
Accelerated, Parallel and Proximal Coordinate Descent

Olivier Fercoq ∗ Peter Richtárik †

December 19, 2013 (updated: February 2014)

Abstract

We propose a new stochastic coordinate descent method for minimizing the sum of convex
functions each of which depends on a small number of coordinates only. Our method (APPROX)
is simultaneously Accelerated, Parallel and PROXimal; this is the first time such a method
is proposed. In the special case when the number of processors is equal to the number of
coordinates, the method converges at the rate 2ω̄L̄R2/(k+1)2, where k is the iteration counter,
ω̄ is an average degree of separability of the loss function, L̄ is the average of Lipschitz constants
associated with the coordinates and individual functions in the sum, and R is the distance of
the initial point from the minimizer. We show that the method can be implemented without the
need to perform full-dimensional vector operations, which is the major bottleneck of accelerated
coordinate descent. The fact that the method depends on the average degree of separability,
and not on the maximum degree of separability, can be attributed to the use of new safe
large stepsizes, leading to improved expected separable overapproximation (ESO). These are of
independent interest and can be utilized in all existing parallel stochastic coordinate descent
algorithms based on the concept of ESO.

1 Introduction

Developments in computing technology and ubiquity of digital devices resulted in an increased
interest in solving optimization problems of extremely big sizes. Applications can be found in all
areas of human endeavor where data is available, including the internet, machine learning, data
science and scientific computing. The size of these problems is so large that it is necessary to
decompose the problem into smaller, more manageable, pieces. Traditional approaches, where it is
possible to rely on full-vector operations in the design of an iterative scheme, must be revisited.

Coordinate descent methods [12, 17] appear as a very popular class of algorithms for such
problems as they can break down the problem into smaller pieces, and can take advantage of
sparsity patterns in the data. With big data problems it is necessary to design algorithms able to
utilize modern parallel computing architectures. This resulted in an interest in parallel [16, 21, 3, 15]
and distributed [14] coordinate descent methods.

∗School of Mathematics, The University of Edinburgh, United Kingdom (e-mail: olivier.fercoq@ed.ac.uk)
†School of Mathematics, The University of Edinburgh, United Kingdom (e-mail: peter.richtarik@ed.ac.uk)

The work of both authors was supported by the EPSRC grant EP/I017127/1 (Mathematics for Vast Digital Resources)
and by the Centre for Numerical Algorithms and Intelligent Software (funded by EPSRC grant EP/G036136/1 and
the Scottish Funding Council). The work of P.R. was also supported by EPSRC grant EP/K02325X/1 (Accelerated
Coordinate Descent Methods for Big Data Problems) and by the Simons Institute for the Theory of Computing at
UC Berkeley.

1

ar
X

iv
:1

31
2.

57
99

v2
 [

m
at

h.
O

C
]

 1
 M

ar
 2

01
4

In this work we focus on the solution of convex optimization problems with a huge number of
variables of the form

min
x∈RN

f(x) + ψ(x). (1)

Here x = (x(1), . . . , x(n)) ∈ RN is a decision vector composed of n blocks, with x(i) ∈ RNi ,

f(x) =
∑m

j=1 fj(x), (2)

where fj are smooth convex functions, and ψ is a block separable regularizer (e.g., L1 norm).
In this work we make the following three main contributions:

1. We design and analyze the first stochastic coordinate descent method which is simultaneously
accelerated, parallel and proximal. In fact, we are not aware of any published results on
accelerated coordinate descent which would either be proximal or parallel.

Our method is accelerated in the sense that it achieves an O(1/k2) convergence rate, where
k is the iteration counter. The first gradient method with this convergence rate is due to
Nesterov [10]; see also [23, 1]. Accelerated stochastic coordinate descent method, for convex
minimization without constraints, was originally proposed in 2010 by Nesterov [12].

Paper Proximal Parallel Accelerated Notable feature

Leventhal & Lewis, 2008 [5] × × × quadratic f
S-Shwartz & Tewari, 2009 [18] `1 × × 1st `1-regularized
Nesterov, 2010 [12] × × YES 1st block, 1st accelerated
Richtárik & Takáč, 2011 [17] YES × × 1st general proximal
Bradley et al, 2012 [2] `1 YES × `1-regularized parallel
Richtárik & Takáč, 2012 [16] YES YES × 1st general parallel
S-Shwartz & Zhang, 2012 [19] YES × × 1st primal-dual
Necoara et al, 2012 [9] × × × 2-coordinate descent
Takáč et al, 2013 [21] × YES × 1st primal-d. & parallel
Tappenden et al, 2013 [22] YES × × 1st inexact
Necoara & Clipici, 2013 [8] YES × × coupled constraints
Lin & Xiao, 2013 [25] × × YES improvements
Fercoq & Richtárik, 2013 [3] YES YES × 1st nonsmooth f
Lee & Sidford, 2013 [4] × × YES 1st efficient accelerated
Richtárik & Takáč, 2013 [14] YES YES × 1st distributed
Liu et al, 2013 [6] × YES × asynchronous
Richtárik & Takáč, 2013 [15] × YES × 1st parallel nonuniform

This paper YES YES YES 3 × YES

Table 1: Selected recent papers analyzing the iteration complexity of stochastic coordinate descent methods. Our
algorithm is simultaneously proximal, parallel and accelerated. In the last column we highlight a single notable
feature, necessarily chosen subjectively, of each work.

Various variants of proximal and parallel (but non-accelerated) stochastic coordinate descent
methods were proposed [2, 16, 3, 14]. In Table 1 we provide a list1 of some recent research
papers proposing and analyzing stochastic coordinate descent methods. The table substan-
tiates our observation that while the proximal setting is standard in the literature, parallel
methods are much less studied, and finally, there is just a handful of papers dealing with
accelerated variants.

1This list is necessarily incomplete, it was not our goal to be comprehensive. For a somewhat more substantial
review of these and other works we refer the reader to [16, 3].

2

2. We propose new stepsizes for parallel coordinate descent methods, based on a new expected
separable overapproximation (ESO). These stepsizes can for some classes of problems (e.g.,
fj=quadratics), be much larger than the stepsizes proposed for the (non-accelerated) parallel
coordinate descent method (PCDM) in [16]. Let ωj be the number of of blocks function fj
depends on. The stepsizes, and hence the resulting complexity, of PCDM, depend on the
quantity ω = maxj ωj . However, our stepsizes take all the values ωj into consideration and
the result of this is complexity that depends on a data-weighted average ω̄ of the values ωj .
Since ω̄ can be much smaller than ω, our stepsizes result in dramatic acceleration for our
method and other methods whose analysis is based on an ESO [16, 3, 14].

3. We identify a large subclass of problems of the form (1) for which the full-vector operations
inherent in accelerated methods can be eliminated. This contrasts with Nesterov’s acceler-
ated coordinate descent scheme [12], which is impractical due to this bottleneck. Having
established his convergence result, Nesterov remarked [12] that:

“However, for some applications [...] the complexity of one iteration of the accelerated scheme is

rather high since for computing yk it needs to operate with full-dimensional vectors.”

Subsequently, in part due to these issues, the work of the community focused on simple meth-
ods as opposed to accelerated variants. For instance, Richtárik & Takáč [17] use Nesterov’s
observation to justify their focus on non-accelerated methods in their work on coordinate
descent methods in the proximal/composite setting.

Recently, Lee & Sidford [4] were able to avoid full dimensional operations in the case of
minimizing a convex quadratic without constraints, by a careful modification of Nesterov’s
method. This was achieved by introducing an extra sequence of iterates and observing that
for quadratic functions it is possible to compute partial derivative of f evaluated at a linear
combination of full dimensional vectors without ever forming the combination. We extend the
ideas of Lee & Sidford [4] to our general setting (1) in the case when fj(x) = φj(a

T
j x), where

φj are scalar convex functions with Lipschitz derivative and the vectors aj are block-sparse.

