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Abstract

We show that for complex nonlinear systems, model reduction and compressive sensing
strategies can be combined to great advantage for classifying, projecting, and reconstructing
the relevant low-dimensional dynamics. `2-based dimensionality reduction methods such as the
proper orthogonal decomposition are used to construct separate modal libraries and Galerkin
models based on data from a number of bifurcation regimes. These libraries are then concate-
nated into an over-complete library, and `1 sparse representation in this library from a few noisy
measurements results in correct identification of the bifurcation regime. This technique provides
an objective and general framework for classifying the bifurcation parameters, and therefore,
the underlying dynamics and stability. After classifying the bifurcation regime, it is possible
to employ a low-dimensional Galerkin model, only on modes relevant to that bifurcation value.
These methods are demonstrated on the complex Ginzburg-Landau equation using sparse, noisy
measurements. In particular, three noisy measurements are used to accurately classify and re-
construct the dynamics associated with six distinct bifurcation regimes; in contrast, classification
based on least-squares fitting (`2) fails consistently.

Keywords: Dynamical systems, bifurcations, classification, compressive sensing, sparse represen-
tation, proper orthogonal decomposition.

1 Introduction

Nonlinear dynamical systems are ubiquitous in characterizing the behavior of physical, biologi-
cal and engineering systems. With few exceptions, nonlinearity impairs our ability to construct
analytically tractable solutions, and we instead rely on experiments and high-performance com-
putation to study a given system. Numerical discretization can often yield a system of equations
with millions or billions of degrees of freedom. Thus, both simulations and experiments can gen-
erate enormous data sets that strain computational resources and confound one’s understanding
of the underlying dynamics. Fortunately, many high-dimensional systems exhibit dynamics that
evolve on a slow-manifold and/or a low-dimensional attractor (e.g., pattern forming systems [15]).
We propose a data-driven modeling strategy that represents low-dimensional dynamics using di-
mensionality reduction methods such as the proper orthogonal decomposition (POD) [23] and
classifies/reconstructs the observed low-dimensional manifolds with compressive (sparse) sensing
(CS) [16, 11, 5, 46]. Thus dynamic structures are represented efficiently with the `2 norm and
identified from sparse measurements with the `1 norm.
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The application of machine-learning and compressive sensing to dynamical systems is synergis-
tic, in that underlying low-rank structures facilitate sparse measurements [27]. This combination
has the potential to transform a number of challenging fields. Such a strategy may enhance nonlin-
ear estimation and control, where real-time analysis is critical. Moreover, adaptive time-stepping
algorithms can take advantage of the low-dimensional embedding for greatly reduced computational
costs [26, 38]. Additionally, the interplay of sparsity and complex systems has been investigated
with the goal of overcoming the curse of dimensionality associated with neuronal activity and
neuro-sensory systems [20]. Compressive sensing may also play a role in similar statistical learning,
library-based, and/or information theory methods [14, 7] used in fluid dynamics [8, 2], climate
science [21, 7] and oceanography [1]. Indeed, compressive sensing is already playing a critical role
in model building and assessment in the physical sciences [31, 41, 47, 44]. These challenging open
problems would benefit from a paradigm shift in modeling and analysis, whereby low-dimensional
coherence is leveraged for use with sparse sampling techniques.

1.1 Challenges of POD-Galerkin models across parameter regimes

Galerkin-POD is a well-known [23] dimensionality reduction method for complex systems. In the
context of fluid dynamics, Galerkin projection of the Navier-Stokes equations onto a truncated
POD mode basis is an effective method of model-order reduction, resulting in a system of ordinary
differential equations. However, Galerkin projection onto POD modes obtained across a range of
parameter values, the so-called global POD [45, 40], often results in unstable and/or inaccurate
models. There have been a number of modifications to POD-Galerkin models that seek to address
this issue, but it remains a major challenge of low-order modeling in fluids.

A modified method that uses interpolated angles of multiple POD subspaces has been demon-
strated to capture F-16 parameterized dynamics [28]. Including additional modes, such as the
shift mode [32], to capture transients between qualitatively different flow regimes has resulted in
additional methods such as double POD [42], and the GaussNewton with approximated tensors
(GNAT) method [13] and trust-region POD [18, 6]. Alternative methods for stabilizing POD by
adding additional modes and closure terms have been investigated [3, 33]. In each case, the objective
is to construct a dimensionally reduced set of dynamics that accurately represent the underlying
complex system and that does not suffer from instabilities.

