)
= ωγ

(
1√
−1

)
τ(γ)

(
1

−
√
−1

)
= ω̄γ

(
1

−
√
−1

)
. (13)

where τ(γ) =

(
cos γθ sin γθ
− sin γθ cos γθ

)
and ω = e

√
−1θ with θ = 2π

k .

If j = 1, we define m̃ : V (H)→ C2 by m̃(ṽ) =

(
1√
−1

)
for ṽ ∈ V (H). Then, for any

ũ, ṽ ∈ V (H), we have m̃(ũ)− ω̄γτ(γ)m̃(ṽ) = m̃(ũ)− ω̄γωγm̃(ṽ) = 0 by (13), which means
that m̃ is in the kernel of O1(H,ψ, p̃) by (11). Similarly, for j = k − 1, m̃ : V (H) → C2

defined by m̃(ṽ) =

(
1

−
√
−1

)
for ṽ ∈ V (H) is in the kernel of Ok−1(H,ψ, p̃).

Therefore, if j = 1 or j = k − 1, |F | ≤ 2|V (F )| − 1 must hold for any F ⊆ E(H),
implying that (H,ψ) is (2, 3, 1)-gain-sparse.

Similarly, if k = 2, then the kernel of O1(H,ψ, p̃) has dimension at least two (which
corresponds to the space of infinitesimal translations), and hence (H,ψ) is (2, 3, 2)-gain-
sparse.

Note that Lemma 6.7 also shows how the space of infinitesimal translations is decom-
posed. This decomposition can also be read off from the character tables for the groups
Ck (see [1, 3], for example).

6.2.1 Case of C2

Combining Theorem 5.1, Lemma 6.1, Theorem 6.6, and Lemma 6.7, we obtain the follow-
ing characterization of infinitesimally rigid frameworks with C2 symmetry. The proof is
identical to that for Cs and hence is omitted.

Theorem 6.8. Let τ : Z/2Z → C2 be a faithful representation, (H,ψ) be a Z/2Z-gain
graph, and p̃ : V (H)→ R2 be C2-regular. Then O1(H,ψ, p̃) is row independent if and only
if (H,ψ) is (2, 3, 2)-gain-sparse.

Theorem 6.9. Let τ : Z/2Z → C2 be a faithful representation, G be a Z/2Z-symmetric
graph with θ : Z/2Z → Aut(G), and (G,p) be a C2-regular framework with respect to θ
and τ . Then the rank of R(G,p) is equal to the sum of the rank of M2,3,1(H,ψ) and that
of M2,3,2(H,ψ), where (H,ψ) denotes the quotient gain graph.

Corollary 6.10. Let τ : Z/2Z→ C2 be a faithful representation, G be a Z/2Z-symmetric
graph with θ : Z/2Z → Aut(G), and (G,p) be a C2-regular framework with respect to θ
and τ . Then (G,p) is infinitesimally rigid if and only if the quotient gain graph (H,ψ)
contains a spanning (2, 3, i)-gain-sparse subgraph (Hi, ψi) with |E(Hi)| = 2|V (Hi)| − i for
each i = 1, 2.
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6.2.2 Case of C3

Theorem 6.11. Let τ : Z/3Z→ C3 be a faithful representation, G be a Z/3Z-symmetric
graph with θ : Z/3Z → Aut(G), and (G,p) be a C3-regular framework with respect to θ
and τ . Then the rank of R(G,p) is equal to three times the rank of M2,3,1(H,ψ), where
(H,ψ) denotes the quotient gain graph.

Proof. We show that for each j = 1, 2, Oj(H,ψ, p̃) is row independent if and only if (H,ψ)
is (2, 3, 1)-gain-sparse. This implies the statement, by Proposition 4.1 and Theorem 6.6.

By Lemma 6.7, if Oj(H,ψ, p̃) is row independent, (H,ψ) is (2, 3, 1)-gain-sparse.
We show the converse direction by induction on |V (H)|. Suppose (H,ψ) is (2, 3, 1)-

gain-sparse. Proposition 4.3 implies that an unbalanced loop is a zero loop in Oj(H,ψ, p̃)
only if the underlying group contains a subgroup isomorphic to Z/2Z. Hence, in this
case, a loop cannot be a zero loop, which in particular implies that Oj(H,ψ, p̃) is row
independent when |V (H)| = 1. If |V (H)| > 1, then we can construct p̃ : V (H)→ R2 such
that (H,ψ, p̃) is row independent by induction, using Theorem 5.1 and Lemma 6.1.

