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Abstract

We consider the Cauchy problem associated with a general parabolic partial differential equation in d

dimensions. We find a family of closed-form asymptotic approximations for the unique classical solution

of this equation as well as rigorous short-time error estimates. Using a boot-strapping technique, we also

provide convergence results for arbitrarily large time intervals.
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1 Introduction

Asymptotic analysis and perturbation theory have a long history in a variety of fields including quan-

tum mechanics Sakurai (1994), classical mechanics Goldstein (1980), fluid mechanics Van Dyke (1975);

Lagerstrom (1988); Kevorkian and Cole (1996) and mathematical biology Murray (2002). More recently,

some of techniques from perturbation theory and heat kernel expansions have been applied to problems

arising in mathematical finance: see, for instance, Hagan and Woodward (1999); Henry-Labordère (2009);

Benhamou et al. (2010); Cheng et al. (2011); Fouque et al. (2011). The authors of the present manuscript

have also made recent contributions in mathematical finance with a focus on finding closed-form pricing ap-

proximations for models both without jumps Corielli et al. (2010); Pagliarani et al. (2013) and with jumps

Lorig et al. (2013a); Jacquier and Lorig (2013), as well as finding closed-form approximations for implied

volatility Lorig et al. (2013b,c); Lorig (2013).

In this paper, we shall consider the following Cauchy problem






(∂t +A)u(t, x) = 0, t ∈ [0, T [, x ∈ Rd,

u(T, x) = ϕ(x), x ∈ Rd,
(1.1)

where A is the second order elliptic differential operator with variable coefficients

A =

d
∑

i,j=1

aij(t, x)∂xixj
+

d
∑

i=1

ai(t, x)∂xi
+ a(t, x), t ∈ R, x ∈ Rd. (1.2)
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Cauchy problems of the form (1.1) arise whenever expectations of solutions of stochastic differential equations

are considered. This is the case, for example, in option pricing. Cauchy problems of the form (1.1) also

arise in quantum mechanics. However, in this case, one typically considers initial rather than final data

(i.e., u(0, x) = ϕ(x)) as well as imaginary time: ∂t → i∂t. Indeed, many of the techniques used for finding

approximation solutions of (1.1) have been developed by mathematical physicists.

In analyzing (1.1), rather than seek a general solution u, one typically seeks the fundamental solution

Γ(t, x;T, y) (also referred to as the Green’s function), which is obtained by setting the final datum equal to

a Dirac delta function ϕ = δy, and from which the general solution u can be obtained via integration.

Unfortunately, for general x-dependent coefficients (aij , ai, a), the fundamental solution is not available

in closed-form. As such, one instead seeks an approximation of the fundamental solution. Typically, this is

achieved by expressing the operator A as A = A0 + B1, where the fundamental solution Γ0 corresponding

to A0 is known in closed-form and where B1 = A − A0. Formally, then, one obtains the fundamental

solution Γ corresponding to A through a Dyson (also known as Volterra) series expansion Avramidi (2007);

Berline et al. (1992).

While it is a useful tool, the Dyson series has some notable draw-backs. First, to compute the Dyson

series, one must evaluate operator-valued functions of the form

V(t0, t1) := exp

(
∫ t1

t0

A0(s)ds

)

B1(t1) exp

(
∫ t0

t1

A0(s)ds

)

,

where we have explicitly indicated the time-dependence in the operators A0 and B1. It is rare that the

operator V(t0, t1) can be computed explicitly and it is certainly not explicitly computable in the general

case. Second, the Dyson series is typically asymptotically divergent. Hence, even if the first few terms of

a Dyson series expansion can be computed explicitly, one is still left to wonder how accurate the truncated

series is.

In this paper, rather than expand the operator A as A = A0 + B1, we expand it as an infinite sum:

A =
∑

n≥0 An. The basic ideas of the expansion technique were introduced in Pagliarani and Pascucci

(2012), where A is a differential operator corresponding to the generator of a scalar diffusion. These ideas

were later extended in Pagliarani et al. (2013) and Lorig et al. (2013a) to the case where A may be an

integro-differential operator corresponding to the generator of a scalar Lévy-type process. Both papers

mentioned above establish rigorous short-time error bounds for the approximate fundamental solution of

(∂t + A). However, the results of these papers are limited to one-dimension, and leave unanswered some

important practical and theoretical issues. For example: (i) Is there an explicit (and fully implementable)

representation for the approximate solution at any given order N? (ii) Can the smoothness of the terminal

data ϕ be used to establish a higher order of accuracy of the asymptotic approximation? (iii) Can anything

be said about the large-time accuracy of the approximation? We address all of these questions in this

manuscript. In particular, in a multi-dimensional framework we accomplish the following tasks:

1. First, we derive fully explicit approximations at any order for fundamental solution Γ(t, x;T, y). We

emphasize that, for every n, our n-th order approximation of the fundamental solution Γ is explicit; no

integrals or special functions are required. This is not the case for the formal Dyson series expansion.
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2. Second, we show how regularity of the terminal datum ϕ can be used to establish a higher order of

accuracy for small times.

3. Third, we prove convergence results on arbitrarily large time intervals.

On an applied level, the results proved in this manuscript serve as the foundation for some recent devel-

opments in mathematical finance. More specifically, in Lorig et al. (2013b), the authors use the small-time

error bounds established here for solutions u of (1.1) in order to prove small-time error bounds for the im-

plied volatility of European Call options in a general multifactor local-stochastic volatility model. We note

that proving the accuracy result for implied volatility depends on exploiting the smoothness of the terminal

datum ϕ.

Our proofs in this manuscript are based on a combination of symmetry properties of Gaussian kernels

and (very general) classical results such as Duhamel’s principle, the Chapman-Kolmogorov identity and

some upper bounds for the fundamental solution of the operator (∂t + A). Due to the generality of the

main ingredients in the proofs, our approach opens the door to more general expansions, which may not

necessarily be based on Gaussian kernels.

The analytical techniques presented in this paper were originally developed with applications to finan-

cial mathematics in mind. However, because we provide a systematic treatment of Cauchy problem (1.1),

including complete and rigorous proofs of error bounds and convergence, we believe that our results are of

interest in other fields in which parabolic equations arise, such as mathematical biology, chemistry, physics,

engineering and economics.

The rest of this paper proceeds as follows: in Section 2 we introduce the idea of expanding the coefficients

of A as a sum of polynomial basis functions. We provide examples of useful basis functions and list our

main assumptions. Next, in Section 3, we present our main results. Theorem 3.8 provides a closed-form

expression for the n-th term of the asymptotic expansion of u, the solution of (1.1). The theorem is written in

a very general fashion, which allows for not just a single asymptotic expansion of u, but for an entire family

of asymptotic expansions for u. In Theorem 3.10, we provide small-time error bounds for our asymptotic

approximation of u. And in Theorem 3.12, we provide convergence results, which are valid on any finite time

interval. Next, in Section 4, we illustrate how the solution to Cauchy problem (1.1) relates to the pricing of

derivatives in financial mathematics. Finally, Sections 5, 6 and 7 contain the proofs of Theorems 3.8, 3.10

and 3.12 respectively.

2 General expansion basis

To begin, we will establish some notation and state our main assumptions. For any n ∈ N0, we denote

by C
n,1
b (Rd) the class of bounded functions with (globally) Lipschitz continuous derivatives of order less

than or equal to n, and by ‖f‖Cn,1
b

the sum of the L∞-norms of the derivatives of f up to order n and the

Lipschitz constants of the derivatives of order n of f . We also denote by C
−1,1
b = L∞ the class of bounded

and measurable functions and set ‖·‖C−1,1
b

= ‖·‖L∞ .