1.2 Current approach

To avoid a single POD-Galerkin model defined across dynamical regions, we instead develop a
classification scheme to determine which dynamic region our system is in, and then use a Galerkin
model defined only on modes in that region. The procedure advocated here involves two main
steps. First, a modal library is constructed that is representative of a number of distinct dynamical
regimes, i.e. the low-dimensional attractors are approximated by their optimal bases. Second,
compressive sensing techniques are applied using this learned library. The goals are threefold: 1)
classify the dynamic regime, 2) project the measurements onto the correct modal amplitudes, and 3)
reconstruct the low-dimensional dynamics through Galerkin projection [23]. Here we concatenate
POD bases to construct the library, although generalizing the library building strategy into a
broader machine learning context [17] is interesting and may yield even more efficient strategies.
There are many ways to build a library, especially considering the three goals above. In this case,
we keep distinct POD bases for each dynamic regime, since this is better for the Galerkin projection
step. The classification scheme, using `1 minimization in a over-complete library, is closely related
to sparse representation from image classification [48].
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The paper is outlined as follows: In Sec. 2 a brief review is provided of the compressive sensing
architecture and its relationship to `1 convex optimization. Also reviewed are the basic ideas behind
the proper orthogonal decomposition (POD) for `2 dimensionality reduction. These methods are
combined in Sec. 3 to form the key contributions of this work. Namely, the `2-norm provides the
sparse basis modes used by the `1-norm for sparse representation. Section 4 demonstrates the use
of these techniques on one of the classical models of mathematical physics: the Ginzburg-Landau
equation. An outlook of the advantages and general applicability of the method to complex systems
is given in the concluding section 5.

2 Background

In the following subsections, we introduce two well-established techniques that will be combined in
this paper. The first method is compressive sensing (CS), whereby a signal that is sparse in some
basis may be recovered using proportionally few measurements by solving for the `1-minimizing
solution to an underdetermined system. The second method is the proper orthogonal decomposition
(POD), which allows a dataset to be reduced optimally in an `2 sense.

Both theories have been applied to a range of problems. In this paper, we advocate combining
these methods since the `2 basis obtained from POD is a particularly good choice of a sparse
basis for compressive sensing. The underlying reason for this is that the data is obtained from the
low-dimensional attractors of the governing complex system.

2.1 `1-based sparse sensing

Consider a high-dimensional measurement vector U ∈ Rn, which is sparse in some space, spanned
by the columns of a matrix Ψ:

U(x, t) = Ψa. (1)

Here, sparsity means that U may be represented in the transform basis Ψ by a vector of coefficients a
that contains mostly zeros. More specifically, K-sparsity means that there are K nonzero elements.
In this sense, sparsity implies that the signal is compressible.

Consider a sparse measurement Û ∈ Rm, with m� n:

Û = ΦU, (2)

where Φ is a measurement matrix that maps the full state measurement U to the sparse measure-
ment vector Û. Details of this measurement matrix will be given shortly. Plugging (1) into (2)
yields an underdetermined system:

Û = ΦΨa. (3)

We may then solve for the sparsest solution a to the underdetermined system of equations in
(3). Sparsity is measured by the `0 norm, and solving for the solution a that has the smallest
|a|0 norm is a combinatorially hard problem. However, this problem may be relaxed to a convex
problem, whereby the |a|1 norm is minimized, which may be solved in polynomial time [11, 16].
The specific minimization problem is:

arg min |â|1 such that ΦΨâ = Û.

There are other algorithms that result in sparse solution vectors, such as orthogonal matching
pursuit [46].

This procedure, known as compressive sensing, is a recent development that has had widespread
success across a range of problems. There are technical issues that must be addressed. For example,
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the number of measurements m in Û should be on the order of K log(n/K), where K is the degree of
sparsity of a in Ψ [9, 10, 4]. In addition, the measurement matrix Φ must be incoherent with respect
to the sparse basis Ψ, meaning that the columns of Φ and the columns of Ψ are uncorrelated.
Interestingly, significant work has gone into demonstrating that Bernouli and Gaussian random
measurement matrices are almost certainly incoherent with respect to a given basis [12].