As a corollary, we obtain the following characterization given in [16].

Corollary 6.12 (Schulze [16]). Let τ : Z/3Z → C3 be a faithful representation, G be a
Z/3Z-symmetric graph with θ : Z/3Z → Aut(G), and (G,p) be a C3-regular framework
with respect to θ and τ . Then (G,p) is infinitesimally rigid if and only if the quotient
gain graph (H,ψ) contains a spanning subgraph (H ′, ψ′) which is (2, 3, 1)-gain sparse with
|E(H ′)| = 2|V (H ′)| − 1.

6.2.3 Case of Ck with k ≥ 4

The following lemma gives a necessary condition for the row independence of Oj(H,ψ, p̃)
for even k, which is stronger than the one given in Lemma 6.7.

Lemma 6.13. Let k ≥ 4, τ : Z/kZ→ Ck be a faithful representation, (H,ψ) be a Z/kZ-
gain graph, p̃ : V (H) → R2 be Ck-regular, and j be an odd integer with 1 ≤ j < k. If
Oj(H,ψ, p̃) is row independent, then F is (2, 3, 2)-gain-sparse for any F ⊆ E(H) such
that 〈F 〉 is isomorphic to Z/2Z.

Proof. Let ω = e
2π
√
−1
k . Since 〈F 〉 is isomorphic to Z/2Z, 〈F 〉 consists of {0, k/2}. Let

h : {0, k/2} → Z/2Z be the isomorphism.
By Proposition 5.2 and Proposition 5.3, we may assume that ψ(ẽ) ∈ {0, k/2} for all

ẽ ∈ F , and hence we can define a gain function ψ′ : F → Z/2Z by ψ′(ẽ) = h(ψ(ẽ)) for
ẽ ∈ F . Also, we can define τ ′ : Z/2Z→ C2 by τ ′ = τ ◦ h−1.

Observe that ωjk/2 = ωk/2 = −1 if j is odd, which implies ωjψ(ẽ) = (−1)ψ
′(ẽ) for ẽ ∈ F .

Therefore, for ẽ = (ũ, ṽ) ∈ F , we have

p̃(ũ)− τ(ψ(ẽ))p̃(ṽ) = p̃(ũ)− τ ′(ψ′(ẽ))p̃(ṽ)

ωjψ(ẽ)(p̃(ṽ)− τ(ψ(ẽ))−1p̃(ũ)) = (−1)ψ
′(ẽ)(p̃(ṽ)− τ ′(ψ′(ẽ))−1p̃(ũ)).

In other words, we have Oj(H[F ], ψ, p̃) = O1(H[F ], ψ′, p̃), where H[F ] is the subgraph of
H induced by the edge set F . Since (H[F ], ψ′) is a Z/2Z-gain graph along with a faithful
representation τ ′ : Z/2Z→ C2, F is (2, 3, 2)-gain-sparse by Lemma 6.7.
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It follows from this lemma that if k is even, then there is a Ck-generic framework (G,p)
such that the underlying graph is 2-rigid (i.e., generically rigid in the plane) but (G,p) is
not infinitesimally rigid. However, we still conjecture that Laman’s condition characterizes
infinitesimal rigidity for odd k.

Conjecture 1. Let Ck be the group generated by a k-fold rotation in the plane, where k
is odd. Let (G,p) be a Ck-generic framework. Then (G,p) is infinitesimally rigid if and
only if G is 2-rigid.

One possible approach for proving this conjecture is to develop a constructive charac-
terization of 2-rigid Z/kZ-symmetric graphs. Since there is a one-to-one correspondence
between Z/kZ-symmetric graphs and Z/kZ-gain graphs (up to the choices of represen-
tative vertices), our task is to extend Theorem 5.1. In the following, we make several
observations concerning Conjecture 1.

The following gives a relation between generic independence and gain sparsity, which
was observed in [22] for odd prime k.

Theorem 6.14. Let G be a Z/kZ-symmetric graph with odd k ≥ 3 and (H,ψ) be its quo-
tient Z/kZ-gain graph. Suppose that Z/kZ acts freely on V (G). Then (H,ψ) is (2, 3, 1)-
gain-sparse if and only if G is 2-independent.