Throughout the rest of the paper we shall assume that T > 0 and N ∈ N0 are fixed and the coefficients

of the operator A in (1.2) satisfy the following assumption.
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Assumption 2.1. There exists a positive constant M such that:

i) Uniform ellipticity:

M−1|ξ|2 ≤
d
∑

i,j=1

aij(t, x)ξiξj ≤ M |ξ|2, t ∈
[

0, T
]

, x, ξ ∈ Rd.

ii) Regularity and boundedness: the coefficients aij , ai, a ∈ C
([

0, T
]

× Rd
)

and for any t ∈
[

0, T
]

we have

aij(t, ·), ai(t, ·), a(t, ·) ∈ C
N,1
b (Rd), with their ‖·‖

C
N,1
b

-norms bounded by M .

Under Assumption 2.1 it is well known that, for any T ∈
]

0, T
]

and ϕ ∈ C
−1,1
b , the backward parabolic

Cauchy problem (1.1) admits a classical solution u. However, in general, the function u is not known in

closed-form and, for practical purposes, must be computed numerically.

In what follows, it will be convenient to rewrite the differential operator (1.2) in the more compact form

A :=
∑

|α|≤2

aα(t, x)D
α
x , t ∈ R, x ∈ Rd, (2.1)

where by standard notations

α = (α1, · · · , αd) ∈ Nd
0, |α| =

d
∑

i=1

αi, Dα
x = Dα = ∂α1

x1
· · · ∂αd

xd
.

Below, we will introduce a family of expansion schemes for the operator A. Each of the different families of

expansion schemes is based on a different expansion of the coefficients (aα)|α|≤2, and will result in a different

approximation for the solution u of (1.1) as well as a different approximation for the fundamental solution

Γ. Thus, for any α ∈ Nd
0 with |α| ≤ 2, we fix an approximation sequence (aα,n)n≥0 of continuous functions

aα,n :
[

0, T
]

× Rd → R.

More precisely we introduce the following definition:

Definition 2.2. We say that (aα,n)0≤n≤N
is an N -th order polynomial expansion if, for any t ∈

[

0, T
]

, the

functions aα,n(t, ·) are polynomials with aα,0(t, ·) = aα,0(t).

The idea behind our approximation method is to choose a polynomial expansion such that the sequences

of partial sums
∑N

n=0 aα,n(t) approximate the coefficients aα(t, z), either pointwise or in some norm. We

conclude this section by presenting some practical examples of polynomial expansions.

Example 2.3. (Taylor polynomial expansion)

Let Assumption 2.1 ii) hold true. Then, for any fixed x̄ ∈ Rd, we define aα,n as the n-th order term of the

Taylor expansion of aα in the spatial variables around x̄. That is, we set

aα,n(·, x) =
∑

|β|=n

Dβaα(·, x̄)
β!

(x− x̄)β , 0 ≤ n ≤ N, |α| ≤ 2,

where as usual β! = β1! · · ·βd! and xβ = x
β1

1 · · ·xβd

d . The expansion proposed in Lorig et al. (2013b) and

Lorig et al. (2013c) is the particular case where d = 2.

4



Example 2.4. (Enhanced Taylor expansion)

In the previous example, the n-th order term An of the polynomial expansion of A coincides with the n-

order term of the Taylor expansion. More generally, we may define the n-th order term An of the polynomial

expansion of A so that it coincides with a higher order Taylor expansion. Specifically, assume N ≥ 1, and

let M0 = 0 and (Mn)1≤n≤N be a non-decreasing sequence of natural numbers where, in general, Mn may be

greater than n. We may assume that

aα,0(·) = aα(·, x̄), aα,n(·, x) =
Mn
∑

|β|=1+Mn−1

Dβaα(·, x̄)
β!

(x− x̄)β , 1 ≤ n ≤ N, |α| ≤ 2.

The enhanced Taylor expansion is motivated by the fact that, in the limit as M1 → ∞ we have that

A1 = A − A0 = B1. Thus, in this limit our expansion for u (given in Theorem 3.8) provides an explicit

asymptotic representation for the Dyson series expansion.

Example 2.5. (Time-dependent Taylor polynomial expansion)

For any fixed x̄ : R+ → Rd, we define aα,n as the n-th order term of the Taylor expansion of aα in the spatial

variables around x̄. That is, we set

aα,n(·, x) =
∑

|β|=n

Dβaα(·, x̄(·))
β!

(x− x̄(·))β , 0 ≤ n ≤ N, |α| ≤ 2.

This expansion for the coefficients allows the expansion point x̄ of the Taylor series to evolve in time. By

construction A0 is guaranteed to be the generator of a diffusion X0. It is natural, then, to choose x̄(t) to

be x̄(t) = E
[

X0
t

]

, the expected value of X0
t . In Lorig et al. (2013b) this choice results in a highly accurate

approximation for option prices and implied volatility in the Heston (1993) model.

Example 2.6. (Hermite polynomial expansion)

Hermite expansions can be useful when the diffusion coefficients are not smooth. A remarkable example in

financial mathematics is given by the Dupire’s local volatility formula for models with jumps (see Friz et al.

(2013)). In some cases, e.g., the well-known Variance-Gamma model, the fundamental solution (i.e., the

transition density of the underlying stochastic model) has singularities. In such cases, it is natural to

approximate it in some Lp norm rather than in the pointwise sense. For the Hermite expansion centered at

x̄, one sets

aα,n(t, x) =
∑

|β|=n

〈Hβ(· − x̄), aα(t, ·)〉ΓHβ(x− x̄), 0 ≤ n ≤ N, |α| ≤ 2,

where the inner product 〈·, ·〉Γ is an integral over Rd with a Gaussian weighting centered at x̄ and the

functions Hβ(x) = Hβ1(x1) · · ·Hβd
(xd) where Hn is the n-th one-dimensional Hermite polynomial (properly

normalized so that 〈Hα,Hβ〉Γ = δα,β with δα,β being the Kronecker’s delta function).

3 Main results: closed-form solutions, local and global error bounds

The main idea behind the construction of an approximation for the solution u of (1.1) is very intuitive. We

begin this section by presenting the derivation of a formal expansion of u. Let us consider a polynomial
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expansion (aα,n)n∈N0
and let us assume that the operator A in (2.1) can be formally written as

A =

∞
∑

n=0

An, An :=
∑

|α|≤2

aα,n(t, x)D
α
x . (3.1)

We now follow the classical approach and expand the solution u of (1.1) as follows

u =

∞
∑

n=0

un. (3.2)

Inserting (3.1) and (3.2) into (1.1) we find that the functions (un)n≥0 satisfy the following sequence of nested

Cauchy problems






(∂t +A0)u0(t, x) = 0, t ∈ [0, T [, x ∈ Rd,

u0(T, x) = ϕ(x), x ∈ Rd,
(3.3)

and










(∂t +A0)un(t, x) = −
n
∑

h=1

Ahun−h(t, x), t ∈ [0, T [, x ∈ Rd,

un(T, x) = 0, x ∈ Rd.

(3.4)

Since, by assumption, the functions aα,0 depend only on t, the operator A0 is elliptic with time-dependent

coefficients. It will be useful to write the operator A0 in the following form:

A0 =
1

2

d
∑

i,j=1

Cij(t)∂xixj
+ 〈m(t),∇x〉+ γ(t), 〈m(t),∇x〉 =

d
∑

i=1

mi(t)∂xi
.

Here the d× d-matrix C is positive definite, uniformly for t ∈ [0, T ], and m and γ are a d-dimensional vector

and a scalar functions respectively.

Example 3.7. If d = 2 we have

C =

(

2a(2,0),0 a(1,1),0

a(1,1),0 2a(0,2),0

)

, m =
(

a(1,0),0, a(0,1),0

)

, γ = a(0,0),0.