Contents. The rest of the paper is organized as follows. We start by describing new stepsizes
for parallel coordinate descent methods, based on novel assumptions, and compare them with
existing stepsizes (Section 2). We then describe our algorithm and state and comment on the main
complexity result (Section 3). Subsequently, we give a proof of the result (Section 4). We then
describe an efficient implementation of our method, one that does not require the computation of
full-vector operations (Section 5), and finally comment on our numerical experiments (Section 6).

Notation. It will be convenient to define natural operators acting between the spaces RN and
RNi . In particular, we will often wish to lift a block x(i) from RNi to RN , filling the coordinates
corresponding to the remaining blocks with zeros. Likewise, we will project x ∈ RN back into RNi .
We will now formalize these operations.

Let U be the N × N identity matrix, and let U = [U1, U2, . . . , Un] be its decomposition into
column submatrices Ui ∈ RN×Ni . For x ∈ RN , let x(i) be the block of variables corresponding to
the columns of Ui, that is, x(i) = UTi x ∈ RNi , i = 1, 2, . . . , n. Any vector x ∈ RN can be written,

3

uniquely, as x =
∑n

i=1 Uix
(i). For h ∈ RN and ∅ 6= S ⊆ [n]

def
= {1, 2, . . . , n}, we write

h[S] =
∑
i∈S

Uih
(i). (3)

In words, h[S] is a vector in RN obtained from h ∈ RN by zeroing out the blocks that do not belong
to S. For convenience, we will also write

∇if(x)
def
= (∇f(x))(i) = UTi ∇f(x) ∈ RNi (4)

for the vector of partial derivatives of f corresponding to coordinates belonging to block i.
With each block i ∈ [n] we associate a positive definite matrix Bi ∈ RNi×Ni and a scalar vi > 0,

and equip RNi and RN with the norms

‖x(i)‖(i)
def
= 〈Bix(i), x(i)〉1/2, ‖x‖v

def
=
(∑n

i=1 vi‖x(i)‖2(i)
)1/2

. (5)

The corresponding conjugate norms, defined by ‖s‖∗ = max{〈s, x〉 : ‖x‖ ≤ 1}, are given by

‖x(i)‖∗(i)
def
= 〈B−1

i x(i), x(i)〉1/2, ‖x‖∗v =

(∑n
i=1 v

−1
i

(
‖x(i)‖∗(i)

)2
)1/2

. (6)

We also write ‖v‖1 =
∑

i |vi|.

2 Stepsizes for parallel coordinate descent methods

The framework for designing and analyzing (non-accelerated) parallel coordinate descent methods,
developed by Richtárik & Takáč [16], is based on the notions of block sampling and expected separable
overapproximation (ESO). We now briefly review this framework as our accelerated method is cast
in it, too. Informally, a block sampling is the random law describing the selection of blocks at each
iteration. An ESO is an inequality, involving f and Ŝ, which is used to compute updates to selected
blocks. The complexity analysis in our paper is based on the following generic assumption.

Assumption 1 (Expected Separable Overapproximation [16, 3]). We assume that:

1. f is convex and differentiable.

2. Ŝ is a uniform block sampling. That is, Ŝ is a random subset of [n] = {1, 2, . . . , n} with the
property2 that P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n]. Let τ = E[|Ŝ|].

3. There are computable constants v = (v1, . . . , vn) > 0 for which the pair (f, Ŝ) admits the
Expected Separable Overapproximation (ESO):

E
[
f(x+ h[Ŝ])

]
≤ f(x) +

τ

n

(
〈∇f(x), h〉+

1

2
‖h‖2v

)
, x, h ∈ RN . (7)

2It is easy to see that if Ŝ is a uniform sampling, then necessarily, P(i ∈ Ŝ) = E|Ŝ|
n

for all i ∈ [n].

4

If the above inequality holds, for simplicity we will write3 (f, Ŝ) ∼ ESO(v).

In the context of parallel coordinate descent methods, uniform block samplings and inequalities
(7) involving such samplings were introduced and systematically studied by Richtárik & Takáč [16].
An ESO inequality for a uniform distributed sampling was developed in [14] and that nonuniform
samplings and ESO, together with a parallel coordinate descent method based on such samplings,
was proposed in [15].

Fercoq & Richtárik [3, Theorem 10] observed that inequality (7) is equivalent to requiring that
the gradients of the functions

f̂x : h 7→ E
[
f(x+ h[Ŝ])

]
, x ∈ RN ,

be Lipschitz at h = 0, uniformly in x, with constant τ/n, with respect to the norm ‖ · ‖v. Equiva-

lently, the Lipschitz constant is Lf̂ with respect to the norm ‖ · ‖ṽ, where

Lf̂ =
τ‖v‖1
n2

, ṽ
def
= n

v

‖v‖1
.

The change of norms is done so as to enforce that the weights in the norm sum to n, which means

that different ESOs can be compared using the constants Lf̂ . The above observations are useful in
understanding what the ESO inequality encodes: By moving from x to

x+ = x+ h[Ŝ],

one is taking a step in a random subspace of RN spanned by the blocks belonging to Ŝ. If τ � n,
which is often the case in big data problems4, the step is confined to a low-dimensional subspace
of RN . It turns out that for many classes of functions arising in applications, for instance for
functions exhibiting certain sparsity or partial separability patterns, it is the case that the gradient
of f varies much more slowly in such subspaces, on average, than it does in RN . This in turn would
imply that updates h based on minimizing the right hand side of (7) would produce larger steps,
and eventually lead to faster convergence.

2.1 New model

Consider f of the form (2), i.e.,

f(x) =
m∑
j=1

fj(x),

where fj depends on blocks i ∈ Cj only. Let ωj = |Cj |, and ω = maxj ωj .

Assumption 2. The functions {fj} have block-Lipschitz gradient with constants Lji ≥ 0. That is,
for all j = 1, 2, . . . ,m and i = 1, 2, . . . , n,

‖∇ifj(x+ Uit)−∇ifj(x)‖∗(i) ≤ Lji‖t‖(i), x ∈ RN , t ∈ RNi . (8)

3In [16], the authors write β
2
‖h‖2w instead of 1

2
‖h‖2v. This is because they study families of samplings Ŝ, parameter-

ized by τ , for which w is fixed and all changes can thus be captured in the constant β. Clearly, the two definitions are
interchangeable as one can choose v = βw. Here we will need to compare weights which are not linearly dependent,
hence the simplified notation.

4In fact, one may define a “big data” problem by requiring that the number of parallel processors τ available for
optimization is much smaller than the dimension n of the problem.

5

Note that, necessarily,
Lji = 0 whenever i /∈ Cj . (9)

Assumption 2 is stronger than the assumption considered in [16]. Indeed, in [16] the authors
only assumed that the sum f , as opposed to the individual functions fj , has a block-Lipschitz
gradient, with constants L1, . . . , Ln. That is,

‖∇if(x+ Uit)−∇if(x)‖∗(i) ≤ Li‖t‖(i).

It is easy to see that if the stronger condition is satisfied, then the weaker one is also satisfied
with Li no worse than Li ≤

∑m
j=1 Lji.

2.2 New ESO

We now derive an ESO inequality for functions satisfying Assumption 2 and τ -nice sampling Ŝ.
That is, Ŝ is a random subset of [n] of cardinality τ , chosen uniformly at random. One can derive
similar bounds for all uniform samplings considered in [16] using the same approach.

Theorem 1. Let f satisfy Assumption 2.

(i) If Ŝ is a τ -nice sampling, then for all x, h ∈ RN ,

E
[
f(x+ h[Ŝ])

]
≤ f(x) +

τ

n

(
〈∇f(x), h〉+

1

2
‖h‖2v

)
, (10)

where

vi
def
=

m∑
j=1

βjLji =
∑
j:i∈Cj

βjLji, i = 1, 2, . . . , n, (11)

βj
def
= 1 +

(ωj − 1)(τ − 1)

max{1, n− 1}
, j = 1, 2, . . . ,m.

That is, (f, Ŝ) ∼ ESO(v).

