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Abstract. The phylogenetic tree space, introduced by Billera, Holmes, and Vogtmann, is a cone
over a simplicial complex. In this short article, we construct this complex from local gluings of
classical polytopes, the associahedron and the permutohedron. Its homotopy is also reinterpreted
and calculated based on polytope data.

1. Introduction

A phylogenetic tree is a tree for which each internal edge is assigned a nonnegative length, each

internal vertex has degree at least three, and each leaf has a unique labeling. A classical problem

in computational biology is the construction of a phylogenetic tree from a sequence alignment of

species. Billera, Holmes, and Vogtmann [1] constructed an elegant space BHVn of isometry classes

of rooted metric trees with n labeled leaves.

Each such tree specifies a point in the orthant [0,∞)n−2, parametrized by the lengths of their

internal edges, and thus defines coordinate patches for the space of such trees. The space BHVn is

assembled by gluing (2n− 3)!! orthants, the number of different binary trees on n leaves [7]. Two

orthants of BHVn share a wall if and only if their corresponding binary trees differ by a rotation, a

move which collapses an interior edge of a binary tree, and then expands the resulting degree-four

vertex into a different binary tree. Figure 1(a) shows BHV3 consisting of three rays glued at the

origin, where a move from one ray to another is a rotation of the underlying trees.

( a )
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( b )

Figure 1. (a) Tree space BHV3 and (b) the simplicial complex T4.
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Geometrically, this space has a CAT(0)-structure [1], enabling the computation of geodesics

and centroids [10]. Topologically, BHVn is contractible, and its one-point compactification is Sn-

equivariantly homotopy-equivalent to a version of the geometric realization of the poset of partitions

of n [3, Section 9], where the associated homology representations are fundamental in the theory

of operads. The structure of BHVn is captured by a space Tn, homeomorphic to Boardman’s space

of fully-grown trees [2].

Definition. Let Tn be the subspace of BHVn consisting of trees with internal edge lengths that

sum to 1. It is a pure simplicial (n−3)-complex composed of (2n−3)!! chambers, with two adjacent

chambers differing by a rotation of their underlying trees. In particular, Tn has one (k−1)-simplex

for every tree with k interior edges.

Indeed, BHVn is a cone over this space, where the cone-point is the degenerate tree with no

internal edges. For example, BHV4 consists of 15 quadrants [0,∞)2 glued together, and its subspace

T4 is the Peterson graph with 15 edges, as displayed in Figure 1(b). Here, the 10 vertices correspond

to rooted trees with four leaves and one internal edge.

These tree spaces Tn have an importance of their own, from representation theory [11], to moduli

spaces [6], to tropical geometry [12]. This short article provides global descriptions of Tn based on

covering by classical polytopes that encapsulate algebraic information, notably the associahedron

and the permutohedron. Our construction of this complex from local gluings of simplices might

provide new means of navigation in tree spaces, and their corresponding algorithms [4]. Its ho-

motopy, originally studied by Vogtmann [15], and later by Robinson and Whitehouse [11], is also

reinterpreted in the polyhedral context.

Remark. There is a rich history between polytopes and tree spaces. Kapranov’s permutoassoci-

ahedron [9], a polytope blending the DNA of both associahedra and permutohedra, was initially

considered a candidate for tree space itself [8]. More recently, the orientable double-cover of the

real moduli space of curves Mor
0,n+1(R) is viewed as an alternative to Tn [6]. It is formed by gluing

associahedra in a particular arrangement, one for each vertex of the permutohedron [5].

2. Associahedra

Let A(n) be the poset of all bracketings of n letters, ordered such that a ≺ a′ if a is obtained

from a′ by adding new compatible brackets. The associahedron Kn is a simple, convex polytope of

dimension n− 2 whose face poset is isomorphic to A(n). It appeared in the work of Stasheff [14] in

the 1960s, used in the homotopy theory of H-spaces. Its vertices correspond to all different ways n

letters can be multiplied, each with a different associative grouping, and the famous Catalan num-

bers enumerate them, with over 100 different combinatorial and geometric interpretations available

[13]. Figure 2(a) shows the 2D associahedron K4 with a labeling of its faces by bracketings, and

part (b) shows K5 with its nine facets.
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( a )
( b )

Figure 2. Associahedra (a) K4 from bracketings and (b) K5.

There is a natural bijection between bracketings on n letters and planar rooted trees with n leaves,

labeled in a fixed order [14]. We will be interested in the dual to the associahedron, described in

the light of this relationship. Since Kn is a simple polytope, its dual is simplicial.