It is clear that the leading term u0 in the expansion (3.2) is explicitly given by

u0(t, x) = e
∫

T

t
γ(s)ds

∫

Rd

Γ0(t, x;T, y)ϕ(y) dy, t < T, x ∈ Rd, (3.5)

where Γ0 is the d-dimensional Gaussian density

Γ0(t, x;T, y) =
1

√

(2π)d|C(t, T )|
exp

(

−1

2
〈C−1(t, T )(y − x−m(t, T )), (y − x−m(t, T ))〉

)

(3.6)

with covariance matrix C(t, T ) and mean vector x+m(t, T ) given by:

C(t, T ) =

∫ T

t

C(s)ds, m(t, T ) =

∫ T

t

m(s)ds. (3.7)

The first main result of the paper is Theorem 3.8 below. The theorem provides an explicit representation

for each un in (3.2). Remarkably, every un can be written as a finite sum of spatial derivatives acting on u0.
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Theorem 3.8. For any n ≥ 1, the n-th term un in (3.2) is given by

un(t, x) = L
x
n(t, T )u0(t, x), t < T, x ∈ Rd. (3.8)

In (3.8), Lx
n(t, T ) denotes the differential operator acting on the x-variable and defined as

Lx
n(t, T ) :=

n
∑

h=1

∫ T

s0

ds1

∫ T

s1

ds2 · · ·
∫ T

sh−1

dsh
∑

i∈In,h

Gx
i1
(s0, s1) · · ·Gx

ih
(s0, sh), (3.9)

where1

In,h = {i = (i1, . . . , ih) ∈ Nh | i1 + · · ·+ ih = n}, 1 ≤ h ≤ n, (3.10)

and the operator Gx
n(t, s) is defined as

Gx
n(t, s) :=

∑

|α|≤2

aα,n
(

s,Mx(t, s)
)

Dα
x , (3.11)

with

M
x(t, s) = x+m(t, s) +C(t, s)∇x. (3.12)

Theorem 3.8 will be proved in Section 5.

Remark 3.9. Particular cases of Theorem 3.8 have been already stated, devoid of proof, in Lorig et al.

(2013b) and Lorig et al. (2013c). In Lorig et al. (2013b), only time-homogeneous two-dimensional diffusions

are treated. In Lorig et al. (2013c), only the Taylor series expansion of A is treated.

Our second main result consists in local-in-time error bounds for the N -th order Taylor expansion of

Example 2.3. In what follows, it will be helpful to indicate explicitly the dependence on x̄, the expansion

point of the Taylor series. As such, we introduce the following notation: for n ≤ N and x̄ ∈ Rd, we set

A(x̄)
n =

∑

|α|≤2

a(x̄)α,nD
α
x , a(x̄)α,n(t, x) =

∑

|β|=n

Dβaα(t, x̄)

β!
(x− x̄)β . (3.13)

The approximating terms un = u
(x̄)
n in the expansion (3.2) solve







(

∂t +A
(x̄)
0

)

u
(x̄)
0 (t, x) = 0, t < T, x ∈ Rd,

u
(x̄)
0 (T, x) = ϕ(x), x ∈ Rd,

(3.14)

and for 1 ≤ n ≤ N











(

∂t +A
(x̄)
0

)

u
(x̄)
n (t, x) = −

n
∑

h=1

A
(x̄)
h u

(x̄)
n−h(t, x), t < T, x ∈ Rd,

u
(x̄)
n (T, x) = 0, x ∈ Rd.

(3.15)

1 For instance, for n = 3 we have I3,3 = {(1, 1, 1)}, I3,2 = {(1, 2), (2, 1)} and I3,1 = {(3)}.
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Next, we define the approximate solution at order N for the Taylor expansion centered at x̄ as

ū
(x̄)
N (t, x) :=

N
∑

n=0

u(x̄)
n (t, x). (3.16)

For the particular choice x̄ = x, we simply set

ūN(t, x) := ū
(x)
N (t, x).

We call ūN the N -th order Taylor approximation of u. Analogously, for the fundamental solution Γ of

(∂t +A), we set

Γ̄N (t, x;T, y) = Γ̄
(x)
N (t, x;T, y). (3.17)

Theorem 3.10. Let Assumption 2.1 hold and let 0 < T ≤ T . Assume also the initial datum ϕ ∈ C
k−1,1
b

(

Rd
)

for some 0 ≤ k ≤ 2. Then we have

|u(t, x)− ūN(t, x)| ≤ C(T − t)
N+k+1

2 , 0 ≤ t < T, x ∈ Rd, (3.18)

where the constant C only depends on M,N, T and ‖ϕ‖
C

k−1,1
b

. Moreover, for any ε > 0 we have

∣

∣Γ(t, x;T, y)− Γ̄N (t, x;T, y)
∣

∣ ≤ C(T − t)
N+1

2 ΓM+ε(t, x;T, y), 0 ≤ t < T, x, y ∈ Rd, (3.19)

where ΓM+ε(t, x;T, y) is the fundamental solution of the d-dimensional heat operator

HM+ε = (M + ε)

d
∑

i=1

∂2
xi

+ ∂t, (3.20)

and C is a positive constant that depends on M,N, T , ε.

Theorem 3.10 will be proved in Section 6.

Remark 3.11. Theorem 3.10 can be extended by relaxing the regularity hypotheses on the terminal data

ϕ. More precisely, if k ∈ N, it is sufficient to assume that ϕ ∈ Ck−1 and the that derivatives are locally

Lipschitz continuous with exponential growth at infinity. In this case, estimate (3.18) would be modified

by substituting the constant C by CeC|x|. As we shall see in Section 4, such an extension would allow

for including some important functions ϕ commonly used in financial applications, such as the Call payoff

function. Even though this generalization does not change the core of the proof of Theorem 3.10, in order

to avoid an excess of technicalities, we shall continue our analysis under the more restrictive hypotheses of

Theorem 3.10.

We remark explicitly that (3.18) does not imply convergence as N goes to infinity because the constant

C, appearing in the estimate, depends on N and, in principle, this constant can blow up in the limit as

N → ∞. Thus, the usefulness of Theorem 3.10 is as an asymptotic estimate for small times.

Now, we state more general convergence estimates that are valid on any time interval [t, T ]. For any

m ∈ N we consider the equispaced partition {t0, . . . , tm} of [t, T ] defined as

tk := t+ k δm, δm :=
T − t

m
.
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Moreover, we set

ūN,m(t0, x0) :=

∫

Rmd

m
∏

i=1

Γ̄N(ti−1, xi−1; ti, xi)ϕ(xm) dx1 · · · dxm, x0 ∈ Rd, (3.21)

where Γ̄N is the Nth order Taylor approximation of Γ.

Theorem 3.12. Assume N ≥ 1. Under the assumptions of Theorem 3.10 we have

|u(t, x)− ūN,m(t, x)| ≤ C

(

T − t

m

)

N+k−1
2

, 0 ≤ t < T ≤ T , x ∈ Rd, (3.22)

where the constant C only depends on M,N, T and ‖ϕ‖
C

k−1,1
b

.

Theorem 3.12 will be proved in Section 7. We note explicitly that, as a direct consequence of (3.22), we have

that if N ≥ 2− k then

lim
m→∞

ūN,m(t, x) = u(t, x), t ∈ [0, T ], x ∈ Rd.

Remark 3.13. From (3.8) and (3.17) we see that

Γ̄N (t, x;T, y) =

(

1 +

N
∑

i=1

Lx
i (t, T )

)

Γ0(t, x;T, y).

When the differential operator (1+
∑

iL
x
i ) hits the Gaussian kernel Γ0(t, x;T, y) it simply returns a polyno-

mial of (x, y) times the Gaussian kernel Γ0(t, x;T, y). The coefficients (aα,0)|α|≤2 of the operator (1+
∑

i L
x
i )

also depend on x and are smooth by Assumption 2.1, condition part ii). Thus, evaluating (3.21) involves

computing an (d ·m)-dimensional integral, where the integrand is the product of Gaussian kernels with poly-

nomials and smooth, bounded coefficients. Since the integrand is smooth and slowly varying, these integrals

can be computed numerically without major difficulties. Though, clearly, there is a limit to how large (d ·m)

can be.