(ii) Moreover, for all x, h ∈ RN we have

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+
ω̄L̄

2
‖h‖2w, (12)

where

ω̄
def
=
∑
j

ωj

∑
i Lji∑
k,i Lki

, L̄
def
=

∑
ji Lji

n
, wi

def
=

n∑
j,i ωjLji

∑
j

ωjLji. (13)

Note that ω̄ is a data-weighted average of the values {ωj} and that
∑
wi = n.

Proof. Statement (ii) is a special case of (i) for τ = n (notice that ω̄L̄w = v). We hence only need
to prove (i). A well known consequence of (8) is

fj(x+ Uit) ≤ fj(x) + 〈∇ifj(x), t〉+
Lji
2
‖t‖2(i), x ∈ RN , t ∈ RNi . (14)

6

We first claim that for all i and j,

E
[
fj(x+ h[Ŝ])

]
≤ fj(x) +

τ

n

(
〈∇fj(x), h〉+

βj
2
‖h‖2Lj:

)
, (15)

where Lj: = (Lj1, . . . , Ljn) ∈ Rn. That is, (fj , Ŝ) ∼ ESO(βjLj:). Equation (10) then follows by
adding up5 the inequalities (15) for all j. Let us now prove the claim.6 We fix x and define

f̂j(h)
def
= fj(x+ h)− fj(x)− 〈∇fj(x), h〉. (16)

Since

E
[
f̂j(h[Ŝ])

]
(16)
= E

[
fj(x+ h[Ŝ])− fj(x)− 〈∇fj(x), h[Ŝ]〉

]
(43)
= E

[
fj(x+ h[Ŝ])

]
− fj(x)− τ

n〈∇fj(x), h〉,

it now only remains to show that

E
[
f̂j(h[Ŝ])

]
≤ τβj

2n ‖h‖
2
Lj: . (17)

We now adopt the convention that expectation conditional on an event which happens with prob-

ability 0 is equal to 0. Let ηj
def
= |Cj ∩ Ŝ|, and using this convention, we can write

E
[
f̂j(h[Ŝ])

]
=

n∑
k=0

P(ηj = k)E
[
f̂j(h[Ŝ]) | ηj = k

]
. (18)

For any k ≥ 1 for which P(ηj = k) > 0, we now use use convexity of f̂j to write

E
[
f̂j(h[Ŝ]) | ηj = k

]
= E

 f̂j
 1
k

∑
i∈Cj∩Ŝ

kUih
(i)

 | ηj = k


≤ E

 1
k

∑
i∈Cj∩Ŝ

f̂j

(
kUih

(i)
)
| ηj = k


= 1

ωj

∑
i∈Cj

f̂j

(
kUih

(i)
)

(14)+(16)

≤ 1
ωj

∑
i∈Cj

Lji
2 ‖kh

(i)‖2(i) = k2

2ωj
‖h‖2Lj: (19)

where the second equality follows from Equation (41) in [16]. Finally,

E
[
f̂j(h[Ŝ])

] (19)+(18)

≤
∑
k

P(ηj = k) k2

2ωj
‖h‖2Lj: = 1

2ωj
‖h‖2Lj:E[|Cj ∩ Ŝ|2] =

τβj
2n ‖h‖

2
Lj: , (20)

where the last identity is Equation (40) in [16], and hence (17) is established.

5At this step we could have also simply applied Theorem 10 from [16], which give the formula for an ESO for a
conic combination of functions given ESOs for the individual functions. The proof, however, also amounts to simply
adding up the inequalities.

6This claim is a special case of Theorem 14 in [16] which gives an ESO bound for a sum of functions fj (here we
only have a single function). We include the proof as in this special case it more straightforward.

7

2.3 Computation of Lji

We now give a formula for the constants Lji in the case when fj arises as a composition of a scalar
function φj whose derivative has a known Lipschitz constant (this is often easy to compute), and
a linear functional. Let A be an m×N real matrix and for j ∈ {1, 2, . . . ,m} and i ∈ [n] define

Aji
def
= eTj AUi ∈ R1×Ni . (21)

That is, Aji is a row vector composed of the elements of row j of A corresponding to block i.

Theorem 2. Let fj(x) = φj(e
T
j Ax), where φj : R→ R is a function with Lφj -Lipschitz derivative:

|φj(s)− φj(s′)| ≤ Lφj |s− s
′|, s, s′ ∈ R. (22)

Then fj has a block Lipshitz gradient with constants

Lji = Lφj

(
‖ATji‖∗(i)

)2
, i = 1, 2, . . . , n. (23)

In other words, fj satisfies (8) with constants Lji given above.

Proof. For any x ∈ RN , t ∈ RNi and i we have

‖∇ifj(x+ Uit)−∇ifj(x)‖∗(i)
(4)
= ‖UTi (eTj A)Tφ′j(e

T
j A(x+ Uit))− UTi (eTj A)Tφ′j(e

T
j Ax)‖∗(i)

(21)
= ‖ATjiφ′j(eTj A(x+ Uit))−ATjiφ′j(eTj Ax)‖∗(i)
≤ ‖ATji‖∗(i)|φ

′
j(e

T
j A(x+ Uit))− φ′j(eTj Ax)|

(22)+(21)

≤ ‖ATji‖∗(i)Lφj |Ajit| ≤ ‖ATji‖∗(i)Lφj‖A
T
ji‖∗(i)‖t‖(i),

where the last step follows by applying the Cauchy-Schwartz inequality.

Example 1 (Quadratics). Consider the quadratic function

f(x) = 1
2‖Ax− b‖

2 = 1
2

m∑
j=1

(eTj Ax− bj)2.

Then fj(x) = φj(e
T
j Ax), where φj(s) = 1

2(s− bj)2 and Lφj = 1.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all i ∈ [n].
Then Lji = A2

ji. In Table 3 we list stepsizes for coordinate descent methods proposed in
the literature. It can be seen that our stepsizes are better than those proposed by Richtárik
& Takáč [16] and those proposed by Necoara & Clipici [7]. Indeed, vrt

i ≥ vfr
i for all i. The

difference grows as τ grows; and there is equality for τ = 1. We also have ‖vnc‖1 ≥ ‖vfr‖1,
but here the difference decreases with τ ; and there is equality for τ = n.

(ii) Choose nontrivial block sizes and define data-driven block norms with Bi = ATi Ai, where
Ai = AUi, assuming that the matrices ATi Ai are positive definite. Then

Lji = Lφj (‖A
T
ji‖∗(i))

2 (6)
= 〈(ATi Ai)−1ATji, A

T
ji〉

(21)
= eTj Ai(A

T
i Ai)

−1ATi ej .

Table 2 lists constants Lφ for selected scalar loss functions φ popular in machine learning.

8

Loss φ(s) Lφ

Square Loss 1
2s

2 1

Logistic Loss log(1 + es) 1/4

Table 2: Lipschitz constants of the derivative of selected scalar loss functions.

Paper vi

Richtárik & Takáč [16] vrt
i =

∑m
j=1

(
1 + (ω−1)(τ−1)

max{1,n−1}

)
A2
ji

Necoara & Clipici [7] vnc
i =

∑
j:i∈Cj

∑n
k=1A

2
jk

This paper vfr
i =

∑m
j=1

(
1 +

(ωj−1)(τ−1)
max{1,n−1}

)
A2
ji

Table 3: ESO stepsizes for coordinate descent methods suggested in the literature in the case of a quadratic
f(x) = 1

2
‖Ax− b‖2. We consider setup with elementary block sizes (Ni = 1) and Bi = 1.

3 Accelerated parallel coordinate descent

We are interested in solving the regularized optimization problem

minimize F (x)
def
= f(x) + ψ(x),

subject to x = (x(1), . . . , x(n)) ∈ RN1 × · · · ×RNn = RN ,
(24)

where ψ : RN → R ∪ {+∞} is a (possibly nonsmooth) convex regularizer that is separable in the
blocks x(i):

ψ(x) =
n∑
i=1

ψi(x
(i)). (25)

3.1 The algorithm

We now describe our method (Algorithm 1). It is presented here in a form that facilitates anal-
ysis and comparison with existing methods. In Section 5 we rewrite the method into a different
(equivalent) form – one that is geared towards practical efficiency.

