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On the Robust Optimal Stopping Problem ∗†

Erhan Bayraktar‡§ , Song Yao¶

Abstract

We study a robust optimal stopping problem with respect to a set P of mutually singular probabilities. This

can be interpreted as a zero-sum controller-stopper game in which the stopper is trying to maximize its pay-off

while an adverse player wants to minimize this payoff by choosing an evaluation criteria from P . We show that

the upper Snell envelope Z of the reward process Y is a supermartingale with respect to an appropriately defined

nonlinear expectation E , and Z is further an E−martingale up to the first time τ∗ when Z meets Y . Consequently,

τ
∗ is the optimal stopping time for the robust optimal stopping problem and the corresponding zero-sum game

has a value. Although the result seems similar to the one obtained in the classical optimal stopping theory, the

mutual singularity of probabilities and the game aspect of the problem give rise to major technical hurdles, which

we circumvent using some new methods.

Keywords: robust optimal stopping, zero-sum game of control and stopping, volatility uncertainty, dy-

namic programming principle, Snell envelope, nonlinear expectation, weak stability under pasting, path-dependent

stochastic differential equations with controls.
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A Appendix: Technical Lemmata 42

1 Introduction

We solve a continuous-time robust optimal stopping problem with respect to a non-dominated set P of mutually

singular probabilities on the canonical space Ω of continuous paths. This optimal stopping problem can also be

interpreted as a zero-sum controller-stopper game in which the stopper is trying to maximize its pay-off while an

adverse player wants to minimize this payoff by choosing an evaluation criteria from P . In our main result, Theorem

5.1, we construct an optimal stopping time and show that the corresponding game has a value. More precisely, we

obtain that

sup
τ∈T

inf
P∈P

EP

[
Yτ

]
= inf

P∈P
EP

[
Yτ∗

]
= inf

P∈P
sup
τ∈T

EP

[
Yτ

]
. (1.1)

Here T denotes the set of all stopping times with respect to the natural filtration F of the canonical process B, Y

is an F−adapted RCLL (càdlàg) process satisfying an one-sided uniform continuity condition (see (3.1)), and τ∗ is

the first time Y meets its upper Snell envelope Zt(ω) := inf
P∈P(t,ω)

sup
τ∈T t

EP

[
Y t,ω
τ

]
, (t, ω) ∈ [0, T ]× Ω. (Please refer to

Section 2 for the definition of the shifted process Y t,ω.)

The proof of this result turns out to be quite technical for three reasons. First, since the probability set P
does not admit a dominating probability, there is no dominated convergence theorem for the nonlinear expectation

E t[·](ω) := inf
P∈P(t,ω)

EP[·], (t, ω) ∈ [0, T ]×Ω. So we can not follow techniques similar to the ones used in the classical

theory of optimal stopping due to El Karoui [14] to obtain the martingale property of the upper Snell envelope Z.

Second, we do not have a measurable selection theorem for stopping strategies, which complicates the proof of the

dynamic programming principle. Moreover, the local approach that used comparison principle of viscosity solutions

to show the existence of game value (see e.g. [15] and [1]) does not work for our path-dependent set-up.

In Theorem 5.1, we demonstrate that Z is an E−supermartingale, and an E−martingale up to τ∗, the first time Z

meets Y , from which (1.1) immediately follows. To prove this theorem, we use a more global approach rather than the

local approach. We start with a dynamic programming principle (DPP), see Proposition 4.1, whose “super-solution”

part is technically difficult due to the lack of measurable selection for stopping times. We overcome this issue by using

a countable dense subset of T t to construct a suitable approximation. This dynamic programming result is used to

show the continuity of the upper Snell envelope, which plays an important role in the main theorem as our results

heavily rely on construction of approximating stopping times for τ∗. However the dynamic programming principle

directly enters the proof of Theorem 5.1 to show the supermartingale property of Z only after we upgrade the super

side of the DPP for random transit horizons in Proposition 4.3. We would like to emphasize that the submartingale

property of the upper Snell envelope Z until τ∗ does not directly follow from the dynamic programming principle.

Instead, we build a delicate approximation scheme that involves carefully pasting probabilities and leveraging the

martingale property of the single-probability Snell envelopes until they meet Y .

Let us say a few words about our assumptions. It should not come us a surprise that as a function of (t, ω), the

probability set P(t, ω) needs to be adapted. The most important assumption on the probability class

{P(t, ω)}(t,ω)∈[0,T ]×Ω

is the weak stability under pasting, see (P2) in Section 3. It is hard to envision that a dynamic programming result

could hold without a stability under pasting assumption. This assumption along with the aforementioned continuity

assumption (3.1) on Y (the regularity assumptions on the reward are common and can be verified for example of

pay-offs of all financial derivatives) allows us to construct approximate strategies for the controller by appropriately

choosing its conditional distributions. Our stability assumption is weaker than its counterpart in Ekren, Touzi and

Zhang [13]; see for example our Remark 3.4 for a further discussion. We show in Section 6 that this assumption

(along with other assumptions we make on the probability class) are satisfied for some path-dependent SDEs with

controls, which represents a large class of models on simultaneous drift and volatility uncertainty. (A stronger stabil-

ity assumption as in [13] leads to results which is applicable only for volatility uncertainty.) We see Section 6 as one

of the main contributions of our paper, which we dedicate almost half our paper to. Another assumption we make
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on the probability class is that the augmentation of the filtration generated by the canonical process with respect

to each probability in the class is right-continuous. This is because, as mentioned above, we exploit the results from

the classic optimal stopping theory on the martingale property of the Snell envelopes for a given probability. Again

the example in Section 6 is shown to satisfy this assumption.

Relevant Literature. Since the seminal work [35], the martingale approach was extensively used in optimal stopping

theory (see e.g. [26], [14], Appendix D of [20]) and has been applied to various problems stemming from mathematical

finance, the most important example of which is the computation of the super hedging price of the American

contingent claims [6, 17, 18, 22]. Optimal stopping under Knightian uncertainty/nonlinear expectations/risk measures

or the closely related controller-stopper-games have attracted a lot of attention in the recent years: [23, 24, 16, 8, 9,

32, 2, 3, 4, 5, 7, 25]. In this literature, the set of probabilities is assumed to be dominated by a single probability or

the controller is only allowed to influence the drift.

When the set of probabilities contain mutually singular probabilities or the controller can influence not only the

drift but also the volatility, results are available only in some particular cases. Karazas and Sudderth [21] considered

the controller-stopper-game in which the controller is allowed to control the volatility as well as the drift and resolved

the saddle point problem for case of one-dimensional state variable using the characterization of the value function

in terms of the scale function of the state variable. In the multi-dimensional case [1] showed the existence of the

value of a game using a comparison principle for viscosity solutions.

Our technical set-up follows closely that of [13] which analyzed a control problem with discretionary stopping

(i.e., sup
τ∈T

sup
P∈P

EP[Yτ ]) in a non-Markovian framework with mutually singular probability priors. (The solution of

this problem was an important technical step in extending the notion of viscosity solutions to the fully nonlinear

path-dependent PDEs in [11] and [12].) Nutz and Zhang [29] independently and around the same time addressed

the problem we are considering by using a different (and an elegant) approach: They exploited the “tower property”

of the nonlinear expectation E developed in [28] to derive the E -martingale property of the discrete time version

of the lower Snell envelope Zt(ω) := sup
τ∈T t

inf
P∈P(t,ω)

EP

[
Y t,ω
τ

]
, (t, ω) ∈ [0, T ] × Ω. In contrast, we take an approach

we consider to be very natural: We work with the upper Snell envelope and build our approximations directly in

continuous time leveraging the known results from the classical optimal stopping theory. In their introduction, [29]

states that they can not work on upper Snell envelope due to the measurability selection issue; see paragraph 3 on

page 3 of their paper. Our paper overcomes this issue. A major benefit of our approach is that we do not have

to assume that the reward process is bounded since we do not have to rely on the approximation from discrete to

continuous time. Another benefit is the weaker continuity assumption we impose on the value function in the path;

compare Assumptions 4.1 in our paper and Assumption 3.2 in [29]. The latter requires the value of any stopping

strategy to be continuous with the same modulus of continuity, which is an assumption that is not easily verifiable.

One strong suit of [29] is the saddle point analysis.

The rest of the paper is organized as follows: In Section 2 we will introduce notations and some preliminary

results such as the regular conditional probability distribution. In Section 3, we set-up the stage for our main

result by imposing some assumptions on the reward process and the classes of mutually singular probabilities. Then

Section 4 studies properties of the upper Snell envelope of the reward process such as path regularity and dynamic

programming principles. They are the essence to resolve our main result on the robust optimal stopping problem

stated in Section 5. In Section 6, we give an example of path-dependent SDEs with controls that satisfies all our

assumptions. The proofs of our results are deferred to Section 7, and the Appendix contains some technical lemmata

needed for the proofs of the main results.

2 Notation and Preliminaries

Let (M, ̺
M
) be a generic metric space and let B(M) be the Borel σ−field of M. For any x ∈ M and δ > 0,

Oδ(x) := {x′ ∈ M : ̺
M
(x, x′) < δ} and Oδ(x) := {x′ ∈ M : ̺

M
(x, x′) ≤ δ} respectively denote the open and closed

ball centered at x with radius δ. Fix d ∈ N. Let S>0
d stand for all Rd×d−valued positively definite matrices. We

denote by B(S>0
d ) the Borel σ−field of S>0

d under the relative Euclidean topology.

Given 0 ≤ t ≤ T < ∞, let Ωt,T :=
{
ω ∈ C

(
[t, T ];Rd

)
: ω(t) = 0

}
be the canonical space over the period [t, T ],
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whose null path ω(·)≡0 will be denoted by 0t,T . For any t ≤ s ≤ S ≤ T , we introduce a semi-norm ‖ · ‖s,S on Ωt,T :

‖ω‖s,S := sup
r∈[s,S]

|ω(r)|, ∀ω ∈ Ωt,T . In particular, ‖ · ‖t,T is a norm on Ωt,T , called uniform norm, under which Ωt,T

is a separable complete metric space. Also, the truncation mapping Πt,T
s,S from Ωt,T to Ωs,S is defined by

(
Πt,T

s,S(ω)
)
(r) := ω(r) − ω(s), ∀ω ∈ Ωt,T , ∀ r ∈ [s, S].

The canonical process Bt,T on Ωt,T is a d−dimensional Brownian motion under the Wiener measure P
t,T
0 on(

Ωt,T ,B(Ωt,T )
)
. Let Ft,T =

{
F t,T

s :=σ
(
Bt,T

r ; r∈ [t, s]
)}

s∈[t,T ]
be the natural filtration of Bt,T and let Ct,T collect all

cylinder sets in F t,T
T : Ct,T :=

{ m∩
i=1

(
Bt,T

ti

)−1
(Ei) : m∈N, t<t1< · · ·<tm≤T, {Ei}mi=1⊂B(Rd)

}
. It is well-known that

B(Ωt,T ) = σ(Ct,T ) = σ
{(

Bt,T
r

)−1
(E) : r ∈ [t, T ], E ∈ B(Rd)

}
= F t,T

T .

Let Pt,T denote the Ft,T−progressively measurable σ−field of [t, T ] × Ωt,T and let T t,T collect all Ft,T−stopping

times. We set T t,T
s := {τ ∈ T t,T : τ ≥ s} for each s ∈ [t, T ] and will use the convention inf ∅ := ∞.

From now on, we shall fix a time horizon T ∈(0,∞) and drop it from the above notations, i.e.,
(
Ωt,T , 0t,T , Bt,T ,

P
t,T
0 , Ft,T , Pt,T , T t,T

s

)
−→

(
Ωt, 0t, Bt, Pt

0, F
t, Pt, T t

s

)
. When S=T , Πt,T

s,T will be simply denoted by Πt
s. For any

0≤ t≤ s≤T , ω∈Ωt and δ > 0, define Os
δ(ω) :=

{
ω′ ∈Ωt : ‖ω′−ω‖t,s<δ

} (
In particular, OT

δ (ω)=Oδ(ω)=
{
ω′ ∈Ωt :

‖ω′−ω‖t,T <δ
})

. Since Ωt is the set of Rd−valued continuous functions on [t, T ] starting from 0,

Os
δ(ω) = ∪

n∈N

{
ω′ ∈ Ωt : ‖ω′ − ω‖t,s ≤ δ − δ/n

}
= ∪

n∈N
∩

r∈(t,s)∩Q

{
ω′ ∈ Ωt : |ω′(r) − ω(r)| ≤ δ − δ/n

}

= ∪
n∈N

∩
r∈(t,s)∩Q

{
ω′ ∈ Ωt : Bt

r(ω
′) ∈ Oδ−δ/n

(
ω(r)

)}
∈ F t

s. (2.1)

We fix a countable dense subset
{
ω̂t
j

}
j∈N

of Ωt under ‖ · ‖t,T , and set Θt
s :=

{
Os

δ(ω̂
t
j) : δ ∈ Q+, j ∈ N

}
⊂ F t

s.