4 Applications to financial mathematics

In this section we motivate our analysis by illustrating how our methodology applies to the pricing derivatives

in financial mathematics. To begin, we consider an arbitrage-free market. We take, as given, an equivalent

martingale measure Q defined on a complete filtered probability space (Ω,F, {Ft, t ≥ 0}). All stochastic

processes defined below live on this probability space and all expectations are taken with respect to Q. The

risk-neutral dynamics of our market are described by the following d-dimensional Markov diffusion

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt.

Here W is a standard m-dimensional Brownian motion, the function µ : R+ × Rd → Rd and the function

σ : R+×Rd → Rd×m. The components of X could represent a number of things, e.g., economic factors, asset
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prices, economic indicators, or functions of these quantities. In particular, we assume a risk-free interest rate

of the form r(t,Xt) where r : R+ × Rd → R+. We also introduce a random time ζ, which is given by

ζ = inf
{

t ≥ 0 :

∫ t

0

γ(s,Xs)ds ≥ E
}

, γ : R+ × Rd → R+,

with E exponentially distributed and independent of X . The random time ζ could represent the default time

of an asset, the arrival of an economic shock, etc..

Denote by V the no-arbitrage price of a European derivative expiring at time T with payoff

H(XT ) I{ζ>T} +G(XT ) I{ζ≤T} =
(

H(XT )−G(XT )
)

I{ζ>T} +G(XT ).

It is well known (see, for instance, Jeanblanc et al. (2009)) that

Vt = E

[

e−
∫

T

t
r(s,Xs)dsG(XT )|Xt

]

+ I{ζ>t}E

[

e−
∫

T

t
(r(s,Xs)+γ(s,Xs))ds

(

H(XT )−G(XT )
)

|Xt

]

, t < T.

Then, to value a European-style option, one must compute functions of the form

u(t, x) := E

[

e−
∫

T

t
λ(s,Xs)dsϕ(XT ) | Xt = x

]

. (4.1)

Under mild assumptions, the function u, defined by (4.1), satisfies the Kolmogorov backward equation







(∂t +A)u(t, x) = 0, t < T, x ∈ Rd,

u(T, x) = ϕ(x), x ∈ Rd,
(4.2)

where the operator A is given explicitly by

A =
1

2

d
∑

i,j=1

(

σσT
)

ij
(t, x)∂xi

∂xj
+

d
∑

i=1

µi(t, x)∂xi
− λ(t, x).

The results of Section 3 give an explicit and effective way to construct closed-form approximate solutions of

problem (4.2), and therefore closed-form approximate option prices (4.1). The rigorous error bounds prove

the efficiency of the approach and confirm the high accuracy of the approximation in financial applications.

For the interested reader, extensive numerical examples can be found in Pagliarani and Pascucci (2012),

Pagliarani et al. (2013), Lorig et al. (2013a), Lorig et al. (2013b) and Lorig et al. (2013c).

5 Proof of Theorem 3.8: analytical approximation formulas

The proof is based on the symmetry properties of the Gaussian fundamental solution Γ0 = Γ0(t, x; s, ξ) as it

is defined in (3.6)-(3.7), combined with an extensive use of other very general relations such as the Duhamel’s

principle and the Chapman-Kolmogorov equation which we recall for completeness.

Lemma 5.14 (Chapman-Kolmogorov identity). Under Assumption 2.1, for any t < s < T , x, y ∈ Rd, we

have
∫

Rd

Γ(t, x; s, ξ)Γ(s, ξ;T, y) dξ = Γ(t, x;T, y). (5.1)
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We start by recalling the operator

Mx(t, s) = x+m(t, s) +C(t, s)∇x

as it is defined in (3.12). Above, and throughout the proof, we use the superscript x to explicitly indicate

the variables on which the operator acts. Furthermore, we define the operator

M̄y(t, s) = y −m(t, s) +C(t, s)∇y. (5.2)

The following lemma illustrates how the operator ∇x relates to ∇y when acting on Γ0(t, x; s, y) and how the

multiplication operators y and x relate to Mx(t, s) and M̄y(t, s) respectively, when acting on Γ0(t, x; s, y).

Lemma 5.15. For any t < s and x, y ∈ Rd, we have

∇xΓ0(t, x; s, y) = −∇yΓ0(t, x; s, y), (5.3)

and

y Γ0(t, x; s, y) =M
x(t, s)Γ0(t, x; s, y), (5.4)

xΓ0(t, x; s, y) =M̄y(t, s)Γ0(t, x; s, y). (5.5)

Proof. While the previous identities can be directly verified a posteriori by elementary computations, here

we give an alternative “constructive” proof which shows how to find Mx-like and M̄y-like operators, which

are equivalent to multiplication by the backward and forward variables y and x respectively, in even more

general frameworks (see Remark 5.16 below). To this end, we will require some properties of the Fourier

transform

Fxf(ξ) :=
1

√

(2π)d

∫

Rd

eixξf(x)dx.

First, we recall that for any function f in the Schwartz space we have

iξFx(f) = Fx(−∇xf), Fx(xf) = −i∇ξFxf. (5.6)

Moreover, we have

FxΓ0(t, ·;T, y)(ξ) =
1

√

(2π)d
eiξ(y−m(t,T ))− 1

2 〈C(t,T )ξ,ξ〉,

FyΓ0(t, x;T, ·)(η) =
1

√

(2π)d
eiη(x+m(t,T ))− 1

2 〈C(t,T )η,η〉. (5.7)

To obtain the identity (5.3) we simply use that Γ0(t, x;T, y) = Γ0(t, x− y;T, 0). For (5.4), we have:

Fy(yΓ0) = −i∇ηFy(Γ0)

= (x+m(t, s) +C(t, s)iη)Fy(Γ0) (by (5.7))

= Fy((x+m(t, s)−C(t, s)∇y) Γ0) (by (5.6))

= Fy(M
x(t, s)Γ0). (by (5.3))

The proof of identity (5.5) is analogous to the proof of identity (5.4).
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Remark 5.16. It is worth noting that the argument of the above proof applies whenever the characteristic

function of the stochastic process with transition density Γ0 is explicitly known and when Γ0 can be expressed

as a function of x − y. Thus, Mx-like and M̄y-like operators can be obtained, for example, when Γ0 is the

transition density of an additive (i.e., time-dependent Lévy) process. In this case, the Mx-like and M̄y-like

operators would be pseudo-differential operator rather than (usual) differential operators.

Corollary 5.17. For any t < s, s1 ∈ [0, T ] and x, y ∈ Rd we have

aα,n(s1, y)Γ0(t, x; s, y) = aα,n (s1,M
x(t, s)) Γ0(t, x; s, y), (5.8)

aα,n(s1, x)Γ0(t, x; s, y) = aα,n
(

s1, M̄
y(t, s)

)

Γ0(t, x; s, y). (5.9)

Proof. First we note that the components Mx
i (t, s), i = 1, . . . , d, of the operator Mx(t, s) commute when

applied to Γ0 = Γ0(t, x; s, y) and to its derivatives (notice however that this is not true in general when they

are applied to a generic function). Indeed, for any multi-index β, we have

Mx
i (t, s)M

x
j (t, s)D

β
xΓ0 = (−1)|β|Mx

i (t, s)M
x
j (t, s)D

β
yΓ0 (by (5.3))

= (−1)|β|Dβ
yM

x
i (t, s)M

x
j (t, s)Γ0

= (−1)|β|Dβ
yM

x
i (t, s)yjΓ0 (by (5.4))

= (−1)|β|Dβ
y yjM

x
i (t, s)Γ0

= (−1)|β|Dβ
y yjyiΓ0

= M
x
j (t, s)M

x
i (t, s)D

β
xΓ0. (by reversing the steps above)

Since aα,n(s1, ·) is a polynomial by construction, we therefore have that the operators aα,n (s1,M
x(t, s)) are

defined unambiguously when applied to Γ0(t, x; s, y) and to its derivatives. Moreover, clearly (5.8) is now a

straightforward consequence of (5.4). An analogous argument shows the validity of (5.9).

