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On the Robust Optimal Stopping Problem *'

Erhan Bayraktar®® | Song Yaof

Abstract

We study a robust optimal stopping problem with respect to a set P of mutually singular probabilities. This
can be interpreted as a zero-sum controller-stopper game in which the stopper is trying to maximize its pay-off
while an adverse player wants to minimize this payoff by choosing an evaluation criteria from P. We show that
the upper Snell envelope Z of the reward process Y is a supermartingale with respect to an appropriately defined
nonlinear expectation &, and Z is further an & —martingale up to the first time 7* when Z meets Y. Consequently,
7% is the optimal stopping time for the robust optimal stopping problem and the corresponding zero-sum game
has a value. Although the result seems similar to the one obtained in the classical optimal stopping theory, the
mutual singularity of probabilities and the game aspect of the problem give rise to major technical hurdles, which
we circumvent using some new methods.

Keywords: robust optimal stopping, zero-sum game of control and stopping, volatility uncertainty, dy-
namic programming principle, Snell envelope, nonlinear expectation, weak stability under pasting, path-dependent
stochastic differential equations with controls.
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Robust Optimal Stopping Problem

A Appendix: Technical Lemmata @

1 Introduction

We solve a continuous-time robust optimal stopping problem with respect to a non-dominated set P of mutually
singular probabilities on the canonical space ) of continuous paths. This optimal stopping problem can also be
interpreted as a zero-sum controller-stopper game in which the stopper is trying to maximize its pay-off while an
adverse player wants to minimize this payoff by choosing an evaluation criteria from P. In our main result, Theorem
5.1l we construct an optimal stopping time and show that the corresponding game has a value. More precisely, we
obtain that

inf Ep|Y;| = inf Ep|Y;«| = inf Ep|Y:|. 1.1
sup nf Be[Yr] = inf Be (Y] = fnf sup Bz (Y] (1)
Here 7 denotes the set of all stopping times with respect to the natural filtration F of the canonical process B, Y
is an F—adapted RCLL (cadlag) process satisfying an one-sided uniform continuity condition (see (81))), and 7* is

the first time Y meets its upper Snell envelope Z;(w) := irtf : sup Ep[Y+], (t,w) € [0,T] x Q. (Please refer to
PeP(t,w) rcTt

Section 2 for the definition of the shifted process Y*«.)
The proof of this result turns out to be quite technical for three reasons. First, since the probability set P
does not admit a dominating probability, there is no dominated convergence theorem for the nonlinear expectation

&) (w) == . 7i)n(f )IEP[~], (t,w) € [0,T] x Q. So we can not follow techniques similar to the ones used in the classical
ceP(t,w

theory of optimal stopping due to El Karoui [I4] to obtain the martingale property of the upper Snell envelope Z.
Second, we do not have a measurable selection theorem for stopping strategies, which complicates the proof of the
dynamic programming principle. Moreover, the local approach that used comparison principle of viscosity solutions
to show the existence of game value (see e.g. [15] and [I]) does not work for our path-dependent set-up.

In Theorem[5.1] we demonstrate that Z is an & —supermartingale, and an & —martingale up to 7*, the first time Z
meets Y, from which (LT]) immediately follows. To prove this theorem, we use a more global approach rather than the
local approach. We start with a dynamic programming principle (DPP), see Proposition [£1] whose “super-solution”
part is technically difficult due to the lack of measurable selection for stopping times. We overcome this issue by using
a countable dense subset of T to construct a suitable approximation. This dynamic programming result is used to
show the continuity of the upper Snell envelope, which plays an important role in the main theorem as our results
heavily rely on construction of approximating stopping times for 7*. However the dynamic programming principle
directly enters the proof of Theorem 5.1l to show the supermartingale property of Z only after we upgrade the super
side of the DPP for random transit horizons in Proposition [£3l We would like to emphasize that the submartingale
property of the upper Snell envelope Z until 7* does not directly follow from the dynamic programming principle.
Instead, we build a delicate approximation scheme that involves carefully pasting probabilities and leveraging the
martingale property of the single-probability Snell envelopes until they meet Y.

Let us say a few words about our assumptions. It should not come us a surprise that as a function of (¢,w), the
probability set P(t,w) needs to be adapted. The most important assumption on the probability class

{P(t,w)} w0, 150

is the weak stability under pasting, see (P2) in Section[Bl It is hard to envision that a dynamic programming result
could hold without a stability under pasting assumption. This assumption along with the aforementioned continuity
assumption (BI) on Y (the regularity assumptions on the reward are common and can be verified for example of
pay-offs of all financial derivatives) allows us to construct approximate strategies for the controller by appropriately
choosing its conditional distributions. Our stability assumption is weaker than its counterpart in Ekren, Touzi and
Zhang [13]; see for example our Remark B4l for a further discussion. We show in Section [f] that this assumption
(along with other assumptions we make on the probability class) are satisfied for some path-dependent SDEs with
controls, which represents a large class of models on simultaneous drift and volatility uncertainty. (A stronger stabil-
ity assumption as in [I3] leads to results which is applicable only for volatility uncertainty.) We see Section [ as one
of the main contributions of our paper, which we dedicate almost half our paper to. Another assumption we make
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on the probability class is that the augmentation of the filtration generated by the canonical process with respect
to each probability in the class is right-continuous. This is because, as mentioned above, we exploit the results from
the classic optimal stopping theory on the martingale property of the Snell envelopes for a given probability. Again
the example in Section [0 is shown to satisfy this assumption.

Relevant Literature. Since the seminal work [35], the martingale approach was extensively used in optimal stopping
theory (see e.g. [26], [14], Appendix D of [20]) and has been applied to various problems stemming from mathematical
finance, the most important example of which is the computation of the super hedging price of the American
contingent claims [6], [17] 18] 22]. Optimal stopping under Knightian uncertainty /nonlinear expectations/risk measures
or the closely related controller-stopper-games have attracted a lot of attention in the recent years: [23] 24 [16], [8] O]
32, 2, 3, 4, B 7, 25]. In this literature, the set of probabilities is assumed to be dominated by a single probability or
the controller is only allowed to influence the drift.

When the set of probabilities contain mutually singular probabilities or the controller can influence not only the
drift but also the volatility, results are available only in some particular cases. Karazas and Sudderth [21] considered
the controller-stopper-game in which the controller is allowed to control the volatility as well as the drift and resolved
the saddle point problem for case of one-dimensional state variable using the characterization of the value function
in terms of the scale function of the state variable. In the multi-dimensional case [I] showed the existence of the
value of a game using a comparison principle for viscosity solutions.

Our technical set-up follows closely that of [I3] which analyzed a control problem with discretionary stopping

(i.e., sup sup Ep[Y;]) in a non-Markovian framework with mutually singular probability priors. (The solution of
TeT PeP
this problem was an important technical step in extending the notion of viscosity solutions to the fully nonlinear

path-dependent PDEs in [11] and [12].) Nutz and Zhang [29] independently and around the same time addressed
the problem we are considering by using a different (and an elegant) approach: They exploited the “tower property”
of the nonlinear expectation & developed in [28] to derive the &-martingale property of the discrete time version

of the lower Snell envelope Z,(w) := sup iI}f )IEP [Y}“}, (t,w) € [0,T] x Q. In contrast, we take an approach
reTt PEP(t,w

we consider to be very natural: We work with the upper Snell envelope and build our approximations directly in
continuous time leveraging the known results from the classical optimal stopping theory. In their introduction, [29]
states that they can not work on upper Snell envelope due to the measurability selection issue; see paragraph 3 on
page 3 of their paper. Our paper overcomes this issue. A major benefit of our approach is that we do not have
to assume that the reward process is bounded since we do not have to rely on the approximation from discrete to
continuous time. Another benefit is the weaker continuity assumption we impose on the value function in the path;
compare Assumptions 1] in our paper and Assumption 3.2 in [29]. The latter requires the value of any stopping
strategy to be continuous with the same modulus of continuity, which is an assumption that is not easily verifiable.
One strong suit of [29] is the saddle point analysis.

The rest of the paper is organized as follows: In Section [2] we will introduce notations and some preliminary
results such as the regular conditional probability distribution. In Section Bl we set-up the stage for our main
result by imposing some assumptions on the reward process and the classes of mutually singular probabilities. Then
Section [ studies properties of the upper Snell envelope of the reward process such as path regularity and dynamic
programming principles. They are the essence to resolve our main result on the robust optimal stopping problem
stated in Section In Section [6] we give an example of path-dependent SDEs with controls that satisfies all our
assumptions. The proofs of our results are deferred to Section[7 and the Appendix contains some technical lemmata
needed for the proofs of the main results.

2 Notation and Preliminaries

Let (M, g,,) be a generic metric space and let %(M) be the Borel o—field of M. For any x € M and ¢ > 0,
Os(z) :== {2 € M : g (z,2') < ¢} and Os(z) := {2’ € M : g, (z,2") < &} respectively denote the open and closed
ball centered at z with radius §. Fix d € N. Let S7 Y stand for all R4*?—valued positively definite matrices. We
denote by #(S7°) the Borel o—field of S;7° under the relative Euclidean topology.

Given 0 <t < T < oo, let Q8T := {w € C([t, T];R?) : w(t) = 0} be the canonical space over the period [t,T],
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whose null path w(-)=0 will be denoted by 047 For any t < s < § < T, we introduce a semi-norm | - ||s.s on Q-7
|lwlls.s == sup |w(r)|, Vw € Q4T. In particular, || - ||sr is a norm on Q%7 called uniform norm, under which Q%%
re(s,S]

is a separable complete metric space. Also, the truncation mapping Hig from Qb7 to Q%% is defined by
(M55(@)(r) == w(r) —w(s), YweQ"T, Vrels,S].

. . . . . . . T
The canonical process BHT on Q7 is a d—dimensional Brownian motion under the Wiener measure Py" on

(Q-T, B(Q00T)). Let Fi-T = {]—";”T =0 (BT relt, s])} ) be the natural filtration of B4 and let C%%' collect all
se|t,

cylinder sets in Fi': ¢T = { _iﬂll (Bf;T)il(Ei): meN, t<t;<---<t,, <T, {&}, C%(Rd)}. It is well-known that

BOQT) =o(ChT) = a{(BgT)*l(g) ret,T),E € %(Rd)} =7yl

Let 24T denote the F:T —progressively measurable o—field of [t,T] x QT and let 7“7 collect all F**T —stopping
times. We set T := {7 € THT : 7 > s} for each s € [t,T] and will use the convention inf §) := oo.

From now on, we shall fix a time horizon T € (0, 00) and drop it from the above notations, i.e., (27, 07, BT,
Pyt FLT, 2T TET)—(Qf, 0!, B!, Ph, FY, !, T!). When S=T, I}, will be simply denoted by Ht For any
O<t<s<T wEQt and § >0, define O3 (w —{w €Q: ||l —wllts <8} (In particular, Of (w) = O5(w) = {w' € Q'
|’ —wlle,r<6}). Since Q' is the set of Rd—valued continuous functions on [t, T] starting from 0,

s _ t . _ — / t . / _ _
Oj(w) = U {w €| —wllys <6—6/n} = . re(trl)mQ{ €0 W' (r) —w(r)| <6—6/n}
= LEJN ( {w et Bt( ) S Og,g/n(w T‘ )} S ]‘—; (21)
n re

We fix a countable dense subset {&* }jeN of @ under || - [|¢,r, and set O := {O3(&}): 6 € Qy, j € N} C FL.

Given ¢ € [0,T] and a probability P on (0, (")) = (U, F4), let us set AT := {N C Q' : N C A for some A €
Fi with P(A) = 0}. The P—augmentation F¥ of F' consists of F: := o (FLUATF), s € [t,T]. We denote by T" the
collection of all F¥—stopping times and set TE :={r € T¥:7 > s} for each s € [t,T]. In particular, we will write

P, 7P, P Py _ { P
(7T Te) for (A%, T, T50) and F' = {F} _,, 1, for F¥ = {Fso}se[t,T]
The completion of (Qf, F%,P) is the probability space (Qf, 77, P) with F’P = P, we still write P for P for
T
convenience. In particular, the expectation on (Qt,ffr,]Pto) will be simply denoted by E;. A probability space
(Qf, F',P) is called an extension of (Qf, 74, P) if 7. C F/ and P/|P =P.
T

For any metric space M and any M—valued process X = {X,}e(t, 7], we set FX= {}';X =0 (Xmrelt, s])} .
seft, T

as the natural filtration of X and let FXF= {]:SX’P =0(FXU JVP)}Se[t7T] (In particular, F¥ = FBt"P.) If X is
FF—adapted, it holds for any s € [¢,T] that FX C F and thus FXF C FL.

The following spaces about P will be frequently used in the sequel.
1) For any sub—o—field G of FL, let L'(G,P) be the space of all real-valued, G—measurable random variables £ with
1€l 216y = Er[|€]] < oo.
2) Let D(F!, P) be the space of all real—valued, F*—adapted processes { X s} seft, 7] Whose paths are all right-continuous

and satisfy Ep[X,] < oo, where X, :=||X||;,r= sup |X,|.
s€t,T]

If the superscript t =0, we will drop them from the above notations. For example, 0 = 0%7 and 7 = 7%,

2.1 Concatenation of Sample Paths
In the rest of this section, let us fix 0 <t < s < T. We concatenate an w € O and an @ € Q° at time s by:
(W s @) (r) := w(r) Lirepro)y + (wis) +@(r)) Lpepsrpy, V7€ [t 7],

which is still of Q. For any non-empty A C Q°, we set w ®, 0 = ) and w ®, A := {fwe,w:we€ g}
The next result shows that A € F! consists of elements w ®5 Q2 with w € A.
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Lemma 2.1. Let A€ FL. Ifw € A, then w®; Q% C A. Otherwise, if w ¢ A, then w ®, Q° C A°.

For any F!—measurable random variable 7, since {w’ € Q!: n(w’)=n(w)} € F!, Lemma 2] shows that
w0 C {w e nW)=nw)} ie, nwe,0)=nw), Yo' (2.2)

To wit, the value n(w) depends only on w| 4.

On the other hand, for any A C Qf we set A% := {0 € Q° : w®,w € A} as the projection of A on Q° along w.
In particular, §** = (.

For any r € [s,T], the operation ( )®“ projects an F!—measurable set to an F?—measurable set while the
operation w ®; - takes an F2—measurable set as input and returns an F!—measurable set:

Lemma 2.2. Given w € Q and r€[s,T], we have A*>* € FS for any A€ FL, and w ®s A€ Ft for any Ae Fi.

Corollary 2.1. Given T€T" and weQ?, if T(w®sQ%) C[r,T] for some r€[s, T|, then 75« €T,*.
For any DC[t,T] x Qf, we accordingly set D**:={(r,@)€[s, T]xQ* : (r,w ®; ©) €D}.

Lemma 2.3. Given w € QF and Ty € [s,T], we have D** € B([s,To]) ® F5, for any De B([t, To]) @ Fi, .

2.2 Regular Conditional Probability Distributions

Let P be a probability on (Qf, F1.). In virtue of Theorem 1.3.4 and (1.3.15) of [37], there exists a family {P¥},cqr
of probabilities on (Qt, .7-'%), called the regular conditional probability distribution (r.c.p.d.) of P with respect to Ft,
such that

(i) For any A € Fk, the mapping w — P¥(A) is F.—measurable;
(ii) For any ¢ € L' (F7,P), Eps[¢] = Ep[¢| FL] (w) for P—a.s. w € Q (2.3)

(iii) For any w € Q°, P¥(w ®, Q°) = 1. (2.4)
Given w € Qt, by Lemma 2.2 w ®, A € FL for any Ae F%. So we can deduce from (2.74)) that
P (A) =PY(w®, A), VYAeF; (2.5)
defines a probability on (QS, }1}) The Wiener measures, however, are invariant under path shift:

Lemma 2.4. Let 0<t<s<T. It holds for Ph—a.s. we Q" that (P4)™" =P§.

Thanks to the existence of r.c.p.d. we can define conditional distributions using (Z3). Then by introducing
path regularity for the reward process Y, one can treat path-dependent problems in ways similar to state-dependent
problems. This can be seen as the general idea behind a dynamic programming in the path-dependent setting and
the path-dependent PDEs introduced in [I0].

2.3 Shifted Random Variables and Shifted Processes

Given a random variable £ and a process X = {X, },¢, 7] on Q! for any w € QF we define the shifted random variable
5% by £5%(W) 1= &(w ®s W), Yw € Q° and the shifted process X** by X5%(0) = X (r,w ®;s ), (r,©) € [s,T] x QF.

In light of Lemma and the regular conditional probability distribution, shifted random variables/processes
“inherit” measurability and integrability as follows:

Proposition 2.1. Let M be a generic metric space and let w € QF.

(1) If an M—valued random variable & on Q' is Ft—measurable for some r € [s,T], then 5% is F5—measurable.
(2) If an M—valued process { Xy} e 1) 15 Ft—adapted (resp. Ft—progressively measurable), then the shifted process
{Xf’w}re[sﬂ is F*—adapted (resp. F°—progressively measurable).

(8) For any D € Z', we have D% € 5.
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Proposition 2.2. (1) If £ € L*(FL,P) for some probability P on (U, B(Q")), then it holds for P—a.s. w € QF that
the shifted random variable £5% € L' (.7-'%,]}”5’“’) and

Eps.w [£9¢] = Ep [¢]|FL](w) € R. (2.6)

(2) If X € D(F",P) for some probability P on (Q', B(Q)), then it holds for P—a.s. w € Q' that the shifted process
X5 € D(F*, Pse).

As a consequence of (2.0)), a shifted P—null set also has zero measure.

Lemma 2.5. (1) Let P be a probability on (', 2B(Q")). For any N € AF, it holds for P—a.s. w € Q' that
N e /P In particular, for any NEWt, it holds for Py—a.s. weQl that N5 enN".

(2) For any D € A([t,T]) ® Fh with (dr x dP})(D N ([s,T] x Q) = 0, it holds for Py—a.s. w € Q' that (dr x
dPg) (D*+) = 0.

(3) For any 7 € T, it holds for Pi—a.s. we Q that 75 € T .
Based on Lemma (1), we have the following extension of Proposition (1).

Proposition 2.3. Let P be a probability on (Qf, B(0)). For any & € L'(F5,P), it holds for P—a.s. w € Q' that
the shifted random variable £ € L' (fgsyw,Ps’“’) and (28) holds.

In the next three sections, we will gradually provide the technical set-up and preparation for our main result
(Theorem [51]) on the robust optimal stopping problem.

3 Weak Stability under Pasting

In the proof of Theorem [5.1] we will use an approximation scheme which exploits results from the classic optimal
stopping theory for a given probability. For this purpose, we consider the following probability set.

Definition 3.1. For any t€[0,T], let By collect all probabilities P on (Q, B(Q')) such that F* is right-continuous.

We will also need some regularity assumption on the reward process.
Standing assumptions on reward process Y.

(Y) Y is an F—adapted process that satisfies an one-sided continuity condition in (¢, w) with respect to some modulus
of continuity function py in the following sense

Yy (w1) = Y, (w2) < po(doo((t1,w1), (tszz))), VO<t <ta <T, Vwi,we €1, (3.1)

where doo((tl,wl), (fg,&)g)) = (tg - tl) + ||W1(' A tl) - wg(- A\ t2)|

0,T-

Remark 3.1. (1) As pointed out in Remark 3.2 of [13], BI) implies that each path of Y is RCLL with positive
gumps. (2) Also, one can deduce from BI) that the process Y is left upper semi-continuous (left u.s.c.): i.e., for
any (t,w)€(0,T]xQ, Yi(w) > T}n(tYs(w) It follows that the shifted process Y% is also left u.s.c. Then we can apply

the classical optimal stopping theory to Y% under each P € B;. Actually, the proof of Theorem [51] relies on the
comparison of Z" with the Snell envelope of Y under each P € ;.

The next result show that the integrability of the shifted reward process is independent of the given path history:

Lemma 3.1. Assume (Y). For any t € [0,T] and any probability P on (Qf, B(N)), if Y« € D(F',P) for some
we, then Y eD(F!, P) for all w' €.

We shall focus on the following subset of B3; that makes the shifted reward process integrable.

Assumption 3.1. For any t€[0,T], the set By :={PeP;: YO cD(F!,P)} is not empty.
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Remark 3.2. (1) If Y € D(F,Py), then P, € BY for any t €[0,T]. (2) As we will see in Lemma[6.3, when the
modulus of continuity py has polynomial growth, the laws of solutions to the controlled SDEs (62) over period [t,T)
belong to BT .

Under (Y) and Assumption [B.I] we see from Lemma [3.1] that for any t€[0,7] and PR},
Y eD(F',P), VYweQ. (3.2)

Next, we need the probability classes to be adapted and weakly stable under pasting in the following sense:
Standing assumptions on probability class.

(P0) For any ¢ € [0, 7], let us consider a family {P(¢,w) = Py (t,w)},eq of subsets of B} such that

P(t,w1)="P(t,ws) if wiljog=w2l[0,g- (3.3)

We further assume that the probability class {P(t,w)} ¢.w)ejo,7x0 satisfy the following two conditions for some
modulus of continuity function py: for any 0 <t < s <T, w € Q and PeP(t,w)

(P1) There exist an extension (Qf, 7', P’) of (', F4,P) and Q' € F’ with /(') = 1 such that for any @ € ',
P*v e P(s,w @ w);

(P2) For any §€Qy and AeN, let {A;}7_ be a F!—partition of Q" such that for j=1,---, X, A; C O3, (w;) for some
6;€((0,0]NQ)U{d} and @; €. Then for any P; € P(s,w®¢w;), j=1, -, A, there exists a PeP(t,w) such that

(i) P(AN Ag)=P(AN Ag), VA € Fl;

(ii) For any j=1,---, X and A € F!, @(AQA]') =P(ANA;) and

sup Bs [Lana, Y,¥] <Ep [1{w€AmA } ( sup B, [Ygs’w&a] +ﬁo(5))} : (3.4)
TETYE

From now on, when writing Y,**, we mean (Y**), not (Y,)4*.

Remark 3.3. (1) By B3), one can regard P(t,w) as a path-dependent subset of Pi. In particular, P:=P(0,0)=
PO,w), Ywe.

(2) As we will show in Section[7, both sides of (BEiI) are finite. In particular, the expectation on right-hand-side is
well-defined since the mapping W — 486117951}3@ [YCS’“@W} .