Given t ∈ [0, T ] and a probability P on
(
Ωt,B(Ωt)

)
=
(
Ωt,F t

T

)
, let us set N P :=

{
N ⊂ Ωt : N ⊂ A for some A ∈

F t
T with P(A) = 0

}
. The P−augmentation FP of Ft consists of FP

s := σ
(
F t

s ∪N P
)
, s ∈ [t, T ]. We denote by T P the

collection of all FP−stopping times and set T P
s := {τ ∈ T P : τ ≥ s} for each s ∈ [t, T ]. In particular, we will write(

N
t
, T t

, T t

s

)
for

(
N Pt

0 , T Pt
0 , T Pt

0
s

)
and F

t
=

{
F t

s

}
s∈[t,T ]

for FPt
0 =

{
FPt

0
s

}
s∈[t,T ]

.

The completion of
(
Ωt,F t

T ,P
)
is the probability space

(
Ωt,FP

T ,P
)
with P

∣∣
Ft

T

= P, we still write P for P for

convenience. In particular, the expectation on
(
Ωt,Ft

T ,P
t
0

)
will be simply denoted by Et. A probability space(

Ωt,F ′,P′
)
is called an extension of

(
Ωt,F t

T ,P
)
if F t

T ⊂ F ′ and P′
∣∣
Ft

T

= P.

For any metric space M and any M−valued process X = {Xs}s∈[t,T ], we set FX=
{
FX

s :=σ
(
Xr; r∈ [t, s]

)}
s∈[t,T ]

as the natural filtration of X and let FX,P=
{
FX,P

s := σ
(
FX

s ∪ N P
)}

s∈[t,T ]
.
(
In particular, FP = FBt,P.

)
If X is

FP−adapted, it holds for any s ∈ [t, T ] that FX
s ⊂ FP

s and thus FX,P
s ⊂FP

s .

The following spaces about P will be frequently used in the sequel.

1) For any sub−σ−field G of F t
T , let L

1(G,P) be the space of all real-valued, G−measurable random variables ξ with

‖ξ‖L1(G,P) := EP

[
|ξ|

]
< ∞.

2) Let D(Ft,P) be the space of all real−valued, Ft−adapted processes {Xs}s∈[t,T ] whose paths are all right-continuous

and satisfy EP[X∗]<∞, where X∗ :=‖X‖t,T = sup
s∈[t,T ]

|Xs|.

If the superscript t=0, we will drop them from the above notations. For example, 0 = 00,T and T = T 0,T .

2.1 Concatenation of Sample Paths

In the rest of this section, let us fix 0 ≤ t ≤ s ≤ T . We concatenate an ω ∈ Ωt and an ω̃ ∈ Ωs at time s by:
(
ω ⊗s ω̃

)
(r) := ω(r)1{r∈[t,s)} +

(
ω(s) + ω̃(r)

)
1{r∈[s,T ]}, ∀ r ∈ [t, T ],

which is still of Ωt. For any non-empty Ã ⊂ Ωs, we set ω ⊗s ∅ = ∅ and ω ⊗s Ã :=
{
ω ⊗s ω̃ : ω̃ ∈ Ã

}
.

The next result shows that A ∈ F t
s consists of elements ω ⊗s Ω

s with ω ∈ A.
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Lemma 2.1. Let A ∈ F t
s. If ω ∈ A, then ω ⊗s Ω

s ⊂ A. Otherwise, if ω /∈ A, then ω ⊗s Ω
s ⊂ Ac.

For any F t
s−measurable random variable η, since {ω′∈Ωt : η(ω′)=η(ω)}∈F t

s, Lemma 2.1 shows that

ω⊗sΩ
s ⊂ {ω′∈Ωt : η(ω′)=η(ω)} i.e., η(ω ⊗s ω̃)=η(ω), ∀ ω̃∈Ωs. (2.2)

To wit, the value η(ω) depends only on ω|[t,s].
On the other hand, for any A ⊂ Ωt we set As,ω := {ω̃ ∈ Ωs : ω ⊗s ω̃ ∈ A} as the projection of A on Ωs along ω.

In particular, ∅s,ω = ∅.
For any r ∈ [s, T ], the operation ( )s,ω projects an F t

r−measurable set to an Fs
r−measurable set while the

operation ω ⊗s · takes an Fs
r−measurable set as input and returns an F t

r−measurable set:

Lemma 2.2. Given ω ∈ Ωt and r∈ [s, T ], we have As,ω∈Fs
r for any A∈F t

r, and ω ⊗s Ã ∈ F t
r for any Ã ∈ Fs

r .

Corollary 2.1. Given τ ∈T t and ω∈Ωt, if τ(ω⊗sΩ
s)⊂ [r, T ] for some r∈ [s, T ], then τs,ω∈T s

r .

For any D⊂ [t, T ]× Ωt, we accordingly set Ds,ω :=
{
(r, ω̃)∈ [s, T ]×Ωs :

(
r, ω ⊗s ω̃

)
∈D

}
.

Lemma 2.3. Given ω ∈ Ωt and T0 ∈ [s, T ], we have Ds,ω∈B
(
[s, T0]

)
⊗Fs

T0
for any D∈B([t, T0])⊗ F t

T0
.

2.2 Regular Conditional Probability Distributions

Let P be a probability on
(
Ωt,F t

T

)
. In virtue of Theorem 1.3.4 and (1.3.15) of [37], there exists a family {Pω

s }ω∈Ωt

of probabilities on
(
Ωt,F t

T

)
, called the regular conditional probability distribution (r.c.p.d.) of P with respect to F t

s,

such that

( i) For any A ∈ F t
T , the mapping ω → Pω

s (A) is F t
s−measurable;

( ii) For any ξ ∈ L1
(
F t

T ,P
)
, EPω

s
[ξ] = EP

[
ξ
∣∣F t

s

]
(ω) for P−a.s. ω ∈ Ωt; (2.3)

(iii) For any ω ∈ Ωt, Pω
s

(
ω ⊗s Ω

s
)
= 1. (2.4)

Given ω ∈ Ωt, by Lemma 2.2, ω ⊗s Ã ∈ F t
T for any Ã ∈ Fs

T . So we can deduce from (2.4) that

Ps,ω
(
Ã
)
:= Pω

s

(
ω ⊗s Ã

)
, ∀ Ã ∈ Fs

T (2.5)

defines a probability on
(
Ωs,Fs

T

)
. The Wiener measures, however, are invariant under path shift:

Lemma 2.4. Let 0≤ t≤s≤T . It holds for Pt
0−a.s. ω∈Ωt that

(
Pt
0

)s,ω
= Ps

0.

Thanks to the existence of r.c.p.d. we can define conditional distributions using (2.5). Then by introducing

path regularity for the reward process Y , one can treat path-dependent problems in ways similar to state-dependent

problems. This can be seen as the general idea behind a dynamic programming in the path-dependent setting and

the path-dependent PDEs introduced in [10].

2.3 Shifted Random Variables and Shifted Processes

Given a random variable ξ and a processX = {Xr}r∈[t,T ] on Ωt, for any ω ∈ Ωt we define the shifted random variable

ξs,ω by ξs,ω(ω̃) := ξ(ω ⊗s ω̃), ∀ ω̃ ∈ Ωs and the shifted process Xs,ω by Xs,ω
r (ω̃) = X(r, ω ⊗s ω̃), (r, ω̃) ∈ [s, T ]×Ωs.

In light of Lemma 2.2 and the regular conditional probability distribution, shifted random variables/processes

“inherit” measurability and integrability as follows:

Proposition 2.1. Let M be a generic metric space and let ω ∈ Ωt.

(1 ) If an M−valued random variable ξ on Ωt is F t
r−measurable for some r ∈ [s, T ], then ξs,ω is Fs

r−measurable.

(2 ) If an M−valued process {Xr}r∈[t,T ] is Ft−adapted (resp. Ft−progressively measurable), then the shifted process{
Xs,ω

r

}
r∈[s,T ]

is Fs−adapted (resp. Fs−progressively measurable).

(3 ) For any D ∈ Pt, we have Ds,ω ∈ Ps.
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Proposition 2.2. (1 ) If ξ ∈ L1
(
F t

T ,P
)
for some probability P on

(
Ωt,B(Ωt)

)
, then it holds for P−a.s. ω ∈ Ωt that

the shifted random variable ξs,ω ∈ L1
(
Fs

T ,P
s,ω

)
and

EPs,ω

[
ξs,ω

]
= EP

[
ξ
∣∣F t

s

]
(ω) ∈ R. (2.6)

(2 ) If X ∈ D
(
Ft,P

)
for some probability P on

(
Ωt,B(Ωt)

)
, then it holds for P−a.s. ω ∈ Ωt that the shifted process

Xs,ω ∈ D
(
Fs,Ps,ω

)
.

As a consequence of (2.6), a shifted P−null set also has zero measure.

Lemma 2.5. (1 ) Let P be a probability on
(
Ωt,B(Ωt)

)
. For any N ∈ N P, it holds for P−a.s. ω ∈ Ωt that

N s,ω∈N Ps,ω

. In particular, for any N ∈N
t
, it holds for Pt

0−a.s. ω∈Ωt that N s,ω∈N
s
.

(2 ) For any D ∈ B
(
[t, T ]

)
⊗ F t

T with (dr × dPt
0)
(
D ∩ ([s, T ] × Ωt)

)
= 0, it holds for Pt

0−a.s. ω ∈ Ωt that
(
dr ×

dPs
0

)(
Ds,ω

)
= 0.

(3 ) For any τ ∈ T t

s, it holds for Pt
0−a.s. ω ∈ Ωt that τs,ω ∈ T s

.

Based on Lemma 2.5 (1), we have the following extension of Proposition 2.2 (1).

Proposition 2.3. Let P be a probability on
(
Ωt,B(Ωt)

)
. For any ξ ∈ L1

(
FP

T ,P
)
, it holds for P−a.s. ω ∈ Ωt that

the shifted random variable ξs,ω ∈ L1
(
FPs,ω

T ,Ps,ω
)
and (2.6) holds.

In the next three sections, we will gradually provide the technical set-up and preparation for our main result

(Theorem 5.1) on the robust optimal stopping problem.

3 Weak Stability under Pasting

In the proof of Theorem 5.1, we will use an approximation scheme which exploits results from the classic optimal

stopping theory for a given probability. For this purpose, we consider the following probability set.

Definition 3.1. For any t∈ [0, T ], let Pt collect all probabilities P on
(
Ωt,B(Ωt)

)
such that FP is right-continuous.

We will also need some regularity assumption on the reward process.

Standing assumptions on reward process Y .

(Y) Y is an F−adapted process that satisfies an one-sided continuity condition in (t, ω) with respect to some modulus

of continuity function ρ0 in the following sense

Yt1(ω1)− Yt2(ω2) ≤ ρ0

(
d∞

(
(t1, ω1), (t2, ω2)

))
, ∀ 0 ≤ t1 ≤ t2 ≤ T, ∀ω1, ω2 ∈ Ω, (3.1)

where d∞

(
(t1, ω1), (t2, ω2)

)
:= (t2 − t1) + ‖ω1(· ∧ t1)− ω2(· ∧ t2)‖0,T .

Remark 3.1. (1 ) As pointed out in Remark 3.2 of [13], (3.1) implies that each path of Y is RCLL with positive

jumps. (2 ) Also, one can deduce from (3.1) that the process Y is left upper semi-continuous (left u.s.c.): i.e., for

any (t, ω)∈(0, T ]×Ω, Yt(ω) ≥ lim
sրt

Ys(ω). It follows that the shifted process Y t,ω is also left u.s.c. Then we can apply

the classical optimal stopping theory to Y t,ω under each P ∈ Pt. Actually, the proof of Theorem 5.1 relies on the

comparison of Z
t,ω

with the Snell envelope of Y t,ω under each P ∈ Pt.

The next result show that the integrability of the shifted reward process is independent of the given path history:

Lemma 3.1. Assume (Y ). For any t ∈ [0, T ] and any probability P on
(
Ωt,B(Ωt)

)
, if Y t,ω ∈ D(Ft,P) for some

ω∈Ω, then Y t,ω′ ∈D(Ft,P) for all ω′∈Ω.

We shall focus on the following subset of Pt that makes the shifted reward process integrable.

Assumption 3.1. For any t∈ [0, T ], the set PY
t :=

{
P∈Pt : Y

t,0∈D(Ft,P)
}
is not empty.
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Remark 3.2. (1 ) If Y ∈ D(F,P0), then Pt
0 ∈ PY

t for any t ∈ [0, T ]. (2 ) As we will see in Lemma 6.2, when the

modulus of continuity ρ0 has polynomial growth, the laws of solutions to the controlled SDEs (6.2) over period [t, T ]

belong to PY
t .

Under (Y) and Assumption 3.1, we see from Lemma 3.1 that for any t∈ [0, T ] and P∈PY
t ,

Y t,ω∈D
(
Ft,P

)
, ∀ω ∈ Ω. (3.2)

Next, we need the probability classes to be adapted and weakly stable under pasting in the following sense:

Standing assumptions on probability class.