The method starts from x0 ∈ RN and generates three vector sequences, {xk, yk, zk}k≥0. In
Step 3, yk is defined as a convex combination of xk and zk, which may in general be full dimensional
vectors. This is not efficient; but we will ignore this issue for now. In Section 5 we show that it is
possible to implement the method in such a way that it not necessary to ever form yk. In Step 4
we generate a random block sampling Sk and then perform steps 5–9 in parallel. The assignment

9

Algorithm 1 APPROX: Accelerated Parallel Proximal Coordinate Descent Method

1: Choose x0 ∈ RN and set z0 = x0 and θ0 = τ
n

2: for k ≥ 0 do
3: yk = (1− θk)xk + θkzk
4: Generate a random set of blocks Sk ∼ Ŝ
5: zk+1 = zk
6: for i ∈ Sk do

7: z
(i)
k+1 = arg minz∈RNi

{
〈∇if(yk), z − y

(i)
k 〉+ nθkvi

2τ ‖z − z
(i)
k ‖

2
(i) + ψi(z)

}
8: end for
9: xk+1 = yk + n

τ θk(zk+1 − zk)

10: θk+1 =

√
θ4k+4θ2k−θ

2
k

2
11: end for

zk+1 ← zk is not necessary in practice; the vector zk should be overwritten in place. Instead, Steps
5–8 should be seen as saying that we update blocks i ∈ Sk of zk, by solving |Sk| proximal problems
in parallel, and call the resulting vector zk+1. Note in Step 9, xk+1 should also be computed in
parallel. Indeed, xk+1 is obtained from yk by changing the blocks of yk that belong to Sk - this is
because zk+1 and zk differ in those blocks only. Note that gradients are evaluated only at yk. We
show in Section 5 how this can be done efficiently, for some problems, without the need to form yk.

We now formulate the main result of this paper.

Theorem 3. Let Assumption 1 hold, with (f, Ŝ) ∼ ESO(v), where τ = E[|Ŝ|] > 0. Let x0 ∈
domψ, and assume that the random sets Sk in Algorithm 1 are chosen independently, following
the distribution of Ŝ. Then for any optimal point x∗ of problem (24), the iterates {xk}k≥1 of
Algorithm 1 satisfy

E[F (xk)− F (x∗)] ≤
4n2

((k − 1)τ + 2n)2
C, (26)

where

C
def
=

(
1− τ

n

)
(F (x0)− F (x∗)) +

1

2
‖x0 − x∗‖2v. (27)

In other words, for any 0 < ε ≤ C, the number of iterations for obtaining an ε-solution in expecta-
tion does not exceed

k =

⌈
2n

τ

(√
C

ε
− 1

)
+ 1

⌉
. (28)

The proof of Theorem 3 can be found in Section 4. We now comment on the result:

1. Note that we do not assume that f be of the form (1); all that is needed is Assumption 1.

2. If n = 1, we recover Tseng’s proximal gradient descent algorithm [23]. If n > 1, τ = 1 and
ψ ≡ 0, we obtain a new version of (serial) accelerated coordinate descent [12, 4] for minimizing
smooth functions. Note that no existing accelerated coordinate descent methods are either
proximal, or parallel. Our method is both proximal and parallel.

10

3. In the case when we update all blocks in one iteration (τ = n), the bound (26) simplifies to

F (xk)− F (x∗) ≤
2‖v‖1n

(k + 1)2
‖x0 − x∗‖2ṽ, (29)

where as before, ṽ = nv/‖v‖1. There is no expectation here as the method is deterministic
in this case.

If we use stepsize v proposed in Theorem 1, then in view of part (ii) of that theorem, bound
(29) takes the form

F (xk)− F (x∗) ≤
2ω̄L̄

(k + 1)2
‖x0 − x∗‖2w, (30)

as advertised in the abstract. Recall that ω̄ is a data-weighted average of the values {ωj}.
In contrast, using the stepsizes proposed by Richtárik & Takáč [16] (see Table 3), we get

F (xk)− F (x∗) ≤
2ω

∑
i Li
n

(k + 1)2
‖x0 − x∗‖2ṽ. (31)

Note that in the case when the functions fj are convex quadratics (fj(x) = 1
2(aTj x − bj)2),

for instance, we have Li =
∑

j Lji, and hence the new ESO leads to a vast improvement in
the complexity in cases when ω̄ � ω. On he other hand, in cases where Li �

∑
j Lji (which

can happen with logistic regression, for instance), the result based on the Richtárik-Takáč
stepsizes [16] may be better.

4. Consider the smooth case (ψ ≡ 0): F = f and f ′(x∗) = 0. By part (ii) of Theorem 1, ∇f is
Lipschitz with constant 1 wrt ‖ · ‖w. Choosing x = x∗ and h = x0 − x∗, we get

f(x0)− f(x∗) ≤
1

2
‖x0 − x∗‖2w. (32)

Now, consider running Algorithm 1 with a τ -nice sampling and stepsize parameter v as in
Theorem 1. Letting d = (d1, . . . , dn), where di is defined by(

1− τ

n

)
wi + vi =

(
1− τ

n

)∑
j

ωjLji +
∑
j

βjLji ≤
∑
j

(ωj + 1)Lji
def
= di, (33)

we get

E[f(xk)− f(x∗)]
(26)+(32)

≤ 2n2

((k − 1)τ + 2n)2
‖x0 − x∗‖2(1− τ

n)w+v

(33)

≤ 2n2

((k − 1)τ + 2n)2
‖x0 − x∗‖2d

(11)+(13)

≤ 2n2(ω̄ + 1)L̄

((k − 1)τ + 2n)2
‖x0 − x∗‖2d̃,

where in the last step we have used the estimate ωj +βj − τωj
n ∈ [ωj , ωj + 1], and d̃ is a scalar

multiple of d for which ‖d̃‖1 = 1. Similarly as in (28), this means that

k ≥ k(τ)
def
= 1 +

n

τ

√
2(ω̄ + 1)L̄

ε
‖x0 − x∗‖d̃

11

iterations suffice to produce an ε-solution in expectation. Hence, we get linear speedup in
the number of parallel updates / processors. This is different from the situation in simple
(non-accelerated) parallel coordinate descent methods where parallelization speedup depends
on the degree of separability (speedup is better if ω is small). In APPROX, the average degree
of separability ω̄ is decoupled from τ , and hence one benefits from separability even for large
τ . This means that accelerated methods are more suitable for parallelization.

5. We focused on the case of uniform samplings, but with a proper change in the definition of
ESO, one can also handle non-uniform samplings [15].

4 Complexity analysis

We first establish four lemmas and then prove Theorem 3.

4.1 Lemmas

In the first lemma we summarize well-known properties of the sequence θk used in Algorithm 1.

Lemma 1 (Tseng [23]). The sequence {θk}k≥0 defined in Algorithm 1 is decreasing and satisfies
0 < θk ≤ 2

k+2n/τ ≤
τ
n ≤ 1 and

1− θk+1

θ2
k+1

=
1

θ2
k

. (34)

We now give an explicit characterization of xk as a convex combination of the vectors z0, . . . , zk.

Lemma 2. Let {xk, zk}k≥0 be the iterates of Algorithm 1. Then for all k ≥ 0 we have

xk =

k∑
l=0

γlkzl, (35)

where the coefficients γ0
k , γ

1
k , . . . , γ

k
k are non-negative and sum to 1. That is, xk is a convex com-

bination of the vectors z0, z1, . . . , zk. In particular, the constants are defined recursively in k by
setting γ0

0 = 1, γ0
1 = 0, γ1

1 = 1 and for k ≥ 1,

γlk+1 =


(1− θk)γlk, l = 0, . . . , k − 1,

θk(1− n
τ θk−1) + n

τ (θk−1 − θk), l = k,
n
τ θk, l = k + 1.