(8) The condition (P2) can be viewed as a weak stability under pasting since it is implied by the stability under finite
pasting (see e.g. (4.18) of [36)]): for any 0<t<s<T, weQ, PeP(t,w), 6 €Q4 and X €N, let {»Aj}?':o be a
Fl—partition of Q' such that for j =1,--- X\, A; C 03, (w;) for some 6; € ((0,6]NQ) U {6} and w; € Q. Then for
any P, €P(s,w @, W), j=1,---, A, the probability defined by

A
@(A):]P)(A N .Ao) + ZEP [I{QGAJ-}PJ' (As’w)} , VAe .7:% (35)

j=1
is in P(t,w).

Remark 3.4. The reason we assume (P2) rather than the stability of finite pasting BX) lies in the fact that the
latter does not hold for our example of path-dependent SDEs with controls (Section[l) as pointed out in Remark 3.6
of [Z7], while the former is sufficient for our approzimation methods in proving the main results.

4 The Dynamic Programming Principle

The key to solving problem (1) is the following upper Snell envelope of the reward processes:

Z = f Ep [V t T x Q. 41
+(w) Pe;)n(tw)fg% p[YV¥], V(t,w)€[0,T] x (4.1)
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In this section, we derive some basic properties of Z and the dynamic programming principles it satisfies. These results
will provide an important technical step for the proof of Theorem Bl Let (Y), (P0), (P1), (P2) and Assumption
B hold throughout the section.

Given (t,w)€[0, T]x, since Y; is F;—measurable, (Z2) implies that Y;"* =Y;(w). it then follows from (@) that

Y (w) = Peggw) Ep[V“] < Zy(w) < Pe;}n({)w)E[p Y9 < oo, V(tw)el[0,T]xQ. (4.2)

We need two assumptions on Z before discussing its path regularity properties and dynamic programming prin-
ciple.

Assumption 4.1. There exists a modulus of continuity function py > po such that for any t € [0,T]

’Zg(wl) —7,5(4;.)2)’ < p1(||w1 — ng||07,5), Y wi,ws € €. (4.3)
Remark 4.1. If P(t,w) does not depend on w for all t € [0,T], then B.I) implies Assumption[{.1]
Remark 4.2. Assumption [].1] implies that Z is F—adapted.

Assumption 4.2. For any a > 0, there exists a modulus of continuity function p, such that for any t € [0,T)

sup sup Ep [pl (5 +2  sup |Bﬁ|)} < pa(d), V€ (0,T. (4.4)
weO0y (0) PEP(t,w) reft,(t+8)AT)

Similar to ([3.2), one has the following integrability result of shifted processes of Z.
Lemma 4.1. Given (t,w) € [0,T] x Q, it holds for any P € P(t,w) and s € [t,T] that Ep [‘72“” < o0.

As to the dynamic programming principle, we present first a basic version in which the transit horizon is deter-
ministic:
Proposition 4.1. For any 0 <t <s<T and w € ,

— inf Ep |1V 41,0277 45
(w) st ) S B 1< ¥r + 1> 2 (4.5)

Consequently, all paths of Z are continuous:

Proposition 4.2. For any (t,w) € [0,T] X Q and P € P(t,w), Z" s an F!—adapted process with all continuous

paths and {7:w}TeTﬂp is P—uniformly integrable.

The continuity of Z allows us to derive the super side of a general dynamic programming principle with random
transit horizons.

Proposition 4.3. For any (t,w) € [0,T] x Q and v € T?,

Z,(w)> inf s E[lTVYTt*“’+lT,,7fjw. 46
O 4o

5 Robust Optimal Stopping

In this section, we state our main result on robust optimal stopping problem. Let (Y), (P0), (P1), (P2) and
Assumption B TH4.2 hold throughout the section.

For any t€[0,T], we set .%;:={random variable £ on Q: "% e LY (FL P), VweQ, PeP(t,w)} and define on %

a nonlinear expectation: &,[¢](w) = . gtf )Ep[{tvw], YweQ, £
cP(t,w

Remark 5.1. Given T€T, Y,,Z, € % for any t € [0,T)], thanks to B.2) and Proposition [[.2
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Similar to the classic optimal stopping theory, we will show that the first time Z meets YV’
™ i=inf{t € [0,T]: Z, = Y;} (5.1)

is an optimal stopping time for (L.I)), and the upper Snell envelope Z has a martingale characterization with respect
to the nonlinear expectation & := {&; }1ep0,17:
Theorem 5.1. Let (Y), (P0), (P1), (P2) and Assumption[3 1+ Assumption[].2 hold. If sup  Yi(w) = o0, we

(t,w)€[0,T]xQ
further assume that for some L >0

Y, (w) = Yi, (@) L+ sup |Y;(w)] —|—p1( sup |w(r) —w(t1)|), VO<t <t <T, Ywe Q. (5.2)
r€[0,t1] rE(t1,t2]

Then Z is an &—supermartingale and is even an &—martingale up to time 7 in sense that
(Zyn) W) 2 E,[Z5](w)  and  (Zrepyne) (W) = E4[ Zreny| (@), Y (Hw) €[0,T] xQ, Yy eT. (5.3)
In particular, the F—stopping time 7* satisfies (I1)).
A few remarks are in order:

Remark 5.2. (1) Similar to [29], we can apply (IT) to subhedging of American options in a financial market with
volatility uncertainty.

(2) As to a worst-case risk measure R(E) := sup Ep[—¢] defined for any bounded financial position &, applying (L)
PeP

to a given bounded reward process Y yields that

Inf R(Y7) = —sup Jnf Ep [Y;] = —infEe (Y] = R(Y;).

So 7 is also an optimal stopping time for the optimal stopping problem of R.

(3) From the perspective of a zero-sum controller-stopper game in which the stopper chooses the termination time while
the controller selects the distribution law from P, (LIl) shows that such a game has a value &y[Yr+] = H%l&f) Ep [YT*}

as its lower value sup inf Ep [YT} coincides with the upper one inf sup Ep [YT}.
reSPEP PEP res

6 Example: Path-dependent Controlled SDEs

In this section we will present an example of the probability class {P(t,w)}tw)efo,1]x0 in case of path-dependent
stochastic differential equations with controls.

Let £>0 and let b: [0, 7] x 2 x R4 — R? be a 2@ B(R**?) /| B(R?)—measurable function such that
b(t,w, u)—b(t,w',u)| <kllw—wllo; and [b(t,0,u)|<k(1+]u]), VYw,w' €Q, (t,u)e€l0,T]xR> (6.1)

Lemma 6.1. Given (t,w) € [0,T] x Q, the mapping b** (r,@,u):=b(r,w @ @,u), ¥ (r,@,u) € [t,T] x O x R4 4s
Pt @ B(R*) | B(RT)—measurable.

Given (t,w) € [0, T]xQ, by (61) and Lemma[6.I} b** is a 2'@B(R**?) / B(R?)—measurable function that satisfies
b5 (r, @, u) = b (r, & w)| < K[|@—& ||,y and b5 (r, 0%, u)| <k (1+|wllo,c+|ul), Y@,&" €QF, (r,u)€lt,T] x R¥*4,

Let t € [0,7] and let U collect all S;%—valued, F'—progressively measurable processes {/is}sc(, ) such that
lps| < K, ds x dPh—a.s. Given p € Uy, a slight extension of Theorem V.12.1 of [33] shows that the following stochastic
differential equation (SDE) on the probability space (Qf, Ff., Pp):

Xs:/ bt""(r,X,ur)dr—i—/ prdBL, s et T], (6.2)
t t
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admits a unique solution X*“**, which is an F —adapted continuous process satisfying E; [(X7“")"] < co for any

p>1. Note that the SDE (6.2)) depends on w}[ via the generator b"*.

0,t]
Without loss of generality, we may assume that all paths of X““** are continuous and starting from 0. (Otherwise,
by setting N := {w € Q : X/“*(w) # 0 or the path X"*“*(w) is not continuous} € 7', one can take Xtwm =
Iy Xb9r selt,T). Tt is an Ft—adapted process that satisfies (6.2]) and whose paths are all continuous and starting
from O.)
Applying the Burkholder-Davis-Gundy inequality, Gronwall’s inequality and using the Lipschitz continuity of b
in w—variable, one can easily derive the following estimates for X« #: for any p > 1

Et[ sup }Xﬁ’“”“—Xﬁ’“/’“’p] <Cpllw=u'llf; (s—t)P, VYu'eQ, Vselt,T], (6.3)

re(t,s]

and Et[ ‘ (S;up(s) T]}Xﬁ’“”“ - Xéw,u»?} <op(||wllos) 6P/2,  for any Ft—stopping time ¢ and §>0, (6.4)
TE€[C,(C+O)A

where C), is a constant depending on p, x,T and ¢,: Ry =R, is a continuous function depending on p, s, T.

Similar to Lemma 3.3 of [29], the following result shows that the shift of X%“* is exactly the solution of SDE
(62) with shifted drift coefficient and shifted control.

Proposition 6.1. Given 0 <t < s <T,w e Q and p € Uy, let X := X", It holds for Ph—a.s. @ € Q' that
p>® € Us and that X5% = X 5@ X @™ 4 ().

As a mapping from Q! to Qf, XP# is ?i/]—";—measurable for any s € [t,T]: To see this, let us pick up an
arbitrary £ € #(R?). The Ft—adaptness of Xt*# shows that for any r € [t, s]

(xtm) T (B)THO) = e Xin@) e (B) ()} = {@e Qs Xpn@) e £} € F, (6.5)
Thus (Bﬁ)_l(é’) e gX™ = {A c (thwxﬂ)_l(A) € ,7'2}, which is clearly a o—field of Qf. It follows that
FLcgX™" ie.,

(xtem) N A) eF,, VAeF, (6.6)
proving the measurability of the mapping X*“*. We define the law of X*“# under P by
phr(A) = Bho (XP)TH(4), vAegE ",
and denote by P““# the restriction of p““# on (QF, FL).
The filtrations FF"“" are all right-continuous:

Proposition 6.2. For any (t,w)€[0,T]xQ and pely, PH“* belongs to Pi.

Remark 6.1. The reason we consider the law of X" under P} over Q%(t’w’“ (the largest o—field to induce P}
under the mapping Xt’“’”) rather than Fk is as follows. Our proofs for Proposition and Proposition [6.3 rely
heavily on the inverse mapping WH# of Xt which is an F'—progessively measurable processes having only
ptet—a.s. continuous paths. Consequently, as we will show in the proof of the following Proposition [6.3, it holds
for pt@t—a.s. @ € QF that the shifted probability (Pt“*)™ is the law of the solution to the shifted SDE and thus
belongs to P(s,w @ @). This explains why our assumption (P1) needs an extension (QF, F' ') of the probability
space (Q, Fi, P).

Now, we set P(t,w):= {]P)t’“”“: uEZ/{t}. Given w > 1, let pg be a modulus of continuity function such that
po(0) < k(1+6%), V>0, (6.7)

and let YV satisfy (Y) with po.
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Lemma 6.2. Assume (Y) and @.10). For any (t,w)€[0,T]xQ, we have P(t,w) C By .

For any wy,ws € Q with wilj,) = w2l[0,g, since ([6.2) depends only on wlj 4 for a given path w € Q, we see that
Xtwnr = Xtk and thus Phetr = P2k for any p € Uy. Tt follows that P(t,w;) = P(t,ws). So assumption (P0)
is satisfied.

Proposition 6.3. Assume (Y) and @1). Then the probability class {P(t,w)}t.w)cjo,r1x0 satisfies (P1), (P2),
Assumptions [{.1] and[{. 23

7 Proofs

7.1 Proofs of the results in Section

Proof of Lemma [2.3k Set A := {A cCQ:A= UA(w ®s QS)} For any A € A, we claim that

we
w®s Q° C A for any w € A°. (7.1)

Assume not, there is an w € A° and an @ € Q° such that w®,w € A, thus (w R &7) Qs C A Then w € w®,O° =
(w Qs (IJ) ®s Q° C A. A contradiction appear.

For any r € [t,s] and £ € B(R?), if w € (Bﬁ)_l(g), then for any @ € Q°, (w ®, @)(r) = w(r) € &, ie.,
WRw € (Bﬁ)_l(g). Thus w®Q° C (Bﬁ)_1 (€), which implies that (Bﬁ)_l(g) € A. In particular, § € A and Qf € A.
For any A € A, () implies that A¢ € A. For any {4, }nen C A, UNAn = U ( U (w®SQS)) = U (w®SQS),

ne

neN\weA, we LéJNAn
namely, UNA" € A. Thus, A is a o—field of QF containing all generating sets of F¢. It then follows that F! C A,
ne
proving the lemma. (|

Proof of Lemma If we regard w ®; - as a mapping ¥ from Q° to Q, i.e., V() := w Qs @, Vo € Q°, then
A = U~L(A) for any A C Q. Given t’ € [t,r] and £ € B(R?), we can deduce that

i Qs ift' € [t,s) and w(t') € &;
((B;;)*l(s)) ) it t/ € [t,s) and w(t') € &;
(e ws) +a(t) €)= (By) (&) eFs, ift €lsr),

where & = {x —w(s) : x € £} € B(R?). So (Bf,)fl(é') eN:= {A CQl: A =TU1(4) e }'ﬁ}, which is clearly a
o—field of Q. Tt follows that F! C A, i.e., A% € F? for any A € F.. On the other hand, the continuity of paths in
QF shows that

W@, QF = {w' €Ot W) =w(t'), Y € (t,5)N Q} - (BL) \(w(t)) € FL. (7.2)

n
t'e(t,s)NQ

For any A € F$, applying Lemma [A ] with S = T gives that (IT%)~! (A) € F!, which together with (7.2) shows that
w®s A= (L)1 (A) N (wes Q%) € FL 0

Proof of Corollary 2.1k Let 7 € T, w € Q' and assume that 7(w ®, Q%) C [r,T] for some r € [s,T]. Given
relr,T), weset A:={w € Q':7(w') <7} € FL and can deduce from Lemma 2:2] that

(BeQ Pe@) <F}={B e T(Wwe.d) <T}={D e wa,be A} = A € F2.
So 5% € T O

Proof of Lemma 2.3t Define a mapping U : [s, Ty x Q° — [s, To] x Q by U(r, &) := (r,w®sw), V(r,w) € [s, To) xQ°.
In particular, D = U~1(D) for any D C [t,Tp] x Q'. For any & € B([t,Tp]) and A € Ff,, Lemma 2.2 shows that

@_1(5 x A) ={(r,@) € [s,To] x Q*: (nwe,w) €& x A} = (£N[s,Tp)) x A> € B([s,To]) @ Fj,.
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Hence, the rectangular measurable set £x A€ A, :={D C [t,To] x Q' : U1(D)e B([s,To]) ® F3, }, which is clearly
a o—field of [t,To] x Q. Tt follows that Z([t,To]) ® Ff, C Ag,, ie., D> = UL(D) e #([s,To]) © Fj, for any
DeB([t, To)) @ Ff, - O

Proof of Lemma 2.4k Given A€ F5., since (IIL) " (A) € F% by Lemma A1l 24) and Z3) imply that for Ph—a.s.
weNt

()™ (A) = (B6)* (w0 @ A) = (B)? (w0 @ ©) 0 (112)™ () = (B)% (1) () = B [1 g+ 7] )

It is easy to see that (L)~ (F3) =0 (BL—B!;re s, T]). Thus (L)' (A) is independent of F! under Pj. Applying
(Ad) with S=T yield that for Pj—a.s. weQ?,

(PB)SM (Z) =K [1(H§)71(5) ‘]——;] (w) =E, |:1(HE)*1(Z):| :]P))(E)((Hz)il(g)) :P(S)(A>

Since ¢ is a countable set by Lemma[A2] we can find a N € 7" such that for any w € N¢, (P§)™" (ﬁ) =P;(A)
holds for each A € €5. To wit, €5 C A = {g e Fp o (P5)"(A) = P§(A) for any w € Nc}. It is easy to see
that A is a Dynkin system. As % is closed under intersection, Lemma [A2] and Dynkin System Theorem show that
Fi = 0(%3) C A. Namely, it holds for any w € N that (P4)™"(A4) = P5(A), VA € F3. O

Proof of Proposition 2.1k 1) Let £ be an M—valued, F!—measurable random variable for some r € [s,T]. For
any M € (M), since £~H(M) € F!, Lemma 22 shows that

()T M) = {Be: fwa,d)eMl={B e wa,me (M)} = (M) e Fe. (7.3)

Thus £%¢ is F;i—measurable.
2) Let {X,},¢pt, ) be an M—valued, Ft—adapted process. For any r € [s,T] and M € #(M), similar to (Z3)), one
can deduce that (Xﬁ’“’)_l(./\/l) = (X, 1(M))>™ € F2, which shows that {X “’} is F*—adapted.

T

Next, let {X,},¢c,7) be an M—valued, F*—progressively measurable process. leen To € [s,T] and M € Z(M),
since Do:={(r,w’) €[t, To] x Q": X, (') e M} € B([t, Ty]) ® Fh, , we can deduce from Lemma 2.3 that

{(’I”,(:))E[S,T()]XQS X¥(w 6./\/1} {Tw €[s, To] xQ° : (T,w®sc~u)€D0}:DS’”E@([S,TO])@)}%),

which shows the F®—progressive measurability of {X 5 “’}
3) Let D € 2", Since 1p={1p(r,u’)}

rels,T]"

(o) [T X is an Ft—progressively measurable process, part (2) shows that

1psw (@) =1p(rweso) = (1p) " (r,@), Y(ro) e [s,T]xQ°
is an F*—progressively measurable process. Thus, D% € &%, O

Proof of Proposition 1) Given w € Qf, we see from Proposition 2] (1) that £ is Fi—measurable. Also,
we can deduce from (ZH), Z4) and (Z3) that for P—a.s. w € QF

Epew [£59] = / £ (@)dP (@ ):/s§(w®sc~u)dﬂl’:(w®sc~u)=/ E(w")dPg (w')

Ww® NS

[ () = B [6] = Eo[e] 7)) <

which leads to (2.4).

2) Let w € Q. Proposition 2] (2) shows that {Xf""}re[S 7 is F*—adapted. Clearly, the shifted process X% also
inherits the right continuity of process X. If Ep[X,] < oo, since

(X:)**(@) = sup [X;[(w®@sw) 2 sup [X,[(w®sw)= sup [XP¥|(@)=(X").(w), Vwe
re(t,T] rels,T| rels,T|

(Z6) implies that for P—a.s. w€Q!, Epsw [(X*),] <Epow [(X,)*%] =Ep [ X.|F!] (w) < oo. O
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Proof of Lemma 1) Let N € A#F. There exists an A € Fh with P(A) =0 such that N'C A. For any w € Y,
Lemma shows that N'*“ C A% € F3 and one can deduce that (14)*“(@) =1{ug.5ca} = l{zeasw} = Las« (@),
VweQ*. Then (26) implies that for P—a.s. we Q!

P5 (A%) =Epsw [1a00 | =Epew [(14)] =Ep[14|FL] (w) =0.

Thus, N5“ e 4T In particular, if Neyt, one can deduce from Lemma [Z4] that for Pi—a.s. weQf, N5“ e ¥,
2) Let D € A([t,T]) ® Fi with (dr x dP§)(D N ([s, T] x QF)) = 0. We set D, := {w € Q' : (r,w) € D}, Vr € [t,T].
Fubini Theorem shows that

0= (dr x dP%) (Dﬂ([s,T]th))_/sT</m 1DT(w)dJP>g(w))dr_/m</sT 1p, (w) dr)d}P’é(w)_Et[/sT lprdr].

Thus fsT 1p,dr € LY(FL PY) is equal to 0, Ph—a.s., which together with ([2.6]) and Lemma 2.4] implies that

E, {(/T lprdr) SM] =E; {/T 1p.dr

holds for any w € QF except on a N € .
Given w € N, applying Lemma 3 with Ty = T' shows that D*“ € #([s, T]) ® F;.. Since

7] ) =0 (7.9

{Ge:(rno)eD¥}={0e®: (nwe,w) eD}={0eW:w,weD}, VrelsT),

we can deduce from Fubini Theorem and (74) that

(dr x dP3) (D) = / T( /Q Lo (r, B)dF (@) ) dr = /Q o / 1o, (000 &)dr ) Py (@)

:/SS(/STlpTdr)S’w(a)dpg(a) :]ES[(/ST 1DTdr)S’“] ~0.

3) Let 7 € 'TZ and r € [s,T]. As A, :={r <r} e T-i, there exists an A, € F! such that N, := A ANA, e T (see
e.g. Problem 2.7.3 of [19]). By part (1), it holds for all w € Qf except on a P4—null set AV (r) that N € &, Given

w € (N(r))c, since A3% A A = (A, AET)S’M = N5“ e 7" and since A>* € F# by Lemma 22 we can deduce
that A% € F. and it follows that

{9 < ={@eQ®: ¥ (@) <r}={0 e T(wR,d)<r}={0eQ*: wR,He A, } =A>* e F,. (7.5)
Set N := ( UT) QJ\A/(T) and let w e N. For any r € [s, T, there exists a sequence {ry }ney in (s, T) N Q such that
re(s,I')N

li_)m } 7 =7. Then (ZH) and the right-continuity of Brownian filtration  (under P§) imply that {r¢ < r} =
:QNOETS’“’ <r,}€F,, =F, Hence 7®* €T . O
Proof of Proposition 2.3t Let ¢ € L! (]—'?,]P’). One can approximate £ from below by a sequence of positive
simple Fr—measurable random variables: £+ :nli—{r;oT &, where &, :24:23112%1,4? and A} := {§+ € [%, 1;—”1) } eFr.