Proof. Suppose that (H,ψ) is (2, 3, 1)-gain-sparse. By Theorem 5.1, (H,ψ) can be con-
structed from a gain graph with one vertex with a loop with non-identity label by 0-
extensions, 1-extensions, and loop-1-extensions. Since k is odd, Proposition 4.3 im-
plies that a zero-loop does not occur. Therefore, by Lemma 6.1, there is an injective
p : V (G) → R2 such that (G,p) is Ck-symmetric and R(G,p) is row independent. The
row independence of R(G,p) implies that G is 2-independent.

Conversely suppose that (H,ψ) is not (2, 3, 1)-gain-sparse. If (H,ψ) contains a bal-
anced subgraph which is not (2, 3, 1)-gain-sparse, then its lifting is clearly not 2-independent.
If (H,ψ) contains an unbalanced subgraph (H ′, ψ′) which is not (2, 3, 1)-gain-sparse, then
|E(H ′)| ≥ 2|V (H ′)|. Let G′ be the lifting of (H ′, ψ′). Since k is odd, Z/kZ freely acts
on E(G), which means |E(G′)| = k|E(H ′)| ≥ 2k|V (H ′)| = 2|V (G′)|. Thus G′ is not
2-independent.

Theorem 6.14 says that the covering graph of any (2, 3, 1)-gain-tight graph (H,ψ) is
2-independent if k is odd. Since the covering graph G has k|E(H)| edges, which is equal
to k(2|V (H)| − 1) = 2|V (G)| − k, G cannot be 2-rigid if k > 3. The next step is hence
to investigate which new edges we should add so that the covering graph is 2-rigid. This
question turns out to be complicated, as the following examples illustrate.

Let us consider a Z/kZ-gain graph (H,ψ) which consists of a (2, 3, 1)-gain-tight graph
(H ′, ψ) together with one additional edge ẽ (i.e., H = H ′ + ẽ). The covering graph
of H and the covering map is denoted by G and c, respectively. It follows easily from
Proposition 5.3 that if (H,ψ) contains an edge set F such that (i) F is balanced and (ii)
|F | > 2|V (F )| − 3, then c−1(F ) consists of k vertex-disjoint 2-dependent sets. A minimal
edge set F satisfying (i) and (ii) is called a balanced circuit. See Figure 10(a)(b) for an
example.

There is another obstacle. Suppose that there is an edge subset F such that (i’)
F is unbalanced, (ii’) |F | > 2|V (F )| − 1, and (iii’) there are a vertex ṽ ∈ V (F ), an
element γ ∈ Z/kZ, and a labeling function ψ′ : E(H) → Z/kZ equivalent to ψ such that
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γ

γ

γ

(d)

Figure 10: A balanced circuit (b) and its corresponding covering graph (a). Note that we
may assume that the label of each edge is the identity, by Proposition 5.3. An unbalanced
circuit (d) and its corresponding covering graph (c).

ψ′(ẽ) = id for every ẽ ∈ F not incident to ṽ, and ψ′(ẽ) ∈ {id, γ} for every ẽ ∈ F directed to
ṽ (assuming that every edge incident to ṽ is directed to ṽ). See also Figure 10(c)(d). Then
it can easily be checked that the covering graph c−1(F ) is the union of k edge-disjoint
2-dependent sets. A minimal edge set F satisfying (i’)(ii’)(iii’) is called an unbalanced
circuit.

Consequently, if H = H ′ + ẽ contains an unbalanced circuit or a balanced circuit, the
covering graph G contains k edge-disjoint 2-dependent sets, which means that no edge of
c−1(ẽ) increases the rank of the 2-rigidity matroid of the covering graph.

7 Extensions

We finish by making some further comments about ‘anti-symmetric’ orbit rigidity matrices
and their applications and by outlining some directions for future developments.

7.1 Bar-joint frameworks in higher dimensions

As we mentioned in the introduction, it is a key open problem in rigidity theory to find a
combinatorial characterization of infinitesimally rigid generic bar-joint frameworks (with-
out symmetry) in dimensions 3 and higher. Therefore, we restricted attention to two-
dimensional symmetric frameworks in Sections 5 and 6. However, note that we showed in
Section 4 how to construct anti-symmetric orbit rigidity matrices for a symmetric frame-
work in an arbitrary dimension d.