Definition. Let Kn be the boundary of the dual to Kn, the simplicial (n − 3)-sphere whose k-

simplices correspond to planar rooted trees with n leaves and k + 1 internal edges.

In particular, the chambers1 of Kn are identified with planar binary trees, where adjacent chambers

differ by a rotation of their underlying trees. Figure 3(a) shows an example of K4 and the labeling

of its five edges. Part (b) shows K5, composed of 14 triangles, in bijection with the set of rooted

binary trees with five leaves. Compare with Figure 2.

( b )( a )

41 32

41 3241 32

41 32

41 32

Figure 3. The simplicial spheres (a) K4 and (b) K5.

Proposition 1. There are n!/2 distinct embeddings of Kn in Tn, with the symmetric group Sn
acting on the labels. Moreover, this set of Kn duals covers Tn, where each simplicial chamber of Tn

is contained in exactly 2n−2 distinct Kn.

1A chamber of a simplicial complex is a simplex of maximal dimension.
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Proof. Each Kn parameterizes the set of planar rooted trees with n labeled leaves, in a fixed cyclic

ordering. Although there are n! different labeling permutations, two labelings are identified up to

order reversal since Tn is not concerned with planarity. A simplicial chamber of Tn corresponds to

a labeled rooted (nonplanar) binary tree. Each internal edge creates a subtree (away from the root)

which can be reflected, resulting in alternate planar embedding, and thus a new cyclic ordering, for

the same tree. As there are n−2 interior edges, there are 2n−2 duals that contain each chamber. �

Example. Figure 4 shows the 12 different embeddings of K4 within the tree space T4, where each

edge of T4 is covered by exactly four distinct duals.

Figure 4. There are 12 associahedra K4 duals in T4.

3. Permutohedra

Let B(n) be the poset of all order partitions on a set of n letters, ordered such that a ≺ a′ if a is

obtained from a′ by refining the partition. The permutohedron Pn is a simple, convex polytope of

dimension n−1 whose face poset is isomorphic to B(n). This classical object was studied by Schoute

in the early twentieth-century, constructed as the convex hull of all vectors obtained by permuting

the coordinates of 〈1, 2, · · · , n〉 in Rn. Indeed, as the associahedron captures associativity, the

permutohedron encapsulates commutativity. Figure 5(a) shows the 2D permutohedron P3, whereas

(b) displays the 3D version P4.

( b )( a )
1-2-3 12-3 2-1-3

2-13

2-3-1

23-1

3-2-13-213-1-2

31-2

1-32

1-3-2

Figure 5. Permutohedra (a) P3 and (b) P4.
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A caterpillar is a tree which becomes a path if all its leaves are deleted.2 There is a natural

bijection between ordered partitions of {1, . . . , n} and caterpillars with n + 2 labeled leaves, with

fixed labelings of 0 and n + 1 at either end of the caterpillar. Figure 6 shows examples for n = 5;

notice the number of elements in each partition matches the internal vertices of the caterpillar.

4 5

0 6

1 32 4 5

0 6

1 324 5

0 6

1 32

Figure 6. Bijection between ordered partitions of {1, . . . , 5} and labeled caterpillars.

Definition. Let Pn be the boundary of the dual to Pn, a simplicial (n − 2)-sphere, where each

k-simplex corresponds to a caterpillar tree with n+ 2 leaves and k + 1 internal edges.

In particular, chambers of Pn are identified with binary caterpillars; the poset structure of the

permutohedron reveals that two chambers are adjacent if their caterpillars differ by a rotation.

Proposition 2. There
(
n+1
2

)
distinct embeddings of Pn−1 in Tn. Moreover, each simplicial chamber

of Tn that corresponds to a caterpillar is contained in exactly four distinct Pn−1.

Proof. Consider Pn−1, viewed as caterpillar trees with n+ 1 labeled leaves. This naturally embeds

in Tn by designating one of the leaves as the root. Since we can choose two of the n+ 1 labels to be

fixed at either end of the caterpillar,
(
n+1
2

)
distinct embeddings exist. For a simplicial chamber of

Tn with an underlying (binary) caterpillar, each end of this tree has exactly two leaves. Choosing

to fix a labeling for each pair results in four distinct Pn−1 duals. �

Example. Figure 7 shows the 10 different embeddings of P3 within the tree space T4, where each

of its edges is covered by exactly four distinct duals.

Figure 7. There are 10 permutohedra P3 duals in T4.