(36)

Moreover, for all k ≥ 0, the following identity holds

γkk+1 +
n− τ
τ

θk = (1− θk)γkk . (37)

Proof. We proceed by induction. First, notice that x0 = z0 = γ0
0z0. This implies that y0 = z0,

which in turn together with θ0 = τ
n gives x1 = y0 + n

τ θ0(z1 − z0) = z1 = γ0
1z0 + γ1

1z1. Assuming

12

now that (35) holds for some k ≥ 1, we obtain

xk+1
(Alg 1, step 9)

= yk +
n

τ
θk(zk+1 − zk)

(Alg 1, step 3)
= (1− θk)xk + θkzk −

n

τ
θkzk +

n

τ
θkzk+1 (38)

=

k−1∑
l=0

(1− θk)γlk︸ ︷︷ ︸
γlk+1

zl +
(

(1− θk)γkk + θk −
n

τ
θk

)
︸ ︷︷ ︸

γkk+1

zk +
(n
τ
θk

)
︸ ︷︷ ︸
γk+1
k+1

zk+1.

By applying Lemma 1, together with the inductive assumption that γlk ≥ 0 for all l, we observe
that γlk+1 ≥ 0 for all l. It remains to show that the constants sum to 1. This is true since xk is a
convex combination of z1, . . . , zk, and by (38), xk+1 is an affine combination of xk, zk and zk+1.

Define

z̃k+1
def
= arg min

z∈RN

{
ψ(z) + 〈∇f(yk), z − yk〉+

nθk
2τ
‖z − zk‖2v

}
(5)+(25)

= arg min
z=(z(1),...,z(n))∈RN

n∑
i=1

{
ψi(z

(i)) + 〈∇if(yk), z
(i) − y(i)

k 〉+
nθkvi

2τ
‖z(i) − z(i)

k ‖
2
(i)

}
.

From this and the definition of zk+1 we see that

z
(i)
k+1 =

{
z̃

(i)
k+1, i ∈ Sk
z

(i)
k , i 6∈ Sk.

(39)

The next lemma is an application to a specific function of a well-known result that can be found,
for instance, in [23]. The result was used by Tseng to construct a simplified complexity proof for
a proximal gradient descent method. This lemma requires the norms ‖ · ‖(i) to be Euclidean – and
this is the only place in our analysis where this is required.

Lemma 3 (Property 1 in [23]). Let ξ(u)
def
= f(yk) + 〈∇f(yk), u− yk〉+ nθk

2τ ‖u− zk‖
2
v. Then

ψ(z̃k+1) + ξ(z̃k+1) ≤ ψ(x∗) + ξ(x∗)−
nθk
2τ
‖x∗ − z̃k+1‖2v. (40)

Our next lemma is a technical result connecting the gradient mapping (producing z̃k+1) and
the stochastic block gradient mapping (producing the random vector zk+1). The lemma reduces to
a trivial identity in the case when of a single block (n = 1). From now on, by Ek we denote the
expectation with respect to Sk, keeping everything else fixed.

Lemma 4. For any x ∈ RN and k ≥ 0,

Ek
[
‖zk+1 − x‖2v − ‖zk − x‖2v

]
=
τ

n

(
‖z̃k+1 − x‖2v − ‖zk − x‖2v

)
. (41)

Moreover,

Ek [ψ(zk+1)] =
(

1− τ

n

)
ψ(zk) +

τ

n
ψ(z̃k+1). (42)

13

Proof. Let Ŝ be any uniform sampling and a, h ∈ RN . Theorem 4 in [16] implies that

E[‖h[Ŝ]‖
2
v] = τ

n‖h‖
2
v, E[〈a, h[Ŝ]〉v] = τ

n〈a, h〉v, E[ψ(a+ h[Ŝ])] =
(
1− τ

n

)
ψ(a) + τ

nψ(a+ h), (43)

where 〈a, h〉v
def
=
∑n

i=1 vi〈a(i), h(i)〉. Let h = z̃k+1 − zk. In view of (3) and (39), we can write

zk+1 − zk = h[Sk]. Applying the first two identities in (43) with a = zk − x and Ŝ = Sk, we get

Ek
[
‖zk+1 − x‖2v − ‖zk − x‖2v

]
= Ek

[
‖h[Sk]‖2v + 2〈zk − x, h[Sk]〉v

]
(43)
=

τ

n

(
‖h‖2v + 2〈zk − x, h〉v

)
=

τ

n

(
‖z̃k+1 − x‖2v − ‖zk − x‖2v

)
.

The remaining statement follows from the last identity in (43) used with a = zk.

4.2 Proof of Theorem 3

Using Lemma 2 and convexity of ψ, for all k ≥ 0 we have

ψ(xk)
(35)
= ψ

(
k∑
l=0

γlkzl

)
(convexity)

≤
k∑
l=0

γlkψ(zl)
def
= ψ̂k. (44)

From this we get

Ek[ψ̂k+1]
(44)+(36)

=

k∑
l=0

γlk+1ψ(zl) +
n

τ
θkEk [ψ(zk+1)]

(42)
=

k∑
l=0

γlk+1ψ(zl) +
n

τ
θk

((
1− τ

n

)
ψ(zk) +

τ

n
ψ(z̃k+1)

)
=

k∑
l=0

γlk+1ψ(zl) +
(n
τ
− 1
)
θkψ(zk) + θkψ(z̃k+1). (45)

Since xk+1 = yk + h[Sk] with h = n
τ θk(z̃k+1 − zk), we can use ESO to bound

Ek[f(xk+1)]
(7)

≤ f(yk) + θk〈∇f(yk), z̃k+1 − zk〉+
nθ2

k

2τ
‖z̃k+1 − zk‖2v

= (1− θk)f(yk)− θk〈∇f(yk), zk − yk〉

+θk

(
f(yk) + 〈∇f(yk), z̃k+1 − yk〉+

nθk
2τ
‖z̃k+1 − zk‖2v

)
. (46)

Note that from the definition of yk in the algorithm, we have

θk(yk − zk) = ((1− θk)xk − yk) + θkyk = (1− θk)(xk − yk). (47)

For all k ≥ 0 we define an upper bound on F (xk),

F̂k
def
= ψ̂k + f(xk)

(44)

≥ F (xk), (48)

and bound the expectation of F̂k+1 in Sk as follows:

14

Ek[F̂k+1] = Ek[ψ̂k+1] + Ek[f(xk+1)]

(45)+(46)

≤
k∑
l=0

γlk+1ψ(zl) +
n− τ
τ

θkψ(zk) + (1− θk)f(yk)− θk〈∇f(yk), zk − yk〉

+θk

(
ψ(z̃k+1) + f(yk) + 〈∇f(yk), z̃k+1 − yk〉+

nθk
2τ
‖z̃k+1 − zk‖2v

)
(40)

≤
k∑
l=0

γlk+1ψ(zl) +
n− τ
τ

θkψ(zk) + (1− θk)f(yk)− θk〈∇f(yk), zk − yk〉

+θk

(
ψ(x∗) + f(yk) + 〈∇f(yk), x∗ − yk〉+

nθk
2τ
‖x∗ − zk‖2v −

nθk
2τ
‖x∗ − z̃k+1‖2v

)
(47)
=

k−1∑
l=0

γlk+1︸︷︷︸
(36)
= (1−θk)γlk

ψ(zl) +

(
γkk+1 +

n− τ
τ

θk

)
︸ ︷︷ ︸

(37)
= (1−θk)γkk

ψ(zk)

+ (1− θk)f(yk) + (1− θk)〈∇f(yk), xk − yk〉︸ ︷︷ ︸
≤(1−θk)f(xk)

+θk

(
ψ(x∗) + f(yk) + 〈∇f(yk), x∗ − yk〉︸ ︷︷ ︸

≤F (x∗)

+
nθk
2τ
‖x∗ − zk‖2v −

nθk
2τ
‖x∗ − z̃k+1‖2v

)
(44)+(48)

≤ (1− θk)F̂k + θkF (x∗) +
nθ2

k

2τ

(
‖x∗ − zk‖2v − ‖x∗ − z̃k+1‖2v

)
(41)
= (1− θk)F̂k + θkF (x∗) +

n2θ2
k

2τ2

(
‖x∗ − zk‖2v −Ek

[
‖x∗ − zk+1‖2v

])
. (49)

After dividing both sides of (49) by θ2
k, using (34), and rearranging the terms, we obtain

1− θk+1

θ2
k+1

Ek[F̂k+1 − F (x∗)] +
n2

2τ2
Ek[‖x∗ − zk+1‖2v] ≤

1− θk
θ2
k

(F̂k − F (x∗)) +
n2

2τ2
‖x∗ − zk‖2v.