(P0) For any t ∈ [0, T ], let us consider a family {P(t, ω) = PY (t, ω)}ω∈Ω of subsets of PY
t such that

P(t, ω1)=P(t, ω2) if ω1|[0,t]=ω2|[0,t]. (3.3)

We further assume that the probability class {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfy the following two conditions for some

modulus of continuity function ρ̂0: for any 0 ≤ t < s ≤ T , ω ∈ Ω and P∈P(t, ω)

(P1) There exist an extension (Ωt,F ′,P′) of (Ωt,F t
T ,P) and Ω′ ∈ F ′ with P′(Ω′) = 1 such that for any ω̃ ∈ Ω′,

Ps,ω̃ ∈ P(s, ω ⊗t ω̃);

(P2) For any δ∈Q+ and λ∈N, let {Aj}λj=0 be a F t
s−partition of Ωt such that for j=1, · · ·, λ, Aj⊂Os

δj
(ω̃j) for some

δj∈
(
(0, δ]∩Q

)
∪{δ} and ω̃j∈Ωt. Then for any Pj∈P(s, ω⊗t ω̃j), j=1, · · ·, λ, there exists a P̂∈P(t, ω) such that

( i) P̂(A ∩ A0)=P(A ∩ A0), ∀A ∈ F t
T ;

(ii) For any j=1, · · ·, λ and A ∈ F t
s, P̂(A ∩ Aj) = P(A ∩ Aj) and

sup
τ∈T t

s

E
P̂

[
1A∩AjY

t,ω
τ

]
≤EP

[
1{ω̃∈A∩Aj}

(
sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]
. (3.4)

From now on, when writing Y t,ω
τ , we mean (Y t,ω)τ not (Yτ )

t,ω.

Remark 3.3. (1 ) By (3.3), one can regard P(t, ω) as a path-dependent subset of Pt. In particular, P :=P(0,0)=

P(0, ω), ∀ω∈Ω.

(2 ) As we will show in Section 7, both sides of (3.4) are finite. In particular, the expectation on right-hand-side is

well-defined since the mapping ω̃ → sup
ζ∈T s

E
P̃

[
Y s,ω⊗tω̃
ζ

]
is continuous under norm ‖ ‖t,T for any P̃∈PY

s .

(3 ) The condition (P2 ) can be viewed as a weak stability under pasting since it is implied by the stability under finite

pasting
(
see e.g. (4.18 ) of [36]

)
: for any 0 ≤ t < s ≤ T , ω ∈ Ω, P ∈ P(t, ω), δ ∈ Q+ and λ ∈ N, let {Aj}λj=0 be a

F t
s−partition of Ωt such that for j = 1, · · ·, λ, Aj ⊂ Os

δj
(ω̃j) for some δj ∈

(
(0, δ]∩Q

)
∪ {δ} and ω̃j ∈ Ωt. Then for

any Pj∈P(s, ω ⊗t ω̃j), j=1, · · ·, λ, the probability defined by

P̂(A)=P(A ∩A0

)
+

λ∑

j=1

EP

[
1{ω̃∈Aj}Pj

(
As,ω̃

)]
, ∀A ∈ F t

T (3.5)

is in P(t, ω).

Remark 3.4. The reason we assume (P2 ) rather than the stability of finite pasting (3.5) lies in the fact that the

latter does not hold for our example of path-dependent SDEs with controls (Section 6) as pointed out in Remark 3.6

of [27], while the former is sufficient for our approximation methods in proving the main results.

4 The Dynamic Programming Principle

The key to solving problem (1.1) is the following upper Snell envelope of the reward processes:

Zt(ω) := inf
P∈P(t,ω)

sup
τ∈T t

EP

[
Y t,ω
τ

]
, ∀ (t, ω) ∈ [0, T ]× Ω. (4.1)
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In this section, we derive some basic properties of Z and the dynamic programming principles it satisfies. These results

will provide an important technical step for the proof of Theorem 5.1. Let (Y), (P0), (P1), (P2) and Assumption

3.1 hold throughout the section.

Given (t, ω)∈ [0, T ]×Ω, since Yt is Ft−measurable, (2.2) implies that Y t,ω
t =Yt(ω). it then follows from (4.1) that

Yt(ω) = inf
P∈P(t,ω)

EP

[
Y t,ω
t

]
≤ Zt(ω) ≤ inf

P∈P(t,ω)
EP

[
Y t,ω
∗

]
< ∞, ∀ (t, ω) ∈ [0, T ]× Ω. (4.2)

We need two assumptions on Z before discussing its path regularity properties and dynamic programming prin-

ciple.

Assumption 4.1. There exists a modulus of continuity function ρ1 ≥ ρ0 such that for any t ∈ [0, T ]

∣∣Zt(ω1)− Zt(ω2)
∣∣ ≤ ρ1

(
‖ω1 − ω2‖0,t

)
, ∀ω1, ω2 ∈ Ω. (4.3)

Remark 4.1. If P(t, ω) does not depend on ω for all t ∈ [0, T ], then (3.1) implies Assumption 4.1.

Remark 4.2. Assumption 4.1 implies that Z is F−adapted.

Assumption 4.2. For any α > 0, there exists a modulus of continuity function ρα such that for any t ∈ [0, T )

sup
ω∈Ot

α(0)

sup
P∈P(t,ω)

EP

[
ρ1

(
δ + 2 sup

r∈[t,(t+δ)∧T ]

|Bt
r|
)]

≤ ρα(δ), ∀ δ ∈ (0, T ]. (4.4)

Similar to (3.2), one has the following integrability result of shifted processes of Z.

Lemma 4.1. Given (t, ω) ∈ [0, T ]× Ω, it holds for any P ∈ P(t, ω) and s ∈ [t, T ] that EP

[∣∣Zt,ω

s

∣∣
]
< ∞.

As to the dynamic programming principle, we present first a basic version in which the transit horizon is deter-

ministic:

Proposition 4.1. For any 0 ≤ t ≤ s ≤ T and ω ∈ Ω,

Zt(ω) = inf
P∈P(t,ω)

sup
τ∈T t

EP

[
1{τ<s}Y

t,ω
τ + 1{τ≥s}Z

t,ω

s

]
. (4.5)

Consequently, all paths of Z are continuous:

Proposition 4.2. For any (t, ω) ∈ [0, T ]× Ω and P ∈ P(t, ω), Z
t,ω

is an Ft−adapted process with all continuous

paths and
{
Z

t,ω

τ

}
τ∈T P

is P−uniformly integrable.

The continuity of Z allows us to derive the super side of a general dynamic programming principle with random

transit horizons.

Proposition 4.3. For any (t, ω) ∈ [0, T ]× Ω and ν ∈ T t,

Zt(ω) ≥ inf
P∈P(t,ω)

sup
τ∈T t

EP

[
1{τ<ν}Y

t,ω
τ + 1{τ≥ν}Z

t,ω

ν

]
. (4.6)

5 Robust Optimal Stopping

In this section, we state our main result on robust optimal stopping problem. Let (Y), (P0), (P1), (P2) and

Assumption 3.1−4.2 hold throughout the section.

For any t∈ [0, T ], we set Lt :={random variable ξ on Ω: ξt,ω∈L1(F t
T ,P), ∀ω∈Ω, P∈P(t, ω)} and define on Lt

a nonlinear expectation: E t[ξ](ω) := inf
P∈P(t,ω)

EP[ξ
t,ω], ∀ω ∈ Ω, ξ ∈ Lt.

Remark 5.1. Given τ ∈T , Yτ , Zτ ∈ Lt for any t ∈ [0, T ], thanks to (3.2) and Proposition 4.2.
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Similar to the classic optimal stopping theory, we will show that the first time Z meets Y

τ∗ := inf{t ∈ [0, T ] : Zt = Yt} (5.1)

is an optimal stopping time for (1.1), and the upper Snell envelope Z has a martingale characterization with respect

to the nonlinear expectation E := {E t}t∈[0,T ]:

Theorem 5.1. Let (Y ), (P0 ), (P1 ), (P2 ) and Assumption 3.1-Assumption 4.2 hold. If sup
(t,ω)∈[0,T ]×Ω

Yt(ω) = ∞, we

further assume that for some L > 0

Yt2(ω)− Yt1(ω) ≤ L+ sup
r∈[0,t1]

|Yr(ω)|+ ρ1

(
sup

r∈[t1,t2]

∣∣ω(r)− ω(t1)
∣∣
)
, ∀ 0 ≤ t1 ≤ t2 ≤ T, ∀ω ∈ Ω. (5.2)

Then Z is an E−supermartingale and is even an E−martingale up to time τ∗ in sense that

(
Zγ∧t

)
(ω) ≥ E t

[
Zγ

]
(ω) and

(
Zτ∗∧γ∧t

)
(ω) = E t

[
Zτ∗∧γ

]
(ω), ∀ (t, ω) ∈ [0, T ]× Ω, ∀ γ ∈ T . (5.3)

In particular, the F−stopping time τ∗ satisfies (1.1).

A few remarks are in order:

Remark 5.2. (1 ) Similar to [29], we can apply (1.1) to subhedging of American options in a financial market with

volatility uncertainty.

(2 ) As to a worst-case risk measure R(ξ) := sup
P∈P

EP[−ξ] defined for any bounded financial position ξ, applying (1.1)

to a given bounded reward process Y yields that

inf
τ∈T

R(Yτ ) = −sup
τ∈T

inf
P∈P

EP

[
Yτ

]
= − inf

P∈P
EP

[
Yτ∗

]
= R

(
Yτ∗

)
.

So τ∗ is also an optimal stopping time for the optimal stopping problem of R.

(3 ) From the perspective of a zero-sum controller-stopper game in which the stopper chooses the termination time while

the controller selects the distribution law from P, (1.1) shows that such a game has a value E 0[Yτ∗ ] = inf
P∈P

EP

[
Yτ∗

]

as its lower value sup
τ∈S

inf
P∈P

EP

[
Yτ

]
coincides with the upper one inf

P∈P
sup
τ∈S

EP

[
Yτ

]
.

6 Example: Path-dependent Controlled SDEs

In this section we will present an example of the probability class {P(t, ω)}(t,ω)∈[0,T ]×Ω in case of path-dependent

stochastic differential equations with controls.

Let κ>0 and let b : [0, T ]×Ω×Rd×d → Rd be a P⊗B(Rd×d)
/
B(Rd)−measurable function such that

|b(t, ω, u)−b(t, ω′, u)|≤κ‖ω−ω′‖0,t and |b(t,0, u)|≤κ(1+|u|), ∀ω, ω′∈Ω, (t, u)∈ [0, T ]×Rd×d. (6.1)

Lemma 6.1. Given (t, ω) ∈ [0, T ]× Ω, the mapping bt,ω(r, ω̃, u) :=b(r, ω ⊗t ω̃, u), ∀ (r, ω̃, u) ∈ [t, T ]× Ωt × Rd×d is

Pt ⊗ B(Rd×d)/B(Rd)−measurable.

Given (t, ω)∈ [0, T ]×Ω, by (6.1) and Lemma 6.1, bt,ω is a Pt⊗B(Rd×d)
/
B(Rd)−measurable function that satisfies

|bt,ω(r, ω̃, u)−bt,ω(r, ω̃′, u)|≤κ‖ω̃−ω̃′‖t,r and |bt,ω(r,0t, u)|≤κ
(
1+‖ω‖0,t+|u|

)
, ∀ ω̃, ω̃′∈Ωt, (r, u)∈ [t, T ]×Rd×d.

Let t ∈ [0, T ] and let Ut collect all S>0
d −valued, Ft−progressively measurable processes {µs}s∈[t,T ] such that

|µs| ≤ κ, ds×dPt
0−a.s. Given µ ∈ Ut, a slight extension of Theorem V.12.1 of [33] shows that the following stochastic

differential equation (SDE) on the probability space
(
Ωt,F t

T ,P
t
0

)
:

Xs =

∫ s

t

bt,ω(r,X, µr)dr +

∫ s

t

µr dB
t
r, s ∈ [t, T ], (6.2)
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admits a unique solution Xt,ω,µ, which is an F
t−adapted continuous process satisfying Et

[(
Xt,ω,µ

∗

)p]
<∞ for any

p≥1. Note that the SDE (6.2) depends on ω
∣∣
[0,t]

via the generator bt,ω.

Without loss of generality, we may assume that all paths ofXt,ω,µ are continuous and starting from 0.
(
Otherwise,

by setting N := {ω ∈ Ωt : Xt,ω,µ
t (ω) 6= 0 or the path Xt,ω,µ

· (ω) is not continuous} ∈ N
t
, one can take X̃t,ω,µ

s :=

1N cXt,ω,µ
s , s∈ [t, T ]. It is an F

t−adapted process that satisfies (6.2) and whose paths are all continuous and starting

from 0.
)

Applying the Burkholder-Davis-Gundy inequality, Gronwall’s inequality and using the Lipschitz continuity of b

in ω−variable, one can easily derive the following estimates for Xt,ω,µ: for any p ≥ 1

Et

[
sup

r∈[t,s]

∣∣Xt,ω,µ
r −Xt,ω′, µ

r

∣∣p
]
≤Cp‖ω−ω′‖p0,t (s−t)p, ∀ω′∈Ω, ∀ s ∈ [t, T ], (6.3)

and Et

[
sup

r∈[ζ,(ζ+δ)∧T ]

∣∣Xt,ω,µ
r −Xt,ω,µ

ζ

∣∣p
]
≤ϕp(‖ω‖0,t) δ p/2, for any F

t−stopping time ζ and δ>0, (6.4)

where Cp is a constant depending on p, κ, T and ϕp : R+→R+ is a continuous function depending on p, κ, T .