We now recall the operators

Ax
n(s) =

∑

|α|≤2

aα,n(s, x)D
α
x , Gx

n(t, s) =
∑

|α|≤2

aα,n
(

s,Mx(t, s)
)

Dα
x , n ≥ 0, (5.10)

as they are defined in (3.1) and (3.11), and we introduce the operator

Ḡ
y
n(t, s) =

∑

|α|≤2

(−1)|α|Dα
y aα,n

(

t, M̄y(t, s)
)

, n ≥ 0, (5.11)

with M̄y as in (5.2). We remark explicitly that, by Corollary 5.17, operators Gx
n(t, s) and Ḡy

n(t, s) are

defined unambiguously when applied to Γ0 = Γ0(t, x; s, y), to its derivatives and, more generally, by the

representation formula (3.5), to solutions of the Cauchy problem (3.3).

The next proposition and its remarkable corollaries are the key of the proof of Theorem 3.8.

Proposition 5.18. For any t < s < T , x, y ∈ Rd and n ≥ 1, we have
∫

Rd

Γ0(t, x; s, ξ)A
ξ
n(s)f(ξ)dξ = Gx

n(t, s)

∫

Rd

Γ0(t, x; s, ξ)f(ξ)dξ, (5.12)
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∫

Rd

f(ξ)Aξ
n(s)Γ0(s, ξ;T, y)dξ = Ḡy

n(s, T )

∫

Rd

f(ξ)Γ0(s, ξ;T, y)dξ, (5.13)

for any f ∈ C2
0

(

Rd
)

. Furthermore, the following relation holds:

Gx
n(t, s)Γ0(t, x;T, y) = Ḡy

n(s, T )Γ0(t, x;T, y). (5.14)

Proof. We first prove (5.12). By the definition of Aξ
n we have

∫

Rd

Γ0(t, x; s, ξ)A
ξ
n(s)f(ξ)dξ =

∑

|α|≤2

∫

Rd

aα,n(s, ξ)Γ0(t, x; s, ξ)D
α
ξ f(ξ)dξ

=
∑

|α|≤2

aα,n
(

s,Mx(t, s)
)

∫

Rd

Γ0(t, x, y; s, ξ, ω)D
α
ξ f(ξ)dξ (by (5.8))

=
∑

|α|≤2

aα,n
(

s,Mx(t, s)
)

(−1)|α|
∫

Rd

Dα
ξ Γ0(t, x; s, ξ) f(ξ)dξ (integrating by parts)

=
∑

|α|≤2

aα,n
(

s,Mx(t, s)
)

Dα
x

∫

Rd

Γ0(t, x; s, ξ) f(ξ)dξ (by (5.3))

= G
x
n(t, s)

∫

Rd

Γ0(t, x; s, ξ) f(ξ)dξ. (by (5.10), definition of Gx
n)

Similarly, for (5.13), using the definition of Aξ
n we have

∫

Rd

f(ξ)Aξ
n(s)Γ0(s, ξ;T, y)dξ =

∑

|α|≤2

∫

Rd

f(ξ) aα,n(s, ξ)D
α
ξ Γ0(s, ξ;T, y)dξ

=
∑

|α|≤2

(−1)|α|Dα
y

∫

Rd

f(ξ) aα,n(s, ξ) Γ0(s, ξ;T, y)dξ (by (5.3))

=
∑

|α|≤2

(−1)|α|Dα
y aα,n

(

s, M̄y(s, T )
)

∫

Rd

f(ξ) Γ0(s, ξ;T, y)dξ (by (5.9))

= Ḡy
n(s, T )

∫

Rd

f(ξ) Γ0(s, ξ;T, y)dξ. (by (5.11), definition of Ḡy
n)

Identity (5.14) follows from (5.12) and (5.13). Indeed, using the Chapman-Kolmogorov equation we have

G
x
n(t, s)Γ0(t, x;T, y) = G

x
n(t, s)

∫

Rd

Γ0(t, x; s, ξ) Γ0(s, ξ;T, y)dξ

=

∫

Rd

Γ0(t, x; s, ξ)A
ξ
n(s)Γ0(s, ξ;T, y)dξ (applying (5.12) with f(ξ) = Γ0(s, ξ;T, y))

= Ḡy
n(s, T )

∫

Rd

Γ0(t, x; s, ξ) Γ0(s, ξ;T, y)dξ (applying (5.13) with f(ξ) = Γ0(t, x; s, ξ))

= Ḡ
y
n(s, T )Γ0(t, x;T, y). (by Chapman-Kolmogorov)

Corollary 5.19. For any t < s < T , x, y ∈ R, n ≥ 1, we have
∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)Γ0(s, ξ;T, y)dξ =Gx

i1
(t, s1) · · ·Gx

in
(t, sn)Γ0(t, x;T, y), (5.15)

for any i ∈ Nn and s < s1 < · · · < sn < T .
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Proof. We first prove (5.15). By induction on n. For n = 1, and for any i1 ≥ 1, t < s1 < T , we have

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1)Γ0(s, ξ;T, y)dξ

= Ḡ
y
i1
(s1, T )

∫

Rd

Γ0(t, x; s, ξ) Γ0(s, ξ;T, y)dξ (by (5.14))

= Ḡ
y
i1
(s1, T )Γ0(t, x;T, y) (by Chapman-Kolmogorov)

= Gx
i1
(t, s1)Γ0(t, x;T, y). (by (5.14))

We assume now the thesis to be true for n ≥ 1 and for any i ∈ Nn, s < s1, · · · sn < T . Then, for any

in+1 ≥ 1, sn < sn+1 < T we have

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)G

ξ
in+1

(s, sn+1)Γ0(s, ξ;T, y)dξ

= Ḡ
y
in+1

(sn+1, T )

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)Γ0(s, ξ;T, y)dξ

(

(5.14) on G
ξ
in+1

(s, sn+1)Γ0

)

= Ḡ
y
in+1

(sn+1, T )G
x
i1
(t, s1) · · ·Gx

in
(t, sn)Γ0(t, x;T, y) (inductive hypothesis)

= Gx
i1
(t, s1) · · ·Gx

in
(t, sn) Ḡ

y
in+1

(sn+1, T )Γ0(t, x;T, y)

= Gx
i1
(t, s1) · · ·Gx

in
(t, sn)G

x
in+1

(t, sn+1)Γ0(t, x;T, y), ((5.14) on Ḡ
y
in+1

(sn+1, T )Γ0)

which proves (5.15).

From here to the end of this section, we set γ = 0. We do this merely to save space. The general case, with

γ 6= 0, is completely analogous and introduces no complications.

Corollary 5.20. Let u0 be as in (3.5) with γ = 0. For any t < s < T , x, y ∈ R, n ≥ 1, we have

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)u0(s, ξ)dξ =Gx

i1
(t, s1) · · ·Gx

in
(t, sn)u0(t, x), (5.16)

for any i ∈ Nn and s < s1 < · · · < sn < T .

Proof. By (3.5) we have

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)u0(s, ξ)dξ

=

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)

∫

Rd

Γ0(s, ξ;T, y)ϕ(y)dy dξ

=

∫

Rd

ϕ(y)

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

in
(s, sn)Γ0(s, ξ;T, y)dξ dy (Fubini’s theorem)

=

∫

Rd

ϕ(y)Gx
i1
(t, s1) · · ·Gx

in
(t, sn)Γ0(t, x;T, y)dy (by Corollary 5.19)

= G
x
i1
(t, s1) · · ·Gx

in
(t, sn)u0(t, x), (by (3.5))

which concludes the proof.
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We are now in position to prove Theorem 3.8. Proceeding by induction on n, we first prove the case

n = 1. By definition, u1 is the unique solution of the non-homogeneous Cauchy problem (3.4) with n = 1.