Typically a generic basis such as Fourier or wavelets is used in conjunction with sparse measure-
ments consisting of random projections of the state. However, in many engineering applications, it
is unclear how random projections may be obtained without first starting with a dense measure-
ment of the state. In this work, we constrain the measurements to be point measurements of the
state, so that Φ consists of rows of a permutation matrix. Our primary motivation for such point
measurements arises from physical considerations in such applications as ocean or atmospheric
monitoring where point measurements are physically relevant. Moreover, sparse sensing is highly
desirable as each measurement device is often prohibitively expensive, thus motivating much of our
efforts in using sparse measurements to characterize the complex dynamics.

2.2 `2-based dimensionality reduction

The proper orthogonal decomposition (POD) [30, 23] is a tool with ubiquitous use in dimensionality
reduction of physical systems1. Data snapshots U(x, t1),U(x, t2), · · ·U(x, tq) are collected into
columns of a matrix A ∈ Rn×q. We then compute the singular value decomposition (SVD) of A:

A = ΨΣW∗.

Columns of the matrix Ψ are POD modes2, and they are ordered according to the variance that
they capture in the data A; if the columns of A are velocity measurements, then the POD modes
are ordered in terms of the kinetic energy that they capture. This variance/energy content is
quantified by the entries of the diagonal matrix Σ, which are called singular values and appear in
descending order.

When the size of each snapshot (n), is much larger than the number of snapshots (q) collected,
n � q, as in high-dimensional fluid systems, there are at most q non-zero singular values, and it
is beneficial to use the method of snapshots [43]. In this method, we solve the following eigenvalue
problem:

A∗AW = WΣ2
q ,

where Σq is the q × q upper-left block of Σ. It is then possible to find the first q POD modes
corresponding to non-trivial singular values by:

Ψq = AWΣ−1q .

The snapshots often exhibit low-dimensional phenomena, so that the majority of variance/energy
is contained in a few modes, smaller than the number of snapshots collected. In this case, the POD
basis is typically truncated at a pre-determined cut-off value, such as when the columns contain
99% of the variance, so that only the first r modes are kept. The SVD acts as a filter, and so
often the truncated modes correspond to random fluctuations and disturbances. If the data in the
matrix A is generated by a dynamical system (nonlinear system of ordinary differential equations

1POD is sometimes referred to as principal components analysis [34], the Karhunen–Loève decomposition, empir-
ical orthogonal functions [29], or the Hotelling transform [24, 25].

2Often, POD modes are given by the matrix Φ. However, we choose Ψ for the POD basis and Φ for the sparse
measurement matrix for consistency with compressive sensing literature. This is not to be confused with notation
from balanced POD, where Φ are direct modes and Ψ are adjoint modes [36].
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Ut = N(U,Ux,Uxx, · · · , x, t, β)

β1 β2 βj βJ

A1 A2 Aj =

 | |
U(x, t1) · · · U(x, tq)
| |

 AJ

Ψ1 Ψ2 Ψj =

 | |
ψ1(x, βj) · · · ψrj (x, βj)
| |

 ΨJ

Ψ =
[
Ψ1 Ψ2 · · · ΨJ

]

Complex System

Step 1:
Collect Data
(simulations or experiments)

Step 2:
Dimension Reduction

Step 3:
Library Building

Figure 1: Schematic of `2 strategy for library building. Data Aj are collected for many values of the
bifurcation parameter βj , and the principal components of this data are computed and truncated in
Ψj . Although each basis Ψj is truncated to contain only the most energetically relevant structures,
the concatenated library Ψ is overcomplete.

of order n), It is then possible to substitute the truncated POD expansion for the state U into the
governing equation and obtain Galerkin projected dynamics on the r basis modes [23]. Recall that
we are assuming that the complex systems under consideration exhibits low-dimensional attractors,
thus the Galerkin truncation with only a few modes should provide an accurate prediction of the
evolution of the system. Note that it has also been shown recently that it is possible to obtain a
sketched -SVD by randomly projecting the data initially and then computing the SVD [19, 22, 35].