Similar to Lemma 3.3 of [29], the following result shows that the shift of Xt,ω,µ is exactly the solution of SDE

(6.2) with shifted drift coefficient and shifted control.

Proposition 6.1. Given 0 ≤ t ≤ s ≤ T , ω ∈ Ω and µ ∈ Ut, let X := Xt,ω,µ. It holds for Pt
0−a.s. ω̃ ∈ Ωt that

µs,ω̃ ∈ Us and that X s,ω̃ = Xs,ω⊗tX (ω̃),µs,ω̃

+ Xs(ω̃).

As a mapping from Ωt to Ωt, Xt,ω,µ is Ft

s

/
F t

s−measurable for any s ∈ [t, T ]: To see this, let us pick up an

arbitrary E ∈ B(Rd). The F
t−adaptness of Xt,ω,µ shows that for any r ∈ [t, s]

(
Xt,ω,µ

)−1
((

Bt
r

)−1
(E)

)
=

{
ω̃ ∈ Ωt : Xt,ω,µ(ω̃) ∈

(
Bt

r

)−1
(E)

}
=

{
ω̃ ∈ Ωt : Xt,ω,µ

r (ω̃) ∈ E
}
∈ F t

s. (6.5)

Thus
(
Bt

r

)−1
(E) ∈ GXt,ω,µ

s :=
{
A ⊂ Ωt :

(
Xt,ω,µ

)−1
(A) ∈ F t

s

}
, which is clearly a σ−field of Ωt. It follows that

F t
s ⊂ GXt,ω,µ

s , i.e.,

(
Xt,ω,µ

)−1
(A) ∈ F t

s, ∀A ∈ F t
s, (6.6)

proving the measurability of the mapping Xt,ω,µ. We define the law of Xt,ω,µ under Pt
0 by

pt,ω,µ(A) := Pt
0 ◦

(
Xt,ω,µ

)−1
(A), ∀A ∈ GXt,ω,µ

T ,

and denote by Pt,ω,µ the restriction of pt,ω,µ on
(
Ωt,F t

T

)
.

The filtrations FPt,ω,µ

are all right-continuous:

Proposition 6.2. For any (t, ω)∈ [0, T ]×Ω and µ∈Ut, P
t,ω,µ belongs to Pt.

Remark 6.1. The reason we consider the law of Xt,ω,µ under Pt
0 over GXt,ω,µ

T

(
the largest σ−field to induce Pt

0

under the mapping Xt,ω,µ
)
rather than F t

T is as follows. Our proofs for Proposition 6.2 and Proposition 6.3 rely

heavily on the inverse mapping W t,ω,µ of Xt,ω,µ, which is an Ft−progessively measurable processes having only

pt,ω,µ−a.s. continuous paths. Consequently, as we will show in the proof of the following Proposition 6.3, it holds

for pt,ω,µ−a.s. ω̃ ∈ Ωt that the shifted probability
(
Pt,ω,µ

)s,ω̃
is the law of the solution to the shifted SDE and thus

belongs to P(s, ω ⊗t ω̃). This explains why our assumption (P1 ) needs an extension (Ωt,F ′,P′) of the probability

space (Ωt,F t
T ,P).

Now, we set P(t, ω) :=
{
Pt,ω,µ : µ∈Ut

}
. Given ̟≥1, let ρ0 be a modulus of continuity function such that

ρ0(δ) ≤ κ(1+δ̟), ∀ δ>0, (6.7)

and let Y satisfy (Y) with ρ0.
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Lemma 6.2. Assume (Y ) and (6.7). For any (t, ω)∈ [0, T ]×Ω, we have P(t, ω) ⊂ PY
t .

For any ω1, ω2 ∈Ω with ω1|[0,t] = ω2|[0,t], since (6.2) depends only on ω|[0,t] for a given path ω ∈Ω, we see that

Xt,ω1,µ = Xt,ω2,µ and thus Pt,ω1,µ = Pt,ω2,µ for any µ ∈ Ut. It follows that P(t, ω1) = P(t, ω2). So assumption (P0)

is satisfied.

Proposition 6.3. Assume (Y ) and (6.7). Then the probability class {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies (P1 ), (P2 ),

Assumptions 4.1 and 4.2.

7 Proofs

7.1 Proofs of the results in Section 2

Proof of Lemma 2.1: Set Λ :=
{
A ⊂ Ωt : A = ∪

ω∈A

(
ω ⊗s Ω

s
)}

. For any A ∈ Λ, we claim that

ω ⊗s Ω
s ⊂ Ac for any ω ∈ Ac. (7.1)

Assume not, there is an ω ∈ Ac and an ω̃ ∈ Ωs such that ω⊗s ω̃ ∈ A, thus
(
ω⊗s ω̃

)
⊗s Ω

s ⊂ A. Then ω ∈ ω⊗s Ω
s =(

ω ⊗s ω̃
)
⊗s Ω

s ⊂ A. A contradiction appear.

For any r ∈ [t, s] and E ∈ B(Rd), if ω ∈
(
Bt

r

)−1(E
)
, then for any ω̃ ∈ Ωs,

(
ω ⊗s ω̃

)
(r) = ω(r) ∈ E , i.e.,

ω⊗sω̃ ∈
(
Bt

r

)−1(E
)
. Thus ω⊗sΩ

s ⊂
(
Bt

r

)−1(E
)
, which implies that

(
Bt

r

)−1(E
)
∈ Λ. In particular, ∅ ∈ Λ and Ωt ∈ Λ.

For any A ∈ Λ, (7.1) implies that Ac ∈ Λ. For any {An}n∈N ⊂ Λ, ∪
n∈N

An = ∪
n∈N

(
∪

ω∈An

(
ω⊗sΩ

s
))

= ∪
ω∈ ∪

n∈N

An

(
ω⊗sΩ

s
)
,

namely, ∪
n∈N

An ∈ Λ. Thus, Λ is a σ−field of Ωt containing all generating sets of F t
s. It then follows that F t

s ⊂ Λ,

proving the lemma. �

Proof of Lemma 2.2: If we regard ω ⊗s · as a mapping Ψ from Ωs to Ωt, i.e., Ψ(ω̃) := ω ⊗s ω̃, ∀ ω̃ ∈ Ωs, then

As,ω = Ψ−1(A) for any A ⊂ Ωt. Given t′ ∈ [t, r] and E ∈ B(Rd), we can deduce that

((
Bt

t′
)−1

(E)
)s,ω

=





Ωs, if t′ ∈ [t, s) and ω(t′) ∈ E ;
∅, if t′ ∈ [t, s) and ω(t′) /∈ E ;
{
ω̃ ∈ Ωs : ω(s) + ω̃(t′) ∈ E

}
=

(
Bs

t′

)−1
(E ′) ∈ Fs

r , if t′ ∈ [s, r],

where E ′ = {x− ω(s) : x ∈ E} ∈ B(Rd). So
(
Bt

t′

)−1
(E) ∈ Λ :=

{
A ⊂ Ωt : As,ω = Ψ−1(A) ∈ Fs

r

}
, which is clearly a

σ−field of Ωt. It follows that F t
r ⊂ Λ, i.e., As,ω ∈ Fs

r for any A ∈ F t
r. On the other hand, the continuity of paths in

Ωt shows that

ω ⊗s Ω
s =

{
ω′ ∈ Ωt : ω′(t′)=ω(t′), ∀ t′ ∈ (t, s) ∩Q

}
= ∩

t′∈(t,s)∩Q

(
Bt

t′
)−1(

ω(t′)
)
∈ F t

s. (7.2)

For any Ã ∈ Fs
r , applying Lemma A.1 with S = T gives that (Πt

s)
−1

(
Ã
)
∈ F t

r, which together with (7.2) shows that

ω ⊗s Ã = (Πt
s)

−1
(
Ã
)
∩
(
ω ⊗s Ω

s
)
∈ F t

r. �

Proof of Corollary 2.1: Let τ ∈ T t, ω ∈ Ωt and assume that τ(ω ⊗s Ω
s) ⊂ [r, T ] for some r ∈ [s, T ]. Given

r̃ ∈ [r, T ], we set A := {ω′ ∈ Ωt : τ(ω′) ≤ r̃} ∈ F t
r̃ and can deduce from Lemma 2.2 that

{ω̃ ∈ Ωs : τs,ω(ω̃) ≤ r̃ } = {ω̃ ∈ Ωs : τ(ω ⊗s ω̃) ≤ r̃ } = {ω̃ ∈ Ωs : ω ⊗s ω̃ ∈ A} = As,ω ∈ Fs
r̃ .

So τs,ω ∈ T s
r . �

Proof of Lemma 2.3: Define a mapping Ψ̃ : [s, T0]×Ωs → [s, T0]×Ωt by Ψ̃(r, ω̃) :=
(
r, ω⊗sω̃

)
, ∀ (r, ω̃) ∈ [s, T0]×Ωs.

In particular, Ds,ω = Ψ̃−1(D) for any D ⊂ [t, T0]× Ωt. For any E ∈ B
(
[t, T0]

)
and A ∈ F t

T0
, Lemma 2.2 shows that

Ψ̃−1
(
E ×A

)
=

{(
r, ω̃

)
∈ [s, T0]× Ωs :

(
r, ω ⊗s ω̃

)
∈ E × A

}
=

(
E ∩ [s, T0]

)
×As,ω ∈ B

(
[s, T0]

)
⊗Fs

T0
.
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Hence, the rectangular measurable set E×A∈ΛT0 :=
{
D⊂ [t, T0]×Ωt : Ψ̃−1(D)∈B

(
[s, T0]

)
⊗Fs

T0

}
, which is clearly

a σ−field of [t, T0]×Ωt. It follows that B([t, T0]) ⊗ F t
T0

⊂ ΛT0 , i.e., Ds,ω = Ψ̃−1(D) ∈ B
(
[s, T0]

)
⊗Fs

T0
for any

D∈B([t, T0])⊗F t
T0
. �

Proof of Lemma 2.4: Given Ã∈Fs
T , since (Πt

s)
−1(Ã)∈F t

T by Lemma A.1, (2.4) and (2.3) imply that for Pt
0−a.s.

ω∈Ωt

(
Pt
0

)s,ω(
Ã
)
=

(
Pt
0

)ω
s

(
ω ⊗s Ã

)
=

(
Pt
0

)ω
s

(
(ω ⊗s Ω

s) ∩ (Πt
s)

−1(Ã)
)
=

(
Pt
0

)ω
s

(
(Πt

s)
−1(Ã)

)
= Et

[
1(Πt

s)
−1(Ã)

∣∣F t
s

]
(ω).

It is easy to see that (Πt
s)

−1(Fs
T )=σ

(
Bt

r−Bt
s; r∈ [s, T ]

)
. Thus (Πt

s)
−1(Ã) is independent of F t

s under Pt
0. Applying

(A.1) with S=T yield that for Pt
0−a.s. ω∈Ωt,

(
Pt
0

)s,ω(
Ã
)
=Et

[
1(Πt

s)
−1(Ã)

∣∣F t
s

]
(ω)=Et

[
1(Πt

s)
−1(Ã)

]
=Pt

0

(
(Πt

s)
−1(Ã)

)
=Ps

0(Ã).

Since C s
T is a countable set by Lemma A.2, we can find a N ∈ N

t
such that for any ω ∈ N c,

(
Pt
0

)s,ω(
Ã
)
= Ps

0(Ã)

holds for each Ã ∈ C s
T . To wit, C s

T ⊂ Λ :=
{
Ã ∈ Fs

T :
(
Pt
0

)s,ω(
Ã
)
= Ps

0(Ã) for any ω ∈ N c
}
. It is easy to see

that Λ is a Dynkin system. As C s
T is closed under intersection, Lemma A.2 and Dynkin System Theorem show that

Fs
T = σ

(
C s
T

)
⊂ Λ. Namely, it holds for any ω ∈ N c that

(
Pt
0

)s,ω(
Ã
)
= Ps

0(Ã), ∀ Ã ∈ Fs
T . �

Proof of Proposition 2.1: 1) Let ξ be an M−valued, F t
r−measurable random variable for some r ∈ [s, T ]. For

any M ∈ B(M), since ξ−1(M) ∈ F t
r, Lemma 2.2 shows that

(
ξs,ω

)−1
(M) =

{
ω̃ ∈ Ωs : ξ(ω ⊗s ω̃) ∈ M

}
=

{
ω̃ ∈ Ωs : ω ⊗s ω̃ ∈ ξ−1(M)

}
=

(
ξ−1(M)

)s,ω ∈ Fs
r . (7.3)

Thus ξs,ω is Fs
r−measurable.