Let neN. For i =1,---,4" — 1, by e.g. Problem 2.7.3 of [19], there_exists an A7 € Fh such that A7 A A7 e AP

Setting AP := A\ jL<Ji A% € Fi,, one can deduce that

AM\AT = AT N [(E?)Cu ( U Zm = (AM\A7) U (}ii (A7 mA?))

j<i
nA AN in nyc nA AN P
C (ArAdr)u (}ii (A7 1 (47)9)) C U (470d)) € N, (7.6)
4"—1
Define 7, ;= »_ g714», which is an Ft —measurable bounded random variable. By Proposition 22 (1), it holds for
i=1
all weN! except on a N, €. 4" that

ny¥ € LY(F5,P*)  and  Epsw [n5%] = Ep [n,| FL] (w). (7.7)
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an—1 an—1 c an—1 c
Clearly, n,, coincides with &, over Q,, := ‘L_Jl (APNAP)U(AFNAG), where A := ( ‘L_Jl A?) and Af := ( }L_Jl A?) .
n_ 4" —1 4" —1 4" -1, ~
Since {An}i Yisa disjoint union of Q! and since Ap\ Ay :Agm( Y A?) =Y (ArnAp) C Y (AP (AD)°) C
an— 4n
u (A”AA”) e ANF we see from (7.6) that Q¢ = Y I(A?\A?) U (Ap\An) e AE.
Set Ny := UNQZEJVP. As
ne

+_ 1 — me
¢ —nh_)rr;oT Ny, OVer nQN Q, =N, (7.8)
applying the conditional version of monotone convergence theorem yields that
Jim T Ep [ | Fe] () = Ep [F]F¢] (w) € Ry (7.9)

holds for all w € Q' except on a P—null set M. By Lemma[ZH (1), there exists another P—null set 912 such that for
any weMNS, Ny e A7,

Now, let 9 := 9 UN, U (nLEJNNn) € AP, Given w € M, N5 is a P>*—null set. For any & € (NG*“) = (NG)>~,
([T8) shows that

()(3) =€ (w 2. B) = lim 1 70(0 ©, D)= lim 1 73 (@). (7.10)

So over (M5*)°, (£F)** coincides with hm 07, which is Fj.—measurable by @d). Tt follows that (£7)%% is

FE¥ —measurable.
Moreover, applying the monotone convergence theorem to (ZI0), we see from (1) and (Z.9) that

Epe [(67)7] = lim 1 Epeo [7*] = lim T Ep[nn|F{] (w) = Ep[67|F{] () € Ry

The similar result also holds for £, then the conclusion follows. O

7.2 Proofs of the results in Section [3

Proof of Lemma B.Ik Let ¢t € [0,7] and P be a probability on (€, Z(Q")). Suppose that Y~ € D(F,P) for
some w e Q and fix w’ € Q. The F—adaptness of Y, Proposition 2] (2) and Remark B (1) show that Y**' is an
F!—adapted process with all RCLL paths. Given @ € Qf, (3.I)) implies that for any s€[t, T

’Y“"( ) =Y @) = |Ye(w' @ @)= Yi(w @4 0)| < po([lw’ @ &—w @ Gllo,s) =po([lw —wllo,e)- (7.11)

It follows that Ep [Y*t’w/} = Ep[ sup |Yst’w,|} < Ep{ sup |Yt°”|} +po([lw —wllo,e) = Ee [Yi"“] + po (||’ —wllo,¢). So
sE[t,T) set, T

v eD(F,P). O

Proof of Remark (1): Given t € [0,T], Proposition (2) and Lemma [Z4] imply that for Po—a.s. w € €,
Yte € D(FY, (Py)») = D(F!, Pj). Then by Lemma31] Y*° € D(F*,P}), which together with the right-continuity
of F' show that P% € B O

Proof of Remark 2) Let ]INDG‘BX Given Wy, w2 €0 and ¢ € T*, similar to (TII]), we can deduce that

V2B @) - YR @) = Y (D), (w @ &) ®s8) — Y ((@), (w @y @) @5 D)
Po ([[(W®ew1) s — (WRW2) s @l0,c(@)) =po (|01 —@2llt,s), V@€ Q.

IN

It follows that

s (Y2499 < Bg [V 9%2] + po ([l@1—@alr.s).- (7.12)
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Taking supremum over ( € T* yields that su71_) Es [YCS’“@@I} < su7;_> Es [Yf’w&aﬂ +po (|&r — @2, 7). Exchanging
CeT? CeT?
the roles of Wy and @y shows that the mapping & — sup E; [YCS’W&“’] is continuous under norm || ||¢7 and thus
CeT®

Fh—measurable.

Next, let us show that both sides of ([3.4) are finite: Let j = 1,---, A and A € FL. For any 7 € T}, (32) shows
that |IED3 [1AmAj YTtV‘"] | < E@HY}”H <Es [Yf’w} < 00, which leads to that

—oo < —E5 [Y*t’w] < sup Ep [lAmAjY:’w] <Es [Y*t’w] < Q.
TETY

On the other hand, given w € AN A; and ¢ € 77, applying (T.12) with (©1,02) = (@, w;) and (W1, ws) = (W}, )
respectively yields that

e, [V | <[, [0 <Ep, [V20 ) 40 15—y ) <Ep, [V 4 o(0).

S,WRtw S, WRtW;
+’E[Pj I:YC + _YC t ]]

It then follows from ([B.2)) that

B [Lgeanay ( sup e, (V77 +50(0)) ] < (B, [ + o(8) +7ol0)) P(A N 4)) < o

as well as that

Ep {1{m€AmAj}(CS;l7PSEPj [Yg’w(@ta} —i—ﬁo(é))} > ( — Epj [Y*S7w®t&j} — po(d) + ﬁo(é))P(A NA;) > —oo.

3) Given A € FL, for any j = 1,---,\ and & € Aj, since A; € F!, Lemma 1] shows that (A;)** = Q° (or
(14,)*% = 1), which implies that (4N .4y)** = 0. So it is easy to calculate that P(A N Ag) = P(A N Ay).
Next, let j =1,---, X and A € F!. We see from Lemma 2.1 again that

ifwoe ANA; (resp. ¢ ANA;), then (AN A;)*¥ =Q° (resp. = 0). (7.13)
It follows that
R A B A
P(ANAj) =) Ep {1{&€Aj/}Pj/ ((An Aj)s’w)} => Ep [1{&€A0Aj}1{&€Aj/}Pj/ (QS)} =P(ANA;).
i'=1 i'=1

Given 7 € T, since 7% € T by Corollary 21} we can deduce from (TI3) again that

Fe [1AﬂAj Y:M} - i Ep {1{56““1'/}1}3]?]" [(1A0A;‘Yf’w)S@H =Ep [l{aeAmAj}E[Pj {(Yf”)SQH

j'=1
= Ep [1{weAmA]~}Epj {YTS;,%&UJH < Ep [1{aeAmAj}<Su7p Ep, {Yi’w&wH ;
T
where we used the fact that

(YE@)5%(@) Vi@ @s0) =Y (10 @ 0),w @ (0@ 0)) =Y (177(@), (w @ &) @s &)

Ys,w@wf) (7_5,03 (w)7w) _ YTS,w®t§(w)7 Va c Q. O

5@

7.3 Proofs of the results in Section [

Proof of Remark 1k Let ¢t € [0,7] and wy,we € Q. For any P € P, 7 € Tt and @ € Qf, (TII) shows that
’Y;"*’l (W)=Y wz (C))’ §p0(||w1 —w2||0,t), Vselt, T]. In particular, ’Yt""l (T(C)),C})—Yt"“? (T(C)),C}) ‘ §p0(||w1—o.)2||07t).
It then follows that

Ep [Y:’wl] < Ep [Y:’wz} + po(le - W2||O)t). (714)
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Taking supremum over 7 € 7* and then taking infimum over P€P; yield that Z;(wy) < Z;(w2) + p0(||w1 — w2||0,t).
Exchanging the role of wy and wq, we obtain (@3]) with p1 = po. O
Proof of Lemma @1t Let 0<t<s<T,wcQ and P€P(t,w). If t =5, as Z; is F;—measurable by Remark F2]
22) shows that Ep “7zw” =Ep[|Z1(w)|] =|Z¢(w)| <o0. So let us assume ¢t <s. For any @€, one can deduce that

Y*s,w®t&(a) _ sup ‘YS w®tw(w)’ = sup ‘Y w@tw R W )’ < sup ’Y(T w Q¢ (w ®s W ))‘
rels,T) rels,T) relt,T)
= sup [VIU@R,0)| = YI@e,8) = (V) @), voeo. (7.15)
relt,T)

By (P1), there exist an extension (2, 7/, P’) of (Qf, F%,P) and Q' € F’ with P/(Q') = 1 such that for any @ € (',
P*% € P(s,w ®; @). Since Y € D(F!, P) by [B.2), we see from (Z.6) that for all & € QF except on some N € AP,
Eps.a [( ) ] = Ep[Y, tw‘]—"t] . Let A be the Ft—measurable set containing A and with P(A) = 0. For any
weYNA e F, [@2) and (TI0) 1mply that

Yo(w @) < Zo(w @45) < sup Epes [V795 7] < Bpe [Y20F] < Bpos | (V)] = Be [Y2|F2] (@)
TETS

so Q' NA°C A= {Yiv < 7Y < Ep [V#*|F!]}. Remark B2l and Proposition 2211 (2) show that A € FY, it then
follows that P(A) = P/(A) > P/(' N A°) = 1. To wit,

Yi¥ <70 < Bp[YP¥|F], P-as., (7.16)
which leads to that Ep [}7?}” < Ep UY;“} + Ep [Yf’w}fﬂ} =Ep DY;“’” + Ep [Y*t’M] < 2Ep [Yf’w] < 00. O

Proof of Proposition B.1k Fix 0<t<s<T and we . If t=s, Remark and (Z.2)) imply that 7?‘” = Z(w).
Then (@5]) clearly holds. So we just assume ¢t <s and define

YV, =Y and Z,:= 7;&@, Ve [t,T]. (7.17)

1) To show
Zw) < inf Es |1 -0, 17528}, 7.18
t(W) IF’G%)n(t w) Tsél?t FlHr< }y + {r2s} ( )

we shall paste the local approximating minimizers Pg 0f7i’w (W) according to (P2) and then make some estimations.

Fix £ >0 and let 6 € Q4 such that po(d) V po(d) V p1(d) <e/4. Given w € Q!, we can find a Pz €P(s,w ®; w) such
that

Zs(w®;w) > sup Ep_ [Yf""&&] —e/4. (7.19)
TETS

Similarly to (AF), Of(@) is an open set of Qf. For any &’ € O3(@), an analogy to (ZI4) shows that
EIF’;J [YTs,w®na/} SEIF’;J [Y;ﬂ—d@tw} +p0(||w 4 O —w 4 (:3”075) :EIP’;, [Yf’“@’ﬂ +po(||@'—@||t,5), Ve T,

Taking supremum over 7 € 7%, we can deduce from [{@3)) and (ZI9) that

sup B, [Y257] < sup Bey [Y257] 4 o (|5 ~1.) < 7o 91 3) + 22
reTe reT 2

— ~ U 1 - 3 ~ ~
< Zg(w @y w')+p1(||w'—w||t,s)+§6§Zs(w')+15, Vo' e 03 (w). (7.20)

Next, fix P€ P(t,w) and A € N. For j=1,---,\, we set A; = (0;(@;)\( %Og(@}))) € F! by 1) and set
J'<j
P :=Pg (where G is defined right after 2.11)). Let Py be the probability of P(t,w) in (P2) for {(A;,6;,@;, ]P’j)}jzl =
A A ¢
{(4;,0,80, )}, and Aoi=( 0, 4;) € FL So

Es [(]=Eplé], Ve L (FLBONLY (FLP) and Ep [14,6]=Ep[La&], VE€ L (Fh BN} (FhB).  (7.21)
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Given 7 € T*, one can deduce from [B.2), (Z.21)), (34), (Z.20) and Lemma (1] that

A
Eﬁix [yr} = Eﬂlﬁ/\ [1{T<s}y‘r/\s + 1{725}0A0yTV5} + ZE@A [1{725}QAJ-Y:\)Z}
j=1
>\ ~
< Be[LpagVons & Lirzona Y] + 2 Be [Lir@zaniaea (30 Br, 17 25) + 70(9))
=1
<

Ep {1{T<s}yr + 1604,V + 1{Tzs}mAng} +e
= Ep |:1{‘r<s}y7' + 1{725}Zs:| + Ep |:1{7'25}QA0 (y‘r - ZS):| +e
< Ep[Liraaydr + 1(na 25| +Be Ly (02 +124])] +=

Taking supremum over 7€ 7" yields that

Zu(w) < sup Bs [Vr] < sup Be 1) Vr + 1150 2] + Bp [1 y e (Dt |ZS|)] +e. (7.22)
reTt TET! (,045)

j=1""

Since ‘UNAJ» = ‘UNOE (@h) = Q" and since Ep [Vu+|Z|] <00 by B2) and Lemma ELT] letting A — oo in (T22), we
Jje J€

can deduce from the dominated convergence theorem that Z, (w) < sup Ep {1{T<s}yf + 1{T>S}ZS} + ¢. Eventually,
TET? B

taking infimum over P € P(¢,w) on the right-hand-side and then letting ¢ — 0, we obtain (T.18).
2) As to the reverse of (TI8), it suffices to show for a given P € P(t,w) that

Sup Ep |14 <o) Vr +1(r20) 2] < sup B[], (7.23)

TET? TET?
Let us start with the main idea of proving [T23)): Contrary to ([(19), we need upper bounds for 7i’w this time. First
note that 72’“(&)§ sup Eps,s [YCS’“@@} , Vo e Q. Given ¢ € T¢, [2.0) implies that

CeET*®
Ben e [¥2%]= Be [Veq | 72] @) < [35] 7] @ (720

holds for any @ € Q' except on a P—null set N¢, where T is an optimal stopping time. Since T is an uncountable
set, we can not take supremum over ( € T* for P—a.s. @ € Q! in ([L24) to obtain

Z, <EBp[Y:|F.], P-as. (7.25)

To overcome this difficulty, we shall consider a “dense” countable subset I' of T*° in sense of ([20)).
2a) Construction of T': For any n € N, we set Z,, := ((5,T) N {i27"}ien) U{T} and 2 := LGJN@n. Given ¢€ 7, we

simply denote the countable subset ©7 of 7 by {Of} ey and define Y}, := {ql u 0! +T1 I Ic{i,--- ,k}} C

T°, Vk eN. For any n,k € N, we set ', 1, := { A Tq:Tq € TZ} CT® ThenT := U T, is clearly a countable

qE€ED,, n,keN
subset of 7.
Since the filtration FF is right-continuous, and since the process ) is right-continuous and left upper semi-

continuous by Remark B.] (2), the classic optimal stopping theory shows that esssup Ep [y7|}'f] admits an optimal
TETE

stopping time 7€ TF, which is the first time after s the process ) meets the RCLL modification of its Snell envelope

{esssup Ep [J}T|]-'f]} .
TETE relt,T)

Fix € > 0. We claim that there exists a 7/ € T} such that
Ee[| Vs — V2] < /4. (7.26)

To see this, let n be an integer >2. Given i =1,---,n, we set s :=s+L(T'—s) and A :={sI" | <7< s]'} € Fin
with s = —1. By e.g. Problem 2.7.3 of [19], there exists an (A’)? € FL. such that A? A (A)? € #F. Define

K3 Sz



Robust Optimal Stopping Problem 18

(AP = (A" M (A)} € Fin and Aj, :zigl(A')? zigl(A')? €F4. Then 7,:=3"" | 1an s} is a T} —stopping time
while 7),:= """ | 1ann s+ 14 )T defines an T —stopping time. Clearly, 7,, coincides with 7/, over 61 (Arn(A)R),
K2 n i:
whose complement ‘61 (AP\(A")?) belongs to A4 by a similar argument to (Z0). To wit, 7, = 75, P—a.s. Since
=

lim 7, = 7 and sinc?a Ep [y*} < 0o by (32), we can deduce from the right-continuity of the shifted process ) and

n—oo
the dominated convergence theorem that

Jim Bp[|Vry — V2| = lim Ep[|Vr, — Vz[] =0. (7.27)

So there exists an N € N such that Ep[|V,, — Vz|] < e/4, ie., (L26) holds for 7/ = 74.

2b) In the next two steps, we will gradually demonstrate (.23]).
Since Ep[Y.] < oo and since ((IIY) € T} C T for any ¢ € T* by Lemma [A1] applying Lemma [A4] (1) with
X = Bt show that except on an N € AT

Ee (Yoo | 78] =Ee [Veny) | 7] < esssup Be [V, | FJ] =Ep [V7 | FJ] =Ep [V5| 7], Vel (7.28)
TET,

Also in light of (2.6), there exists another N € AF such that for any & € N,
Bp [Veqny) |72 (@) = Bpes | (Vo) ™| = Bpes [Y2#2F], W(eT, (7.29)
where we used the fact that for any & € Q°
(ymg))s’@(a) =Vea) (0 ®s D) :Y(C(H’; (@®:D)),w (@ ®s @)) =Y (@), (w® @) @ D) :YCS’“@@(ZJ).

By (P1), there exist an extension (2, 7/, P') of (Qf, F&,P) and Q' € F’ with P/(Q') = 1 such that for any @ € (',
P*% € P(s,w ®; ). Let A be the Fi.—measurable set containing N"U N and with P(A) = 0.

Now, fix & € ' N A° € F'. There exists a (5 € T* such that

sup Epos [Y749] < Bpoa [VI999) 4+ ¢/4. (7.30)
CeT* ¢

2¢) Next, we will approzimate Cz by a sequence {¢" bnen inT': AsP5% € P(s,w®;@), [3:2) shows that Ep. s [Yf’“@tﬂ <
00. So there exists a = 0(w) > 0 such that

Epes [1aY9%°] < e/4 for any A € Fi with P5%(A) < 4. (7.31)

Given neN and i€ {[2"s], -+, |[2"T]}, we set ¢ :=4LAT € 2, and A?:{Q% <(z<HE}eFi. LemmalAR shows

that for some sequence {O?)i}eeN in @fzin = {O??}

jeN
A c UOM and PUO(AT) > PS@( U 0’“’) _ 0 (7.32)
t T gen ! " ‘ ten ¢ 27T |2 '
Moreover, there exists an i’ €N such that
P=& (07 >JP>S@( U 0’“') 0 (7.33)
‘ een ¢ |27T |2

o . n ~ i—1
with O} ::eulO;“ € Fan. Clearly, ([':=q]'Lor+T1(on)e GTZ; for some k7' € N. Setting OF := O\ ZB JO? € Fons
= K v z i i'=|2ng i

similar to (6] we can deduce that

Anop=Arnfonu(, G on] e ((yormon)u(, g, ©ind)

ir=[2ns) ir=[2ns)
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It then follows from (.32)) and (T33]) that

i—1

o A - ; - Ny 0 )
PAE(ANO)) < P (U 0P N\OY) P (U 0P\ < . 7.34
( z\ z)— (EGN 4 )\ i) T _/% J (geN 4 )\ i) < LQnTJQ - LZnTJ ( )
. 2" 7] l2" T - 1277 ~
Set O = LL2J JO? = LL2J JO? and k,, = max{k}' : i = |[2"s],---, |2"T]}, we see that (" := L/2\ JQ =
[2"T] [2"7] [2"T] , ~
> ¢'15,+15.T is a stopping time of T'y, &, , which equals to (" := Z ¢ 15, € T° over Ay, := LL2J J(A;I N
i:LQ"SJ ’ " i:LQ"SJ ’ 1=12"s
. [2"T] ~
Or) € Fi. As Y JA? = Q°, (C34) implies that
P =P (0 (ANON) = X0 BR(ANGY) <6 (7.35)

i=[2"s]

It then follows from (3T)) that

Bp.o [V = V22 7|| = Bpos 1

}/CSﬁw@tLTJ _ ;Tzw®t63u < 2E[ps,§; |:1A%ns,w®to~.)} < 8/2,

which together with (Z28) and ([.29) shows that

Epes [Y509%) < Bpea | ;f&ﬂ +¢/2 <Ep[V=|FI(@) + /2.

Since lim | ¢™ = (5 and since Ep. s [Yf’“@tﬂ < 00, letting n — oo, we can deduce from (Z30), the right-continuity
n—oo
of the shifted process Y*“®:“ and the dominated convergence theorem that for any & € Q' N Ac
~ 2 ~ S,wRrw S,wRrw . S,wRtw ~ 3
Z(@)=Zs(w®@) < sup Bpes [V <Epos [V 42 /4= lim Bpes [Y200) +e/4<Ep [ V7| FL] @)+7e.
CET® w n— 00

Since Z4 € F! by Remark and Proposition 2] (2), an analogy to (Z.I6) yields that

Z, <Ep[Y:|FY] +%g, P-as. (7.36)

If sending ¢ to 0 and applying Lemma [A4] (1) with X = B* now, we will immediately obtain (7.25).

2d) Given 7 € T*, we set T := 1,37 + 14> 7. For any r € [t,s), as 7/ € T}, one can deduce that {7 < r} =
{r<s}n{r <r}={r <r} e FL On the other hand, for any r € [s,T], {T<r} = ({r <s}n{r<r}Hhu({r=>
stn{r <r}) ={r<stu({r=s}n{7 <r}) € FL. So7 € T* and it follows from (Z.36) and (T26) that

3 3
EIP’ |:1{‘r<s}y'r+1{7-25}zs:| SEIP’ |:1{T<S}yT/\S+1{TZS}E]P [y‘?|]:ﬂ:| +Z<€:EIP’ |:EIP’ [1{T<s}y7/\s+1{7'25}y?‘]:ﬂ:| +Z<€

3
=Er |1 e Vr + Lz V| + 36 SEe [LagDr + Lirzgy Vo |+ =Ee V5] +e< supBp [V +e.

Taking supremum over 7€ 7 on the left-hand-side then letting e — 0 yield (Z23). So we proved the proposition. (]

Proof of Proposition 1) Fix we Q. Letting 0<t<s<T such that sup |w(r')—w(r)|<T. we shall show
t<r<r’'<s

|Zs(w)—=Z1(w)| < 2pa(dy,s), (7.37)

where a :=1+ |jw[lo,r and &,s:=(s =)V sup |w(r’)—w(r)| < T.
t<r<r’'<s

Given £ >0, there exists a P=P(t,w, e) € P(t,w) such that

Zy(w) > sup Ep[V*] —& > sup Ep [1{T<S}Y:»w n 1{725}7‘;’“} —e>Tp [7‘;’“] —e, (7.38)
TeT TeT
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where we used ([.23)) in the second inequality and took 7 = s in the last inequality. In light of (€3]

|73(w)—72’w(@)| = |75(w)—7(s, w @y cf))‘ <p1(flw—w @ @lo,s) :pl( sup |w —|—w(t)—w(r)|)

relft,s]
Spl( sup ‘w |—|— sup |w (t)‘) < pl( sup |Bt | + Ot S), Vo e Q.  (7.39)
relt,s] relt,s] €[t,(t+0¢,5) AT

Since ||wlo,: < ||wlo,r < o, (T38) and @A) imply that

N

o)~ Zu(w) SEp| Z,(w) ~ 22| +¢ <Ee {pl (6s+  sup ‘BH)} +e < paldrs) +e
rE[t, (t+8¢,)AT]

Letting € — 0 yields that
Zs(w)=Zi(w) < pal6t,s)- (7.40)

On the other hand, let P be an arbitrary probability in P(¢,w). Applying Proposition 1] yields that

Z,(w) — Zs(w) < sup EA[1{7<S}Y FlpagZl } Z,(w). (7.41)

TET?