Thus, by Duhamel’s principle we have

u1(t, x) =

∫ T

t

∫

Rd

Γ0(t, x; s, ξ)A
ξ
1(s)u0(s, ξ)dξds

=

∫ T

t

Gx
1(t, s)

∫

Rd

Γ0(t, x; s, ξ)u0(s, ξ)dξ ds (by (5.12) with n = 1)

=

∫ T

t

Gx
1(t, s)

∫

Rd

Γ0(t, x; s, ξ)

∫

Rd

Γ0(s, ξ;T, y)ϕ(y)dy dξ ds (by (3.5))

=

∫ T

t

Gx
1(t, s)

∫

Rd

ϕ(y)

∫

Rd

Γ0(t, x; s, ξ) Γ0(s, ξ;T, y)dξ dy ds (Fubini’s theorem)

=

∫ T

t

Gx
1(t, s)ds u0(t, x) (Chapman-Kolmogorov and (3.5))

= L
x
1(t, T )u0(t, x). (by (3.9)-(3.10))

For the general case, let us assume that (3.8) holds for n ≥ 1, and prove it holds for n + 1. By definition,

un+1 is the unique solution of the non-homogeneous Cauchy problem (3.4). Thus, by Duhamel’s principle,

we have

un+1(t, x) =

∫ T

t

∫

Rd

Γ0(t, x; s, ξ)

n+1
∑

h=1

A
ξ
h(s)un+1−h(s, ξ)dξds

=

n+1
∑

h=1

∫ T

t

G
x
h(t, s)

∫

Rd

Γ0(t, x; s, ξ)un+1−h(s, ξ)dξ ds (by (5.12) with n = h)

=

n+1
∑

h=1

∫ T

t

G
x
h(t, s)

∫

Rd

Γ0(t, x; s, ξ)L
ξ
n+1−h(s, T )u0(s, ξ)dξ ds. (by induction hypothesis) (5.17)

Now, by definition (3.9)-(3.10) we have
∫

Rd

Γ0(t, x; s, ξ)L
ξ
n+1−h(s, T )u0(s, ξ)dξ

=

n+1−h
∑

j=1

∫

Rd

Γ0(t, x; s, ξ)

∫ T

s

ds1 · · ·
∫ T

sj−1

dsj
∑

i∈In+1−h,j

G
ξ
i1
(s, s1) · · ·Gξ

ij
(s, sj)u0(s, ξ) dξ

=
n+1−h
∑

j=1

∫ T

s

ds1 · · ·
∫ T

sj−1

dsj
∑

i∈In+1−h,j

∫

Rd

Γ0(t, x; s, ξ)G
ξ
i1
(s, s1) · · ·Gξ

ij
(s, sj)u0(s, ξ)dξ (Fubini’s theorem)

=

n+1−h
∑

j=1

∫ T

s

ds1 · · ·
∫ T

sj−1

dsj
∑

i∈In+1−h,j

Gx
i1
(t, s1) · · ·Gx

ij
(t, sj)u0(t, x). (by (5.16)) (5.18)

Next, by inserting (5.18) into (5.17) we obtain

un+1(t, x) = L̃x
n(t, T )u0(t, x),

where

L̃x
n(t, T ) =

∫ T

t

Gx
n+1(t, s0)ds0
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+
n
∑

h=1

n+1−h
∑

j=1

∫ T

t

ds0

∫ T

s0

ds1 · · ·
∫ T

sj−1

dsj
∑

i∈In+1−h,j

Gx
h(t, s0)G

x
i1
(t, s1) · · ·Gx

ij
(t, sj).

In order to conclude the proof, it is enough to check that L̃x
n(t, T ) = Lx

n+1(t, T ). By exchanging the indexes

in the sums, we obtain

L̃
x
n(t, T ) =

∫ T

t

G
x
n+1(t, s0)ds0

+

n
∑

j=1

n+1−j
∑

h=1

∫ T

t

ds0

∫ T

s0

ds1 · · ·
∫ T

sj−1

dsj
∑

i∈In+1−h,j

Gx
h(t, s0)G

x
i1
(t, s1) · · ·Gx

ij
(t, sj)

(setting l = j + 1)

=

∫ T

t

Gx
n+1(t, s0)ds0

+

n+1
∑

l=2

n+2−l
∑

h=1

∫ T

t

ds0

∫ T

s0

ds1 · · ·
∫ T

sl−2

dsl−1

∑

i∈In+1−h,l−1

G
x
h(t, s0)G

x
i1
(t, s1) · · ·Gx

il−1
(t, sl−1)

(replacing the integration variables: (ds0, ds1, · · · , dsl−1) → (dr1, dr2, · · · , drl))

=

∫ T

t

Gx
n+1(t, s0)ds0

+
n+1
∑

l=2

n+2−l
∑

h=1

∫ T

t

dr1

∫ T

r1

dr2 · · ·
∫ T

rl−1

drl
∑

i∈In+1−h,l−1

Gx
h(t, r1)G

x
i1
(t, r2) · · ·Gx

il−1
(t, rl)

=

∫ T

t

Gx
n+1(t, s0)ds0

+
n+1
∑

l=2

∫ T

t

dr1

∫ T

r1

dr2 · · ·
∫ T

rl−1

drl

n+2−l
∑

h=1

∑

i∈In+1−h,l−1

Gx
h(t, r1)G

x
i1
(t, r2) · · ·Gx

il−1
(t, rl)

(by definition (3.10))

=

n+1
∑

l=1

∫ T

t

dr1

∫ T

r1

dr2 · · ·
∫ T

rl−1

drl
∑

z∈In+1,l

Gx
z1
(t, r1)G

x
z2
(t, r2) · · ·Gx

zl
(t, rl)

(by definition (3.9))

= L
x
n+1(t, T ),

which concludes the proof. �

6 Proof of Theorem 3.10: error bounds for small times

Throughout this section we fix M , N and T . All of the constants appearing in the estimates proved in this

section depend on M,N and T and will not continue repeating this below. Under the main Assumption 2.1,
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the operator (∂t+A) admits a unique fundamental solution Γ = Γ(t, x;T, y) for which the following classical

Gaussian estimates hold (see Friedman (1964), Chapter 1).

Lemma 6.21. For any ε > 0 and β, ν ∈ Nd
0 with |ν| ≤ N + 2, we have

|(x− y)β Dν
xΓ(t, x;T, y)| ≤ C · (T − t)

|β|−|ν|
2 ΓM+ε(t, x;T, y), 0 ≤ t < T ≤ T , x, y ∈ Rd,

where ΓM+ε is the fundamental solution of the heat operator (3.20) and C is a positive constant, only

dependent on M,N, T , ε and |β|.

In order to state our theoretical results we need some preliminary estimates on the spatial derivatives

of the solution of the Cauchy problem with coefficients that may depend on t but are constant in x. The

quality of such estimates depends on the regularity of the terminal data ϕ.

Proposition 6.22. Assume the coefficients of A to be constant in space (i.e. aα(t, ·) ≡ aα(t)). Let β ∈ Nd
0

and ϕ ∈ C
k−1,1
b

(

Rd
)

for some k ∈ N0. Then the solution of the Cauchy problem (1.1) satisfies

∣

∣Dβ
xu(t, x)

∣

∣ ≤ C · (T − t)
min{k−|β|,0}

2 , 0 ≤ t < T ≤ T , x ∈ Rd,

where C only depends on M,N, T , |β| and ‖ϕ‖
C

k−1,1
b

.

Proof. As A has space-independent coefficients, the fundamental solution of (∂t+A) is the Gaussian function

in (3.6). A direct computation shows that for any polynomial function p = p(y) we have

∫

Rd

p(y)Γ0(t, x;T, y) dy = p̄(x),

where p̄ is a polynomial with degree deg(p̄) = deg(p). Thus, for any ν ∈ Nd
0 with |ν| > deg(p) we have

∫

Rd

p(y)Dν
xΓ0(t, x;T, y) dy = Dν

x

∫

Rd

p(y)Γ0(t, x;T, y) dy = 0.