2) Let {Xr}r∈[t,T ] be an M−valued, Ft−adapted process. For any r ∈ [s, T ] and M ∈ B(M), similar to (7.3), one

can deduce that
(
Xs,ω

r

)−1
(M) =

(
X−1

r (M)
)s,ω ∈ Fs

r , which shows that
{
Xs,ω

r

}
r∈[s,T ]

is Fs−adapted.

Next, let {Xr}r∈[t,T ] be an M−valued, Ft−progressively measurable process. Given T0 ∈ [s, T ] and M∈B(M),

since D0 :=
{
(r, ω′)∈ [t, T0]×Ωt : Xr(ω

′)∈M
}
∈B

(
[t, T0]

)
⊗F t

T0
, we can deduce from Lemma 2.3 that

{
(r, ω̃)∈ [s, T0]×Ωs : Xs,ω

r (ω̃)∈M
}
=
{
(r, ω̃)∈ [s, T0]×Ωs : (r, ω⊗sω̃)∈D0

}
=Ds,ω

0 ∈B
(
[s, T0]

)
⊗Fs

T0
,

which shows the Fs−progressive measurability of
{
Xs,ω

r

}
r∈[s,T ]

.

3) Let D ∈ Pt. Since 1D=
{
1D(r, ω

′)
}
(r,ω′)∈[t,T ]×Ωt is an Ft−progressively measurable process, part (2) shows that

1Ds,ω

(
r, ω̃

)
= 1D

(
r, ω ⊗s ω̃

)
=

(
1D

)s,ω(
r, ω̃

)
, ∀ (r, ω̃) ∈ [s, T ]× Ωs

is an Fs−progressively measurable process. Thus, Ds,ω ∈ Ps. �

Proof of Proposition 2.2: 1) Given ω ∈ Ωt, we see from Proposition 2.1 (1) that ξs,ω is Fs
T−measurable. Also,

we can deduce from (2.5), (2.4) and (2.3) that for P−a.s. ω ∈ Ωt

EPs,ω

[
ξs,ω

]
=

∫

Ωs

ξs,ω(ω̃)dPs,ω(ω̃) =

∫

Ωs

ξ
(
ω ⊗s ω̃

)
dPω

s

(
ω ⊗s ω̃

)
=

∫

ω⊗sΩs

ξ(ω′)dPω
s (ω

′)

=

∫

Ωt

ξ(ω′)dPω
s (ω

′) = EPω
s

[
ξ
]
= EP

[
ξ
∣∣F t

s

]
(ω) < ∞,

which leads to (2.6).

2) Let ω ∈ Ωt. Proposition 2.1 (2) shows that
{
Xs,ω

r

}
r∈[s,T ]

is Fs−adapted. Clearly, the shifted process Xs,ω also

inherits the right continuity of process X . If EP[X∗] < ∞, since

(X∗)
s,ω(ω̃) = sup

r∈[t,T ]

|Xr|(ω ⊗s ω̃) ≥ sup
r∈[s,T ]

|Xr|(ω ⊗s ω̃) = sup
r∈[s,T ]

|Xs,ω
r |(ω̃) = (Xs,ω)∗(ω̃), ∀ ω̃ ∈ Ωs,

(2.6) implies that for P−a.s. ω∈Ωt, EPs,ω

[
(Xs,ω)∗

]
≤EPs,ω

[
(X∗)

s,ω
]
=EP

[
X∗|F t

s

]
(ω)<∞. �
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Proof of Lemma 2.5: 1) Let N ∈N P. There exists an A∈F t
T with P(A)= 0 such that N ⊂A. For any ω ∈Ωt,

Lemma 2.2 shows that N s,ω ⊂As,ω ∈Fs
T and one can deduce that (1A)

s,ω(ω̃) = 1{ω⊗sω̃∈A} = 1{ω̃∈As,ω} = 1As,ω(ω̃),

∀ ω̃∈Ωs. Then (2.6) implies that for P−a.s. ω∈Ωt

Ps,ω
(
As,ω

)
=EPs,ω

[
1As,ω

]
=EPs,ω

[
(1A)

s,ω
]
=EP

[
1A

∣∣F t
s

]
(ω)=0.

Thus, N s,ω∈N Ps,ω

. In particular, if N ∈N
t
, one can deduce from Lemma 2.4 that for Pt

0−a.s. ω∈Ωt, N s,ω∈N
s
.

2) Let D ∈ B
(
[t, T ]

)
⊗F t

T with (dr × dPt
0)
(
D ∩ ([s, T ]× Ωt)

)
= 0. We set Dr := {ω ∈ Ωt : (r, ω) ∈ D}, ∀ r ∈ [t, T ].

Fubini Theorem shows that

0=(dr×dPt
0)
(
D ∩ ([s, T ]×Ωt)

)
=

∫ T

s

(∫

Ωt

1Dr(ω) dP
t
0(ω)

)
dr=

∫

Ωt

(∫ T

s

1Dr(ω) dr

)
dPt

0(ω)=Et

[ ∫ T

s

1Drdr

]
.

Thus
∫ T

s 1Drdr ∈ L1(F t
T ,P

t
0) is equal to 0, Pt

0−a.s., which together with (2.6) and Lemma 2.4 implies that

Es

[(∫ T

s

1Drdr
)s,ω

]
= Et

[ ∫ T

s

1Drdr
∣∣∣F t

s

]
(ω) = 0 (7.4)

holds for any ω ∈ Ωt except on a N ∈ N
t
.

Given ω ∈ N c, applying Lemma 2.3 with T0 = T shows that Ds,ω ∈ B
(
[s, T ]

)
⊗Fs

T . Since
{
ω̃ ∈ Ωs : (r, ω̃) ∈ Ds,ω

}
=

{
ω̃ ∈ Ωs :

(
r, ω ⊗s ω̃

)
∈ D

}
=

{
ω̃ ∈ Ωs : ω ⊗s ω̃ ∈ Dr

}
, ∀ r ∈ [s, T ],

we can deduce from Fubini Theorem and (7.4) that

(
dr×dPs

0

)(
Ds,ω

)
=

∫ T

s

(∫

Ωs

1Ds,ω(r, ω̃)dPs
0(ω̃)

)
dr =

∫

Ωs

( ∫ T

s

1Dr

(
ω ⊗s ω̃

)
dr
)
dPs

0(ω̃)

=

∫

Ωs

( ∫ T

s

1Drdr
)s,ω

(ω̃) dPs
0(ω̃) = Es

[(∫ T

s

1Drdr
)s,ω

]
= 0.

3) Let τ ∈ T t

s and r ∈ [s, T ]. As Ar := {τ ≤ r} ∈ F t

r, there exists an Ãr ∈ F t
r such that Nr := Ar ∆ Ãr ∈ N

t
(see

e.g. Problem 2.7.3 of [19]). By part (1), it holds for all ω ∈ Ωt except on a Pt
0−null set N̂ (r) that N s,ω

r ∈ N
s
. Given

ω ∈
(
N̂ (r)

)c
, since As,ω

r ∆ Ãs,ω
r =

(
Ar ∆ Ãr

)s,ω
= N s,ω

r ∈ N
s
and since Ãs,ω

r ∈ Fs
r by Lemma 2.2, we can deduce

that As,ω
r ∈ Fs

r and it follows that

{τs,ω≤r}={ω̃∈Ωs : τs,ω(ω̃)≤r}={ω̃∈Ωs : τ(ω⊗s ω̃)≤r}={ω̃∈Ωs : ω⊗sω̃∈Ar}=As,ω
r ∈Fs

r. (7.5)

Set N̂ := ∪
r∈(s,T )∩Q

N̂ (r) and let ω ∈ N̂ c. For any r∈ [s, T ), there exists a sequence {rn}n∈N in (s, T ) ∩ Q such that

lim
n→∞

↓ rn = r. Then (7.5) and the right-continuity of Brownian filtration F
s
(under Ps

0) imply that {τs,ω ≤ r} =

∩
n∈N

{τs,ω ≤ rn} ∈ Fs

r+ = Fs

r. Hence τs,ω ∈ T s
. �

Proof of Proposition 2.3: Let ξ ∈ L1
(
FP

T ,P
)
. One can approximate ξ+ from below by a sequence of positive

simple FP
T−measurable random variables: ξ+= lim

n→∞
↑ ξn, where ξn :=

4n−1∑
i=1

i
2n 1An

i
and An

i :=
{
ξ+∈

[
i
2n ,

i+1
2n

)}
∈FP

T .

Let n∈N. For i = 1, · · ·, 4n − 1, by e.g. Problem 2.7.3 of [19], there exists an Ãn
i ∈F t

T such that An
i ∆ Ãn

i ∈N P.

Setting An
i := Ãn

i

∖
∪
j<i

Ãn
j ∈F t

T , one can deduce that

An
i \An

i = An
i ∩

[(
Ãn

i

)c ∪
(

∪
j<i

Ãn
j

)]
=

(
An

i \Ãn
i

)
∪
(

∪
j<i

(
Ãn

j ∩ An
i

))

⊂
(
An

i ∆Ãn
i

)
∪
(

∪
j<i

(
Ãn

j ∩ (An
j )

c
))

⊂ ∪
j≤i

(
An

j ∆Ãn
j

)
∈ N

P. (7.6)

Define ηn :=
4n−1∑
i=1

i
2n 1An

i
, which is an F t

T−measurable bounded random variable. By Proposition 2.2 (1), it holds for

all ω∈Ωt except on a Nn∈N P that

ηs,ωn ∈ L1
(
Fs

T ,P
s,ω

)
and EPs,ω

[
ηs,ωn

]
= EP

[
ηn

∣∣F t
s

]
(ω). (7.7)
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Clearly, ηn coincides with ξn overQn :=
4n−1∪
i=1

(
An

i ∩An
i

)
∪(An

0 ∩An
0 ), where A

n
0 :=

(4n−1∪
i=1

An
i

)c

and An
0 :=

(4n−1∪
i=1

An
i

)c

.

Since
{
An

i

}4n−1

i=0
is a disjoint union of Ωt and since An

0\An
0 =An

0 ∩
(

4n−1∪
i=1

An
i

)
=

4n−1∪
i=1

(
An

i ∩An
0

)
⊂ 4n−1∪

i=1

(
Ãn

i ∩(An
i )

c
)
⊂

4n−1∪
i=1

(
An

i ∆Ãn
i

)
∈N P, we see from (7.6) that Qc

n=
4n−1∪
i=1

(
An

i \An
i

)
∪ (An

0 \An
0 )∈N P.

Set N0 := ∪
n∈N

Qc
n∈N P. As

ξ+= lim
n→∞

↑ ηn over ∩
n∈N

Qn = Nc
0, (7.8)

applying the conditional version of monotone convergence theorem yields that

lim
n→∞

↑ EP

[
ηn

∣∣F t
s

]
(ω) = EP

[
ξ+

∣∣F t
s

]
(ω) ∈ R+ (7.9)

holds for all ω ∈ Ωt except on a P−null set N1. By Lemma 2.5 (1), there exists another P−null set N2 such that for

any ω∈Nc
2, N

s,ω
0 ∈N Ps,ω

.

Now, let N := N1∪N2∪
(

∪
n∈N

Nn

)
∈ N P. Given ω ∈ Nc, Ns,ω

0 is a Ps,ω−null set. For any ω̃ ∈
(
N

s,ω
0

)c
=(Nc

0)
s,ω,

(7.8) shows that

(ξ+)s,ω(ω̃)=ξ+(ω ⊗s ω̃)= lim
n→∞

↑ ηn(ω ⊗s ω̃)= lim
n→∞

↑ ηs,ωn (ω̃). (7.10)

So over (Ns,ω
0

)c
, (ξ+)s,ω coincides with lim

n→∞
ηs,ωn , which is Fs

T−measurable by (7.7). It follows that (ξ+)s,ω is

FPs,ω

T −measurable.

Moreover, applying the monotone convergence theorem to (7.10), we see from (7.7) and (7.9) that

EPs,ω

[
(ξ+)s,ω

]
= lim

n→∞
↑ EPs,ω

[
ηs,ωn

]
= lim

n→∞
↑ EP

[
ηn

∣∣F t
s

]
(ω) = EP

[
ξ+

∣∣F t
s

]
(ω) ∈ R+.