We now apply total expectation to the above inequality and unroll the recurrence for l between
0 and k, obtaining

1− θk
θ2
k

E[F̂k − F (x∗)] +
n2

2τ2
E[‖x∗ − zk+1‖2v] ≤

1− θ0

θ2
0

(F̂0 − F (x∗)) +
n2

2τ2
‖x∗ − z0‖2v, (50)

from which we finally get for k ≥ 1,

E[F (xk)− F (x∗)]
(48)

≤ E[F̂k − F (x∗)]

(50)

≤
θ2
k−1

θ2
0

(1− θ0)(F̂0 − F (x∗)) +
n2θ2

k−1

2τ2
‖x∗ − z0‖2v

≤ 4n2

((k − 1)τ + 2n)2

((
1− τ

n

)
(F (x0)− F (x∗)) +

1

2
‖x0 − x∗‖2v

)
,

where in the last step we have used the facts that F̂0 = F (x0), x0 = z0, θ0 = τ
n and the estimate

θk−1 ≤ 2
k−1+2n/τ from Lemma 1.

15

5 Implementation without full-dimensional vector operations

Algorithm 1, as presented, performs full-dimensional vector operations. Indeed, yk is defined as a
convex combination of xk and zk. Also, xk+1 is obtained from yk by changing |Sk| coordinates;
however, if |Sk| is small, the latter operation is not costly. In any case, vectors xk and zk will
in general be dense, and hence computation of yk may cost O(N) arithmetic operations. How-
ever, simple (i.e., non-accelerated) coordinate descent methods are successful and popular precisely
because they can avoid such operations.

Borrowing ideas from Lee & Sidford [4], we rewrite7 Algorithm 1 into a new form, incarnated
as Algorithm 2. Note that the notation z̃k used here has a different meaning than in the previous
section.

Algorithm 2 APPROX (written in a form facilitating efficient implementation)

1: Pick z̃0 ∈ RN and set θ0 = τ
n , u0 = 0

2: for k ≥ 0 do
3: Generate a random set of blocks Sk ∼ Ŝ
4: uk+1 ← uk, z̃k+1 ← z̃k
5: for i ∈ Sk do

6: t
(i)
k = arg mint∈RNi

{
〈∇if(θ2

kuk + z̃k), t〉+ nθkvi
2τ ‖t‖

2
(i) + ψi(z̃

(i)
k + t)

}
7: z̃

(i)
k+1 ← z̃

(i)
k + t

(i)
k

8: u
(i)
k+1 ← u

(i)
k −

1−n
τ
θk

θ2k
t
(i)
k

9: end for

10: θk+1 =

√
θ4k+4θ2k−θ

2
k

2
11: end for
12: OUTPUT: θ2

kuk+1 + z̃k+1

Note that if instead of updating the constants θk as in line 10 we keep them constant throughout,
θk = τ

n , then uk = 0 for all k. The resulting method is precisely the PCDM algorithm (non-
accelerated parallel block-coordinate descent method) proposed and analyzed in [16].

As it is not immediately obvious that the two methods(Algorithms 1 and 2) are equivalent, we
include the following result. Its proof can be found in the appendix.

Proposition 1 (Equivalence). Run Algorithm 2 with z̃0 = x0, where x0 ∈ domψ is the starting
point of Algorithm 1. If we define

x̃k =

{
z̃0, k = 0,

θ2
k−1uk + z̃k, k ≥ 1,

(51)

and
ỹk = θ2

kuk + z̃k, k ≥ 0, (52)

then xk = x̃k, yk = ỹk and zk = z̃k for all k ≥ 0. That is, Algorithms 1 and 2 are equivalent.

Note that in Algorithm 2 we never need to form xk throughout the iterations. The only time
this is needed is when producing the output: xk+1 = θ2

kuk+1 + zk+1. More importantly, note that

7Note that we override the notation z̃k here – it now has a different meaning from that in Section 4.

16

the method does need to explicitly compute yk. Instead, we introduce a new vector, uk, and express
yk as yk = θ2

kuk + z̃k. Note that the method accesses yk only via the block-gradients ∇if(yk) for
i ∈ Sk. Hence, if it is possible to cheaply compute these gradients without actually forming yk, we
can avoid full-dimensional operations.

We now show that this can be done for functions f of the form (2), where fj is as in Theorem 2:

f(x) =
∑m

j=1 φj(e
T
j Ax). (53)

Let Di be the set of such j for which Aji 6= 0. If we write ruk = Auk and rz̃k = Az̃k, then using
(53) we can write

∇if(θ2
kuk + z̃k) =

∑
j∈Di A

T
jiφ
′
j(θ

2
kr
j
uk + rjz̃k). (54)

Assuming we store and maintain the residuals ruk and rz̃k , the computation of the product
ATjiφ

′
j(·) costsO(Ni) (we assume that the evaluation of the univariate derivative φ′j takesO(1) time),

and hence the computation of the block derivative (54) requires O(|Di|Ni) arithmetic operations.
Hence on average, computing all block gradients for i ∈ Sk will cost

C = E
[∑

i∈Ŝ O(|Di|Ni)
]

= τ
n

∑n
i=1O(|Di|Ni).

This will be small if |Di| are small and τ is small. For simplicity, assume all blocks are of equal
size, Ni = b = N/n. Then

C = bτ
n ×O (

∑n
i=1 |Di|) = bτ

n ×O
(∑m

j=1 ωj

)
= bτm

n O(ω̄) = τ ×O
(
bmω̄
n

)
.

It can be easily shown that the maintenance of the residual vectors ruk and rz̃k takes the same
amount of time (C) and hence the total work per iteration is C. In many practical situations,
m ≤ n, and often m � n (we focus on this case in the paper since usually this corresponds to f
not being strongly convex) and ω̄ = O(1). This then means that C = τ × O(b). That is, each of
the τ processors do work proportional to the size of a single block per iteration.

The favorable situation described above is the consequence of the block sparsity of the data
matrix A and does not depend on φj insofar as the evaluation of its derivative takes O(1) work.
Hence, it applies to convex quadratics (φj(s) = s2), logistic regression (φj(r) = log(1 + exp(s)))
and also to the smooth approximation fµ(x) of f(x) = ‖Ax− b‖1, defined by

fµ(x) =
m∑
j=1

‖eTj A‖∗w∗ψµ

(
|eTj Ax− bj |
‖eTj A‖∗v

)
, ψµ(t) =

{
t2

2µ , 0 ≤ t ≤ µ,
t− µ

2 , µ ≤ t,

with smoothing parameter µ > 0, as considered in [11, 3]. Vector w∗ is as defined in [3]; ‖ · ‖v is a
weighted norm in Rm.

6 Numerical experiments

In all tests we used a shared-memory workstation with 32 Intel Xeon processors at 2.6 GHz and
128 GB RAM. In the experiments, we have departed from the theory in two ways: i) our implemen-
tation of APPROX is asynchronous in order to limit communication costs, and ii) we approximated
the τ -nice sampling by a τ -independent sampling as in [16] (the latter is very easy to generate in
parallel; please note that our analysis can be very easily extended to cover the τ -independent sam-
pling). For simplicity, in all tests we assume all blocks are of size 1 (Ni = 1 for all i). However,
further speedups can be obtained by working with larger block sizes as then each processor is better
utilized.