For any 7 € T* and @ € {7 < s}, (&I shows that

Y@ - Y@ = Y(r(@),werw) =Y (s,w®w) < po (doo((T(@),w ®¢ @), (5,w @4 @)))
< po((s —t)+ ZE&RI |&(r AT@)) —o(r A s)|) <p ((s —t)+2 sel[ltp]‘Bﬁ(@)‘)

Plugging this into (Z41]), we can deduce from (@), ({2) and (Z39) that

Zt (W) —75(60)

IN

sup Es [1{T<5}p1((5 —t)+ 2 sup ‘B |) + 1{T<S}Y + 1{T>S}Z 75(w)}
TET? relft,s]

pa(s—t)+Es {ZS’ —Z(w)} <2pa(8t),

IN

which together with (Z40) proves (T31). As ll/r(ni Os = li{I}fi St.s = 0, the continuity of Z easily follows.

2) Let (t,w) € [0,T] x Q and P € P(t,w). Remark A2 Proposition 2] (2) and part (1) show that 7" is an
F!—adapted process with all continuous paths.
As Ep[Y?*] < oo by (B2), using (TI6) and applying Lemma [AZl (1) with X = B? show that for any s € [t, T

Yi0 < Z0% < Bp[Yie|Fl = Be[Y4|FE], P-as.

Then by the continuity of process Z and the right continuity of processes Y, {Ep [Yf’w ‘]:f] }S T’ it holds P—a.s. that
yiw S?i’w <Ep [Yf’w |f£’} for any s€[t, T]. It follows that for any 7€ 7", |7i’w} <Y “+Ep [Y*t’w }ff], P—a.s. Hence,
{72"“}7 o P—uniformly integrable. O

Proof of Proposition d.3t When ¢ = T, ([£6) trivially holds as an equality. So let us fix (t,w) € [0,7T") x £ and
v e Tt We still define Y and Z as in (TI7). To obtain (&), it suffices to show for a given P € P(¢,w) that

sup Ep 1{T<,,}y7+1{72,,}21,} < sup Ep D}T} . (7.42)
reT reT

Define the Snell envelope Z¥ of Y under P: Z¥ := esssupIEp[yT|fﬂ, s € [t,T]. Since the filtration F* is
TETE
right-continuous, and since the process ) is right-continuous and left upper semi-continuous by Remark B.] (2), the

classic optimal stopping theory shows that Z% admits an RCLL modification {QFSP}SE“ 7) such that for any ¢ € 77,
s =inf {r € [¢,T]: ZF = Y.} € TF is an optimal stopping time for esssup Ep[Y-|FE].
TETE
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For any s € [t,T], we know from (Z25) that Z; < Ep D}TH;
Proposition 22)) and the right-continuity of 2F then imply that

}'E’] = 7P = ZF P-a.s. The continuity of Z (by

P{Z, <2}, Vse[t,T]} =1 (7.43)
It follows that

Z,< &F = esssupEp[yT’fm = E]P[yrﬂg'
T€7:,]P

F), P-as., (7.44)

where the first equality is due to a well-known result in the optimal stopping theorem, see e.g. Theorem D.7 of [20].

Let 7€ T' and Set 7:= 10,37+ 175, 7¢. Given r € [¢,T], since {r <v} € FL,, and 7§ € T, we see that
{r>vieFi,, CF, CFro. 1t follows that {r<v}n{r <r} € F{ CF and {r>v}n{rf <r}eF;, which together show

F<rt={r<vin{r<rhu({r=>vin{rg <r}) e F.

Thus 7 € TF. For any ¢ > 0, similar to (Z.26), there exists a 7. € T* such that EPHJ}?E — y?]] < &. Then we can
deduce from ([T44]) that

Er|1ran Vs +102 20| < Be[1iranVr] +Ee 1o Be [V | 7] = Be[Lrciy V0] +Ep [Er 120y Yy

= FEp |:1{T<U}y‘r+1{‘r2u}y7'ﬂ';i| =Ep (V5] <Ep[Yr] +5§<S€117I_)tEIP [Ve]+e.

7]

Letting € — 0 and then taking supremum over 7 € 7% on the left-hand-side yield (7.42).

7.4 Proofs of the results in Section

Proof of Remark 5.1k Let 7 € 7 and (t,w) € [0,7] xQ. As Y, and Z, are Fr—measurable by Remark .2
Proposition 2] (1) shows that (Y;)»* and (Z,)"* are in turn Fl—measurable. Since Y;ns, Z,nr € Fi, one can
deduce from (2Z2)) that

(Z)(@)] = Lrwew)<a|Z(T(w @ 0) Atw @ 0)| + Lirwem) | Z2(T(w @ 0) Vi, w @, B)|
Lir(wei)<t}| Zrat(w ®¢ @)| + 1{T(w®ta)zt}‘7t’w (rvi)(@),a)|

—t,w ~ ‘

= 1 wsm)<t}| Zeat@)| + Lirwsm) > | Z rviee (@)

)

and similarly  [(Y2)"(@)] < Lirwem)<t |[Yrne@)] + Lpwem s Yo (@), Vo e Q.
For any PeP(t,w), as (1 V)4 € Tt by Corollary 2] we see from (3.2)), (@2) and Proposition £2] that
w 72 w 2 w —t,w
Ee [|(2)] +[Z) ] < [Yonel)| + [Zons(@)] + Ee[Y2*] + Be |2y || < oo.

Thus, Y., Z, € %,. O

Proof of Theorem [5.1¢

1) We first show that the random time 7* defined in (&) is an F—stopping time: Given § > 0, we define 75 :=
inf {t € [0,T]: Zy <Y, +6}. Since

. Twy . o
Zr(w)=, inf Be[Y7“|= it Es[V(T,w)]=Y(Lw), Veeo (7.45)

it follows that Z7 = Y7 < Yr + 8. So 75 < T. For any s € [0,7), Remark B.1] (1), the continuity of process Z (by
Proposition E2)) as well as the F—adaptness of Y and Z by Remark imply that

{rs>s} = {weQ: Z(w)—Yi(w) >, VtE[O,S]}ZigN{wEQ:7,5(4;.))—1/,5(0.))264—1/2', Vtelo,s|}

= _LGJN{wGQ:7t(w)—Yt(w)Z5+1/i, Vte@s}:_gN te% {we: Zy(w)—Yi(w)>d+1/i} € Fi,
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where Q, := ([0, s] N Q) U {s}. So 75 is an F—stopping time. In particular, we see from ([#2) that
™i=inf{t€[0,T]: Z, =Y} =inf {t € [0,T]: Z; <Y;}

is an F—stopping time.

2) When t = T, (53) clearly holds. So let us fix (t,w) € [0,T) x Q and v € T. We still define Y and Z as in (TI7). If
t=v(w)<t, ie,we {’y:?} € F-C Fy, Lemma 2] implies that w®Q C {’y:tA}. Then applying Z2) to Z;€ F-C Fy

— i~

yields that (77)t’w(@) =(Zy)(w®@)=Z(y(w @ 0),w R w)=Z(t,w R ) 27(2\, w). It follows that

(7] (w) = PE%D%M)EP [(ZV)MJ} _ [[De;?n({,w)EP [7(?, w)] = 7(?, w) =Z(y(w) At,w) = (Zynt) (). (7.46)

O

On the other hand, if y(w) > t, i.e., w € {y > t} € F;. Lemma 2] again shows that w ®; Q' C {y > t}. Applying
Corollary 2l with (7, s,7) = (7, t,t) shows that 4% € T*, then taking 7 = v = 4" in (L0 yields that

(Zynt) (w) = Zy(w) > peg}{,m Tsélﬁt Ep [1{T<7t,w}y7 + 1{72,Yt,w}z,yt,w:| > Pe%?r%gw) Bp[Zyte] = & Zy](w), (7.47)

which together with (Z.46]) shows that Z is an &—supermartingale.

Next, let us show the &—submartingality of {Z If 7% (w) A y(w) < t, an analogy to (Z40]) shows that

THAL }te[O,T]:

ﬁt[ZT*A'y] (w) = (ZT*/\'Y/\t)(w)' (7.48)
Suppose 7*(w) A y(w) > t, i.e., w € {7 Ay >t} € F;. By Lemma 2]
we QP C{r Ay >t} (7.49)
The demonstration of
(Zr-nont) (W) SE4 [ Zrnq ] (w) (7.50)
in case of T (w)Avy(w) >t is relatively lengthy. We split it into several steps. The main idea is: We approzimate
7% by the hitting time 7" :=inf {s €l0,7): Z, < YS—I—l/n} and then approzimate the corresponding shifted stopping

time (" := (7 A (™ V t))t’w by stopping time (' that takes finite values tf = t—I—%(T—t), 1=1,--- k. We will paste
in accordance with (P2) the local approximating minimizers PL of Zu(w) over the set {(f = t¥} backwardly to get

a probability Py € P(t,w) that satisfies Ep, [yT‘f?é} < Z¢p +¢ for all stopping times 7. Taking essential supremum
over T’s shows that

L < Zg te, (7.51)
where ZT1 denotes the Snell envelope of Y under the single probability Py. By the martingale property of ZT,
Zi(w) < 2P < Ep, ['QFCIZ}/\TDH}’ (7.52)

where Tp, is the optimal stopping time for 2F1. As the first time 2F* meets V), p, > (7*)4%. Since 7F = nlLI&T T
and kli}ngog? = (", for n,k large enough we have p, > (' except for a tiny probability. Then combining ([L52) with
(CET) and applying a series of estimations yield that Z(w) < Ep, [ZC,?] +e <Ep [Z@ﬂ +e. Finally, letting k,n — oo,
e — 0 and taking infimum over P € P(t,w) lead to (T50).
2a) In the first step, we paste the local approzimating minimizers PL of Zyx(w) over the set {(}} = thY backwardly.
Fix PeP(t,w), e€(0,1) and o, n, k, \e N with k > 2. We let {w$ }jen be a subsequence of {©f}jen in O, (0"), and
have seen from part (1) that 7" :=inf {s€[0,T]: Z,<Y,+1/n} is an F—stopping time. Since v(w ®; Q') C (¢, 7] and
™ (w®¢ Q') C (¢, T] by (ZA9), Corollary 2T shows that both ¢ := (yA (7™ V t))t’w and ¢*:=(7*)"* are T'—stopping
times. We set t; = t¥ := t4+£(T'—t) for i=1,-- -,k and define (' := 1{cn<yyt1 + Zf:z g <cn<anti € TE
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There exists a ¢ € Q1 such that po(d) V po(d) V p1(0) < /4. Given (i,5) € {1,--- k} x{1,---, A}, we set
={=t}N (Otl \ U OF (w ,)) € F{, by @I). There exists a P’ EP(ti,w@)thO-‘) such that Z;, (wews) >

sup Eﬂm {Y

i, wRiw] }
TET

e/4. For any & € A} with A% # 0, similar to (Z.20), one can deduce from (3.1 and (&3] that

Sup E]Pn |:y 7§:| = Sup ]E]Pn |:Y7_tiww®t¢~':| < SU.p E]Pn |:Y:'uw®tw

— € -
Tt reTti I reTh :|+PO Hw w]Htt) Zti(w®tw5‘)+—+p0(|‘w—w§‘"t’ti)

4
= _ . 1 - .3 .3
<Z,(w @ @)+p1 (|0 —ws ||t,ti) t3e< Zy, (w @y w)—l—zs = Z, (w)—i—zs. (7.53)
Setting P} := P, we recursively pick up P}, i =k — 1,---, 1 from P(t,w) such that (P2) holds for for (s, @, P,
1wt

. A A\ €
{450, B)Y ) = (1B {(A5, 6,0 P ) and Ag=si= (D) A})" € FL. Then

SU7I_> Eps [1ana Y] <Epy | [1{weAmA?}(<squ Ep: [V +ﬁ0(5))}v Vi=1--A VA F,. (7.54)
TETE / eTti ’

And similar to (21)), we have

Epr[] = Ep, [¢]; vée LNFPY) N LY (F L Py ), (7.55)
and  Ep (14 = Ep [Lydl, VE e LNFh B N L (FhPY). (7.56)

2b) Now, let us consider the Snell envelope s of Y under P}, i.e., ZE)? = esssupIEPA [J}T k} , s €T

TETPl
A
As mentioned in the proof of Proposition [4.3] ZP! admits an RCLL modification {Q%Pl } . such that for any
se|t

s 7']?1 PfA := inf {T € [s,T): Q"TP? = yr} € 7}IFD is an optimal stopping time for esssupEPA [J}T P?] Simply

‘1'67'1}]71
A
denoting 7 by 7, we also know that 2 Py (resp. {Qililm} ) ) is a supermartingale (resp. martingale) with
seft, T

respect to (FIFDI ,]P’f). It follows from Optional Sampling Theorem that

A
Zi(w)=_inf sup Ep[¥:] < sup Epa (V-] < sup Epa (Vr] = P? = Qﬁp? =Ep» {QF?M ] (7.57)
PEP(t,w) reTt FeTt e 1 kT

A —
Applying (743) with P =P} shows that P{‘{ZS < Vse [t T]} =1. By the continuity of Z and the right

continuity of 2P7, it holds for P} —a.s. @€ that Z,(&) < QFSP% (W) for any s€t, T]. Since 7*(w ®; W) >t by (49),
one can deduce that

C@)=1"(w®;0) =inf{s € [0,T] : Zs(w @ @) = Ys(w D¢ c~u)} =inf{s € [t,T]: Zs(w ®; @) = Ys(w ®¢ @)}

=inf{s € [t,T]: Z5(@) = Vs(@)} <inf{s € [t,T] : 7 ( ) =Vs(W)} =7, (@). (7.58)
Nezxt, let us use (T53)—([TH6) to show that
Py A
k—1 a <1y n — a.s. .
L 2 S 1 (Aé)c(zgk +e), P-as (7.59)

i=1 i=1
To see this, we let (4,j)€{1,---,k =1} x{1,-- A}, 7€ T and A€ F{,. Since A’ CAY for i e{1,-- k—1}\{i}, we
can deduce from (750), (2), (C54), (C53), (T53) and Proposition [12 that

Epx [1AmA;y'r] = =Epr {1A0A;yr} =Epx [1A0A3%} < Epy {1{&€AHA§}(CS€%&EP? [y o] +ﬁo(5)>}

J

S ]E]Pz?\#»l |:1Aﬂ.A; (th + 5):| - ]E]Pi\ |:1AF].A; (th + 6):| == ]E]Pi\ |:1AI'-WA§ (Ztl + 5):|,
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where we used the fact that Z;, € 7/ by Remark .2l and Proposition 1] (2). Letting A vary over 7}, and applying
Lemma [A4] (1) with (P, X) = (P}, BY) yield that

1.,43 (Ztl + E) > EPi\ {1A3yr‘ffl} = EPf {1A§y7

ffﬂ, P} — a.s. (7.60)

Py .. i
For any 7€ 7", similar to (Z2T), one can find a sequence {TZ }ZGN

{Téi}éeN in turn has a subsequence (we still denote it by {T;}ZeN) such that elirgloyTZ =Y, P}—as. As Ep) (V.| <0

of 7! such that lim Epx [|V,:—Y-|] =0. Then
° {—oo 1 £

by [B2]), a conditional-expectation version of the dominated convergence theorem and (.60) imply that

Epa {1,43; Y-

P .
7] = gL

A

}—El] <1y (Zti + 6), ]P)f —a.s.
’ J

Since A} € F{, it follows that

P} 2 P}
120 =102 =17, =1 giesssupEpa V-
J k J o it J 5
7'67—5,1

A
ffl} = esssup 1 4i Epa {yT
i X 3 1
TETil

fﬁ?]

A
= esssup Epa [IA;;))T Fil} <1a (Ze, +¢) = Lai (Zg;g +¢), P} —a.s.

A
7'67—5,1

Summing them up over je€{1,---,A\} and then over i€ {1, -,k — 1} yields (.59).
2c¢) In this step, we will use (CX0) and (C59) to show

Zi(w) < Epy [1%393 + 1%03)3} + e, (7.61)

where o = (¢t < 0 (0 4)) = (@ < ¢pn (10 D).

. Py . . . — k=1 ..\c
We first claim that 7\ € }-Z;gAC* ﬁ]—"{};m . To see this claim, we set an auxiliary set /) :={(}! < 7, }N (lgl (AY) )

A
Given s € [t,T],if s < t1, then AN {GAC* < s} = AN{( < s} =0and AN{FAT, <s}=AN{ <s}=0.
Ce A
Otherwise, let &’ be the largest integer from {1,---, k — 1} such that ¢;» < s. Since (A}) = 'U1A; C {¢p =t;} for
J:
=1, k—1,

ANGAC <t = an{g<si={d<cin( b)) nig<s

and AN {GE AT, <sh = AN {G <sh =1 <m0 (O (4)) n{g <sh

Ko P> . n Py Py
Clearly, U (4p) € Fl, CFCF N As G <P} € Flupee © Fép and {G < 7y} € Fdy, C Feil, we also
A
have {(;} < "} N{¢y < s} € Fi and {(f <7, } N{¢} <s} € FIU Tt follows that AHN{CE N < s} € FL and
— A — A
N A o\ SS}E}"SPI. Hence &) € ‘F&AC* and @\ € ff;:;ll/\'r/\ .

A A
By [L58), N :={(* >1,} € NP1, Since o NN C {¢¢ <7} and since {¢f <(* AT} € ‘FCIZ‘IAC*AU - ]-'CI%MA,
one can deduce that

k—1 . C — A
NN =\ N {G <7, F NN ={G < AT N (iL:Jl (Ap) ) AN={G < AT, } Ny m\/cefgﬂz}m.

A
As oA NN € NP1 we see that o7 € Fo

Cr ATy

A
Since { TE;IAS}se[t . is a martingale with respect to (FP?,]P’f), it follows from Optional Sampling Theorem that

Fo

P P Py A
Lo Znr, = LagBoy | 270 | 7L Filo ] m-as

¢4 ATy

P
| =By |1 27,
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Taking expectation Epx yields that
P P}
Epx [lﬂff‘gcgwj = Ep» [ldf 2, } = Epa [121/;324 . (7.62)

Since ¢f < 7, holds P} —a.s. on @ by (Z58), we can deduce from (Z57), (Z.62) and (Z59) that

P A
Zi(w) < Epy [ffcglATJ =Ep {1% 32121 + 1%;3)3} < Ep [LzAZq;g + 1%;377J +e.

2d) In the next step, we replace EP? {L% Zep +1%cyn] on the right-hand-side of ([T61)) by an expectation under P.
Fori=1,--- k—1,as a) € ‘FZ}J/\C* C .7:2;;, one has o := oA N{(F =t} = {¢ < YN (A € Ff. By (T50),

([E8), Remark (2] and Proposition 2]
Epy [1%1-2,51} =...=Ep [szti} =Ep,, [1%1-24 =-..=Ep, [1%1-2,51} —Ep [1%;Zti]
Their sum over ¢ € {1,---,k — 1} is
Epy [126241?} —Ep [1ngg] (7.63)
Using (Z58) and the fact that 27 = Yr (see (Z45)), we obtain
Epy [1{T:<,:Ls<*}ya} =Ep [1{T:<gs<*}yT} =Ep [1{T:<g§<*}ZT} =Ep [1{T:<gs<*}3<g] (7.64)

k=1
Since {T' =¢p <¢*}c{=T}C n A%, one can deduce from (Z.56) and Proposition 2] again that
i—

Ep) [1{T:<gs<*}z<,?} = Ep) [1{T:<gs<*}z<,?} = =Ep {1{T:<::s<*}zcs} = Ep {1{T:<,?s<*}2<2}’ (7.65)
and similarly that

Epy [1 yTJ < Ep [1 = (7.66)

—1 yr =Ep |l - ) . y* .
(*nlas) \ir=cp<cy J P{ ("nlas) \tr=cp<cy ‘0l ap) \(r=cp<c) }
Similar to (Z.27), one can find a sequence {Tﬁ}geN of T* such that elim Epx qu.f — kaH = 0. Let £ € N and
—00
(t,§)e{l, - k= 1}x{1,---,A}. Since {¢* < ('} € ‘FZ*AC}J C .7:2)?, we have {¢* < (f} NA, = {¢" < I NA{G =
ti} N AL e Fl.. As Al C Al for i’ €{1,---N—1}\{i}, we can deduce from (32) and (7.54)— (7.56) that

Epa [1{<*<cg}mA;ﬁ yrd =:-=Ep [1{<*<<g}m;’. yrd =Epx |:1{C*<Cg}ﬁA§ﬂ{T§§ti}yff/\ti + 1{@*<Cg}ﬂA§ﬂ{Tf>ti}yrfth
ti , wWw®ew ~
<Ep,, {1{0<<g}mA;m{T§<ti}yf§Ati 1@< @) Lizeat Lrt @)>t) ( CZ‘Q_EP; {Yc } +Po(5)>] . (7.67)

If M := sup Y (w') < oo, it follows that
(t.w)E[0,T]x Q2

EPi\ |:1{C*<<;cl}ﬂ"4;y7-fj| S EP,?+1 |:1{C*<C;J}0A; (1 + M+):| . (768)

Suppose otherwise that M = oo. The right continuity of process Y and Proposition 211 (2) imply that & :=

sup |Vr| = ( sup |yr|) V|V, | is Ff —measurable. For any ¢ € T%, & € Q' and @ € Q" since ¢ := (@) > t;
rE[t,ts] reQN[t,t;)
and since Y, (w®¢ (@®y,®)) =Y, (w) for any r€(0,] by 2.2 again, (5.2) implies that

YIRS @) =Y (w @ (@ @, 8)) <Y (i, w0 (B01,@)) + L+ sup |Y(T,w®t(0~d®tia))|+pl( sup \@(T)D
re[0,t;] rE[ts ]

:y(ti,& ®t, CJ) + L+ sup ‘Y(T,w)‘ vV sup |y(r,c~u ®4; @)| + pl( sup ‘Bff(CJ)D
rel0,t] reft,t;) TE[t-;,?]