The similar result also holds for ξ−, then the conclusion follows. �

7.2 Proofs of the results in Section 3

Proof of Lemma 3.1: Let t ∈ [0, T ] and P be a probability on
(
Ωt,B(Ωt)

)
. Suppose that Y t,ω ∈ D(Ft,P) for

some ω ∈Ω and fix ω′ ∈ Ω. The F−adaptness of Y , Proposition 2.1 (2) and Remark 3.1 (1) show that Y t,ω′

is an

Ft−adapted process with all RCLL paths. Given ω̃ ∈ Ωt, (3.1) implies that for any s∈ [t, T ]

∣∣Y t,ω′

s (ω̃)−Y t,ω
s (ω̃)

∣∣ =
∣∣Ys(ω

′ ⊗t ω̃)−Ys(ω ⊗t ω̃)
∣∣≤ρ0

(
‖ω′ ⊗t ω̃−ω ⊗t ω̃‖0,s

)
=ρ0

(
‖ω′−ω‖0,t

)
. (7.11)

It follows that EP

[
Y t,ω′

∗

]
= EP

[
sup

s∈[t,T ]

|Y t,ω′

s |
]
≤ EP

[
sup

s∈[t,T ]

|Y t,ω
s |

]
+ρ0

(
‖ω′−ω‖0,t

)
= EP

[
Y t,ω
∗

]
+ρ0

(
‖ω′−ω‖0,t

)
. So

Y t,ω′ ∈D
(
Ft,P

)
. �

Proof of Remark 3.2 (1): Given t ∈ [0, T ], Proposition 2.2 (2) and Lemma 2.4 imply that for P0−a.s. ω ∈ Ω,

Y t,ω ∈ D
(
Ft, (P0)

t,ω
)
= D

(
Ft,Pt

0

)
. Then by Lemma 3.1, Y t,0 ∈ D

(
Ft,Pt

0

)
, which together with the right-continuity

of F
t
show that Pt

0 ∈ PY
t . �

Proof of Remark 3.3: 2) Let P̃∈PY
s . Given ω̃1, ω̃2∈Ωt and ζ∈T s, similar to (7.11), we can deduce that

∣∣Y s,ω⊗tω̃1

ζ (ω̂)− Y s,ω⊗tω̃2

ζ (ω̂)
∣∣ =

∣∣Y
(
ζ(ω̂), (ω ⊗t ω̃1)⊗s ω̂

)
− Y

(
ζ(ω̂), (ω ⊗t ω̃2)⊗s ω̂

)∣∣
≤ ρ0

(
‖(ω⊗tω̃1)⊗s ω̂−(ω⊗tω̃2)⊗s ω̂‖0,ζ(ω̂)

)
=ρ0

(
‖ω̃1−ω̃2‖t,s

)
, ∀ ω̂ ∈ Ωs.

It follows that

E
P̃

[
Y s,ω⊗tω̃1

ζ

]
≤ E

P̃

[
Y s,ω⊗tω̃2

ζ

]
+ ρ0

(
‖ω̃1−ω̃2‖t,s

)
. (7.12)
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Taking supremum over ζ ∈ T s yields that sup
ζ∈T s

E
P̃

[
Y s,ω⊗tω̃1

ζ

]
≤ sup

ζ∈T s

E
P̃

[
Y s,ω⊗tω̃2

ζ

]
+ρ0

(
‖ω̃1− ω̃2‖t,T

)
. Exchanging

the roles of ω̃1 and ω̃2 shows that the mapping ω̃ → sup
ζ∈T s

E
P̃

[
Y s,ω⊗tω̃
ζ

]
is continuous under norm ‖ ‖t,T and thus

F t
T−measurable.

Next, let us show that both sides of (3.4) are finite: Let j = 1, · · ·, λ and A ∈ F t
s. For any τ ∈ T t

s , (3.2) shows

that
∣∣E

P̂

[
1A∩AjY

t,ω
τ

]∣∣ ≤ E
P̂

[∣∣Y t,ω
τ

∣∣] ≤ E
P̂

[
Y t,ω
∗

]
< ∞, which leads to that

−∞ < −E
P̂

[
Y t,ω
∗

]
≤ sup

τ∈T t
s

E
P̂

[
1A∩AjY

t,ω
τ

]
≤ E

P̂

[
Y t,ω
∗

]
< ∞.

On the other hand, given ω̃ ∈ A ∩ Aj and ζ ∈ T s, applying (7.12) with (ω̃1, ω̃2) = (ω̃, ω̃j) and (ω̃1, ω̃2) = (ω̃j , ω̃)

respectively yields that

∣∣∣EPj

[
Y s,ω⊗tω̃
ζ

]∣∣∣≤
∣∣∣EPj

[
Y

s,ω⊗tω̃j

ζ

]∣∣∣+
∣∣∣EPj

[
Y s,ω⊗tω̃
ζ −Y

s,ω⊗tω̃j

ζ

]∣∣∣≤EPj

[
Y

s,ω⊗tω̃j
∗

]
+ρ0

(
‖ω̃−ω̃j‖t,s

)
≤EPj

[
Y

s,ω⊗tω̃j
∗

]
+ρ0(δ).

It then follows from (3.2) that

EP

[
1{ω̃∈A∩Aj}

(
sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]
≤

(
EPj

[
Y

s,ω⊗tω̃j
∗

]
+ ρ0(δ) + ρ̂0(δ)

)
P(A ∩ Aj) < ∞

as well as that

EP

[
1{ω̃∈A∩Aj}

(
sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]
≥

(
− EPj

[
Y

s,ω⊗tω̃j
∗

]
− ρ0(δ) + ρ̂0(δ)

)
P(A ∩ Aj) > −∞.

3) Given A ∈ F t
T , for any j = 1, · · ·, λ and ω̃ ∈ Aj , since Aj ∈ F t

s, Lemma 2.1 shows that (Aj)
s,ω̃ = Ωs (or

(1Aj )
s,ω̃ ≡ 1), which implies that (A ∩ A0)

s,ω̃ = ∅. So it is easy to calculate that P̂(A ∩ A0) = P(A ∩ A0).

Next, let j = 1, · · ·, λ and A ∈ F t
s. We see from Lemma 2.1 again that

if ω̃ ∈ A ∩ Aj (resp. /∈ A ∩ Aj), then (A ∩ Aj)
s,ω̃ = Ωs (resp. = ∅). (7.13)

It follows that

P̂(A ∩Aj) =

λ∑

j′=1

EP

[
1{ω̃∈Aj′}

Pj′
(
(A ∩Aj)

s,ω̃
)]

=

λ∑

j′=1

EP

[
1{ω̃∈A∩Aj}1{ω̃∈Aj′}

Pj′
(
Ωs

)]
= P(A ∩ Aj).

Given τ ∈ T t
s , since τs,ω̃ ∈ T s by Corollary 2.1, we can deduce from (7.13) again that

E
P̂

[
1A∩AjY

t,ω
τ

]
=

λ∑

j′=1

EP

[
1{ω̃∈Aj′}

EPj′

[(
1A∩AjY

t,ω
τ

)s,ω̃]
]
= EP

[
1{ω̃∈A∩Aj}EPj

[
(Y t,ω

τ )s,ω̃
]]

= EP

[
1{ω̃∈A∩Aj}EPj

[
Y s,ω⊗tω̃
τs,ω̃

]]
≤ EP

[
1{ω̃∈A∩Aj} sup

ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]]
,

where we used the fact that

(Y t,ω
τ )s,ω̃(ω̂) = Y t,ω

τ (ω̃ ⊗s ω̂) = Y
(
τ(ω̃ ⊗s ω̂), ω ⊗t (ω̃ ⊗s ω̂)

)
= Y

(
τs,ω̃(ω̂), (ω ⊗t ω̃)⊗s ω̂

)

= Y s,ω⊗tω̃
(
τs,ω̃(ω̂), ω̂

)
= Y s,ω⊗tω̃

τs,ω̃ (ω̂), ∀ ω̂ ∈ Ωs. �

7.3 Proofs of the results in Section 4

Proof of Remark 4.1: Let t ∈ [0, T ] and ω1, ω2 ∈ Ω. For any P ∈ Pt, τ ∈ T t and ω̃ ∈ Ωt, (7.11) shows that∣∣Y t,ω1
s (ω̃)−Y t,ω2

s (ω̃)
∣∣≤ρ0

(
‖ω1−ω2‖0,t

)
, ∀ s∈ [t, T ]. In particular,

∣∣Y t,ω1
(
τ(ω̃), ω̃

)
−Y t,ω2

(
τ(ω̃), ω̃

)∣∣≤ρ0
(
‖ω1−ω2‖0,t

)
.

It then follows that

EP

[
Y t,ω1
τ

]
≤ EP

[
Y t,ω2
τ

]
+ ρ0

(
‖ω1 − ω2‖0,t

)
. (7.14)



Robust Optimal Stopping Problem 16

Taking supremum over τ ∈ T t and then taking infimum over P∈Pt yield that Zt(ω1) ≤ Zt(ω2) + ρ0
(
‖ω1 − ω2‖0,t

)
.

Exchanging the role of ω1 and ω2, we obtain (4.3) with ρ1 = ρ0. �

Proof of Lemma 4.1: Let 0≤ t≤ s≤T , ω ∈Ω and P∈P(t, ω). If t= s, as Zt is Ft−measurable by Remark 4.2,

(2.2) shows that EP

[∣∣Zt,ω

t

∣∣
]
=EP

[
|Zt(ω)|

]
= |Zt(ω)|<∞. So let us assume t<s. For any ω̃∈Ωt, one can deduce that

Y s,ω⊗tω̃
∗ (ω̂) = sup

r∈[s,T ]

∣∣Y s,ω⊗tω̃
r (ω̂)

∣∣ = sup
r∈[s,T ]

∣∣Y
(
r, (ω ⊗t ω̃)⊗s ω̂

)∣∣ ≤ sup
r∈[t,T ]

∣∣Y
(
r, ω ⊗t (ω̃ ⊗s ω̂)

)∣∣

= sup
r∈[t,T ]

∣∣Y t,ω
r (ω̃ ⊗s ω̂)

∣∣ = Y t,ω
∗ (ω̃ ⊗s ω̂) =

(
Y t,ω
∗

)s,ω̃
(ω̂), ∀ ω̂ ∈ Ωs. (7.15)

By (P1), there exist an extension (Ωt,F ′,P′) of (Ωt,F t
T ,P) and Ω′ ∈ F ′ with P′(Ω′) = 1 such that for any ω̃ ∈ Ω′,

Ps,ω̃ ∈ P(s, ω ⊗t ω̃). Since Y t,ω ∈ D(Ft,P) by (3.2), we see from (2.6) that for all ω̃ ∈ Ωt except on some N ∈ N P,

EPs,ω̃

[(
Y t,ω
∗

)s,ω̃]
= EP

[
Y t,ω
∗

∣∣F t
s

]
(ω̃). Let A be the F t

T−measurable set containing N and with P(A) = 0. For any

ω̃ ∈ Ω′ ∩ Ac ∈ F ′, (4.2) and (7.15) imply that

Ys(ω ⊗t ω̃) ≤ Zs(ω ⊗t ω̃) ≤ sup
τ∈T s

EPs,ω̃

[
Y s,ω⊗tω̃
τ

]
≤ EPs,ω̃

[
Y s,ω⊗tω̃
∗

]
≤ EPs,ω̃

[(
Y t,ω
∗

)s,ω̃]
= EP

[
Y t,ω
∗

∣∣F t
s

]
(ω̃),

so Ω′ ∩ Ac ⊂ Ã :=
{
Y t,ω
s ≤ Z

t,ω

s ≤ EP

[
Y t,ω
∗

∣∣F t
s

]}
. Remark 4.2 and Proposition 2.1 (2) show that Ã ∈ F t

s, it then

follows that P(Ã) = P′(Ã) ≥ P′(Ω′ ∩ Ac) = 1. To wit,

Y t,ω
s ≤ Z

t,ω

s ≤ EP

[
Y t,ω
∗

∣∣F t
s

]
, P−a.s., (7.16)

which leads to that EP

[∣∣Zt,ω

s

∣∣
]
≤ EP

[∣∣Y t,ω
s

∣∣+ EP

[
Y t,ω
∗

∣∣F t
s

]]
= EP

[∣∣Y t,ω
s

∣∣
]
+ EP

[
Y t,ω
∗

]
≤ 2EP

[
Y t,ω
∗

]
< ∞. �

Proof of Proposition 4.1: Fix 0≤ t≤ s≤T and ω ∈Ω. If t= s, Remark 4.2 and (2.2) imply that Z
t,ω

t = Zt(ω).

Then (4.5) clearly holds. So we just assume t<s and define

Yr := Y t,ω
r and Zr := Z

t,ω

r , ∀ r ∈ [t, T ]. (7.17)

1) To show

Zt(ω) ≤ inf
P∈P(t,ω)

sup
τ∈T t

EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
, (7.18)

we shall paste the local approximating minimizers Pω̃ of Z
t,ω

s (ω̃) according to (P2 ) and then make some estimations.

Fix ε>0 and let δ∈Q+ such that ρ0(δ) ∨ ρ̂0(δ) ∨ ρ1(δ)<ε/4. Given ω̃∈Ωt, we can find a Pω̃∈P(s, ω ⊗t ω̃) such

that

Zs(ω ⊗t ω̃) ≥ sup
τ∈T s

EPω̃

[
Y s,ω⊗tω̃
τ

]
− ε/4. (7.19)

Similarly to (A.5), Os
δ(ω̃) is an open set of Ωt. For any ω̃′ ∈ Os

δ(ω̃), an analogy to (7.14) shows that

EPω̃

[
Y s,ω⊗tω̃

′

τ

]
≤EPω̃

[
Y s,ω⊗tω̃
τ

]
+ρ0

(
‖ω ⊗t ω̃

′−ω ⊗t ω̃‖0,s
)
=EPω̃

[
Y s,ω⊗tω̃
τ

]
+ρ0

(
‖ω̃′−ω̃‖t,s

)
, ∀ τ ∈ T s.