3 Methods - Combining `1 and `2

The major contribution of this work is the combination of library building techniques (depicted
schematically in Figure 1) based on the `2-optimal proper orthogonal decomposition (POD) with the
`1-based compressive sensing (CS) architecture (depicted schematically in Figure 2) for classification
and reconstruction.

Consider a complex system that evolves according to the partial differential equation

Ut = N(U,Ux,Uxx, · · · , x, t, β), (4)

where U(x, t) is a vector of physically relevant quantities and the subscripts t and x denote partial
differentiation in time and space, respectively. Note that higher-spatial dimensions may be consid-
ered without loss of generality. The function N(·) can be a complicated, nonlinear function of the
quantity U, its derivatives, and both space and time. The parameter β is a bifurcation parameter
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Û Φ Ψ a

=

(a) full system

Û (ΦΨ) â

=

(b) sparse â

Û (ΦΨ) ã

=

(c) least-squares ã

Figure 2: Schematic of identification of sparse mode amplitudes â by `1-minimization. (a) Illus-
tration of measurement matrix Φ and sparse basis Ψ. The underdetermined matrix (ΦΨ) admits
a sparse solution â (b) and a least-squares solution ã = (Ψ∗Φ∗ΦΨ)−1Ψ∗Φ∗Û (c). This type of
diagram was introduced by Baraniuk in [4]. The data used in this figure is from the CQGLE system
in Sec. 4.

with respect to which the solution of the governing PDE changes markedly. We assume a spatial
discretization of (4), which yields a high-dimensional system of degree n.

We would like to use measurements of the system (4) to determine its state. However, full-
state measurements are impractical for the high-dimensional system generated by discretization.
Instead, m measurements are taken, where m � n; thus the measurements are sparse. In this
work, we consider spatially localized or point measurements, Û, as discussed in Sec. 2.1. In this
case, the matrix Φ ∈ Rm×n from (2) is comprised of rows of the identity matrix corresponding to
the measurement locations. These m-dimensional sparse observations are used to reconstruct the
full n-dimensional state vector U.

Our approach is to learn a library of low-rank dynamical approximations in which the dynamics
are sparse and then apply compressive sensing to reconstruct the dynamics from m� n measure-
ments. First, we explore the full system (4) and collect dense measurements for various values
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β1, β2, · · · , βJ of interest, making sure to cover a number of unique dynamical regimes. For each
case, snapshots of data from simulations or experiments are taken at a number of instances in time
and organized into a data matrix describing the evolution of the full-state system:

Aj =




| | |
U(x, t1) U(x, t2) · · · U(x, tq)
| | |


 ,

where q is the number of snapshots taken.
Once the data matrix is constructed for a given βj , its POD modes, or principal components, Ψj

are identified through a singular value decomposition (SVD): Ψj = {ψi(x, βj)}rji=1. The POD modes
are orthogonal and ordered by energy content. The number of modes retained, rj , is determined
by a cut-off criterion; for instance, one might specify that modes comprising 99% of the energy be
kept.

With the modes identified for each βj , an overcomplete library Ψ is constructed that contains
all of the low-rank approximations for each dynamic regime:

Ψ=




| | | |
ψ1(x,β1) · · · ψr1(x,β1) · · · ψ1(x,βJ) · · · ψrJ(x,βJ)
| | | |


 . (5)

The library Ψ ∈ Rn×p contains the representative low-rank modes for all of the dynamical behavior
of the governing system that we explored in simulations or experiments. This is the supervised
learning portion of the analysis, resulting in a small number (p� n) of library elements; note that
p =

∑J
j=1 rj . The p library modes are not orthogonal, but rather come in groups of orthogonal

POD modes for each given βj . The dynamics at any given time will belong to a specific βj regime
so that that the instantaneous dynamics are sparse in the library basis, allowing for a sparse
representation [48]. This overcomplete library building procedure is summarized in Figure 1.

With the library (5), we can expand the state U using the low-rank POD representation

U(x, t) =
J∑

j=1

rj∑

r=1

ajr(t)ψr(x, βj) = Ψa. (6)

The solution is now represented in the p library elements constructed for the various values of β,
and by construction, we expect a to be sparse in the basis Ψ. This is because for any particular
βj , only a small subset of library elements is required to represent the solution.