2We assume, as always, that each internal vertex has degree at least three.
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Remark. Proposition 1 shows that the set of Kn embeddings covers Tn. This is not true for the

permutohedron version, since that only deals with caterpillars. The case of T4 is exceptional, as

Figure 7 shows, since all trees with five leaves are caterpillars.

4. Flowers and Bouquets

Throughout this section, without loss of generality, we let Pn−1 denote the embedding in Tn

whose underlying caterpillars have labelings of 0 and n at its ends. Thus, each chamber of Pn−1

corresponds to a binary caterpillar with a unique permutation of the n− 1 remaining leaves. From

Proposition 1, each chamber also belongs to a distinct Kn, by choosing leaf 0 to be the root.

Definition. This collection of (n− 1)! distinct Kn duals, centered around Pn−1, is called a flower.

Theorem 3. The embedding of the flower in Tn covers it.

Proof. Choose an arbitrary chamber in Tn, and choose a planar embedding τ of its underlying

binary tree. For a canonical representation, let all leaves lie on one side of the path from leaf 0 to

leaf n. Figure 8(a) shows a labeled tree, whereas part (b) gives a plane tree with leaves on one side

of the path from 0 to 9. This associates τ to a particular embedding of Kn in Tn, call it Kτ
n, based

7

1
5

4

2

0

6

8

3

9

71

5

4

2

0

6

8

3

9

2

6

7
1

8

0

4
3

9 5

( a ) ( b ) ( c )

Figure 8. (a) Labeled tree, (b) with leaves on one side, and (c) made into a cater-
pillar by rotations.

on the label order of τ . Now consider the set E of interior edges of τ which do not lie on the path

between leaves 0 and n. Create a sequence of moves along the chambers of Kτ
n by rotating edges of

E, transforming τ into a caterpillar tree, and landing on a chamber of Pn−1. Figure 8(c) displays

the resulting tree based on rotations. �

Corollary 4. There are 2k distinct chambers of the flower that get identified in Tn, where k is

number of interior edges in its underlying tree T not lying in the path between leaves 0 and n.

Proof. For each internal edge not in the path, a different plane tree can be created by reflecting the

subtree attached to the path along this edge, resulting in 2k embeddings. In particular, a chamber

of the flower from the central Pn−1 belongs to a unique Kn, since k = 0 for these caterpillars with

labelings of 0 and n at its ends. �
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Corollary 5. All the Kn duals in the flower share the unique vertex v∗ in Tn, corresponding to the

tree with one interior edge separating leaf labels {0, n} from {1, . . . , n− 1}.

Proof. Each Kn in the flower is identified with a unique permutation of the {1, . . . , n − 1} leaf

labels, and thus all meet at v∗. �

Example. Figure 9(a) shows a flower for the one-dimensional n = 4 case. It is comprised of six

pentagons K4, identified around a central P3. Part (b) shows the identifications when mapped to

the tree space T4. Notice the unique marked vertex v∗, where all six associahedron duals meet

in T4. The map from the flower (a) to the tree space (b) has the following structure: there is a

bijection between the six P3 edges of the flower and the corresponding (blue) edges of T4. Moreover,

there is a 4:1 covering over each of the three (red) edges incident to v∗ in T4, and a 2:1 cover of the

remaining six (red) edges.

( b ) ( c )( a )

Figure 9. (a) A flower around P3 and (b) its embedding in T4, (c) which is homo-
topic to a bouquet of six circles.

We close with a reinterpretation of a homotopy result of Vogtmann [15], using the proof structure

of Robinson and Whitehouse [11].

Definition. Let St(v) denote the closed star of vertex v ∈ Tn, the union of simplices of Tn con-

taining v. Let vij be the vertex of Tn whose underlying tree has one interior edge separating leaves

{i, j} from the remaining n− 1 labels, such that i, j /∈ {0, n}.

Theorem 6. The tree space Tn is homotopic to a bouquet of (n− 1)! spheres of dimension n− 3.

In particular, each chamber of Pn−1 becomes a sphere as the rest of the flower contracts to a point.

Proof. Each St(vij) is naturally contractible and contains the vertex v∗. Moreover, any intersection

of a subcollection of stars {St(vij)} is also contractible, since it is a conical subset of St(v∗).

Therefore, the union S of all the stars {St(vij)} is contractible.

The complement of S in Tn consists of exactly the interiors of the (n−1)! chambers of Pn−1, each

corresponding to a binary caterpillar have labelings of 0 and n at its ends. Since S is contractible,
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what remains of Tn is a bouquet of (n − 3)-spheres, one for each chamber of Pn−1. Figure 9(c)

shows T4 to be homotopic to a bouquet of six circles. �
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