Taking supremum over τ ∈ T s, we can deduce from (4.3) and (7.19) that

sup
τ∈T s

EPω̃

[
Y s,ω⊗tω̃

′

τ

]
≤ sup

τ∈T s

EPω̃

[
Y s,ω⊗tω̃
τ

]
+ρ0

(
‖ω̃′−ω̃‖t,s

)
≤Zs

(
ω ⊗t ω̃

)
+
1

2
ε

≤Zs(ω ⊗t ω̃
′)+ρ1

(
‖ω̃′−ω̃‖t,s

)
+
1

2
ε≤Zs(ω̃

′)+
3

4
ε, ∀ ω̃′ ∈ Os

δ(ω̃). (7.20)

Next, fix P∈ P(t, ω) and λ ∈ N. For j = 1, · · ·, λ, we set Aj :=
(
Os

δ(ω̂
t
j)
∖(

∪
j′<j

Os
δ(ω̂

t
j′)

))
∈F t

s by (2.1) and set

Pj := Pω̂t
j
(where ω̂t

j is defined right after (2.1)). Let P̂λ be the probability of P(t, ω) in (P2) for
{
(Aj , δj , ω̃j ,Pj)

}λ

j=1
=

{
(Aj , δ, ω̂

t
j,Pj)

}λ

j=1
and A0 :=

( λ∪
j=1

Aj

)c

∈F t
s. So

E
P̂λ
[ξ]=EP[ξ], ∀ ξ∈L1(F t

s, P̂λ)∩L1
(
F t

s,P
)

and E
P̂λ
[1A0ξ]=EP[1A0ξ], ∀ ξ∈L1(F t

T , P̂λ)∩L1
(
F t

T ,P
)
. (7.21)



7.3 Proofs of the results in Section 4 17

Given τ ∈ T t, one can deduce from (3.2), (7.21), (3.4), (7.20) and Lemma 4.1 that

E
P̂λ

[
Yτ

]
= E

P̂λ

[
1{τ<s}Yτ∧s + 1{τ≥s}∩A0

Yτ∨s

]
+

λ∑

j=1

E
P̂λ

[
1{τ≥s}∩Aj

Y t,ω
τ∨s

]

≤ EP

[
1{τ<s}Yτ∧s + 1{τ≥s}∩A0

Yτ∨s

]
+

λ∑

j=1

EP

[
1{τ(ω̃)≥s}∩{ω̃∈Aj}

(
sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
+ ρ̂0(δ)

)]

≤ EP

[
1{τ<s}Yτ + 1{τ≥s}∩A0

Yτ + 1{τ≥s}∩Ac
0
Zs

]
+ ε

= EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
+ EP

[
1{τ≥s}∩A0

(
Yτ −Zs

)]
+ ε

≤ EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
+ EP

[
1A0

(
Y∗ + |Zs|

)]
+ ε.

Taking supremum over τ ∈T t yields that

Zt(ω) ≤ sup
τ∈T t

E
P̂λ

[
Yτ

]
≤ sup

τ∈T t

EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
+ EP

[
1( λ

∪
j=1

Aj

)c

(
Y∗ + |Zs|

)]
+ ε. (7.22)

Since ∪
j∈N

Aj = ∪
j∈N

Os
δ(ω̂

t
j) = Ωt and since EP

[
Y∗+

∣∣Zs

∣∣]<∞ by (3.2) and Lemma 4.1, letting λ → ∞ in (7.22), we

can deduce from the dominated convergence theorem that Zt(ω) ≤ sup
τ∈T t

EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
+ ε. Eventually,

taking infimum over P ∈ P(t, ω) on the right-hand-side and then letting ε → 0, we obtain (7.18).

2) As to the reverse of (7.18), it suffices to show for a given P ∈ P(t, ω) that

sup
τ∈T t

EP

[
1{τ<s}Yτ+1{τ≥s}Zs

]
≤ sup

τ∈T t

EP

[
Yτ

]
. (7.23)

Let us start with the main idea of proving (7.23): Contrary to (7.19), we need upper bounds for Z
t,ω

s this time. First

note that Z
t,ω

s (ω̃)≤ sup
ζ∈T s

EPs,ω̃

[
Y s,ω⊗tω̃
ζ

]
, ∀ ω̃ ∈ Ωt. Given ζ ∈ T s, (2.6) implies that

EPs,ω̃

[
Y s,ω⊗tω̃
ζ

]
= EP

[
Yζ(Πt

s)

∣∣F t
s

]
(ω̃)≤EP

[
Yτ̂

∣∣F t
s

]
(ω̃) (7.24)

holds for any ω̃ ∈ Ωt except on a P−null set Nζ , where τ̂ is an optimal stopping time. Since T s is an uncountable

set, we can not take supremum over ζ ∈ T s for P−a.s. ω̃ ∈ Ωt in (7.24) to obtain

Zs ≤ EP

[
Yτ̂

∣∣FP
s

]
, P−a.s. (7.25)

To overcome this difficulty, we shall consider a “dense” countable subset Γ of T s in sense of (7.26).

2a) Construction of Γ: For any n ∈ N, we set Dn :=
(
(s, T ) ∩ {i2−n}i∈N

)
∪ {T } and D := ∪

n∈N
Dn. Given q∈D , we

simply denote the countable subset Θs
q of Fs

q by {Oq
j}j∈N and define Υq

k :=
{
q1 ∪

j∈I
Oq

j
+T1 ∩

j∈I
(Oq

j )
c : I ⊂ {1, · · · , k}

}
⊂

T s, ∀ k ∈ N. For any n, k ∈ N, we set Γn,k :=
{

∧
q∈Dn

τq : τq ∈ Υq
k

}
⊂ T s. Then Γ := ∪

n,k∈N
Γn,k is clearly a countable

subset of T s.

Since the filtration FP is right-continuous, and since the process Y is right-continuous and left upper semi-

continuous by Remark 3.1 (2), the classic optimal stopping theory shows that esssup
τ∈T P

s

EP

[
Yτ

∣∣FP
s

]
admits an optimal

stopping time τ̂ ∈T P
s , which is the first time after s the process Y meets the RCLL modification of its Snell envelope{

esssup
τ∈T P

r

EP[Yτ |FP
r ]
}
r∈[t,T ]

.

Fix ε > 0. We claim that there exists a τ̂ ′ ∈ T t
s such that

EP

[∣∣Yτ̂ ′ − Yτ̂

∣∣] < ε/4. (7.26)

To see this, let n be an integer ≥ 2. Given i= 1, · · ·, n, we set sni := s+ i
n (T −s) and An

i := {sni−1 < τ̂ ≤ sni } ∈ FP
sni

with sn0 = −1. By e.g. Problem 2.7.3 of [19], there exists an (A′)ni ∈ F t
sni

such that An
i ∆(A′)ni ∈ N P. Define
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(A′)ni := (A′)ni \ ∪
i′<i

(A′)ni′ ∈F t
sni

and A′
n :=

n∪
i=1

(A′)ni =
n∪

i=1
(A′)ni ∈F t

T . Then τn :=
∑n

i=1 1An
i
sni is a T P

s −stopping time

while τ ′n :=
∑n

i=1 1(A′)ni
sni +1(A′

n)
cT defines an T t

s −stopping time. Clearly, τn coincides with τ ′n over
n∪

i=1

(
An

i ∩(A′)ni
)
,

whose complement
n∪

i=1

(
An

i \(A′)ni
)
belongs to N P by a similar argument to (7.6). To wit, τn = τ ′n, P−a.s. Since

lim
n→∞

τn = τ̂ and since EP

[
Y∗

]
< ∞ by (3.2), we can deduce from the right-continuity of the shifted process Y and

the dominated convergence theorem that

lim
n→∞

EP

[∣∣Yτ ′
n
− Yτ̂

∣∣] = lim
n→∞

EP

[∣∣Yτn − Yτ̂

∣∣] = 0. (7.27)

So there exists an N ∈ N such that EP

[∣∣Yτ ′
N
− Yτ̂

∣∣] < ε/4, i.e., (7.26) holds for τ̂ ′ = τ ′N .

2b) In the next two steps, we will gradually demonstrate (7.25).

Since EP

[
Y∗

]
< ∞ and since ζ(Πt

s) ∈ T t
s ⊂ T P

s for any ζ ∈ T s by Lemma A.1, applying Lemma A.4 (1) with

X = Bt show that except on an N ∈ N P

EP

[
Yζ(Πt

s)

∣∣F t
s

]
=EP

[
Yζ(Πt

s)

∣∣FP
s

]
≤esssup

τ∈T P
s

EP

[
Yτ

∣∣FP
s

]
=EP

[
Yτ̂

∣∣FP
s

]
=EP

[
Yτ̂

∣∣F t
s

]
, ∀ ζ ∈ Γ. (7.28)

Also in light of (2.6), there exists another Ñ ∈ N P such that for any ω̃ ∈ Ñ c,

EP

[
Yζ(Πt

s)

∣∣F t
s

]
(ω̃) = EPs,ω̃

[(
Yζ(Πt

s)

)s,ω̃]
= EPs,ω̃

[
Y s,ω⊗tω̃
ζ

]
, ∀ ζ ∈ Γ, (7.29)

where we used the fact that for any ω̂ ∈ Ωs

(
Yζ(Πt

s)

)s,ω̃
(ω̂)=Yζ(Πt

s)
(ω̃ ⊗s ω̂)=Y

(
ζ
(
Πt

s(ω̃ ⊗s ω̂)
)
, ω ⊗t (ω̃ ⊗s ω̂)

)
=Y

(
ζ(ω̂), (ω ⊗t ω̃)⊗s ω̂

)
=Y s,ω⊗tω̃

ζ (ω̂).

By (P1), there exist an extension (Ωt,F ′,P′) of (Ωt,F t
T ,P) and Ω′ ∈ F ′ with P′(Ω′) = 1 such that for any ω̃ ∈ Ω′,

Ps,ω̃ ∈ P(s, ω ⊗t ω̃). Let Â be the F t
T−measurable set containing N ∪ Ñ and with P(Â) = 0.

Now, fix ω̃ ∈ Ω′ ∩ Âc ∈ F ′. There exists a ζω̃ ∈ T s such that

sup
ζ∈T s

EPs,ω̃

[
Y s,ω⊗tω̃
ζ

]
≤ EPs,ω̃

[
Y s,ω⊗tω̃
ζω̃

]
+ ε/4. (7.30)

2c) Next, we will approximate ζω̃ by a sequence {ζn}n∈N in Γ: As Ps,ω̃ ∈ P(s, ω⊗tω̃), (3.2) shows that EPs,ω̃

[
Y s,ω⊗tω̃
∗

]
<

∞. So there exists a δ = δ(ω̃) > 0 such that

EPs,ω̃

[
1AY

s,ω⊗tω̃
∗

]
< ε/4 for any A ∈ Fs

T with Ps,ω̃(A) < δ. (7.31)

Given n∈N and i∈
{
⌊2ns⌋, · · ·, ⌊2nT ⌋

}
, we set qni :=

i+1
2n ∧T ∈Dn and Ãn

i :={ i
2n ≤ζω̃<

i+1
2n }∈Fs

qni
. Lemma A.8 shows

that for some sequence
{
On,i

ℓ

}
ℓ∈N

in Θs
qni

=
{
O

qni
j

}
j∈N

Ãn
i ⊂ ∪

ℓ∈N
On,i

ℓ and Ps,ω̃(Ãn
i ) > Ps,ω̃

(
∪

ℓ∈N
On,i

ℓ

)
− δ

⌊2nT ⌋2 . (7.32)

Moreover, there exists an ℓni ∈N such that

Ps,ω̃
(
On

i

)
>Ps,ω̃

(
∪

ℓ∈N
On,i

ℓ

)
− δ

⌊2nT ⌋2 (7.33)

withOn
i :=

ℓni∪
ℓ=1

On,i
ℓ ∈ Fs

qni
. Clearly, ζni :=qni 1On

i
+T1(On

i )
c ∈Υ

qni
kn
i
for some kni ∈ N. Setting Ôn

i := On
i \

i−1∪
i′=⌊2ns⌋

On
i′ ∈ Fs

qni
,

similar to (7.6) we can deduce that

Ãn
i \Ôn

i = Ãn
i ∩

[
(On

i )
c ∪

( i−1∪
i′=⌊2ns⌋

On
i′
)]

⊂
((

∪
ℓ∈N

On,i
ℓ

)
\On

i

)
∪
( i−1∪

i′=⌊2ns⌋

(
On

i′ ∩ (Ãn
i′)

c
))

.
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It then follows from (7.32) and (7.33) that

Ps,ω̃(Ãn
i \Ôn

i ) ≤ Ps,ω̃
((

∪
ℓ∈N

On,i
ℓ

)
\On

i

)
+

i−1∑

i′=⌊2ns⌋

Ps,ω̃
((

∪
ℓ∈N

On,i′

ℓ

)∖
Ãn

i′

)
<

iδ

⌊2nT ⌋2 ≤ δ

⌊2nT ⌋ . (7.34)

Set Ôn :=
⌊2nT⌋
∪

i=⌊2ns⌋
Ôn

i =
⌊2nT⌋
∪

i=⌊2ns⌋
On

i and kn := max{kni : i = ⌊2ns⌋, · · ·, ⌊2nT ⌋}, we see that ζ̂n :=
⌊2nT⌋
∧

i=⌊2ns⌋
ζ̂ni =

⌊2nT⌋∑
i=⌊2ns⌋

qni 1Ôn
i
+1Ôc

n
T is a stopping time of Γn,kn , which equals to ζn :=

⌊2nT⌋∑

i=⌊2ns⌋

qni 1Ãn
i
∈ T s over An :=

⌊2nT⌋
∪

i=⌊2ns⌋

(
Ãn

i ∩

Ôn
i

)
∈ Fs

T . As
⌊2nT⌋
∪

i=⌊2ns⌋
Ãn

i = Ωs, (7.34) implies that

Ps,ω̃(Ac
n) = Ps,ω̃

( ⌊2nT⌋
∪

i=⌊2ns⌋

(
Ãn

i \Ôn
i

))
=

⌊2nT⌋∑

i=⌊2ns⌋

Ps,ω̃
(
Ãn

i \Ôn
i

)
< δ. (7.35)

It then follows from (7.31) that

EPs,ω̃

[∣∣Y s,ω⊗tω̃
ζn − Y s,ω⊗tω̃

ζ̂n

∣∣
]
= EPs,ω̃

[
1Ac

n

∣∣Y s,ω⊗tω̃
ζn − Y s,ω⊗tω̃

ζ̂n

∣∣
]
≤ 2EPs,ω̃

[
1Ac

n
Y s,ω⊗tω̃
∗

]
< ε/2,

which together with (7.28) and (7.29) shows that

EPs,ω̃

[
Y s,ω⊗tω̃
ζn

]
< EPs,ω̃

[
Y s,ω⊗tω̃

ζ̂n

]
+ ε/2 ≤ EP[Yτ̂ |F t

s](ω̃) + ε/2.