Equation (6) is of the form in (1). To determine the vector a from a sparse data measurement
Û = ΦU, insert (6) into (2) and solve the under-determined linear system Û = (ΦΨ)a from (3)
which has m equations (constraints) and p unknowns (modal coefficients), with m � p. We solve
for a sparse â using compressive sensing (`1 minimization). This approach is natural because it
promotes sparsity, an expected property of a. Further, solving for a using `1 minimization in the
reduced-order library basis is significantly more efficient than solving for U in the full space since
p� n. The sparsity-promoting compressed sensing procedure is illustrated in Figure 2.

The library construction (a one-time cost) and sparse sensing combine to give an efficient
algorithm for approximating the low-rank dynamics of the full PDE (4) using a limited number
of sensors and an empirically determined, overcomplete database. Specifically, the full-state of
the system U at any given time t is achieved by evaluating a. There are a number of immediate
advantages to this method for characterizing complex dynamical systems:

(i) Once the library is constructed from extensive simulations, future prediction of the system
is efficient since the correct POD modes for any dynamical regime βj have already been
computed,
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Table 1: Parameter regimes βj for the complex Ginzburg-Landau equation (7) (See Figure 3).
The low-rank approximations of these parameter regimes are used to construct the elements of the
library Ψ.

τ κ µ ν ε γ description

β1 -0.3 -0.05 1.45 0 -0.1 -0.5 3-hump, localized

β2 -0.3 -0.05 1.4 0 -0.1 -0.5 localized, side lobes

β3 0.08 0 0.66 -0.1 -0.1 -0.1 breather

β4 0.125 0 1 -0.6 -0.1 -0.1 exploding soliton

β5 0.08 -0.05 0.6 -0.1 -0.1 -0.1 fat soliton

β6 0.08 -0.05 0.5 -0.1 -0.1 -0.1 dissipative soliton

(ii) The algorithm works equally well with experimental data in an equation-free context, for
instance by using dynamic mode decomposition [37, 39] or equation-free modeling [26] in
place of POD,

(iii) Given the low-rank space in which the algorithm works, it is ideal for use with control strate-
gies, which are only practical for real-time application with low-dimensional systems.

Sparse sensing is significantly less expensive in the learned library Ψ since the high-dimensional
state has been replaced with a truncated POD representation. Additionally, less information is
required to categorize a signal than is required to fully reconstruct the signal, as in the compressive
sensing paradigm. This combination of classification and reconstruction in a concatenated set of
truncated POD bases using `1 minimization is appealing on a number of levels. There is also benefit
to keeping the individual POD bases Ψj for reconstruction once the bifurcation regime β has been
identified.

4 Results

To illustrate the aforementioned strategy, consider the complex Ginzburg-Landau model [15], which
is ubiquitous in mathematical physics. Here it is modified to include both quintic terms and a
fourth-order diffusion term much like the Swift-Hohenberg equation:

iUt+

(
1

2
−iτ
)

Uxx−iκUxxxx + (1−iµ)|U|2U + (ν−iε)|U|4U−iγU=0, (7)

where U(x, t) is a complex function of space and time. Interesting solutions to this governing
equation abound, characterized by the parameter values β = (τ, κ, µ, ν, ε, γ). In particular, we
consider six regimes that illustrate different dynamical behaviors, described in Table 1.

Figure 3 illustrates the corresponding low-rank behavior produced in the simulations.
As is common in many complex dynamical systems, especially those of a dissipative nature,

low-dimensional attractors are embedded in the high-dimensional space. The simulations from
each of these dynamic regimes exhibit low-dimensional structures which are spontaneously formed
from generic, localized initial data. The low-dimensional structures allow for the low-rank POD
approximations used in the library construction of Figure 4, as described in (5) and Figure 1.

To highlight the role of compressive sensing in identification and reconstruction for dynamical
systems, we allow the bifurcation parameter β = β(t) to vary in time so that the dynamics switch
between attractors as β changes. Consider an example where β = β1 for t ∈ [0, 100), β = β3 for
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Figure 3: Evolution dynamics of (7) for the six parameter regimes given in Table 1: (a) β1, (b) β2,
(c) β3, (d) β4, (e) β5, and (f) β6. All parameter regimes exhibit stable, low-dimensional attractors
as evidenced by the singular values (inset). The SVD sampling occurs for every ∆t = 1 in the
interval t ∈ [40, 80]. Magenta circles represent the modes that comprise 99% of the data and are
used for the library Ψ.

t ∈ [100, 200) and β = β5 for t ∈ [200, 300]. The evolution dynamics for this case are illustrated in
Figure 5 (a).