In particular, let us set h = min{|β|, k} and denote by T
ϕ
x̄,h the h-th order Taylor polynomial of ϕ centered

at x̄, i.e.,

T
ϕ
x̄,h(x) =

∑

|ν|≤h

Dνϕ(x̄)

ν!
(x− x̄)ν , (6.1)

where, by convention, when h = −1, then T
ϕ
x̄,−1 ≡ 0. Then we have

∫

Rd

T
ϕ
x,h−1(y)D

β
xΓ0(t, x;T, y) dy = 0. (6.2)

Now, by Duhamel’s principle we have

u(t, x) = e
∫

T

t
γ(s)ds

∫

Rd

Γ0(t, x;T, y)ϕ(y) dy, t < T, x ∈ Rd.
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Next, since ϕ ∈ C
k−1,1
b (Rd), by (6.2) we obtain

Dβ
xu(t, x) = e

∫
T

t
γ(s)ds

∫

Rd

ϕ(y)Dβ
xΓ0(t, x;T, y) dy = e

∫
T

t
γ(s)ds

∫

Rd

(ϕ(y)−T
ϕ
x,h−1(y))D

β
xΓ0(t, x;T, y) dy.

Thus, by the Taylor theorem with integral remainder, we obtain

∣

∣Dβ
xu(t, x)

∣

∣ ≤ C

∫

Rd

|x− y|h
∣

∣Dβ
xΓ0(t, x;T, y)

∣

∣ dy,

where C depends on ‖ϕ‖
C

k−1,1
b

. The thesis follows from Lemma 6.21 and from

∫

Rd

ΓM+ε(t, x;T, y) dy = 1.

Hereafter, we assume all the hypotheses of Theorem 3.10 are satisfied. The proof of Theorem 3.10 is based

on the following lemmas.

Lemma 6.23. Under the hypotheses of Theorem 3.10, for any x̄ ∈ Rd and N ∈ N0, we have

u(t, x)− ū
(x̄)
N (t, x) =

∫ T

t

∫

Rd

Γ(t, x; s, ξ)

N
∑

n=0

(

A− Ā(x̄)
n

)

u
(x̄)
N−n(s, ξ) dξds, t < T, x ∈ Rd,

where the function u is the solution of (1.1), the function ū
(x̄)
N is the N th order approximation in (3.16) and

Ā(x̄)
n =

n
∑

i=0

A
(x̄)
i .

Proof. We first prove the identity

(∂t +A) ū
(x̄)
N (t, x) =

N
∑

n=0

(A− Ā(x̄)
n )u

(x̄)
N−n(t, x), t < T, x ∈ Rd. (6.3)

For N = 0 we have

(∂t +A) ū
(x̄)
0 =

(

A−A
(x̄)
0

)

u
(x̄)
0 ,

because
(

∂t +A
(x̄)
0

)

u
(x̄)
0 = 0 by definition (3.14). We assume now (6.3) holds for N ≥ 0 and we prove it to

hold for N + 1. We have

(∂t +A) ū
(x̄)
N+1

= (∂t +A)ū
(x̄)
N + (∂t +A)u

(x̄)
N+1

=
N
∑

n=0

(

A− Ā(x̄)
n

)

u
(x̄)
N−n +

(

A−A
(x̄)
0

)

u
(x̄)
N+1 −

N+1
∑

n=1

A(x̄)
n u

(x̄)
N+1−n (by inductive hypothesis and by (3.15))
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=

N+1
∑

n=1

(

A− Ā
(x̄)
n−1

)

u
(x̄)
N+1−n +

(

A−A
(x̄)
0

)

u
(x̄)
N+1 −

N+1
∑

n=1

A(x̄)
n u

(x̄)
N+1−n (by shifting the index of the first sum)

=

N+1
∑

n=1

(

A− Ā(x̄)
n

)

u
(x̄)
N+1−n +

(

A−A
(x̄)
0

)

u
(x̄)
N+1 =

N+1
∑

n=0

(

A− Ā(x̄)
n

)

u
(x̄)
N+1−n.

Now, since u is the classical solution of (1.1), we have by (6.3) that v := u− ū
(x̄)
N solves the following problem











(∂t +A)v(t, x) = −
N
∑

n=0
(A− Ā

(x̄)
n )u

(x̄)
N−n(t, x), t < T, x ∈ Rd,

v(T, x) = 0, x ∈ Rd,

The thesis follows by Duhamel’s principle.

Lemma 6.24. Under the assumptions of Theorem 3.10, for any multi-index β ∈ Nd
0 we have

∣

∣

∣
Dβ

xu
(x̄)
0 (t, x)

∣

∣

∣
≤ C · (T − t)

min{k−|β|,0}
2 , 0 ≤ t < T ≤ T , x, x̄ ∈ Rd. (6.4)

Moreover, if N ≥ 1 then for any n ∈ N, n ≤ N , we have

∣

∣

∣
Dβ

xu
(x̄)
n (t, x)

∣

∣

∣
≤ C · (T − t)

n+k−|β|
2

(

1 + |x− x̄|n (T − t)
−n

2

)

, 0 ≤ t < T ≤ T , x, x̄ ∈ Rd. (6.5)

The constants in (6.4) and (6.5) depend only on M,N, T , |β| and ‖ϕ‖
C

k−1,1
b

.

Proof. In this proof, {Ci}i≥1 denote some positive constants that depend only on M,N, T and ‖ϕ‖
C

k−1,1
b

.

For clarity, write the operators appearing in Theorem 3.8 as L
x,(x̄)
k and G

x,(x̄)
k in order to indicate that these

operators are constructed using the expansion point x̄ and act on the variable x.

For n = 0, the thesis follows directly from Proposition 6.22 since u
(x̄)
0 solves problem (3.14). Next we

prove the assertion for n = 1. By Theorem 3.8, for any x̄ ∈ Rd we have

u
(x̄)
1 (t, x) = L

x,(x̄)
1 (t, T )u

(x̄)
0 (t, x) =

∫ T

t

G
x,(x̄)
1 (t, s)u

(x̄)
0 (t, x) ds

=
∑

|ν|≤2

∫ T

t

a
(x̄)
ν,1

(

s, x+m(x̄)(t, s) +C(x̄)(t, s)∇x

)

dsDν
xu

(x̄)
0 (t, x)

(by (3.13) with n = 1)

=
∑

|ν|≤2

∫ T

t

〈∇xaν(s, x̄), x − x̄+m(x̄)(t, s) +C(x̄)(t, s)∇x〉dsDν
xu

(x̄)
0 (t, x). (6.6)

Therefore we obtain
∣

∣

∣
Dβ

xu
(x̄)
1 (t, x)

∣

∣

∣
≤ I1 + I2 + I3 + I4

where

I1 =
∑

|ν|≤2

∫ T

t

|∇xaν(s, x̄)| ds |x− x̄|
∣

∣

∣
Dβ+ν

x u
(x̄)
0 (t, x)

∣

∣

∣
,
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I2 =
∑

|ν|≤2

∫ T

t

|∇xaν(s, x̄)|
∣

∣

∣
m(x̄)(t, s)

∣

∣

∣
ds
∣

∣

∣
Dβ+ν

x u
(x̄)
0 (t, x)

∣

∣

∣
,

I3 =
∑

|ν|≤2

∫ T

t

|∇xaν(s, x̄)|
∣

∣

∣
C(x̄)(t, s)

∣

∣

∣
ds
∣

∣

∣
∇xD

β+ν
x u

(x̄)
0 (t, x)

∣

∣

∣
,

I4 =
∑

|ν|≤2
|δ|≤|β|−1

∫ T

t

|∇xaν(s, x̄)| ds
∣

∣

∣
Dν+δ

x u
(x̄)
0 (t, x)

∣

∣

∣
.

Now, since aν ∈ C
1,1
b , by Proposition 6.22 we have

I1 ≤ C1

∑

|ν|≤2

|x− x̄| (T − t)
2+min{k−|β|−|ν|,0}

2 ≤ C2 · (T − t)
1+k−|β|

2
|x− x̄|√
T − t

.