< L+28(0 ®¢, @)+ sup ‘}/T(W)‘+p1( sup |B£i(&})|):L+2§i(c~u)+ sup |Yr(w)‘+p1( sup ‘Bf;(&})D
rel0,t] re(t;,T] re(0,t] re(t;,T]
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Since [l @ 0o, < Iwloe+ logllee, < [wlloat o lr < lwloe+a = !, @) shows that By [y <=@] <

L+2Y, + por (T —t;), where L := L+ sup |V, (w)| < oo by Lemma Plugging this into (Z.67) yields that
re(0,t]

Epy {1{4*«?}%)@] <Ep | [1{4*«?}% (1+L42V. + par (T—ti))], which together with (763), (756) and (332)
shows that

Epa [1{<*<<g}m4;iyrd <Ep,, {1{<*<<g}mA;(1+77a')} =---=Ep [1{§*<§,:‘}0A;(1+77a’)} =Ep {1{§*<§;‘}HA;(1+770/)

for nar =1 prcoo} M1 {p1=00} (Z+2y*—|—pa/ (T)). Summing them up over j€{1,---, A} and then overie {1, k—1}
gives that

IN

) V) Vo] +Esy (197, = Vo]

Ep [1 Lo Ep |1 .
L e <n (U0 a9 L e <n (U0 ap))

E [1 . 1 a/} Epr [|Vr — V.e|].
‘ {<*<<g}m(jgll<Aa>°)( )|+ By (|97, = ]
1 ey Vn] <Ee1 L.
(e <en(Tean) ) =B e cona (o)
Putting this and (.63)-([766]) back into (Z.61]) yields that

As ¢ — o0, we obtain Epa [ (1+ 770/)]

7t(w)§E[p|:( +1{T:CZSC*}>ZCZ+1(’C*

_ Vi1 (L) | el (7269
0 \(r=¢p<ce) {<*<<g}m(’jgj<Aa>)( o) (7.69)

1 k—1 . ¢
{ep<c3n (Y] (4h)°)
2e) In the last step, we will gradually send the parameters A, k,n,a to oo to obtain (T.50).
o .
Let A, := U U (A)" and O¢ := U Os(ws). As Os(w?) C O% (w?) for (i,7) € {1,---,k — 1} x N, one can
) AEN i=1 JEN J J J

deduce that

Ac, =00 U =0 U A ="0 ({a =t U oY (e g =t ={ <T d

kTS ,\eN( o) =Y, jEN j_izl({ck =t} (jeN s (wj))) . i:l{Ck =ti={ <T} an

Aze="0, (1t = tpn( Y, 05)) 25 ({6 = t3n98) = (0, {6k = t})n95 ={Gt < TInDg.  (7.70)

Since Ep [y*—i-na/} < 0o by (B2)), and since {ZC,? }n wen 18 P—uniformly integrable by Proposition 4.2 letting A — oo
in (C69) and applying the dominated convergence theorem yield that

Zi(w) < Ep {(1{4,?34*}0Az,k +lr=cpect) 2+ 1as gevir=cp<cy Ve T Lic-<cpinag , (1+na)| +e
< Ep [I{CQSC*}ZCE +1(D§¢)cy* +l(DJOL)CU{T:C;;L>C*}y*+1{<’*<<’;;l} (1—|—77a/):| +e, (7.71)
where the second inequality is due to the fact that
Licr<cminag Zep = Ligp<cyniep<ry 2= Lep<cin(ep <thag ) 26 S Licp<emynfep<my 2= Licp<cyndep <rivaz ) ey
< Lgp<enniep <ry 2t g <enig<minoy)e Vs S Lep<eniep <ry 2ep + Log)e Vs
As ¢*=(7%)"* >t by (T49), we see that klim r=¢"< (V)b = (") Vi< (* <T. Then letting k — oo in (Z71),
—00
using the continuity of Z (Proposition £2), and applying the dominated convergence theorem again yield that
7,5 (w) <Ep [Zgn +1(D§)C 23)*] +e=Ep I:Z(,Y/\(Tnvt))t,w —i—l(ggx)c 23)*] +e. (7.72)
Clearly, 7/:= lim 1 7™ <inf{t€[0,T]: Z;=Y;}=7*. For any n€N, Z,» <Y;n+1/n. As n— oo, the continuity
n—oo

of Z and Remark B.1] (1) show that Z, <Y, _ <Y, <Z,,, which implies that 7*=7'= lim 1 7. Since UNDO‘ =0,
ac

n—oo

letting n— 0o, a— 0o and then letting e —0 in (7.72)), we can deduce from the continuity of Z and (7.49) that

(Zrnunt) (@) = Zu(w) < Be[Ziynirviye] = Be[Zgnreyee] = Be| (Zrery)™],
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where we used the fact that for any & € QF
~ —t,w ANEW [~ ~ = * ~ ~ = ~ =4 tw ~
Ziynryte (@)=Z " (Y AT)(@),0) =Z (Y AT ) w @ @), w @ @) = (Zrony) (W Rt @)= (Zreny)  (@).

Eventually, taking infimum over P € P(t,w) yields (Z50), which together with (74])) leads to (T50)). Therefore,

{ZT*At}te[O,T] is an &—submartingale and it follows that
Jnf, SZEEP Y ]=Z0<&y[Z+] = Inf Ep [Z-] = inf Ep [Yr-] < 52%22 Ep[Y7] < inf flelgIEn» Y] O

7.5 Proofs of the results in Section

Proof of Lemma [6.1} Define a mapping W : [t, T] x Qf x R¥*? — [t, T] x Q x R4 by U(r,@,u) = (r,w @; 0, u),

Y (r,@,u) € [t,T] x Qf x R¥*4, Given D € & and U € #(R%*?), one can deduce from Proposition 2] (3) that
D xU) ={(r,@,u) €[t,T] x Q' x R*?: (rwe;@,u) € Dx U} =D x U € 2" @ BR?).

SoDxU e A:={TJ C[0,T]xUxR¥: ¥~1(T) e 2"® BRI}, which is clearly a o—field of [0, T] x Q x R¥*%,
It follows that 2 ® Z(R¥*?) C A, ie., V~1(J) € 2' @ BRYI) for any J € & @ B(RI*9).

For any £ € #(R?), the measurability of b assures that J = {(r,w,u) € [0,T] x Q@ x R b(r,w',u) € £} €

P @ BR>). Thus, {(r,0,u) €[t,T] x Qf x R>*4: pb (1,0, u) = b(r,w @ w,u) €E}=VHT) € P'QRBRY),
which gives the measurability of b*%. O

Proof of the wellposedness of SDE (6.2):

1) Fix t€[0,T]. Let S%t([t,T];Rd) denote the space of all RY—valued, Ft—adapted continuous processes X with
E[X2]=E[| X7 1] < oo, and let us consider the following norm on S ([t T1; R%):

1/2
| x| = (Et [ sup 6_2”2T5|X5|2]> ) VXES%t([t, T); RY).
" s€t,T]

Also, fix we and pe%%. Given XES%t([t,T];Rd),
Xs::/ bt’w(r,X,,uT)dr—F/ prdBL, s €[t T)
¢ ¢

=t . .
defines an R?—valued, F —adapted continuous process. Since

lw® e X[lo,r <[l]

O,t+||X||t,7‘7 VTE[t,T], (773)

(61) implies that

T s
|X|ler = sup \XS\S/ (\b(&w@tX,us)—b(&O,MS)\+\5(S70,MS)DCZ8+ sup /urdBi
s€t,T] t seft, T/t
< K(Hw||o7t+|\X|t,T—i—l—i—m)(T—t)—i— sup /urdBi , P —a.s.
seft, Tt

The Doob’s martingale inequality then shows that

T
2 2
B [1X)2 1) §252T2Et[(||w|O,t—|—||X||t7T—|—1+m) }+8Et/ || 2ds < 452T2((|\w||0,t+1+,<;) +Et[||X||f7T])+8/<;2T<oo.
t

So XeS%t([t, T]; RY).
We set UH@#(X):=X. To see that U“# defines a contraction map on S%t([t, T);R?) under the norm || - ||,;, let
X be another process in S%t([t,T];Rd) and let X := Whwn ()?) Setting AX := X—)N(, AX:=X—X and applying
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Ito’s formula to process e~2% 75| AX,|2 over the interval [t,T], we can deduce from (G.1)) that Pj—a.s.

672K2T5|AXS|2 = / e~2WTr [2<AXT, b (r, X, i) — b8 (1, X, fir)) —2/{2T|AXT|2} dr

t

S/6_2”2:”[2I<J|AXT|Hw®tX—w®tX'HO —252T|AXT|2]dT

t "
1 s = 1

< — 6_2"‘2TTHX—XHdeT < = sup 6_2”2TT|AXT|2, s€et,T).
2T J, ’ 2relt,)

It follows that |AX|i—Et[ sup 62"2T5|AX5|2] <3E { sup 62"‘2T5|AXS|2] =1[|AX]3.
se(t,T] s€(t,T]
Hence, ¥%“# is a contraction mapping on S%t([t,T];]Rd) under the norm || - ||,. Then the unique fixed point
Xb@r of UH@r forms a unique solution of ([6.2) in S%t ([t, T); RY).

2) Now, let p > 1 and s€[t,T]. Since (62)), (€I) and (T73) show that

| X Ewb|, = sup]|Xi>“>“|§/ (\b(r,w®tXt’”’“,ur)—b(hO,ur)\+|b(7“,0,ur)|)d7“+ sup
t re

relt,s 8]
/ Mt dB,f‘/
t

n P n
(Lar) <ot Eate vane s € 0,00) (7.74)
i=1 =1

we can deduce from Holders inequality, the Burkholder-Davis-Gundy inequality and Fubini’s Theorem that for some
constant ¢, >0

/ Mopr! dBi/
t

IN

S
/{/ (”wHo’t—l—||Xt’w”u||t17«—|—1+li)d’l”—|— sup , ]P)B—a.s.,
t

re(t,s]

Using the inequality

By [[| X"

S p S p/2
1] <37 (ol L) o=+ | ([ ar)| v s [ar)™]
< kP [3”71(Hw||0,t—|-l—l—li)p(s—t)p—l—cp(s—t)p/ﬂ +3p7111p(s—t)p71/ EtHXt’”’“Hf’Tdr.
t

Then an application of Gronwall’s inequality shows that
E | Xty ] < [3P7 (Jlwllos+1+k) (s—t)P +cp(s—t)P/?] exp{3P kP (s—t)P} < 00, Vs€[t, T). (7.75)

Proof of ([63): Let t€[0,T], w,w’ €Q and pe%,. For any re[t,T], we set AX, :=XL«H_ XL« 1 Given selt, T),
since (6:2) and (6.I)) show that

IAX],s= s?p]‘AXT‘ Sn/ Hw@tXt’“”“—w/®tXt"",’”HO)T dTSIi/ (lw=w'lloe+AX ||¢e,r)dr, Pi—a.s.
re|t,s t t
we can deduce from (.74]), Holder’s inequality and Fubini’s Theorem that
BIAXIE) <2t {lw-wlf (o= + (=0 [ BAXIE ar .
t

Similar to (Z78), Gronwall’s inequality implies that (63) holds for C),:=2P"1xP exp{2P~1xPTP}. O

Proof of (64): Fix (t,w)€[0,T]xQ and p€%;. Let ¢ be an Ft—stopping time and 6> 0.
Given s€[t, T), set vs:=(CVs)A((+0). Since an analogy to (Z.73), (62) and (6.I) show that

| XD — XK g/ (|b(r,w®tXt’“’”,ur)—b(r,0,ur)|+|b(r,0,ur)|)dr+'/ urdBi’
< ¢

IN

t
, Py—a.s.,

ﬁ(|IW||oﬁt+HXt’“’“||t,T+1+“)(”S_CH‘/ Lic<r<(contyir dB;
t



7.5  Proofs of the results in Section[d 29

we see from 0<v,—( <4 that Pj—a.s.

sup | Xpot = X = sup [XpeH = X < a(lwllort [ X0, - 14 R) + sup | Liesrs(cranryir 4By

re[C,(C+O)AT] s€t, T €[t 7]

Using (74 again, we can deduce from Holders inequality, the Burkholder-Davis-Gundy inequality, Fubini’s Theorem

and (73] that

w T P/2
Bo| suwp |Xbes o Xt ’”V’]Sf”p”f”ép{(llw”oﬁwwmum[nxfwm}+cpEt[(/ gersicronmlinar)”
r€[C,(C+O)AT] t

< ¢p(llwllo,)s?”?

for the continuous function ¢, (x) :=3p_1f<apr/2{(x+1+l<a)p+ [3p=Y (2 +1+k)"TP+c,TP/? eXp{?)p_llipr}}—f'CpIip,
Va>0. 0

Proof of Proposition The conclusion clearly holds when ¢t = s. So let us just consider the case t < s.
1) In the first step, we will apply [G2)) to path ¥R so as to get a rough version [L80) of the shifted SDE.
By (62)), it holds except on an N; € 7' that

X, — X, :/ bt>w(r',X,uT/)dr'—|—/ pmdBL,, € s, T). (7.76)

Applying Lemma [A4] (3) with (P, X)= (P, B') shows that X has a (F*, P})—version X. Set Ny := {we: X.(0)#
X, (&) for some r € [t,T]} e 7" and let N := N; UNa € 7. Since D := {(r,@) € [t,T] x Q : |u.(@)| > K} satisfies
(dr x dP})(D) = 0, Lemma 25 shows that for all w € Q' except on some N3 € ",

NP e and (dr x dP§)(D*¥) = 0. (7.77)

Fix & € (M2 UN3)” and set X% (@) := X3P (@) — As(@), (r,@) € [s,T] x Q. Since the shifted process X*% is
F*—adapted by Proposition 11 (2), we can deduce from (T.77) that for any (r, &) € [s, T] x B(R?)

e :x@) e} ={0eN*® 2@ eEu{de (N*®) = (N)*®: X3°@) e E+ X, (@)} € F,.

So X% is Fs—adapted
For any r € [t, 5], since X, € FI C F!, we see from (Z2) that

X (0®s0) = X (00, 0) = X.(@) = X.@), Yoe W) (7.78)
Let @ € (NV*%)°. The equality (Z78) implies that X¥(©) = 0 and thus X¥(&) € Q°. By (Z.18) again

(w @ X(@ @, @))(r) = Lipepo,nyw(r) + 1{re[ 017} (A (@ ©4 @) + w(t))
= 14ep0,0w(r) + Lpept)) (X (@) + w(t)) + Lires, :r]}(36 (@) + X (@) + w(t))
= 1{re[0,s)} (w X X(@)) (T)+1{r6[s,T]} (%f(w)—k (w ®¢ X ) )) ((w ®¢ X )) Qs %&(&\1)) (’I”), Vre [0, T].

It follows that
b (1, X (@ @5 D), i (@ @5 D)) =b(r,w @¢ X(@ @5 D), p2% (@) =b*2 ¥ @) (1, X°@), u3¥ (@), Vrels,T). (7.79)

Applying ([Z70) to path w®sw and using (T.78)), (T.79) yield that

%f(&\}) _ XTS,CJ(&\)) _ Xs(@) :/T bs,w@w\’(a)( %W( ) :U’r’ ( ))d'r' —+ (/T,Ltr/dB;i/)((:) Rg (1\1), Vre [S,T] (780)

S S

2) Neat, we show that for Pi—a.s. ©€Q°, ([ pdBL)(@®,0)= (f:ur/dBﬁ,)s@ =/ ui}adBﬁ,)(@), Vrels,T].
This s quite technically involved since the stochastic integral f;urrdBﬁ, is not constructed pathwisely.
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Clearly, M, := [ pdBL, r € [t,T] is a martingale with respect to (Ft,PB). Applying Lemma [A] (3) with
(P, X) = (P}, B') shows that 90 has a (F!, P})—version M. Let Nj:= {©eQ!: the path 9M.(@) is not continuous} U
{wet:Mm, (@) M, (@) for some relt, T)} e7'. Similar to (TT1), it holds for all @€N! except on an N5 € e

NP e y”, (7.81)

We know that (see e.g. Problem 3.2.27 of [19]) there is a sequence of S;"—valued, Ft—simple processes {67 =

Zf;l E? 1geurr, 1T € [t,T]}neN (where b=ty <---<ty ;=T and E? € ?iy fore=1,--- ,én) such that

T
Py — le trace{(@f—,ur) (5:—,%«) }dr—() and P} — l;m sup \sm —Mm, ‘ Py — lim sup |9ﬁ —M, |
where M, := [ T,,dB!, = S e (Bﬁmn+1 —BMtn) Given n € N, applying Lemmal[AA] (2) with (P, X) = (P}, BY)
shows that there exists an R?*9—valued, Ff, —measurable random variable £ such that £ = E?, P{—a.s. for any

i=1,---,4,. Then the F*—simple processes {@:} = Zle & Lire(n im b TE [t T]} . satisfy
€

T
Py — lim trace{(fbf — pr) (@1 — ) }dr— 0 and Pj— lim sup |9ﬁ — M, ‘ =0,

where M := [ ®"dB!, = Sin en (Bﬁ,\t?+1 — Bﬁ,\t?). Since ftT trace{ (@1 — pr) (OF — MT)T} dr and e[stuT];])mQ‘Dﬁ"

ﬁr| are both Ff—measurable, Lemma[A T0lshows that {®"},cn has a subsequence {‘5? = E Em {re@rim, )b " €

[t, T]} such that for any & € QF except on some Ng € 7

neN
r ST 5\ [/ Rn 88 s\ 7T
0 = PS—JLH;O i trace{((@")r’ - fow) ((@")T’ - ufj“’) }dr (7.82)
and 0 = P§— lim sup ‘(53\?"):@ - (ﬁ”)za - {thia + E/DvTia ) (7.83)

n=00 (s, T]NQ

where Qﬁ" : ft T/ _Z’L 15 ( ’r‘/\t" _B:/\?n>'
Fix @ € (N5 UNg)C. For any & € (N5®)¢ = (N£)*%, the path M. (5 @ D) = M. (T ®, @) is continuous, so

sup [(@) 7 — (00) 77 - M+ M| (@) = sup [ - (D) - ME + M| @), ¥neN.
rels, TINQ re(s,T)

As N® e ¥’ by (81, it follows from (783) that

0=Pj— lim sup ‘(53\?"):@ - (ﬁ")za - E/DvTiw + E/Dv?:w‘ (7.84)

N=00 (s,

Given n € N, there exists some j,, € {1,---,0,} such that s € (t7 &7 ). Since g?n € ]:ti?n C FL, 22) shows

that (gjnn)s,a = gjnn (w) and Proposition[2.1] (1) shows that (Ef)” e Fi, fori=jn+1,-, ?,,. Tt then holds for any
(r,@) € [s,T] x Q° that '

((f)")iw (@) = 6:}(& ®s W) = g?n (@ ®: &) l{re[ ] " 1‘:;1 gy(a 82 8) l{re(tn ]}

L

= §ﬁl(@)1{re[ J+J}+ Z (?)Sw(w)l{re(;?);%”,



7.5  Proofs of the results in Section[d 31

SO {(‘f")i@}re[s 7] is an F*—simple process. Applying Proposition 3.2.26 of [19], we see from (Z.82) that
0=P{— lim sup / (:13"):;de,§/ —/ uf’,@dBﬁ, . (7.85)
N0 rels,T]| Vs s
For any n € N and @ € Q°, one can deduce that for any r€ (s, T
_ _ iy
ann S ann) SS9 (~ n t t n t t ~ -~
()= ), >(“):[ 5By~ B+ 2 & (BM?zul_Bm??)](w&w
! i=jn+1
~ Zn ~ ~
—Er @) B(rATT ) + (€)@ (a(rntr,) -0 (raT}))
1=Jn+1
- Zn R —_ T e ~
- [5;1 (@) 'BfA?ynﬂ + Z (€n)” (BfA?;gl_BfA?y)} (@)= (/ (¢n)r; dBi’) (@),
i=jn+1 s
which together with (Z84), (C83) and (8] shows that P§—a.s.
/ PP dBE, = MY — M = MS® — M@ = ( / ur/dBﬁ,) T orels,T). (7.86)

3) Let we (N2 UN3 UN5 UNG) . Proposition 201 (2) shows the shift process pu®® is F*—progressively measurable.
And (C77) implies that

(dr < dP3){(r, @) €[5, T x Q% [u% (@) > K} = (dr x dP5){(r, @) €[5, T] x Q*: (r,&®5&) €D} = (dr x dPg) (D**) =0.

So u*¥ € Us. In light of (Z.86) and (Z.80), it holds P§—a.s. that
x5 = / S WD X (@) (T/,xﬁvﬂj;w)dr’ +/ uj;w dB;,, re€[sT].

Then the uniqueness of solutions to the SDE (6.2) over period [s, 7] with drift 5>“®+*¥®) and control 1** leads to
that X5% — X, (@) = X¥ = X @@ (@77 O
Proof of Proposition [6.2t Fix (t,w)€[0,7] x Q and p€U;. Let us set X = X"“* and consider the induced filtra-
tion XH(F') = {X~H(FL) :={x1(A): Ae ]-“;}}se[t’T]. Also, we define a mapping ¥ : [t,T] x Qf — [t,T] x Q!
by U (r,@) = (r,X(@)), Y(r,@) € [t,T]x Q" Clearly, o% := (¥)"H(2") = {(¥*)"'(D): D e P} isa
o—field of [t,T] x Q'. A process K = {K }sepp,r) on Q' is called Pi—a.s. X' (F')—progressively measurable

(resp. Pt—a.s. ¥

able (resp. o

1) We first show that B! is Pi—a.s. 0¥ —measurable.

—measurable) if K has a P§—indistinguishable version that is X' ~1(F!)—progressively measur-
—measurable).

1a) In the first step, we show that the inverse of the S;O—valued control process {fis}sef,) i ds X dPt—a.s. equal
to an X~ (F?)—progressively measurable process.

Given i,j€{1,---,d}, let X be the i’ component of X. It is known that (see e.g. Proposition IV.2.13 of [31])

Pi— lim sup
N0 selt,T)

=0, (7.87)

M — / Xldx?
t

S

n—1

where M= M»3" .= Z X;M? (ij/\t;bﬂ_xjmg) and ¢} :=t+£(T—t). Clearly, X' is X~ (F*)—adapted, so is X*. For
£=0

any t' € [t,T], the continuity of X implies that

the process {X7,, }sep, is X1 (F!)—progressively measurable. (7.88)
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So each process M™ is X 1 (F*)—progressively measurable. Then we can deduce from (Z.87)) that the P§—stochastic
integral [, XidX] is Ph—a.s. X~!(F')—progressively measurable, so is the process Yhi := XIXJ — [7 XldX] —
[ XidX!, s € [t,T]. It follows that for any n € N, the process Y7 := n(Yii — Tz;]_l/n)vt), s € [t,T] is

n—00

Pt —a.s. X~ }(F')—progressively measurable. Hence, Y%/ := (m T?’i’j>1{ T T2 oo} s € [t,T] is still a
Pt —a.s. X~1(F!)—progressively measurable process.