17

6.1 The effect of new stepsizes

In this experiment, we compare the performance of the new stepsizes (introduced in Section 2.2)
with those proposed in [16] (see Table 3). We generated random instances of the L1-regularized
least squares problem (LASSO),

f(x) =
1

2
‖Ax− b‖2, ψ(x) = λ‖x‖1,

with various distributions of the separability degrees ωj (= number of nonzero elements on the
jth row of A) and studied the weighted distance to the optimum ‖x∗ − x0‖v for the initial point
x0 = 0. This quantity appears in the complexity estimate (28) and depends on τ (the number of
processors). We chose a random matrix of small size: N = m = 1000 as this is sufficient to make
our point, and consider τ ∈ {10, 100, 1000}.

In particular, we consider three different distributions of {ωj}: uniform, intermediate and ex-
treme. The results are summarized in Table 4. First, we generated a uniformly sparse matrix
with ωj = 30 for all j. In this case, vfr = vrt, and hence the results are the same. We then
generated an intermediate instance, with ωj = 1 + b30j2/m2c. The matrix has many rows with a
few nonzero elements and some rows with up to 30 nonzero elements. Looking at the table, clearly,
the new stepsizes are better. The improvement is moderate when there are a few processors, but
for τ = 1000, the complexity is 25% better. Finally, we generated a rather extreme matrix with
ω1 = 500 and ωj = 3 for j > 1. We can see that the new stepsizes are much better, even with few
processors, and can lead to 5× speedup.

Uniform Intermediate Extreme
τ ‖x∗‖vfr ‖x∗‖vrt ‖x∗‖vfr ‖x∗‖vrt ‖x∗‖vfr ‖x∗‖vrt

10 10.82 10.82 6.12 6.43 2.78 5.43

100 19.00 19.00 9.30 11.38 4.31 16.08

1000 52.49 52.49 24.00 31.78 11.32 50.52

Table 4: Comparison of ESOs in the uniform case

In the experiments above, we have first fixed a sparsity pattern and then generated a random
matrix A based on it. However, much larger differences can be seen for special matrices A. We
shall now comment on this.

Consider the case τ = n. In view of (29), the complexity of APPROX is proportional to
‖v‖1. Fix ω and ω1, . . . , ωj and let us ask the question: for what data matrix A will the ratio
θ = ‖vrt‖1/‖vfr‖1 be maximized? Since ‖vrt‖1 = ω

∑
j ‖Aj:‖2 and ‖vfr‖1 =

∑
j ωj‖Aj:‖2, we the

maximal ratio is given by

max
A

θ
def
= max

α≥0

ω
m∑
j=1

αj :

m∑
j=1

ωjαj ≤ 1

 = max
j

ω

ωj
.

The extreme case is attained for some matrix with at least one dense row (ωj) and one maximally
sparse row (ωj = 1), leading to θ = n. So, there are instances for which the new stesizes can lead
to an up to n× speedup for APPROX when compared to the stepsizes vrt. Needless to say, these
extreme instances are artificially constructed.

18

0 50 100 150 200
0

100

200

300

400

500

600

700

800

time (s)

||A
x−

b|
| 1+

λ
||x

|| 1

Figure 1: Comparison of four algorithms for L1 regularized L1 regression on the dorothea dataset: gradient method
(dotted black line), accelerated gradient method ([11], dash-dotted red line), smoothed parallel coordinate descent
method (SPCDM [3], dashed green line) and APPROX with stepsizes vfr (solid blue line).

6.2 L1-regularized L1 regression

We consider the data given in the dorothea dataset [13]. It is a sparse moderate-sized feature
matrix A with m=800, N=100,000, ω=6,061 and a vector b ∈ Rm. We wish to find x ∈ RN that
minimizes

‖Ax− b‖1 + λ‖x‖1
with λ = 1. Because the objective is nonsmooth and non-separable, we apply the smoothing
technique presented in [11] for the first part of the objective and use the smoothed parallel coor-
dinate descent method proposed in [3] (this methods needs special stepsizes which are studied in
that paper). The level of smoothing depends on the expected accuracy: we chose ε = 0.1, which
corresponds to 0.0125% of the initial value.

We compared 4 algorithms (see Figure 1), all run with 4 processors. As one can see, the
coordinate descent method is very efficient on this problem. However, the accelerated coordinate
descent is still able to outperform it. As the problem is of small size (which is sufficient for the
sake of comparison), we could compute the optimal solution using an interior point method for
linear programming and compare the value at each iteration to the optimal value (Table 5). Each
line of the table gives the time needed by APPROX and PCDM to reach a given accuracy target.
In the beginning (until F (xk) − F (x∗) < 6.4), the algorithms are in a transitional phase. Then,
when one runs the algorithm twice as long, F (xk)−F (x∗) is divided by 2 for SPCDM and by 4 for
APPROX. This highlights the difference in the convergence speeds: O(1/k) compared to O(1/k2).
As a result, APPROX gives an ε-solution in 156.5 seconds while SPCDM has not finished yet after
2000 seconds.

6.3 Lasso

We now consider L1 regularized least squares regression on the KDDB dataset [13]. It consists of a
medium size sparse feature matrix A with m = 29, 890, 095, N = 19, 264, 097 and ω = 75, and a

19

F (xk)− F (x∗) APPROX SPCDM

409.6 0.2 s 0.2 s
204.8 0.3 s 0.4 s
102.4 1.0 s 2.3 s
51.2 2.2 s 8.8 s
25.6 4.5 s 29.2 s
12.8 8.3 s 93.4 s
6.4 14.4 s 246.6 s
3.2 22.8 s 562.3 s
1.6 34.4 s 1082.1 s
0.8 50.1 s 1895.3 s
0.4 71.8 s >2000 s
0.2 103.4 s >2000 s
0.1 156.5 s >2000 s

Table 5: Comparison of objective decreases for APPROX and smoothed parallel coordinate descent (SPCDM) on
a problem with F (x) = ‖Ax− b‖1 + λ‖x‖1.

vector b ∈ Rm. We wish to find x ∈ RN that minimizes

F (x) =
1

2
‖Ax− b‖2 + λ‖x‖1

with λ = 1.
We compare APPROX (Algorithm 2) with the (non-accelerated) parallel coordinate descent

method (PCDM [16]) in Figure 2, both run with τ = 16 processors.
Both algorithms converge quickly. PCDM is faster in the beginning because each iteration is

half as expensive. However, APPROX is faster afterwards. For this problem, the optimal value is
not known so it is difficult to compare the actual accuracy.

Let us remark that an important feature of the L1-regularization is that it promotes sparsity
in the optimization variable x. As APPROX only involves proximal steps on the z variable, only
zk is encouraged to be sparse but not xk, yk or uk. A possible way to obtain a sparse solution with
APPROX is to first compute xk and then post-process with a few iterations of a sparsity-oriented
method (such as iterative hard thresholding, full proximal gradient descent or cyclic/randomized
coordinate descent).

6.4 Training linear support vector machines

Our last experiment is the dual of Support Vector Machine problem [18]. For the dual SVM, the
coordinates correspond to examples.

We use the Malicious URL dataset [13] with data matrix A of size m = 2, 396, 130, N =
3, 231, 961 and a vector b ∈ RN . Here ω = n (and hence the data set is not particularly suited for
parallel coordinate descent methods) but the matrix is still sparse (nnz=277, 058, 644� mn).

We wish to find x ∈ [0, 1]N that minimizes

F (x) =
1

2λN2

m∑
j=1

(
N∑
i=1

biAjixi

)2

− 1

N

N∑
i=1

xi + I[0,1]N (x),

20

0 200 400 600 800 1000

7.4

7.6

7.8

8

8.2

8.4

x 10
5

time (s)

0.
5

||A
x−

b|
|2 2+

λ
||x

|| 1

Figure 2: Comparison of PCDM and APPROX for l1 regularized least squares on the kddb dataset. As the decrease
is very big in the first seconds (from 8.3 108 to 8.5 105), we present a zoom for 7.3 ≤ F (x) ≤ 8.5. Randomized
coordinate descent [16]: dashed green line. Accelerated coordinate descent (Algorithm 2): solid blue line.