Moreover, since aν ∈ C
1,1
b and

∣

∣m(x̄)(t, s)
∣

∣ ≤ C3(s− t), we have by Proposition 6.22 that

I2 ≤ C4

∑

|ν|≤2

(T − t)2+
min{k−|β|−|ν|,0}

2 ≤ C5 · (T − t)
2+k−|β|

2 .

Next, since aν ∈ C
1,1
b and

∣

∣C(x̄)(t, s)
∣

∣ ≤ C6 · (s− t), we have by Proposition 6.22 that

I3 ≤ C7

∑

|ν|≤2

(T − t)2+
min{k−1−|β|−|ν|,0}

2 ≤ C8 · (T − t)
1+k−|β|

2 .

Finally, we have the term appearing when Dβ
x applies to x− x̄ in (6.6). Using the same arguments as above

we obtain

I4 ≤ C9

∑

|ν|≤2

(T − t)
2+min{k+1−|β|−|ν|,0}

2 ≤ C10 · (T − t)
1+k−|β|

2 .

Using all the above estimates, one deduces (6.5) for n = 1. The general case can be proved by analogous

arguments, using repeatedly the general expression of u
(x̄)
n provided by Theorem 3.8 and the estimates of

Proposition 6.22. We omit the details for brevity.

We are now in the position to prove Theorem 3.10.

Proof of Theorem 3.10. In this proof, {Ci}i≥1 denote some positive constants dependent only on M,N, T

and ‖ϕ‖
C

k−1,1
b

. By Lemma 6.23 we have

u− ūN =

N
∑

n=0

In, In(t, x) =

∫ T

t

∫

Rd

Γ(t, x; s, ξ)

(

A−
n
∑

i=0

A
x
i

)

ux
N−n(s, ξ) dξds.

Moreover In = In,1 + In,2 with (cf. (6.1))

In,1(t, x) =
∑

|α|≤1

∫ T

t

∫

Rd

(

aα(s, ξ)−Taα(s,·)
x,n (ξ)

)

Γ(t, x; s, ξ)Dα
ξ u

x
N−n(s, ξ) dξds,

In,2(t, x) =
∑

|α|=2

∫ T

t

∫

Rd

(

aα(s, ξ)−Taα(s,·)
x,n (ξ)

)

Γ(t, x; s, ξ)Dα
ξ u

x
N−n(s, ξ) dξds.
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Now by Lemma 6.24 we have

|In,1(t, x)| ≤ C1

∑

|α|≤1

∫ T

t

∫

Rd

|ξ − x|n+1Γ(t, x; s, ξ)(T − s)
N−n−|α|+k

2

(

1 + (T − s)−
N−n

2 |x− ξ|N−n
)

dξds

≤ C2

∑

|α|≤1

∫ T

t

(

(T − s)
N−n+|α|+k

2 (s− t)
n+1
2 + (T − s)

−|α|+k

2 (s− t)
N+1

2

)

∫

Rd

ΓM+ε(t, x; s, ξ) dξds

≤ C3 · (T − t)
N+k+2

2

where we have used Lemma 6.21 and the identity

∫ T

t

(T − s)n(s− t)k ds =
ΓE(k + 1)ΓE(n+ 1)

ΓE(k + n+ 2)
(T − t)k+n+1,

with ΓE denoting the Euler Gamma function. To estimate In,2 we first integrate by parts and obtain

In,2(t, x) = −
∑

|α1|=1

∑

|α2|=1

∫ T

t

∫

Rd

Dα1

ξ

((

aα1+α2(t, ξ)−T
aα1+α2(t,·)
x,n (ξ)

)

Γ(t, x; s, ξ)
)

Dα2

ξ ux
N−n(s, ξ) dξds.

Using the same arguments as above one can show that

|In,2(t, x)| ≤ C4 · (T − t)
N+k+1

2 .

Finally estimate (3.19) is obtained by a straightforward modification of the proof of (3.18) for k = 0, by

means of the application of Lemma 6.21 and the Chapman-Kolmogorov equation. We omit the details for

simplicity.

7 Proof of Theorem 3.12: error bounds for large times

In agreement with the hypothesis of Theorem 3.12, throughout this section we will assume N ≥ 1. The

proof of Theorem 3.12 is based on the Chapman-Kolmogorov identity (5.1) and on the following classical

Schauder estimate (see, for instance, Friedman (1964), Chapter 3).

Lemma 7.25. Let u be the solution of problem (1.1) under Assumption 2.1. Then for 0 ≤ k ≤ 2, we have

‖u(t, ·)‖
C

k−1,1
b

(Rd) ≤ C ‖ϕ‖
C

k−1,1
b

(Rd) , 0 ≤ t ≤ T ≤ T ,

where C is a positive constant that depends only on M and T .

Proof of Theorem 3.12. In this proof, {Ci}i≥1 denote some positive constants that depend only on M,N, T

and ‖ϕ‖
C

k−1,1
b

. By an iterative use of (5.1), the Chapman-Kolmogorov identity, we have

u(t0, x0) =

∫

Rmd

m
∏

i=1

Γ(ti−1, xi−1; ti, xi)ϕ(xm) dxm · · · dx1, t0 < T, x0 ∈ Rd.

Then, by definition (3.21) we obtain

u− ūN,m =

m
∑

j=1

Ij , (7.1)
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where

Ij(t0, x0) =

∫

Rmd

j−1
∏

i=1

Γ̄N (ti−1, xi−1; ti, xi)
(

Γ̄N − Γ
)

(tj−1, xj−1; tj , xj)

×
m
∏

i=j+1

Γ(ti−1, xi−1; ti, xi)ϕ(xm) dxm · · ·dx1

=

∫

R(j−1)d

j−1
∏

i=1

Γ̄N (ti−1, xi−1; ti, xi)

∫

Rd

(

Γ̄N − Γ
)

(tj−1, xj−1; tj , xj)u(tj , xj)dxj dxj−1 · · · dx1,

where we have used Fubini’s theorem and the Chapman-Kolmogorov identity. Now by Lemma 7.25 and

Theorem 3.10 we obtain
∣

∣

∣

∣

∫

Rd

(

Γ̄N − Γ
)

(tj−1, xj−1; tj , xj)u(tj , xj) dxj

∣

∣

∣

∣

≤ C1δ
N+k+1

2
m .

Thus, we have

|Ij(t0, x0)| ≤ C1δ
N+k+1

2
m

∫

R(j−1)d

j−1
∏

i=1

|Γ̄N (ti−1, xi−1; ti, xi)| dxj−1 · · · dx1

≤ C1δ
N+k+1

2
m

∫

R(j−1)d

j−1
∏

i=1

(∣

∣Γ̄N − Γ
∣

∣+ Γ
)

(ti−1, xi−1; ti, xi) dxj−1 · · · dx1

≤ C1δ
N+k+1

2
m

∫

R(j−1)d

j−1
∏

i=1

(

C2δ
N+1

2
m ΓM+1 + Γ

)

(ti−1, xi−1; ti, xi) dxj−1 · · · dx1,

where, in the last step we used Eq. (3.19) in Theorem 3.10, with ΓM+1 being the fundamental solution of

the heat-type operator (3.20) with ε = 1. Therefore, by applying repeatedly the properties

∫

Rd

ΓM+1(t, x; s, y)dy = 1,

∫

Rd

Γ(t, x; s, y)dy ≤ 1,

we obtain

|Ij(t0, x0)| ≤ C1δ
N+k+1

2
m

(

C2δ
N+1

2
m + 1

)j−1

.

Eventually, since N ≥ 1, we find by (7.1) that

|u(t, x)− ūN,m(t, x)| ≤ C1

(

C2δ
N+1

2
m + 1

)m

mδ
N+k+1

2
m ≤ C3e

C2(T−t)
N+1

2
δ

N+k−1
2

m ,

which proves (3.22).
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