Let u* denote the i" row of u. Since it holds except on an N ; € 7' that [ pk s pddr = (X7 Xﬂgo = T%J for
any s € [t,T], the Lebesgue differentiation theorem implies that for any w € N¢

4,37

(- 1) (@) = Jim n (T~ T}

00 (s—1/n

)vt)(@) = lim Y™ (@), forae. s€[t,T),

n—oo

which implies that

=", dsxdP—a.s. (7.89)
1 ceox (26—
For any ¢ € N, let ¢y := — X3 X 2@2 (2¢ 3), which is the /—th coefficient of the power series of /1 — z,
z € [-1,1]. Given ' € 87 with |T'| < 1, we know (see e.g. Theorem VL9 of [30]) that T:= Tixa+ Y pen ce(laxa—T)"
~ ~ ~ 2 w0
is the unique element in S;° such that I = T'-T' = T. Given (s,w) € [t,T] x Q¢, since n,(w) = |'u(£u)}|)2 € 87",
wu(@
2 ~
Mo(@) 1= Taxd + D e ce(Laxa — ns(@))* is the unique element in S;° such that 12(@) = ny (@) = %7 thus
ey ps(@)
n, (W) — (7.90)
s (@)

On the other hand, since T is an R4 _valued, Pt—a.s. X~1(F!)—progressively measurable process, so is the

~A Ts ~ AR~ .
process T, := 1{‘?S|>0}m, s € [t,T]. It follows that us(@) := Iixd + > ey ce(laxa — Ys(@))*, s € [t,T] is also an
R4 —valued, Pf—a.s. X! (F!)—progressively measurable process. By (7.89), we see that T, = ng, dsxdPh—a.s. and
thus u, = A, ds x dPh—a.s. Then (Z.90) and (Z8Y) imply that pu, = | us| = usy/|Ts|, ds x dPL—a.s. Clearly, uy/| Y|
is still an R¥9—valued, P§—a.s. X ~1(F!)—progressively measurable process. Let fi be its P}—indistinguishable
version that is X ~!(F!)—progressively measurable, so

Us = fis, ds x dPb — a.s. 7.91
0

Let a (resp. a”) denote the determinant of the (d—1)x(d—1) matrix that results from deleting row i and column
j of i (vesp. fi). As det(fi) and a¥’s are all X~1(F!)—progressively measurable, the R4*4—valued process

1

(s := 1{d€t(ﬁs)¢0}m [(_1)i+j Adgi]dxd’ Vs e [t,T]
is also X~ (F*)—progressively measurable. Then we see from (Z.91)) that
- 1 itj i
Hs t= 1{det(us)¢0}m [(—1) +J ai ]d><d = (s, ds X dPB — a.S. (792)

X

1b) In the second step, we show that the Ph—stochastic integral [, q,dX, is Ph—a.s. o —measurable.

Let ¢ be an R¥?—valued, X' ~!(F*)—progressively measurable bounded processes such that sup |¢s| < Cy,
s€(t,T]
Pj—a.s. for some Cy > 0. Giveni,je{1,---,d}, since @47 := [ ¢t dr, s€[t, T defines a real—valued, X ~! (F')—adapted

continuous process, for any n € N the process @77 := n(P%J —szg_l/n)vt) is again a real—valued, X ~!(F")—adapted

continuous process with sup ‘q)?’i*j | < Oy, Pi—a.s. In light of the Lebesgue differentiation theorem, it holds for
s€(t,T]
Pi—a.s. w € Q' that

¢ (@) = lim n(0L — &} )@) = lim @4 (@), for ae. s € [t,T).

n—00 (s=1/n)vt n—00
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The bounded convergence theorem then implies that

) P! . . . . t
nlgr;oZEtK [ @i | - 3 | / (@i — g ) (@ — k)0, YD

i,7,k=1

n— 00
i,7,k,l=1

T
= lim § Et/ (®HT — ) (mBk — gL k) Ity mldr = lim Et/ \(@;}—@)Mz’dr (7.93)
n—oo t
< k? lim Et/ ’fbf — ¢T‘2dr =0.
n—oo t

It follows that (see e.g. Problem 1.5.25 of [19])

Ph— lim sup }/ — ) (7.94)
n—=00 set,T]
Given n € N, since the process ®" is continuous, using Proposition IV.2.13 of [31] again yields that
Ph— lim sup ‘M:m—/ (7.95)
M= sc[t,T) t
~ m m—1
where M™ = &7, (Xopip, = Xonip) = > Lasip} @ (Xsniyn | — Xoprp) and {7 = t+ L (T —1). For any
— £=0
méeNand =0, -- —1, since {1{S>tm}<1>tm }56 £ is a X ~(F*)—adapted process with all left-continuous paths.
Lemma [AT7] and (Imb show that {1{S>tm}q)tm}se r1) 18 0¥ —measurable, and so is M™™. It follows from (Z.95)

that each P§—stochastic integral [, , PrdX, s P{—a.s. oX —measurable, and so is ft ¢rdX, thanks to ([T.94]).
a

Now for o € N, taking ¢ = { q : qs} o shows that [, q@dX, is Pj—a.s. o —measurable. Similar to
selt,

" o[ Va

a—r0o0

(T93), we can deduce that lim ZE} [</ (qp — C{r)er>T] = lim Et/ (a8 — a5 ) e | “dr. Since |(q2 — qs)ps| =
*im ¢

(1 WMCISMS! < ‘qsus‘ = ’u;lus‘ = ’Idxd’ = Vd, ds x dPt—a.s. by (792), the bounded convergence

. ]P)t
theorem implies that hm ZE} [</ (g% — Clr)er>TO] = 0. Then applying Problem 1.5.26 of [19] again shows
t

that Pf— lim sup ‘ft (qe —
a—r 00 E[t T]
X

o¥ —measurable. Let K! be its P§—indistinguishable version that is o
[6.6) that any X ~!(F!)—progressively measurable process is also i —progressively measurable, the P§—stochastic
integrals mentioned in this part are all well-defined.)

1c) Fix U € Z(R¥?). For any s € [t,T], we define a mapping U : [t,s] x Qf — [t,s] x Q x R¥*? by U, (r, &) :=
(r, X(@), ir (@), ¥V (r,@) €[t, s]x QL. Given €€ A([t,s]) and A€ FL, one can deduce from the X! (F!)—progressive
measurability of g that

= 0. It follows that the Pj—stochastic integral [ q,dX, is also Pj—a.s.

X —measurable. (As we have seen from

VU EXAXU) = {(rnd)elt,s] x Q' : (rnX(@),0, @) € Ex AxU}
= (ExXNA))N{(ro)elts]xQ @) eU} e B([ts]) @ X" (F).
SoExAeAy:={DClts]xQ: U I(DxU)e B([t,s]) ® (]—"t)} which is clearly a o—field of [t, s] x Q. Tt
follows that %([t, s]) ® FL € Ay, i.e. LU (DxU) e %’([t,s]) Y(FL) for any D € A([t, s]) ® FL.

Now, let D € 2*. For any s € [t,T], as DN ([t, s] x Q) e %’([t,s]) ® F!, one can deduce that

VN D x U)N ([t 8] x Q) = {(r,@) € [t,s] x Q' : (r, X(@), (a)) eDxU}
:{(T,LNU)E[t,S] x Qb (T,X(LNU),ZI:T(LNU)) € (50 ([t, s] x Q* )XU} ((Dﬂ ([t, 5] th)) XU) 6@([@ s])@Xﬁl(]——;).
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So U7H(D x U) € Py-1, the X~ (F")—progressively measurable o—field of [t,T] x Q. Then D x U € A := WS
[t, T QxR W2 (T) € P}, which is clearly a o—field of [t, T]x Q! x R*2. Tt follows that 2'@ B(R**?) € A,
ie., \T/;l(J) € P for any J € P @ B(RY*). Hence, the mapping U is Py | P @ BR)—measurable.
Then we see from Lemma [6.1] that the mapping

(r,@) = " (r, X(@), [ir (@)) = b (W (r,@)) is Pr-1 | B(R?)—measurable,

which together with the X~ (F')—progressive measurability of q shows that the integral K2 := [;* q.b"(r, X, [i,.)dr,
s € [t,T] is X1 (F')—adapted. By Lemma [A 1] again, K? is also 0¥ —measurable. Then we can deduce from (Z.91])
and (7.92) that Pj—a.s.

B‘;:/ quXT—/ 40" (r, X, iy )dr = KY + K2, s € [t,T). (7.96)
t t

Since the process K'+K? is 0¥ —measurable, an application of Doob-Dynkin Lemma shows that there exists a
P'—measurable (or F'—progressively measurable) process W = W« satisfying (K'+K?)(s,0) =W(U¥ (s,@)) =
W(s, X(@)), Y (s,w)€t, T] xQF, which together with (Z.96)) shows that for all & € Qf except on a P§—null set Ny

BL{(@) =W, (X(@)), VseltT] (7.97)
2) Setting (P,p) = (Pb<#, pte ) we next show that the filtration F* is right-continuous and thus P €.

2a) We first claim that W is actually a Brownian motion on Qf under p:

By (Z37), it holds for any @ € N§ that X, (@) = X, (W(X(@))), Vs € [t,T]. It follows that for any &' € Ay :=
{@ e Qf:Fw e NS such that &' = X (@)} = {&' € Q' : NS N X~H@') # 0}, one has

BL(@'") =X, (W(@")), Vsel[tT) (7.98)

As A% = {&0' € QF: X71(@') C Ny}, we see that X ~1(AS) C N, ie. X71(AS) € e .TtT. So A$ €GF ={AC
Qx4 e .TtT} with p(A%) = Ph(X 1 (AS%)) = 0, namely, A is a p—null set. (It is worth pointing out that AS
may not belong to Fr. though X~1(A%) € .T;. In general, the inverse conclusion of (G.6]) may not be true.) Since

Ay ={@' € Q': 3@ e N§ such that @' = X (@)} C {&' € Q' : W.(&') € Q} (7.99)

by ([Z.97)), the process W has p—a.s. continuous paths starting from 0.
(i) Given t < s <r < T, (ZO7) implies that for any & € B(R?)

p{@ e W, (@)-W(@) €€} = P{@ € Q" W, (X(@)) — W, (X(@)) € &£}

= Py{weQ': Bl(w)-Bi(w)ef}, (7.100)

which shows that the distribution of W, —Wjs under p is the same as that of Bf— B! under P} (a d—dimensional
normal distribution with mean 0 and variance matrix (r—s)Igxq).

(ii) Given t < 57 <71 < 89 < 19 < T, similar to (ZI00), it holds for any &, & € B(R?) that
p{TEQ W, (@) - W, (@) €&, i=1,2}=PL{Z € Q' : BL. (&) — B', (@) € &,i=1,2}

2 2
=[[Pi{z e :BL (@) - B, @) €&} =]] p{e € Q" W, (@) - W, (@) € &,
i=1 i=1
which shows that W,,, — W, is independent of W,,, — W, under p. Hence, W is a d—dimensional standard Brownian
motion on Q¢ under p and the corresponding augmented Brownian filtration

e R s (7.100)

is right-continuous, where A" :={N’"CQ': N/ C A for some A€ F)¥ with p(A)=0} (see e.g. Proposition 2.7.7 of

[19)).
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2b) In the second step, we show that the right-continuity of the augmented Brownian filtration {fsw*p}se[t ] implies
that of the filtration FYV:F,

Since F)Y C Fi by the F'—adaptedness of W, we see from Lemma [A12] (1) that 4"VP ={N"CQ': N’ C A for
some AeF)}Y with P(A)=0} C{N'CQ': N"C A for some A€ Fl with P(A)=0} =.4F. It follows that

U(.%;/v’p UJVP) = o(f;/VUJVP) :]:;/V’]P, VseltT).

Similar to Problem 2.7.3 of [I9], one can show that

FIVE = {A Cc O AAA e AT for some A € JESW’P}, Vselt,T). (7.102)
Let s € [t,T)and A € fﬁ’w = s/e(s,T]f;/’VP' Foranyn > n, =[], as A € .7:1/_\:5 , there exists A,, € ]—'VLP/ such
that AAA, € .#F. By (TI01), A := Q > U A, EJ’:W'C'—]:Wp Since A\A C D (A \A)C oy (AAA)
and since A\A = éJ 0 (A\A;) C u 0 (AAA;), we see that AAA C Y (AAAn) e NE, namely A e FIWE

by (ZI02). So ]-"W F = FWP_ which shows that

FVF = {}'SW’P} is also a right-continuous filtration. (7.103)

s€t,T]

2¢) In the last step, we show that the filtration FYV'F is exactly FF.

Let s € [t,T]. Since W is F?—adapted, it is clear that F)V:F = o(fw U JVP) C o(ft U JVP> = FF. So we only
need to show the reverse inclusion. For any r €[t, s] and £ € Z(R9), (T.97) implies that {w eQ: Bl(w)el A{went:
W, (X(@))eE}CNx € 7', which shows that (Bﬁ)fl(g) €, = {A CQl: AAA € ' for some A € X~ (}'SW)}
As X7L(FY) is a o—field of Qf, an analogy to Problem 2.7.3 of [19] yields that A, forms a o—field of QF. It follows
that F! C /AXS. Clearly, Wt C /AXS, so we further have .Tst - Ks.

For any A€ F¥, LemmalA 12| (1) shows that X~1(A) 6.7'; CA,, i.c., for some Ae FV C F!, one has X! (AA g) =
(X’l(A))A(Xfl(A)) e V. As AAA € FE c FZ, applying Lemma (1) again yields that ]P’(AA/T) =
p(AAA) = Py(X " (AAA) =0, ie, AAA € #F. Tt follows that A = AA(AAA) € FMP. Therefore,
FE = FWF which together with (ZI03) shows that P € ;. O

Proof of Lemma [6.2 Fix (t,w)€[0,7]xQ and pelfy. We set (X,P)= (X"« P #). Given weQ, B.1) shows
[V 0(X (@) =Y (0)|= V(00 X (@)~ Y2 (0)| < po (|02, X (@) [lo,r) < (1+[X@)F,), Vrelt,T).

It follows that Y/°(X(@)) = sup [VR0(x(@)] < k(14 ||X(CJ)||?T) + my, where my = sup [V.(0)| < oo by
relt,T] relt, T
Lemma[A9 Then we can deduce from (6.4]) that

Ep[Y0] =E, [V0(X)] < m(1+Et [xXlEr] ) +my <k (1+¢w (|w]o) T/?) +my < oo.

Namely, Y0 € D(F!, P), which together with Proposition 6.2 shows that P = Ptbw:# ¢ BY . O

Proof of Proposition Fix 0<t<s<T,weNand pu€lU;. We will denote (Phe:# ptwr Xtwn JWHwr) by
(P,p, X, W). For any r € [t,T], ([G.6) and Lemma [AT2] (2) show that §,:=c(FLUAP)CGY.

_ Let Ax as defined in (T98). As A% € AP, we see from the F'—adaptedness of W and (Z99) that the process
Wi (@) :=1geayWr(@), V(r,@) €[t,T] xQ" is adapted to the filtration {§,} ¢,z and all its paths belong to QF.
Given r € [t, T] for any ' € [t,r] and € € Z(R?), an analogy to (6.5) shows that W‘l((Bﬁ,)_l(E)) ={we:
W@) € (B HEN ={@eQ: W (@) €€} e FV. Thus, (BL) (E) A= {ACQ: WL(A) e FV}, which is
clearly a o— ﬁeld of Q. Tt follows that F.CA,, i.e.,

WA e FY 5§, VYAeF, Vrelt,T). (7.104)
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5, W(@)

1) We first show that for p—a.s. & € Qf, P& = Psw@i.n”
{P(t,w)}t,wyelo,rx0 satisfies (P1).
1a) In the first step, we show that for a given set A € Fi., its shifted probability PS“(A) is equal to £4 (VNV((I))) for
p—a.s. 0 € Q, where £4 :=E; [lel(Z)‘]:;] and A = (I1})~1(A).

Since A = (IIY)~1(A) € FL by Lemma [A] applying ([2.0) yield that for P—a.s. @ € Q*

€ P(s,w ®: W), and thus the probability class

P¥(4) = P*%(A"°) = Epus [15.5] = Bpes | (12)"°] = Er[17]F1] @). (7.105)
For any @ € N§, set @' := X(@). Asw € N§ NX~1(&'), we see that X (@) =&’ € Ax. Then (Z97) shows that
& =B'@) =W(X@) =W(X@), VY&eNs. (7.106)

Given N7 € ¥, there exists an A € Fl with Pi(A) = 0 such that N/ C A. Since W™L(A) € §r C GF¥ by
([TI04), one can deduce from (T.I06]) that

p(W(A)) = PL (X7 (W 71(4)) ) = PR{V(X) € A} = Ph(4) =0,
which implies that W~1(A) € 4® and thus
WL N) e AP, (7.107)

Hence, it holds for any r € [t,T] that T eR, = {A C QW L(A) € F,}. Clearly A, is a o—field of O, then we
see from (.I04)) that .Ti C Ay, ie.

WYA) €§,, VA €F., Yrelt,T) (7.108)

Let A€Fs. Similar to Problem 2.7.3 of [19], there exists an A’ € F! such that AA A € 4P, Then
/ 1de=/ 1de=/ 1ZdIP’:/ Ep [14|F:] dIP’:/ Ep [14|F:] dp:/ Ep [14|FL]dp. (7.109)
A A’ A’ A’ A’ A

As X~1(A) € ;. by (638), applying Lemma[A4] (1) again with (P, X) = (P}, B) shows that £4 = E, [1)(,1@\?;5] =
E, [1X*1(Z)|?H7 Ph—a.s. Since A € F, C G, ie. X71(A) € .Ti, we can deduce from (7.I06) that
—t
Ep[Laral = e[y amm] =B Ly @] =B {1X*1(A)Et [1»(—1(2)‘]:5]} =B 1y ()€4]
= E¢[ly-10EaV(X))] = By [14Ea0V)]. (7.110)

Given € € Z(R), as ;' (€) € F!, (TI0R) shows that {@ € Qf: &4 W@)) e £} = W=L(E51(E)) € Fs, namely the
random variable {4 (W) is §s—measurable. So letting A vary over §, in ((.I09) and (CII0), we see from (7.100) that

EA(W(@)) = By [15]5.] (@) = Ee [15] 7] (@) = P*7(4) (7.111)

holds for all @ € QF except on some N(A) € AP.
1b) In the second step, we show that for Ph—a.s. @ € QF, £4(@) is equal to P~ X @)™ (4),
Since X ~1(A) € .T;, Proposition 23] and Lemma 24 yield that for all & € Q! except on an N;(A) € A

¢
EA(@) = E[1y-1 5| o] (@) = Eq [(1)(71(2))5#0] (7.112)

By (Z18), there exists Ny € 7" such that for any weN¥, it holds for Pj—a.s. @€Q® that X (W®s0)=Xs(w), so
(X (@ ®:0))(r) = X0 (0 @5 D) — Xs (@ ®: D) = XP(@) — Xy (@), Vrels,T). (7.113)

~ —t
Moreover, Proposition [6.1] shows that for all @ € Q! except on an N3 € A

P U, and XT = XSeRX@uTT o psd _ x (@), (7.114)
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For any @ € N¥, we set P¥ := P§ o (%5)71 = Prw@ X (@7

Let NV (A):=N1(A)UN2UN3 €', For any & € (N (A))°, we can deduce from (7II3) and (7II4) that for P5—a.s.
Ge, (1yam) @)= 1{a®saex,l@} =lix@e.o)ea) = L (x@e.0)eay = La:s@)-x.@)ear = L{xs@)ea}
Plugging this into (ZI12) yields that

€a(@) = Eg[Lzocay] = Epa[la] = P(A). (7.115)

1c) Now, we will combine the above two steps to obtain the conclusion:

By (TI07), DM(A) := A% U N(A) UW L (N(A)) € 4P, Given & € (N(A))° = Ax N (NA)) N W L((N(A))°),
(ZI10) and (ZII5) imply that P52(A) = £4(W(@)) = PV@)(4).

Since €5 is a countable set, M. = AELJ(@‘II(A) belongs to AP, Then €5 C A = {A € Fj : PS9(A) =
pW@) (4), Vw € ‘)’ti}, which is clearly a Dynkin system. As %7 is closed under intersection, Lemma and
Dynkin System Theorem show that 735 = o(¢;) C A C Fj. To wit, it holds for any & € M¢ that P5¥ = PY@) on
F%., which together with (T98) and (TI114)) leads to that

]P)S’& :PW(G) :Ps,w®tX(W(@)),#S’W(‘:’) :Ps,w®tX(W(§)),#S’W(‘:’) :Ps’w®t&’#s’v~\}(a) EP(va ®t @)7 VZD S mi

Hence the probability class {P(t,w)}tw)e[o,7)x0 satisfies (P1) with (F', P, Q) = (GF,p,N¢).
2) We next show that the probability class {P(t,w)}wyejo,r1xq satisfies (P2). Given §€Qy and AeN, let {A;}7_,
be a Fi—partition of Q' such that for j =1,---, A\, A; C 03, (w;) for some §; € ((0,0]NQ) U {6} and w; € QF, and
let {p? ;‘:1 C Us. We will paste these Us— controls {u’ ?:1 with the given Uy—control p to form a new Uy— control
i, see [(CII8) below. Then we will use the uniqueness of controlled SDE ([6.2)), the continuity BI) of Y and the
estimates (€3) of X" to show that {P(t,w)}w)cio,Tx0 Satisfies the conditions (P2) (i) and (i).

Given j = 1,---, A, (6.6) shows that AY := X~(A;) € .Ti. So there exists an A; € F such that A¥ A A; € v
(see e.g. Problem 2.7.3 of [19]). Set A; := A\ j/Lij Ay € FL. As {A;Y};\:O is a partition of Qf with AY :=

XAy € ?Z, an analogy to (7.0) shows that Af\gj cuy (AYAAy) € 7', On the other hand, it is clear that
J'<i
ANAY € AN\AY C AYAA; € F'. Thus

AXAA; e . (7.116)
Let A := (jgl /Nlj)c EFL As AY = (jgl Af)c, one can deduce that
TAAX _ T A ogx T x A (T~ 4X AN OAXAT Y e 7
A\AY = Ay (}il A¥) = O (AonAf) c O (A5nAY) ¢ O (AFAA,) e

t

2

<

Tc> T

J

and  A¥\Ay = AT N (jgl (A7 N EJ) C ‘L)Jl((A’.V)C NA;) C L:)J

j= J
Hence,

AYAAy e T, (7.117)

(2a) In the first step, we show that the pasted control

A
fir (W) := 1{re[t,s)},ur(‘*~u) + l{re[s,T]} (l{g,ego}ﬂr(‘:’) + Z 1{gegj}ui(ﬂi (C’Nu)))v V(r,w) € [t,T] x o (7.118)
=1

belongs to Uy.