Duality gap APPROX SDCA

0.0256 33 s 26 s
0.0128 59 s 97 s
0.0064 91 s 206 s
0.0032 137 s 310 s
0.0016 182 s 452 s
0.0008 273 s 606 s
0.0004 407 s 864 s
0.0002 614 s 1148 s
0.0001 954 s 1712 s

Table 6: Decrease of the duality gap for accelerated parallel coordinate descent (APPROX) and stochastic dual
coordinate ascent (SDCA).

with λ = 1/N . We compare APPROX (Algorithm 2) with Stochastic Dual Coordinate Ascent
(SDCA [18, 21]); the results are in Figure 3. We have used a single processor only (τ = 1).

For this problem, one can recover a primal solution [18] and thus we can compare the decrease
in the duality gap; summarized in Table 6. One can see that APPROX is about twice as fast as
SDCA on this instance.

21

0 200 400 600 800 1000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0x 10
−3

time (s)

D
(x

)

Figure 3: Comparison of PCDM and APPROX for the dual of the Support Vector Machine problem on the Malicious
URL dataset. Randomized coordinate descent [16]: dashed green line. Accelerated coordinate descent (Algorithm 2):
solid blue line.

7 Conclusion

In summary, we proposed APPROX: a stochastic coordinate descent method combining the follow-
ing four acceleration strategies:

1. Our method is accelerated, i.e., it achieves a O(1/k2) convergence rate. Hence, the method is
better able to obtain a high-accuracy solution on non-strongly convex problem instances.

2. Our method is parallel. Hence, it is able to better utilize modern parallel computing archi-
tectures and effectively taming the problem dimension n.

3. We have proposed new longer stepsizes for faster convergence on functions whose degree of
separability ω is larger than their degree of separability ω̄.

4. We have shown that our method can be implemented without the need to perform full-
dimensional vector operations.

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[2] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate
descent for L1-regularized loss minimization. In 28th International Conference on Machine
Learning, 2011.

[3] Olivier Fercoq and Peter Richtárik. Smooth minimization of nonsmooth functions by parallel
coordinate descent. arXiv:1309.5885, 2013.

22

[4] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. arXiv:1305.1922, 2013.

[5] Dennis Leventhal and Adrian S. Lewis. Randomized methods for linear constraints: Conver-
gence rates and conditioning. Mathematics of Operations Research, 35(3):641–654, 2010.

[6] Ji Liu, Stephen J. Wright, Christopher Ré, and Victor Bittorf. An asynchronous parallel
stochastic coordinate descent algorithm. arXiv:1311.1873, 2013.

[7] Ion Necoara and Dragos Clipici. Distributed coordinate descent methods for composite mini-
mization. Technical report, University Politehnica Bucharest, 2013.

[8] Ion Necoara and Dragos Clipici. Efficient parallel coordinate descent algorithm for convex
optimization problems with separable constraints: application to distributed mpc. Journal of
Process Control, 23:243–253, 2013.

[9] Ion Necoara, Yurii Nesterov, and Francois Glineur. Efficiency of randomized coordinate de-
scent methods on optimization problems with linearly coupled constraints. Technical report,
Politehnica University of Bucharest, 2012.

[10] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[11] Yurii Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

[12] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[13] John C Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola,
editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, 1999.
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.

[14] Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learning with
big data. arXiv:1310.2059, 2013.

[15] Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent
methods. arXiv:1310.3438, 2013.

[16] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimiza-
tion problems. arXiv:1212.0873, 2012.

[17] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate de-
scent methods for minimizing a composite function. Mathematical Programming, Ser. A (doi:
10.1007/s10107-012-0614-z), preprint: April 2011.

[18] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for `1-regularized loss minimiza-
tion. Journal of Machine Learning Research, 12:1865–1892, 2011.

23

[19] Shai Shalev-Shwartz and Tong Zhang. Proximal stochastic dual coordinate ascent. Technical
report, 2012.

[20] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. arXiv:1309.2375, 2013.

[21] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal and dual
methods for SVMs. In 30th International Conference on Machine Learning, 2013.

[22] Rachael Tappenden, Peter Richtárik, and Jacek Gondzio. Inexact block coordinate descent
method: complexity and preconditioning. arXiv:1304.5530, 2013.

[23] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. Sub-
mitted to SIAM Journal on Optimization, 2008.

[24] Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for lasso penalized regres-
sion. The Annals of Applied Statistics, 2(1):224–244, 2008.

[25] Lin Xiao and Zhaosong Lu. On the complexity analysis of randomized block-coordinate descent
methods. arXiv:1305.4723, 2013.

A Proof of Proposition 1 (equivalence)

It is straightforward to see that x0 = y0 = z0 = x̃0 = ỹ0 = z̃0 and hence the statement holds for

k = 0. By induction, assume it holds for some k. Note that for i /∈ Sk, z̃
(i)
k+1 = z̃

(i)
k = z

(i)
k = z

(i)
k+1.

If i ∈ Sk, then

z̃
(i)
k+1 = z̃

(i)
k + t

(i)
k , (55)

where

t
(i)
k = arg min

t∈RNi

{
〈∇if(θ2

kuk + z̃k), t〉+
nθkvi

2τ
‖t‖2(i) + ψi(z̃

(i)
k + t)

}
(52)
= arg min

t∈RNi

{
〈∇if(ỹk), t〉+

nθkvi
2τ
‖t‖2(i) + ψi(z̃

(i)
k + t)

}
= arg min

t∈RNi

{
〈∇if(yk), t〉+

nθkvi
2τ
‖t‖2(i) + ψi(z

(i)
k + t)

}
= −z(i)

k + arg min
z∈RNi

{
〈∇if(yk), z − z

(i)
k 〉+

nθkvi
2τ
‖z − z(i)

k ‖
2
(i) + ψi(z)

}
= −z(i)

k + arg min
z∈RNi

{
〈∇if(yk), z − y

(i)
k 〉+

nθkvi
2τ
‖z − z(i)

k ‖
2
(i) + ψi(z)

}
= −z(i)

k + z
(i)
k+1. (56)

Combining (55) with (56), we get z̃
(i)
k+1 = z̃

(i)
k − z

(i)
k + z

(i)
k+1 = z

(i)
k+1. Further, combining the two

cases(i ∈ Sk and i /∈ Sk), we arrive at
z̃k+1 = zk+1. (57)

24

Now looking at the steps of Algorithm 2, we see that

uk+1 − uk = −
1− n

τ θk

θ2
k

(z̃k+1 − z̃k), (58)

and can thus write

x̃k+1
(51)
= θ2

kuk+1 + z̃k+1

(58)
= θ2

k

(
uk −

1− n
τ θk

θ2
k

(z̃k+1 − z̃k)
)

+ z̃k+1

= θ2
kuk + z̃k +

n

τ
θk(z̃k+1 − z̃k)

(52)
= ỹk +

n

τ
θk(z̃k+1 − z̃k)

(57)
= yk +

n

τ
θk(zk+1 − zk)

= xk+1. (59)

Finally,

ỹk+1
(52)
= θ2

k+1uk+1 + z̃k+1

(51)
=

θ2
k+1

θ2
k

(x̃k+1 − z̃k+1) + z̃k+1

(34)
= (1− θk+1)(x̃k+1 − z̃k+1) + z̃k+1

(57)+(59)
= (1− θk+1)(xk+1 − zk+1) + zk+1

= yk+1,

which concludes the proof.

25

	1 Introduction
	2 Stepsizes for parallel coordinate descent methods
	2.1 New model
	2.2 New ESO
	2.3 Computation of Lji

	3 Accelerated parallel coordinate descent
	3.1 The algorithm

	4 Complexity analysis
	4.1 Lemmas
	4.2 Proof of Theorem ??

	5 Implementation without full-dimensional vector operations
	6 Numerical experiments
	6.1 The effect of new stepsizes
	6.2 L1-regularized L1 regression
	6.3 Lasso
	6.4 Training linear support vector machines

	7 Conclusion
	A Proof of Proposition ?? (equivalence)