Each of these anti-symmetric orbit rigidity matrices gives rise to an independent set of
necessary conditions for the framework to be infinitesimally rigid in Rd. Analogously to the
conditions derived for various symmetric two-dimensional frameworks in Section 6, these
conditions can of course be expressed as gain-sparsity conditions for the corresponding
quotient gain-graph. However, to state these conditions, we need to compute the dimension
of the space of trivial infinitesimal motions which are symmetric with respect to the given
irreducible representation. In dimension 3, the dimensions of these spaces can be read off
directly from the character tables of the group (see [1, 3], for example); for dimensions 4
and higher, one needs to compute these dimensions for each individual group. This can
be done in a similar way as in the proof of Lemma 6.7, for example (see also [14]).
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Finally, note that due the simplicity of its entries and its straightforward construction,
each of the orbit rigidity matrices of a given d-dimensional framework allows a quick analy-
sis of its row or column dependencies, and hence provides a powerful tool for the detection
of infinitesimal motions and self-stresses which exhibit the symmetries of the correspond-
ing irreducible representation and which cannot be found by checking the corresponding
gain-sparsity counts.

7.2 Non-Abelian groups

In Section 4 we showed how to construct anti-symmetric orbit rigidity matrices for frame-
works with any Abelian point group symmetry in an arbitrary dimension. The key problem
to extend these constructions to frameworks with non-Abelian point group symmetries is
that each non-Abelian point group has an irreducible representation which is of dimen-
sion at least 2, and an infinitesimal motion which is symmetric with respect to such a
higher-dimensional representation is not uniquely determined by the velocity vectors as-
signed to the vertices in the quotient gain-graph. Therefore, the entries of an orbit rigidity
matrix corresponding to such a representation (as well as the underlying combinatorial
structure for such an orbit matrix) are more complicated. It remains open how to extend
our methods and results to frameworks with non-Abelian point group symmetries.

7.3 Group actions which are not free on the vertex set

Throughout this paper, we assumed that the group Γ acts freely on the vertex set of the
graph G. While in principle we do not expect any major new complications to arise if
we allowed Γ to act non-freely on the vertices of G, the structures of the orbit rigidity
matrices and the corresponding gain-sparsity counts would need to be adjusted accordingly
and would become significantly less clear and transparent (see also [19]).

For example, suppose a joint pi of a two-dimensional Cs-symmetric framework (G,p)
is ‘fixed’ by the reflection s in Cs, i.e., we have τ(s)(pi) = pi. Then pi contributes only
one column to the fully symmetric orbit rigidity matrix of (G,p) (as pi has only a one-
dimensional space of fully symmetric displacement vectors: the space of all vectors which
lie along the mirror line of s) and only one column to the anti-symmetric orbit rigidity ma-
trix of (G,p) (as pi has also only a one-dimensional space of anti-symmetric displacement
vectors: the space of all vectors which lie perpendicular to the mirror line of s). Similarly,
if pi is a joint of a two-dimensional C2-symmetric framework (G,p) which is ‘fixed’ by the
half-turn C2, then pi would contribute no column to the fully symmetric orbit rigidity
matrix of (G,p) (as pi has no fully symmetric displacement vectors) and two columns to
the anti-symmetric orbit rigidity matrix of (G,p) (as pi has a two-dimensional space of
anti-symmetric displacement vectors).

Due to these modifications to the structures and entries of the orbit rigidity matrices,
the constructions of these matrices and the proofs for the combinatorial characterizations
of Γ-generic infinitesimally rigid frameworks in the plane will become significantly more
messy.

7.4 Extensions to body-bar and body-hinge frameworks

The class of body-bar frameworks [23, 21] is another well-studied structural model in the
rigidity context. These form a special class of bar-joint frameworks, which have many im-
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portant practical applications in fields such as engineering, robotics or biochemistry. Note
that while a combinatorial characterization of 3- or higher-dimensional bar-joint frame-
works has not yet been found, rigid generic body-bar frameworks (without symmetry)
were characterized in all dimensions by Tay [21].

In [18], we extend our tools and methods to d-dimensional body-bar frameworks with
Abelian point group symmetries by giving a description of symmetric body-bar frame-
works in terms of the Grassmann-Cayley algebra. Moreover, we establish combinatorial
characterizations of body-bar frameworks which are generic with respect to a point group
of the form Z/2Z× · · · × Z/2Z using signed graphic matroids.

Finally, in [18] we also extend our methods and results to body-hinge frameworks, i.e.,
to structures which consist of rigid bodies that are connected, in pairs, by revolute hinges
along assigned lines. This is an important step towards applying our results to the rigidity
and flexibility analysis of certain physical structures like robotic linkages or biomolecules.
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