We start with demonstrating the F!—progressive measurability of zi: Let r € [t,T] and U € %(S;°). The
F’—progressive measurability of y implies that for any D € %([t,r]) @ F!

{(,@)eD: pp (@) €U} ={(r', @) €[t,r] x Q" : p (@) e U} ND € B([t,r]) @ FL. (7.119)
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If r < s, this shows that
{(r'\@) eft,r] x Q" : iy (@) e U} ={(r",@) € [t,r] x Q" : pp (@) € U} € B([t, 7]) ® Fy.
On the other hand, suppose r > s. Since go € Ft C FL, applying (ZI19) with D = [t,r] x g@, we obtain
{(r'\ @) € [t,r] x Aot i (@) eU} ={(",@) € t,r] x Aot i (@) eU} € A([t,7]) @ FL. (7.120)
Given j =1,---,\, as A; € Ff C Ft, applying (ZI19) with D = [t,s) x A; gives that
{(,@) €t,s) x Aj : in(@) € Uy ={(", @) €[t,s) x Aj: p (@) € U € B([t,7]) @ FL. (7.121)

Since D; := {(r',@) € [s,7] x Q* : wl,(@) e U} € B([s,r]) @ F: by the F*—progressive measurability of x/, one can

deduce from Lemma [A-T3] that

{(T/,@)E[S,T]ng'ﬁr w)eU}={(r,a)€els, ]XAJ 1, (I (@) eU}={(r",) [S,T]ng: (', II5(@)) € D;}
={(r'",@)€s, T)x Q" Ht(r w)eD;In([s, ><A) ( t) 1(’Dj)ﬂ([s,r]><Aj)E%’([s,r])@fﬁC%’([t,r])@fﬁ,

S

which together with (ZIZI) shows that {(r',@) € [t,7] ></~1j i (W) €U} € A([t,r]) ® FL. Then taking union over
j €{1,---, A} and combining with ([ZI20) lead to that {(r',@)€[t, r]xQ: i (@) €U} € B([t,r]) @ FL. Hence, fi is
F!—progressively measurable.

For any j =1,---, A, since 5j = {(r,@)€[s, T]xQ%: [pd(@)| >~} is a dr x dP§—null set, we can deduce that

{(r,@) €[5, TIXA;: i (@)] >k} = ([s, TIxA;) 0 {(r,@) €[s, T]x QF: (r, 11 (@) €D, } = ([s, TxA;) N (I1) ~1(Dy).
Lemma [AT3] again implies that
(dr < dP5){ (r,@) €[5, T]x A;: |fir(@)| >k} < (dr < dB) ((IIL)~H(D;)) = (drxdP§)(D;) = 0. (7.122)

Clearly, (dr x dP){(r,@) € ([t, s) x Q)U([s, T] x Ap) : |- (@)] > w} < (drxdP){(r,@) € [t, TIxQ: |u, (@) >k} =0,
which together with (TI22) shows that |1, | < &, dr x dP{—a.s. Therefore, fi € U;.
Let (r,&)€[s, T]x A; for some j=0,---, \. For any @ €€, since 5®,0€ A; by Lemma 21} (ZII8) shows that

~ 7‘~ sA: 78«7(:)/\7 f:O7
mwmzm@&@={“@®”)“ ) Y (7.123)

(@ ©,3)) = (@), =1, A

(2b) In the second step, we use the uniqueness of controlled SDE ([G2) to show that the equality 1 = p over
([t,s] x Q) U ([s,T] x Ag) implies the equality X = Xt = X over ([t,s] x Q%) U ([s,T] x Ao). It follows that
P :=Ptwidl satisfies (P2) (i) and the first part of (P2) (ii).

Since both {Xﬁ*‘*’*“}re[t’s] and {Xf_"*””}re[m] satisfy the same SDE:

sz/ bt’“(r’,X,uT/)dr’—i—/ pr dBL, T €[t 3],
¢ ¢

the uniqueness of solution to such a SDE shows that except on an N e Ve
X, = Xbor = Xb9F =X, Vrelts] (7.124)

Given A € F!, we claim that X~1(A) NN N (X~1(A))¢ = 0: Without loss of generality, assume that X'~ ( A)NNe
is not empty and contains some w. By m and Lemma 2l X(@) € X(©) ©, Q° C 4, ie, © € X1(A). So
X YA NNeC X- (A), which shows that X~1(A) N AN (X~1(A)) = §, proving the claim. It then follows that
X~1(A)N(X~1(A))¢ C N. Exchanging the role of XY ~1(A) and X~1(A) gives that X~1(A)N(X~1(A))® C N. Hence,

“HA)AX Y A) e F', VYAeFt (7.125)
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Multiplying 13 to the SDE (6.2) for X = Xt and X = Xt over period [s, T] yields that

i, —X) = /1gobt’“(r’,1goX,ur/)dr'—|—/ lgouT/dBﬁ,, re[s, T,

and lgo( - — S) = /lgobt’w(T/,lgOX,ﬁr/)d’l"l+/ lgoﬁT/dBi/

~

T T
= /lgobt’“(r’,lgoé’(,uw)dr'—I—/ lgoluT/dBﬁ/, r € [s,T].
S S

By (124)), {lger}re[s,T] and {lﬁoX’”}re[s,T] satisfy the same SDE:

T

T
X! = lgoXS_F/t lgobt’”(r/,X’,lgouw)dT/—I—/t 15 b dBt,, re€|[sT).

Similar to (6.2)), this SDE admits a unique solution. So it holds Pj—a.s. on Ay that
X.=X., VrelsT). (7.126)
Let j = 1,---, . Proposition 6.1} (ZI24) and (Z123) show that for all & € A; except on an N € e

o0 — xswee X (@), + )?S@) — XWX (@) X, (@), (7.127)

where we used the fact that X s«®:¥(@).a" depends only on w ®; )?(C))’ . Lemma (1), an analogy to (L18)

0,s]
and the continuity of X imply that for all @ € Qf except on an N € Ve

N*@ e 7° and P3G e : X0 ®,0)=X@), Vrelts}=1 (7.128)
Set Nj := N;UN" € 7. Given & € A; ﬁJ\N/jC, since
(e X @w,0) + X.(& ®, ®) for some r € t,s]} ={@e G0 eNY=N*® e ¥,
we can deduce from (Z127) and (ZI28) that for all & € Q° except on some Ny €A~

X (0@, 0) = Lire[t,s)} Xr (W ®s &) + Lirels, 1} (Xf’w&x(a)’”j (@) + X (@)
= l{re[t,s)}Xr (ZD) + l{re[s,T]} (Xi’w®t/¥(a)“u] (a) + & (ZD)) = (‘X(ZD) ®SXS’w®tX(§)”u] (@)) (T)v Vre [tv T] . (7129)

For any A€ FL, applying (TI120) with A=A, we can deduce from (TII7), (124) and (T126) that

@(A N Ao)

PH(X (AN A)) = PhH(X 1 (A) N X 1(Ag)) = Ph(X 1 (A) N X (A)) = Ph(X~1(A) N A)
= PO e Ady: X(@) e A} =Pi{E € Ag: X(@) € A} = P4 (X71(A) N Ag) = Ph(X1(A) N X~ (A))
PH(X (AN A)) =P(AN Ap).

On the other hand, for any A € F! and j =1,---, A, applying (T125) with A = AN A; yields that
P(ANA) =P (XL (AN A))) = BLXTHANA)) = P(ANA)).
(2¢) In the last step, we use the continuity () of Y and the estimates ©3) of X to verify 34) for P.

Fixj=1,---, X We set (Pj,p_j, )(jj Wj) = (PS)W@ﬂ&jyﬂj,p87w®t0-}j7ﬂj7XS)UJ@H:J]'»IJJ.,WS7w®tU~Jj7Mj)' Similar to (m)7
it holds for all @ € Q° except on a P§—null set Ny, that

B (@) =WI(X(@)), VrelsT) (7.130)

Set Ay; :={@' € Q*: N§,N(X9) "1 @) #0} and § =0 (FiU A7) C GX’, Vrels,T]. The process Wi(Q) :=
Ligea , YWL(®), ¥ (r,@)€ls, T]xQ* is adapted to the filtration {F7},[s,7) and all its paths belong to Q°.
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By Proposition 1] (2) and Remark 1] (1), the shifted process Y, := Y,** r € [t,T] as defined in (TI7) is
Ft—adapted and its paths are all RCLL. Then (6.6) implies that Y (2? ) is an Ft—adapted process whose paths are
all RCLL. Applying Lemma [A4] (3) with (P, X) = (P}, B") shows that y(;?) has an (F!,P§)—version %, which is
F!—progressively measurable process with Ny :={@w € Q': %.(0) # V- ()?(@)) for some r e [t,T]} € 4 By Lemma
(1), it holds for all & € O except on an Ny € 7' that ./\/)S,’a e

Fix Ae Fl, 7 € T} and set T = T()?) For any r € [s,T], since A, := {r <r} € F/, (6.6) shows that

F<r}={2e : 7(XA@) <r} ={@eQ: X@) c4,} =X '(4,) € F,, namely 7 € T,.

By Lemma (3), it holds for all @ €N except on a N; € 7' that 759 € T

For any & € N&, we have
Y(r,o)=Y(rX@), VreltT) (7.131)
In particular, taking r=7(@) gives that #2(@) =% (F(@),&) =V (F(@), X (@) =Y (1(X(@)), X (@)) = V- (X(@)). So
Es [1A0A1Yrt’w] = Ep [1AﬂAij} =E; {12*1(AﬂAj)yT ()?)} =E; [12?71(,40,41)%] (7.132)
Also, one can deduce from (ZI31), Lemma 62 and (332 that
E (%] = E Vi (X)] = B3 [V.] = E3[V*] < 0. (7.133)

Since X1(ANA;) € T by ©8) and since % € L' (Fy, PY) by (T.I33), applying Lemma[A4] (1) and Proposition
23 with (P, X, &) = (P§, Bf, %) as well as using (TI125) with A= AN A;, we can deduce from (ZI32), Lemma 24]
and (ZIT6) that

E@[lAmAjYTt’w} = E [12?71(Am4j)%} =E [lffl(AﬁAj)Et [%‘]_:m =E; {1X*1(A0Aj)Et [%Vsﬂ
=K, [haerl(A)mAf}]Es [(%)S’GH =B [1{weX*1(A)ﬁAfﬁﬁj}Es [(%)S’a” : (7.134)
Let & € A¥ N A; NN¥ N N§ NNE. Then one has
(e : Z(@2:0) # V(X (@ @) forsome r € [1,T]} ={B € Q*:T@,HeNy} =Ng¥ e . (7.135)

For any @ € Q° except on ./\/)S/& UNyi UNz € A, similar to (Z106), we see that X7 (@) € Ay, and can deduce

from (ZI30) that &= B*(&) =W/ (X7(@)) =W (X7 (@)). Then (TI35), (Z129) and @I) imply that
(%)9(@) = ¥ (7@, 0),8 ©, ) = V(F¥(@), X@ ©, 0)) = Y (G (27 @),w &1 (X(@) @, XS X@ (@)))
<V (G (X @), w @ (X(@) 2 X (@) + po(AXL(@)) = Y22 (29(@)) + po (AXL(@))
<y @ (3 (@) +1 [axs@zss) po(6/2)+1 fax: (@M/z}@*lﬂ (Axg @)+ (AXZ (a))’”“), (7.136)
where (@) 1= 7% (W/(@)), V&' € Q% and AXL(@) := || Xow&X@w (@) — 27 @)]], .-

For any r € [s,T], as A, :={7*% < r} € F,, an analogy to (ZI08) shows that {G<r}={@e: WJ(@) €
A} =(WI)TH(A,) € §. So (z is a F/—stopping time.
Given € > 0, similar to (Z26), there exists some (5 € 7* such that

By, |[Y5® @ —yee ot @] <. (7.137)

AsTeAF =X"1(A)), le. X(D)e€A; CO;, (@;), we see that [|w®X (W) —w®w;llo,s = || X (w)—wjll¢,s <d; <. It then
follows from (ZI36) and (63) that

E, [(%:)*“] <E, [@“@t?‘(@) (Xj)] +p0(62) +k6 V2 (C1T|w®: X (&) —w®:@; [0, + Coos1 T w @ X (&) —w @, | F)

<By, [VE SN O] o (62) +5(C1T6Y2 4+ Co  THE=H2) < By, [V342 @] 1 50(5) 4, (7.138)
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where p(d) := po (51/2) —I—H(ClT(Sl/Q—I—C’wHTﬁ’Héw“/Q). Since ¢} € T°, the F—adaptedness of Y and Proposition
211 (2) show that ng@ﬂ(w) € F;., and thus

@

By, Y5 ® @] = Bp, [Y54" %@ < sup B, [y @), (7.139)
@ @ CETs

Then plugging (T.I38) into (CI34), we can deduce from (ZI16) and Lemma [A.T2] (1) that

w $,w®¢ X (W) —~
Es[lana, Y “] <E, [1{aexl(A)mxl(Aj)mAj}(<Sell7Ps]EPj [Yg }+po(5)+5)]

5, [l{ae;cl(AmAj)} ( s [qu,wwc(w)} +[70(5)+a)] —Ep [1{56A0Aj} (Csu7[_) Ep, [ycsm@t&] N ﬁ0(5)+5)] 7
€T cTs

where we used the fact that the mapping @ — sup Ep, [YCS’“’&UJ} is continuous by Remark (2). Letting e — 0
CET*®

and taking supremum over 7 €T}, we see that (3.4) holds.

3) In this part, we still use the continuity B.I) of Y and the estimates [€3) of X"“* to show that {P(t,w)}ww)e0,1x
satisfies Assumption[{1]

Let o' € Q. We set (X", P) = (Xt P"#) and § := ||’ — w|jos. For any & € QF, define AX(@) :=
| X' (@) — X (@D)]|+,7. Similar to (CI36]), we can deduce from (BI)) that for any r € [t, T

Y(rw @ X' (@) =Y (rwe X@)) < po(llo’ @ X' (@) —w @ X(@)lo,r) < po(llo’ —wlo+ | (@) — X(@)]]s,)
<po(6+AX (@) <Lax@<srzypo(0+02) +1ax@)ss/2160 /2 (14277167 AX (@) +27 H(AX (@)= 1),

Given 7 € T, it follows from (6.3) that
E, {Y(T(X/),w’(@té’(/) —Y(T(X’),w@@t)c)} <po(0+6Y2) +r(1+27710%) O T8 2+ k27 L Oyt TP F167 /2= py (6).
Clearly, p is a modulus of continuity function greater than po. Then (ZI008) implies that
e [Vi] = EYEX)] =BV (r(20), X)) = B[V (r(A7), ' @0 X)]
BV (r(2"),0 20 X)) | + p1(0)=Ee [¥ (1(X (W), w21 X) ) |+1(6)

E; |:Y(<(X)a W®tX)} +p1(8) =B [Y/ ()] +p1(6) =Ep [Y ] +p1(9), (7.140)

IN

where C::T(XI(W)). For any r € [t,T], as A, :={r < r} € Ft, [6.0) shows that (X')"(A,) G?i. Then (Z.I08)
implies

(<} ={Te: XW@Q)eA}=w(Xx)A)) €F

So ¢ is a F—stopping time. Given & >0, similar to (ZI37) and (ZI39), there exists a (' € T* such that E, “Ygxw—

YZ’“’H <e and E, [Ygx“’] =Ep [Yg/w] < sup Ep[Y%], which together with (ZIZ0) shows that
T'eT?t

Ep [Yf’wl} <E, [Yg’w} +p1(0) < sup Ep[Y“] +p1(6)+e.
T'ET?

Letting ¢ — 0, taking supremum over 7 € 7 on the left-hand-side and then taking infimum over u € U; yield that

Ziy(w') = inf sup Epeor,u [Yf""l} < inf sup Eptww [V 4+p1 (o' —wllo,) = Ze(w)+p1([|w —wllo,t)-
WEUL Tt HEUt 1Tt

Exchanging the roles of w’ and w shows that {P(t,w)} s w)epo,1)x0 satisfies Assumption A1l

4) In last part of the proof, we use the estimates [6.3) once again to show that {P(t,w)}w)ef0,rx0 satisfies As-
sumption [{.3
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There exists a constant C, depending on @ and T such that py(8) < kCo (14 6%+/2), V6 > 0. Let o > ||w|lo.s
and § € (0,7]. We can deduce from (G.4) that

Ep[p1(5+2 sup ’BH)} zEt[p1(5+2 sup ’XTD}
reft,(t+8)AT)] reft,(t+8)AT)

< p1(0+ 2(51/4) + kCoE, [1{ } (1 427 /252 4 927 gy ‘XT‘W+1/2>]

o 1/4
sup ]\Xr|>5 / rE[t,(t+8)AT)

re(t,(t+8)AT

< p1(0+ 2(51/4) + ﬁ5w6_1/4IEt [(1 + 2w_1/25w+1/2) sup }XT} + 22@ sup }XT’w+3/2)]
rE[t,(t+5)AT] rE[t,(t+5)AT]

< pa(8+20%) 4 KC (14 2771267 1/2) 01 (0) 6'/% + KCo 20 5 (@) 67/2H1/2 2= (6).

Clearly, p, is a modulus of continuity function. Hence, {P(t,w)} t.u)e[0,7]x0 satisfies Assumption O

A Appendix: Technical Lemmata

Lemma A.1. Let 0<t<s<S<T <oo. The mapping Hi? is continuous (under the uniform norms) and is
fﬁ’T/}—TS’S—measumble for any r € [s,S]. The law of Hz’)g under ]P%’T is exactly ]P)(S)’S, i.e.,

Py (D) 7N (4)) = B3S(a), vAe RS (A1)

It also holds for any r€[s,S] and T€T>° that T(Hig) eTHT.

Proof: For simplicity, let us denote Hi? by II.

1) We first show the continuity of II. Let A be an open subset of Q9. Given w € II~!(A), since II(w) € A, there
exist a §>0 such that Os(Il(w)) ={@e€Q*%: |0—II(w)|s,s <} CA. For any w' €Os/2(w), one can deduce that

HH(w') - H(w)H&S < |w/(s) - w(s)‘ + ||w/ - wH&S <2|w" —wl|ler <6,

which shows that II(w') € Os(II(w)) C A or w’ € II7*(A). Hence, II"*(A) is an open subset of Q7.
Let 7 € [s,5]. For any s’ € [s,7] and £ € Z(R?), one can deduce that

H‘l((Bj;S)_l(ﬁ)) = {w e QtT: BSS ((w)) eg} ={we T w(s)—w(s)c €l =(BLT—BT) 1 (€) e FT. (A.2)

Thus all the generating sets of F*% belong to A := {A C Q% : II71(A) € FLT'}, which is clearly a o—field of Q%
It follows that F2% C A, i.e., I71(A) € F4T for any A € F55.

2) Next, let us show that the induced probability P:= PB’T oIl~! equals to IE”S’S on ]—'2’5: Since the Wiener measure
on (Q%9, 2(Q*%)) is unique (see e.g. Proposition 1.3.3 of [31]), it suffices to show that the canonical process B*¥ is
a Brownian motion on Q55 under P: Let s <r <1/ < 5. For any £ € B(RY), similar to (A.2)), one can deduce that

- ((B5° — B2S) (&) = (BLT -BET)L(€). (A.3)

Thus, ]IND((Bﬁ;S —Bﬁ’S)_l(E)) = p57 (H—l ((B:® —Bﬁ’s)_l(E))) = p57 ((B;;T—BﬁvT)—l(g)), which shows that the
distribution of Bﬁ;S—Bﬁ’S under P is the same as that of Bi’,T—Bf;T under PB’T (a d—dimensional normal distribution
with mean 0 and variance matrix (' — r)Igxq).

On the other hand, for any A € F%9, since II71(A) belongs to F4T, its independence from B5T — BET under
T g T T T
P5" and (A3) yield that for any £ € Z(R%)

B(an (B =571 (E) =Py (7 () ni (B - B2%) 7€)

=P (1t () - T (1 (B - BrS) THE) ) = BlA) - B( (B - BS) ().
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Hence, B%° —B$S is independent of 75 under P.

3) Now, let r € [s,5] and 7 € 7,5, For any r’ € [r, 5], as A:= {& € Q5 : 7(@) <1’} € F%%, one can deduce that
{w e QT . T(Hig(w)) < r’} = {w e T . Hig(w) € A} = (Hi’g)fl(A) € ]-"ﬁ}T. So T(Hig) eTHT. O
Lemma A.2. Lett € [0,T]. For any s€[t,T], the o—field F! is countably generated by

S

&t = F% Bt -t Os, (x;) :mEN,tiEQwitht§t1§~-~§tm§s,xiEQd,)\ieQ+ .
s i=1 ti

Proof: For any s € [t, T, it is clear that o(%)) C U{ (Bﬁ)_l(g) :r € [t,s],€ € %’(Rd)} = Ft. To see the reverse,

we fix r € [t,s]. For any z € Q¢ and A € Q4, let {s;};en C (1,8) NQ with lim | s; = . The continuity of paths in
j—00

Q! implies that

(B) " (0a@) = T, u 0 ((B,) 7 (0s-1(@)) €o(%0),

n:f%—\ meN j>m

which shows that O:={Ox(z): € Q", A€ Q4 } C A, := {5 CR?: (Bﬁ)_l(é') EU(CKJ)}. Clearly, O generates %(R?)
and A, is a o—field of R%. So one has Z(R?) C A,.. Then fﬁzo{(Bﬁ)_l(E): relt, s],EE%(Rd)} Cco(E}). O

Lemma A.3. Let 0 < t < s < T. For any r € [s,T]|, The mapping 1% is further .Ti/?i—measumble: i.e.
(I))~'(A) € F,, VA€ F,.

Proof: Let r € [s,T] and A € F,. By e.g. Problem 2.7.3 of [19], there exists a A’ € F5 such that AA A € F", i.e.
AAA C N for some N € F3 with P§(N) = 0. Since (IIY)~}(N) € FL by Lemma [AT] and since

(L)1 ()" (@) = Le.eea) -1 ()} = it we.meny = Lpeny = Iv(@), Yw e, Vo e @,
Lemma 24 and Proposition 2.2 (1) imply that
Bo (1) 7 ONV)) =B [Ty )] = Be [Be [y -1 o) | 73] = B [Bs [(Lqang) -1 )™ ]| = B [BG(A)] =P{(N) =0

It follows that (IT)~1(A) A (IT,) "1 (A) = (IT!) " (AA A’) € . As Lemma [Al also shows that (ITt)~1(A’) € F?,
one can deduce that (IT)~1(A) € F.. O
Lemma A.4. Givente[0,T] and CZ d e N, let P be a probability on (Qt, %(Qt)) and let { X<} sepe,) be an Ré— valued,
FP—adapted process.