We measure the state at either three (x1-x3) or five (x1-x5) locations x1 = 0, x2 = 0.7, x3 =
1.4, x4 = 1.8, x5 = 2.2 (shown at the bottom of Figure 4) taking data only at the times t1 =
25, t2 = 125 and t3 = 225; these times are chosen 25 units after the bifurcation value switches so that
transients have decayed. At each instance, we take sparse measurements and perform classification,
projection, and forward simulation (Galerkin reconstruction), while working exclusively in the low-
dimensional POD library. The procedure is as follows:

(i) [classification] from a sparse set of measurements (three or five), the modes corresponding
to the specific βj are identified and extracted,

(ii) [projection] the sparse measurements are projected, through a standard pseudo-inverse op-
eration, onto the modes Ψj for the particular parameter βj to determine initial values of
an,

(iii) [reconstruction] the extracted library modes are evolved according the the POD-Galerkin
projection technique by using the spatial modes from the library Ψj in conjunction with their
time dynamics an(t) [23].

Figure 5 (b) shows the resulting dynamic reconstruction, and Figure 5 (c) shows the coefficients of
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Figure 4: Library Ψ of the dominant modes. The groupings, identified by their βj value, are
associated with the different dynamical regimes (a)-(f) in Figure 3. Note that the modes of the
exploding dissipative solution (d) have been including separately in the right panel as there are 14
modes required to capture 99% of the dynamics in this regime. A sample cross-section of the first
mode of each library element ψ1(x, βj) (j=1,2,3,4,5,6) is shown in the bottom panel color-coded
with the top panels. The bottom panel also shows the spatial location of the three sensors (light
shaded) and five sensors (addition dark shaded) used for sparse sampling.

the specific sparse vector â identified at each time: t1, t2, and t3. Indeed, the proposed algorithm
using only three measurements reproduces the dynamics with remarkable success. Note that the
number of measurements m = 3, number of library elements p = 24, and the original size of the
system n = 1024 are ordered so that m � p � n. Consequently, the matrix ΦΨ in the under-
determined system (3) is a 3× 24 matrix, yielding an efficient `1 convex optimization problem for
the sparse identification.

For this example, we choose effective sampling locations based on the library modes of Ψ. If
poor choices are made, i.e. not aligning the sensors with maxima and minima observed in the POD
library modes [49], then the dominant modes are often misidentified. This sensitivity to sensor
location suggests that sensor placement should be carefully considered. Moreover, it is assumed
that measurements of the system are perfect. However, noise is inherent in the detector and/or
model.

To quantify the impact of noise on the classification and reconstruction, (2) is modified to
Û = ΦU +N (0, σ2) where Gaussian distributed, white-noise error N with variance σ2 is added to
account for measurement error. Figure 6 shows statistical results of 400 trials using three or five
sensors for noise strength σ = 0.2 or 0.5. With moderate noise (σ = 0.2), both the three and five
sensor scenarios identify the correct regime quite accurately. For stronger noise (σ = 0.5), both
three and five sensors lose a great deal of accuracy in the identification process. It is also observed
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Figure 5: Full evolution dynamics (a) and the low-rank POD dynamic reconstruction using com-
pressive sensing and Galerkin projection (b). The black lines on the left panel at t = 25, 125 and
225 represent the sampling times while the three black circles represent the three sparse measure-
ment locations. From the three samples, the right panel is reconstructed by identifying the correct
POD modes and using Galerkin projection. The bottom panel shows the modal coefficient vector â
evaluated via convex `1 optimization for the three sampling times. Correct identification is achieved
of the β1 regime at t1 = 25 (circles, ◦), of the β3 regime at t2 = 125 (triangles, 4), and of the β5
regime at t3 = 225 (plusses, +). The |âj | are color coded according to the library elements depicted
in Figure 4. For ease of viewing, the different βj regimes are separated by shaded/non-shaded
regions and are further identified at the top of panel (c).

that more sensors actually hinders the evaluation of the β1 parameter regime, although the β3 and
β5 cases improve. Indeed, numerical simulations indicate that the three sensors placed at x = 0, 0.7,
and 1.4 are robust and are not easily improved on by varying placement or quantity. Further study
is needed to determine optimal sensor location.