1) For any s € [t,T] and any RY —valued, F X' —measurable random variable & with Ep[|¢]] < oo, Ep[¢|FEF] =
Ep[¢|FX], P—a.s.

2) For any s€[t,T] and any R‘?—valued, FXF—measurable random variable &, there exists an RY —valued, FX —measurable
random vartable & such that E=§&, P—a.s.

3) For any Rg—valued, FXF—adapted process { K s}se[t,T} with P—a.s. right-continuous paths, there exists an R‘?—wlued,
FX —progressively measurable process {I?S}Se[t);p] such that {w € Q' : K, (w) # K (w) for some s € t,T]} € AF.
We call K the (F*X,P)—version of K.

Proof: 1) Let s€[t,T] and let £ be an RY —valued, FXF —measurable random variable with Ep [[£]] < oc. For any
AeFXF similar to Problem 2.7.3 of [19], there exists an A € FX such that AA A € 4. Thus we can deduce that
[, &dP= [; édP= [; Bp[¢| FX]dP= [, Bp[¢| FX]dP, which implies that Es[¢|FXF] =Ep[¢|FX], P—as.

2) Let s€[t,T] and let £ be an - —valued, F2XF —measurable random variable. We first assume d = 1. For any
n € N, we set &, := (6 An)V (—n) € FXF and see from part (1) that &, := Ep [{n‘]—"sx] = Ep [§n|}';X'P] = &,

S

P—a.s. Clearly, the random variable g = ( lim §~n>1{ T fu< } is FX —measurable and satisfies £ = lim &, = ¢,
n—oo 1m gn <00 n—oo

P—a.s. When d’ > 1, let & be the i-th component of £, =1, - -, d’. We denote by §~Z the real-valued, FX —measurable
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random variable such that £ = ¢/, P—a.s. Then & = (£, &4 ) is an RY —valued, F X —measurable random variable
such that E: &, P—as.

3) Let {K}set, ) be an RY —valued, FXF_adapted process with P—a.s. right-continuous paths. Like part (2), it
suffices to discuss the case of d = 1. For any s € Qer:={se€t,T]:s—t € Q}uU{T}, part (2) shows that there
exists a real-valued, F;* —measurable random variable K, such that Ky = K,, P—a.s. Set V' := {w € Q': the path

K.(w) is not right-continuous } U ( (Lé {KS#ICS}) e . Since
s€Q¢, 1

[n(T—1)]

Ky =Kilimg + D, Kerpnrlueorst ey €07
i=1

is a real—valued, FX —progressively measurable process for any n € N, we see that IN(S = ( lim IN(;l) 1{ — ,
n— o0 nhﬁ\mooK;‘<oo}

s € [t,T] also defines a real—valued, FX —progressively measurable process.

Let w € N¢ and s € (¢,T]. For any n € N, since s € (s, — 1,5, AT| with s, :=t + , one has

[n(s —1)]

K"w) = Ko ar(w) = Ko ar(w). Clearly, lim s, AT = s. As n — oo, the right-continuity of K shows that
n—oo

lim K (w) = lim K, ar(w) = Ks(w), which implies that N C {w € Q' : K,(w) = K (w), Vs € [t,T]}. O

n—00 n—oo

Lemma A.5. Let 0 <t <r<s<T <oo. ForanyAe Ft, A:= 7 (A) = {I] () : w € A} belongs to F&° and

satisfies (H;ST)%(/T) = A. Then H;ST induces an one-to-one correspondence between F' and FL5.

Proof: Let A := {A € Fi : ;1 (A) € F=}. Clearly, II; T (0) = 0 and II; T (QF) = Q5,50 0, QF € A. Given A € A, if
H’;Z(A) intersected Hﬁjz(Ac) at some w € Q"% there would exist w € A and w’ € A° such that @ = w’[t 4= w'}[t_s].

It would then follow from Lemma 21l that w’ € w ®, Q" C A, a contradiction appears. So HiZ(A) N HZZ(AC) =0.
On the other hand, for any @ € Q%*, the continuous path

w(s)=w(s'Ns), s e€lt,T) (A.4)

is either in A or in A°, which shows that & = II}’? (w) € II}'T(A) UTIT (A°). So Iy T (A°) = QU=\IIT (A) € Fbe,
ie., A° € A. For any {A,}nen C A, as HEZ( . An) = UNH?Z(An) € Fi®, we see that UNAn € A. Hence, A is a
’ ne ne ’ ne

o—field of Q.

Let ' € [t,r] and £ € B(R?). For any & € (B5*)~1(£), we set the path w € Qf as in (Ad). Since B (w) =
w(r') =3(r") = BL*(@) € &, one can deduce that & = Hif(w) € Hif((Bﬁ,)’l(S)). On the other hand, for any &' €
14T ((BL)~1(€)), there exists w' € (BL) () such that & =117 ("), So B (@) = @ () = /(') = BL (W) € &,
ie.,w € (Bf;’,s)fl(é'). Then 1Ty ((BL)71(€)) = (BL®)~1(€) € FL*, which shows that all the generating sets of F
belong to A. It follows that A = F!. Moreover, for any A’ € F&*, since Iy 7 is FL/FL* —measurable by Lemma[A]
one has A" = (HEST)%(/NV) € F! and HQST(A’) = A’. Hence we can then regard HEST as a surjective mapping from
Flto Fbs.

Next, let A € F! and set A := Iy 7(A). Clearly, A C (Hﬁz)_l(g) For any w € (H’;Z)_l(g), Iyl (w) €
A= HiST(A) So there exists a w’ € A such that HisT(w) = HEST(w’) Applying Lemma [Z] again yields that
wew' ®,Q"CA. Thus A= (Hi:ST)fl(A), which implies that the mapping HEST from F! to F® is also injective. [

Lemma A.6. For any 0 <t <T < oo, () = 0(0}) = 0{O0s@}) : 6 € Qy, j € N}.

Proof: We only need to show that any open subset O of Q! under || - [|+,r is a union of some open balls in O
For any j € N, if &f ¢ O, we set O; := ); otherwise, we choose a ¢; € Q1 N (@/2,@) (with g] = dist(@j—,(’)c) =

in(g lw — @;HtT) and set O := Oy, (@) C O3, (@) € O. Given w € O, let § := dist(w, O°). There exists an J € N
weOe J

such that &% € Os3(w) C O. As dist(@f, 0°) > dist(w, 0°) — ||& — w||, , > 30, we see that ¢, > §,/2 > /3 and

thus w € Os/3(W5) C O, (@) = 0. Tt follows that O = jLEJNOj. O
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Lemma A.7. Given 0 <t < T < oo, let P be a probability on (Q', B(Q")). For any A € B(Q') and £ > 0, there
ezist a closed subset F and an open subset O of Q' such that F C A C O and that P(A\F)VP(O\A) < e.

Proof: Let A:={A € #B(Q') : for any ¢ > 0, there exist a closed F' and an open O of Q! such that F € A C O
and that P(A\F) vV P(O\A) < e}. Clearly, 0,Q" € A as they are both open and closed. It is also easy to see
that A € Aif A € A. Given {A,}neny C A, let ¢ > 0. For any n € N, there exist a closed F;,, and an open
O,, such that F,, ¢ A, C O, and that P(A4,\F,) V P(O,\A4,) < 2=(*™)_ The open set O := nLGJNon contains

A= UNA and satisfies P(O\A) < ZP( O,\A) < STP(O\A,) < €/2. Similarly, it holds for F, = UNF" that
ne neN ne

N
P(A\F,) < Y P(A,\F,) < ¢/2. We can find an N € N such that ]P’( i) Fn) > P(F,) — £/2. Then F := uan is
neN n= s

a closed set included in A such that P(A\F) < P(A\F,) + P(F,\F) < ¢, which shows A = UNA" € A. Thus Ais a
ne
o—field of Q.

For any § € Qy, j € Nand € > 0, since O5 (%) = U 05 5/k(@%), there exists a k € N such that P(Os- 5/ (@ )) >
P(O5(@%)) —e. So ©fL = {Os(@) : 6 € Qy, j € N} C A. Lemma [AJ6] then implies that Z(Q') = ¢(0%) C A C
PB(0F), proving the lemma. O
s < T < oo, let P be a probability on (U, B(Q")). For any A € F! and ¢ > 0,

S

Lemma A.8. Given 0 < t <
= {0; @) :0€Qy,j€ N} of Ft has a sequence {O; } such that A C _UNOi and that
1€

the countable subset ©F
P(A) >1P>( U oi) -
€N

Proof: Let A € F! and e > 0. We consider the induced probability P := P o (HE:ST)_l on (5%, B(Q"*)). Since

A= HiZ(A) € Fb* by Lemma [A5 applying Lemma [AT7] with 7' = s shows that there exists an open subset O of

Qb such that A C O and P(O) — P(4) < e.
For any j € N, set @; := &f| s € Qb5 Given w € Qb and £ > 0, still setting the path w € QF as in (A4, we

can find an J € N such that |jw — cf;f,HtT < &. It follows that [|& — @slle,s = [jw _QJHt,S < jw = @f,HtT < €, which

shows that {&;}jen is a dense subset of Q%5 Similar to the proof of Lemma [A.6] one can show that O is the union
of some open balls in © := {05(w;) : § € Q4, j € N}.

For any 6 € Q4 and j € N, one can deduce that
T (05@) = {MT (@) rw € 9 flw = < 0} = {& € 0% @ = Gyl < 6} = 05(@),

A =4

Since Hﬁz induces an one-to-one correspondence between F! and F©* by Lemma[A5 we see that (H’;Z)
and Lemma [A.T] implies that

(Hi;f)‘l(og(aj)) OH ™ ) is an open set of Q. (A.5)

Thus, (Hi:ST)fl(O) is the union of some sequence {O;}, . in (Hiz)fl(é) = {(Hﬁ:z)il(Og(@j)) :0€Qy,j €
N} = O, Tt follows that A = (II:7) ™' (4) ¢ (M:7) 7 (0) = U O; and that

P(A) = P(A) > P(O) — ¢ = P((H;Z)‘l(O)) —e= 1}»( U oi) —e. O

€N
Lemma A.9. [t holds for any w € Q that Yi(w) = sup |YT(oJ)| < 0.
re[0,T]
Proof: Let us fist show Y, (0) <oco: Assume not, then lim 1 |¥;, (0)| =00 for some sequence {ry}nen of [0, ], from
n—00

which one can pick up a convergent subsequence (we still denote it by {ry }nen) with limit r, €[0, T]. If {r, } nen had a
subsequence {7}, }nen C [+, T, then the RCLL property of path Y.(0) by Remark [B.1] (1) would imply that |Y,., (0)|=
lim 1 |Y;, (0)] =occ. A contradiction appear. On the other hand, if {r,}nen had a subsequence {7 }nen C [0,7.],
n—00

then one would have lim 1 |Y7, (0)|=oc. For any n€N, BI)) implies that Y5, (0)—Y7, (0) < po(Frn—71) < po(rs —71).
n—oo
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This together with Remark B] (1) shows that Yz (0)—po(r« — 71) < lim Y3 (0) <Y, (0), which contradicts with
n—oo

lim 1 ‘Y;n (0)’ =o00. Hence, Y, (0) <oo.

n—00

Given w €, since |V, (w)—Y;(0)| < po(llwllo,r), Yre[0,T] by BI), we can deduce that Y (w)= sup |Vr(w)|<
re0,T]

1) =Y.(0)+po ([|lwllo,r) <oo. 0

s [Y,(0)] 0
r€l0,T]

Lemma A.10. Given 0<t<s<T and d € N, for any sequence {fz}zeN of Rd—valued Fh—measurable random
variables that converges to 0 in probability P§, we can find a subsequence {{ } ien of it such that for Pt—a.s. weQ?,

{{f w}ieN converges to 0 in probability ;.
Proof: Let { }ien be a sequence of Rg—valued, Fl—measurable random variables that converges to 0 in probability
Pi, i.e.

In particular, 1im¢ E, [1{|£¢|>1}} = 0 allows us to extract a subsequence S; = {g}}ieN from {& }ien such that

lim 1gersyy = O Pi—a.s. Clearly, S; also satisfies (A6). Then as Zlir(x)loi E; [1{\5}\>1/2}} = 0, we can find a

1—00

subsequence Sy = {5- } of Sy such that lim 1ge25q/9y =0, P{—a.s. Inductively, for each n € N we can select a
1—>00 >t

subsequence S, 11 = {f"“}leN of S, = {¢""}ien such that lim1y ., , { =0, P{—as.
d 71— 00 {‘51 ‘>n+1} N
For any ¢ € N, we set 51‘ := ¢!, which belongs to S, for n = 1,--- ,i. Given n € N, since {51}:;1 C Sy, it holds
Pi—a.s. that lim l{lg 1) = 0. Then Bound Convergence Theorem, (2.6) and Lemma 2.4 imply that
i—00 il>5
T " T S,w
0= Jim B 1 g 0 174 @) = i B | (Lg 1/) ™ (A7)

holds for all w € QF except on some N, € 7' Letw € ( UN Nn> . For any n € N, one can deduce that
ne

Er@|>ym} ~ (1{|E:’w\>1/n})(‘7’)’ Vi e,

which together with (A7) leads to that lim P8(|§Af“’| > l/n) = lim E; {(1
1—00 1—>00

Lgsrmy) @)= Y wsansim} =

(&>1/my) } =0. O

Lemma A.11. Given t € [0,T] and a metric space M, let {X,}sep, 1) be an R—valued process on Q' such that all
its paths are continuous and startmg from 0. Define a mapping \I/X [t TIxQ = [t, T]|x Q" by VX (r,w):=(r, X (w)),

V(r,w)€t, T)xQt. Clearly, oX := (0X)~H(2)={(VX)"Y(D): De P} is a o—field of [t, T x Q'. If an M—valued
process K is adapted to the induced filtration X 1 (F') = {X~1(F!) .= {X"1(A) : A € f;}}se[t 7y and all its paths
are left-continuous, then K is o —measurable. In particular, X is o —measurable.

Proof: Let x9p € R? and § > 0. Since the path K.(w) is left-continuous for each w € O, one can deduce that

{(s,w) € [t, T] x Q' : K(s,w) € Os(mo)} = N U N ' {sw [t} ]+1]th:Kt}(w)EG(;H/n(xo)},

neNmeN i>m j=0
where ':t+i(T—t). For any n,i€N and j=0,--- ,i—1, since {Kt§ €0s41/m(w0)} = X1(A}) for some A7 e]-'ti,
and since [t%, 5, || x A}, € 2", we see that

{5, w) €[t 1 1]} Q: Kys (0) €051/m (20)} = {(5.0) €[£5, 1] x Q' X (w) € AT, } = (05) L[], 11, ] x A7) €0,
So {(s,w) € [t,T] x Q' : K(s,w) € Os(x0)} € o, which shows that Os(z¢) € A := {5 CRY: {(s,w) € [t,T] x QF :
K(s,w) €&} € O'X}. Clearly, A is a o—field on RY, it follows that Z(R%) C A. To wit, K is X —measurable.

For any s € [t,T] and £ € B(RY), since A, := (BY)71(€) € F,
X)) ={we @ X, (w) e} ={we Q" B(X(w)) €€} = {w € Q" : X(w) € A} = X7 1(Ay) € X71(F),

X

which shows that X is in particular adapted to the filtration X ~1(F?). By its continuity, X is 0¥ —measurable. [J
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Lemma A.12. Let (t,w)€[0,T]xQ and let v be a Uy—control considered in Section [@.
(1) It holds for any s€t,T) that F£™" < GX"" | and p+ coincides with Pt<+ on FE™" .
(2) The o—field GX"°" is complete under pt=+, and NF"*" c H 2" = {Aeg%ft’“’“ pher(A)=0} C Gx"r,

Proof: 1) Set ¥ = (t,w, ;) and let s €[t,T]. For any N € AP’ there exists an A€ FL with P?(A) = 0 such that
N C A. By @8), (X”) " '(A)eFy and thus P ((X?)~1(A)) =P”(A)=0. Then, as a subset of (X”)™'(A),

(X)) e T CF (A.8)
So NF'C gSX‘g, which already contains F! by (6.6). It follows that ]-'fﬁ CQSXﬁ.

Given AE]—“?9 Cg%(ﬂ, we know (sce e.g. Proposition 11.4 of [34]) that A=A U A for some A€ Fh and Nen®,
Since (X7)~1 (g) 6.7'; by (6.6) and since (X7)~1(N) er by (A.8), one can deduce that

pﬂ(A):]P’g((Xﬁ)*l(A)):]P’B((X”)”(E)U(X”)’l(/\/)) ng((xﬂ)*l(ﬁ)) —P?(4)=P"(A).
2) Let M C A for some A € GX' with p?(4) = 0. As (X")"I(M) c (X?)~1(A) € Fooand 0 = p?(A) =
]P)to((Xﬁ)’l(A)), we see that

(X)L (M) e 7. (A.9)

In particular, 0N € g%fl’, so the o—field g%fl’ is complete under p”. Then it easily follows from part (1) that
N = {Ae}?ﬂ :PY(A)=0} = {AEJ’-‘?9 :pY(A)=0} C {AEQ%C9 : pﬂ(A):O}:L/Vpﬁ. Moreover, taking 9= A for
any Aeg;?’ with p?(A)=0 in (A9) shows that .4+ ngxﬁ. O
Lemma A.13. Let 0 < t < s < T and define II%(r,w) := (r,IIL(w)), VY (r,w) € [s,T] x Q'. For any r € [s,T] and
D e B([s,r]) @ Fs, we have (I1L)"1(D) € B([s,r]) ® F! and (dr x dPh) ((IIL)~1(D)) = (dr x dP§)(D).
Proof: Given r € [s,T], for any £ € %([s,r]) and A € F¢, applying Lemma [AT] with S = T yields that

() 7H(E x A) = {(rw) €[5, T x Q" : (T (w)) € € x A} =€ x (1) (4) € B([s,7]) © F}. (A.10)

So all rectangular measurable sets of Z([s, r]) @ F: belongs to A := {D C [s,7] x Q% : (L) ~1(D) € B(|s, 7)) ® Fi},
which is a o—field of [s,r] x Q°. It follows that Z([s,r]) ® F: C A, i.e.,

()~(D) € #(s. ) © I, YD € B(sr)) © F.
Next, we show that (dr x dP}) o (IIt)~1 = (dr x dP§) on %([s,T]) @ Fs: For any e B([s,T]) and Ae F3,
using (AI0) with 7 = T" and (AJ]) with S =T gives that
(drx dBh) (E1) ™" (€ ) = (drx dBh) (€ (1)~ (A)) =|€] x BY((112) ™ () = &1 x B () = (dr x dB5) (Ex A),
where |§ | denotes the Lebesgue measure of &. Thus the collection €, of all rectangular measurable sets of ([5, T]) ®
Fj is contained in A := {D C [5,T] x Q° : (dr x dP§)(D) = (dr x dP}) ((ﬁ‘;)_l(’D)) }. In particular, 0 x 0 € A and
[s,T] x Q* € A. For any D € A, one can deduce that
(dr xdP3) (([s, T] x @*)\D)=(dr x dPg) ([s, T] x ) — (dr x dP§) (D) = (dr x dBY) (IIL) 7 ([s, T] x %)) — (dr x dP}) (I1) = (D))
= (drxdPf) ((IL2) ™ ([s, T]x %) = () 71(D)) = (drxdPp) (IT) " (([s, T] x 2°)\D)).

On the other hand, for any pairwisely-disjoint sequence {D,, },en of A (i.e. Dy, ND,, =0 if m # n), it is clear that
{(H’;)_l(Dn)}n cy 18 also a pairwisely-disjoint sequence. It follows that

(drxdB3)( U Da) = D (drxdB3)(Da) = Y (drxdP) ()7 (Dy))

neN neN

= (arxaph)( U ([)71(D,)) = (drxdPy) ()71 U Da)),

neN

thus A is a Dynkin system. Since € is closed under intersection, the Dynkin System Theorem shows that %’([s, T]) ®
Fi=0(€) C A, ie. (dr x dPh) o (IIL)~! = (dr x dP§) on B([s,T]) @ Fj. 0
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Lemma A.14. Let t € [0,T], § € R and let X be an F'—adapted process.

(1) If all paths of X are left-lower-semicontinuous and right-continuous, then 7s:=inf {s et,T]: Xs< (5} AT is an
Fi—stopping time.
(2) If all paths of X satisfy

Xi(w) > li_;n(th(w) A li_ir}sz(w), V(t,w) €[0,T] x £, (A.11)

then vs:=inf {s€[t,T]: X;<b6} AT is an F'—optional time.

Proof: 1) Suppose that all paths of X are left-lower-semicontinuous and right-continuous. Let s € [t,T]. We first
claim that for any w e

if X,(w)>0, Vrelt,s], then inf X, (w)>0. (A.12)

relt,s]
Assume not, i.e. there exists a w’ € Qf such that X, (w') >0, Vr € [t,s] and iI[lf ]Xr(w’) < 0. Then one can find
relt,s
a sequence {1, =r,(t,w) Inen of [t,s] such that lim | X, (w')= ilf[lf ]XT(oJ'). Clearly, {r,}nen has a convergent
n—00 relt,s

subsequence {r,, bieny with limit r, € [¢,s]. We can deduce from the lower-semicontinuity of X that 0 < X, (w') <
lim X, (W) < lim| X, (W)= ir[lf ]XT (w')<0. An contradiction appears. So (A12]) holds and it follows that
Ty 1—>00 ° relt,s

{rs>s} = {weQ': X, (w)>6, Vrelt,s|}= LEJN{wth: Xp(w)>0+1/n, Vrelt,s|}. (A.13)
For any n € N, the right-continuity of X implies that {w € Q': X, (w) >d+1/n, Vre [t s]} ={weQ: X, (w) >
§+1/n, VreQys}, where Qq ,:=([t, s)NQ)U{t, s}. Putting these equalities back into (AI3) yields that

{rs>s} = LEJN{wGQt:XT(w)Zl/n, VreQst= LGJN 68 {weQ': X, (w)>1/n}eFL,

which shows that 75 is an F!—stopping time.
2) Under (A11)), it holds for any s € [t,T] that

{vs>s} ={weQ": X, (w)>04, Vreft,s)} ={weQ': X, (w)>6, VreQ,s}= B {we: X, (w)>6}eFL
reQ¢, s

Thus vs is an Ff—optional time. (I
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