These results suggest that multiple samplings in time can be used to reach a statistical conclusion
about the correct parameter regime, thus avoiding mis-identification. For example, we already wait
25 time units after β switches to take sparse measurements, so that transients decay. If, instead of
sampling a single time unit at t = 25, we accumulate information over 5-10 time units, the effect
of sensor noise is significantly attenuated.
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Figure 6: Accuracy of region classification for the system described in Figure 5. The bifurcation
parameter β switches from β1 at t1 = 25 to β3 at t2 = 125 to β5 at t3 = 225. The bar charts illus-
trate which bifurcation regime β1-β6 is classified from sparse measurements by the `1-minimization
procedure described above. Three or five sensors are considered under moderate σ = 0.2 and strong
σ = 0.5 error measurements using 400 realizations. More sensors improve the region identification
performance for regions β3 and β5, but decrease performance for β1.

We also investigate the least-squares estimate ã for the mode amplitudes based on the 3-sensor
and 5-sensor configurations. In every single case, for no noise, as well as for noise levels σ = 0.2
and σ = 0.5, the least-squares solution ã results in the misidentification of β1 and β5 regimes,
instead identifying the incorrect β3 regime. The collapse of `2 minimization for identifying the
bifurcation parameter regime highlights the success of the sparse sampling strategy, centered around
`1-minimization.

5 Discussion

In conclusion, we advocate a general theoretical framework for complex systems whereby low-rank
structures are represented by the `2-optimal proper orthogonal decomposition, and then identified
from limited noisy measurements using the sparsity promoting `1 norm and the compressive sensing
architecture. The strategy for building a modal library by concatenating truncated POD libraries
across a range of relevant bifurcation parameters may be viewed as a simple machine learning
implementation. The resulting modal library is a natural sparse basis for the application of com-
pressive sensing. After the expensive one-time library-building procedure, accurate identification,
projection, and reconstruction may be performed entirely in a low-dimensional framework.

To our knowledge, these results are the first to combine even simple machine learning concepts
and compressive sensing to complex systems for both

(i) correctly identifying the dynamical parameter regime, and
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(ii) reconstructing the associated low-rank dynamics.

Pairing a low-dimensional learned library, in which the dynamics have a sparse representation,
with compressive sensing provides a powerful new architecture for studying dynamical systems
that exhibit coherent behavior.

With three sensors, it is possible to accurately classify bifurcation regime, reconstruct the
low-dimensional content, and simulate the Galerkin projected dynamics of the complex Ginzburg
Landau equation. In addition, we investigate the performance of compressed sensing with the
addition of sensor noise and the addition of more sensors. For moderate noise levels, the method
accurately classifies the correct dynamic regime, although performance drops for larger noise values.
The addition of more sensors does not significantly improve performance, although the sensor
placement was not exhaustive. In contrast, classification based on least-squares fails to identify β1
and β5 regions for all noise levels, on every trial.

There are a number of important directions that arise from this work. The library building
procedure discussed in Figure 1 is quite general, and it will be interesting to investigate additional
library building techniques and machine learning strategies. For example, is it possible to remove
features that are common to all of the dynamic regimes to enhance contrast between categories in
the `1 classification step? It will also be interesting to investigate optimal sensor placement based
on the principle of maximizing incoherence with respect to the overcomplete basis. Finally, it may
be possible to use coherence between each pair of local bases (Ψi,Ψj) as a means to construct an
induced metric on the space of bifurcation parameters. This may facilitate the accurate catego-
rization of dynamic regimes that have not been directly explored in the training step. Finally, the
procedure above is promising for use with data assimilation techniques, which typically incorporate
new measurements using least-squares fitting (`2).

As these directions unfold, we believe that the combination of `2 low-rank representations and
`1 sparse sampling will enable efficient characterization and manipulation of low-rank dynamical
systems. The ultimate goal is to always work in a measurement space with dimension on the order
of the underlying low-dimensional attractor.
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