Since lim
n→∞

↓ ζn = ζω̃ and since EPs,ω̃

[
Y s,ω⊗tω̃
∗

]
< ∞, letting n → ∞, we can deduce from (7.30), the right-continuity

of the shifted process Y s,ω⊗tω̃ and the dominated convergence theorem that for any ω̃ ∈ Ω′ ∩ Âc

Zs(ω̃)=Zs(ω⊗t ω̃)≤ sup
ζ∈T s

EPs,ω̃

[
Y s,ω⊗tω̃
ζ

]
≤EPs,ω̃

[
Y s,ω⊗tω̃
ζω̃

]
+ε/4= lim

n→∞
EPs,ω̃

[
Y s,ω⊗tω̃
ζn

]
+ε/4≤EP

[
Yτ̂

∣∣F t
s

]
(ω̃)+

3

4
ε.

Since Zs ∈ F t
s by Remark 4.2 and Proposition 2.1 (2), an analogy to (7.16) yields that

Zs ≤ EP

[
Yτ̂

∣∣F t
s

]
+
3

4
ε, P−a.s. (7.36)

If sending ε to 0 and applying Lemma A.4 (1) with X = Bt now, we will immediately obtain (7.25).

2d) Given τ ∈ T t, we set τ := 1{τ<s}τ + 1{τ≥s}τ̂
′. For any r ∈ [t, s), as τ̂ ′ ∈ T t

s , one can deduce that {τ ≤ r} =

{τ < s} ∩ {τ ≤ r} = {τ ≤ r} ∈ F t
r. On the other hand, for any r ∈ [s, T ], {τ ≤ r} =

(
{τ < s} ∩ {τ ≤ r}

)
∪
(
{τ ≥

s} ∩ {τ̂ ′ ≤ r}
)
= {τ < s} ∪

(
{τ ≥ s} ∩ {τ̂ ′ ≤ r}

)
∈ F t

r. So τ ∈ T t and it follows from (7.36) and (7.26) that

EP

[
1{τ<s}Yτ+1{τ≥s}Zs

]
≤EP

[
1{τ<s}Yτ∧s+1{τ≥s}EP

[
Yτ̂

∣∣F t
s

]]
+
3

4
ε=EP

[
EP

[
1{τ<s}Yτ∧s+1{τ≥s}Yτ̂

∣∣F t
s

]]
+
3

4
ε

=EP

[
1{τ<s}Yτ + 1{τ≥s}Yτ̂

]
+
3

4
ε≤EP

[
1{τ<s}Yτ + 1{τ≥s}Yτ̂ ′

]
+ε=EP

[
Yτ

]
+ε≤ sup

τ∈T t

EP

[
Yτ

]
+ε.

Taking supremum over τ ∈T t on the left-hand-side then letting ε→0 yield (7.23). So we proved the proposition. �

Proof of Proposition 4.2: 1) Fix ω∈Ω. Letting 0≤ t<s≤T such that sup
t≤r<r′≤s

∣∣ω(r′)−ω(r)
∣∣≤T . we shall show

∣∣Zs(ω)−Zt(ω)
∣∣ ≤ 2ρα(δt,s), (7.37)

where α := 1 + ‖ω‖0,T and δt,s :=(s− t) ∨ sup
t≤r<r′≤s

∣∣ω(r′)−ω(r)
∣∣ ≤ T .

Given ε>0, there exists a P=P(t, ω, ε)∈P(t, ω) such that

Zt(ω) ≥ sup
τ∈T t

EP

[
Y t,ω
τ

]
− ε ≥ sup

τ∈T t

EP

[
1{τ<s}Y

t,ω
τ + 1{τ≥s}Z

t,ω

s

]
− ε ≥ EP

[
Z

t,ω

s

]
− ε, (7.38)
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where we used (7.23) in the second inequality and took τ = s in the last inequality. In light of (4.3)

∣∣Zs(ω)−Z
t,ω

s (ω̃)
∣∣=

∣∣Zs(ω)−Z(s, ω ⊗t ω̃)
∣∣≤ρ1

(
‖ω−ω ⊗t ω̃‖0,s

)
=ρ1

(
sup

r∈[t,s]

∣∣ω̃(r)+ω(t)−ω(r)
∣∣
)

≤ ρ1

(
sup

r∈[t,s]

∣∣ω̃(r)
∣∣+ sup

r∈[t,s]

∣∣ω(r) − ω(t)
∣∣
)
≤ ρ1

(
sup

r∈[t,(t+δt,s)∧T ]

∣∣Bt
r(ω̃)

∣∣+ δt,s

)
, ∀ ω̃ ∈ Ωt. (7.39)

Since ‖ω‖0,t ≤ ‖ω‖0,T < α, (7.38) and (4.4) imply that

Zs(ω)−Zt(ω)≤EP

[
Zs(ω)− Z

t,ω

s

]
+ ε ≤ EP

[
ρ1

(
δt,s + sup

r∈[t,(t+δt,s)∧T ]

∣∣Bt
r

∣∣
)]

+ ε ≤ ρα(δt,s) + ε.

Letting ε → 0 yields that

Zs(ω)−Zt(ω) ≤ ρα(δt,s). (7.40)

On the other hand, let P̂ be an arbitrary probability in P(t, ω). Applying Proposition 4.1 yields that

Zt(ω)− Zs(ω) ≤ sup
τ∈T t

E
P̂

[
1{τ<s}Y

t,ω
τ + 1{τ≥s}Z

t,ω

s

]
− Zs(ω). (7.41)

For any τ ∈ T t and ω̃ ∈ {τ < s}, (3.1) shows that

Y t,ω
τ (ω̃)− Y t,ω

s (ω̃) = Y
(
τ(ω̃), ω ⊗t ω̃

)
− Y

(
s, ω ⊗t ω̃

)
≤ ρ0

(
d∞

(
(τ(ω̃), ω ⊗t ω̃), (s, ω ⊗t ω̃)

))

≤ ρ0

(
(s− t) + sup

r∈[t,T ]

∣∣ω̃
(
r ∧ τ(ω̃)

)
− ω̃

(
r ∧ s

)∣∣
)
≤ ρ1

(
(s− t) + 2 sup

r∈[t,s]

∣∣Bt
r(ω̃)

∣∣
)
.

Plugging this into (7.41), we can deduce from (4.4), (4.2) and (7.39) that

Zt(ω)−Zs(ω) ≤ sup
τ∈T t

E
P̂

[
1{τ<s}ρ1

(
(s− t) + 2 sup

r∈[t,s]

∣∣Bt
r

∣∣
)
+ 1{τ<s}Y

t,ω
s + 1{τ≥s}Z

t,ω

s − Zs(ω)

]

≤ ρα(s−t)+E
P̂

[
Z

t,ω

s −Zs(ω)
]
≤2ρα(δt,s),

which together with (7.40) proves (7.37). As lim
tրs

↓ δt,s = lim
sցt

↓ δt,s = 0, the continuity of Z easily follows.

2) Let (t, ω) ∈ [0, T ] × Ω and P ∈ P(t, ω). Remark 4.2, Proposition 2.1 (2) and part (1) show that Z
t,ω

is an

Ft−adapted process with all continuous paths.

As EP[Y
t,ω
∗ ] < ∞ by (3.2), using (7.16) and applying Lemma A.4 (1) with X = Bt show that for any s ∈ [t, T ]

Y t,ω
s ≤ Z

t,ω

s ≤ EP[Y
t,ω
∗ |F t

s] = EP

[
Y t,ω
∗

∣∣FP
s

]
, P−a.s.

Then by the continuity of process Z and the right continuity of processes Y ,
{
EP

[
Y t,ω
∗

∣∣FP
s

]}
s∈[t,T ]

, it holds P−a.s. that

Y t,ω
s ≤Z

t,ω

s ≤EP

[
Y t,ω
∗

∣∣FP
s

]
for any s∈ [t, T ]. It follows that for any τ ∈T P,

∣∣Zt,ω

τ

∣∣≤Y t,ω
∗ +EP

[
Y t,ω
∗

∣∣FP
τ

]
, P−a.s. Hence,{

Z
t,ω

τ

}
τ∈T P

is P−uniformly integrable. �

Proof of Proposition 4.3: When t = T , (4.6) trivially holds as an equality. So let us fix (t, ω) ∈ [0, T )× Ω and

ν ∈ T t. We still define Y and Z as in (7.17). To obtain (4.6), it suffices to show for a given P ∈ P(t, ω) that

sup
τ∈T t

EP

[
1{τ<ν}Yτ+1{τ≥ν}Zν

]
≤ sup

τ∈T t

EP

[
Yτ

]
. (7.42)

Define the Snell envelope ZP of Y under P: ZP
s := esssup

τ∈T P
s

E P

[
Yτ

∣∣FP
s

]
, s ∈ [t, T ]. Since the filtration FP is

right-continuous, and since the process Y is right-continuous and left upper semi-continuous by Remark 3.1 (2), the

classic optimal stopping theory shows that ZP admits an RCLL modification
{
Z P

s

}
s∈[t,T ]

such that for any ς ∈ T P,

τ ςP := inf
{
r ∈ [ς, T ] : Z P

r = Yr

}
∈ T P

ς is an optimal stopping time for esssup
τ∈T P

ς

E P

[
Yτ

∣∣FP
ς

]
.



7.4 Proofs of the results in Section 5 21

For any s ∈ [t, T ], we know from (7.25) that Zs ≤ EP

[
Yτs

P

∣∣FP
s

]
= ZP

s = Z P
s , P−a.s. The continuity of Z (by

Proposition 4.2) and the right-continuity of Z P then imply that

P
{
Zs ≤ Z

P
s , ∀ s ∈ [t, T ]

}
= 1. (7.43)

It follows that

Zν ≤ Z
P
ν = esssup

τ∈T P
ν

E P

[
Yτ

∣∣FP
ν

]
= E P

[
Yτν

P

∣∣FP
ν

]
, P−a.s., (7.44)

where the first equality is due to a well-known result in the optimal stopping theorem, see e.g. Theorem D.7 of [20].

Let τ ∈ T t and Set τ := 1{τ<ν}τ+1{τ≥ν}τ
ν
P . Given r ∈ [t, T ], since {τ < ν} ∈ F t

τ∧ν and τνP ∈ T P
ν , we see that

{τ≥ν}∈F t
τ∧ν⊂FP

ν ⊂FP
τν
P

. It follows that {τ <ν}∩{τ≤r}∈F t
r⊂FP

r and {τ≥ν}∩{τνP ≤r}∈FP
r , which together show

{τ ≤ r} =
(
{τ < ν} ∩ {τ ≤ r}

)
∪
(
{τ ≥ ν} ∩ {τνP ≤ r}

)
∈ FP

r .

Thus τ ∈ T P. For any ε > 0, similar to (7.26), there exists a τ ε ∈T t such that EP

[∣∣Yτε − Yτ

∣∣] < ε. Then we can

deduce from (7.44) that

EP

[
1{τ<ν}Yτ+1{τ≥ν}Zν

]
≤ EP

[
1{τ<ν}Yτ

]
+EP

[
1{τ≥ν}E P

[
Yτν

P

∣∣FP
ν

]]
= EP

[
1{τ<ν}Yτ

]
+EP

[
E P

[
1{τ≥ν}Yτν

P

∣∣FP
ν

]]

= EP

[
1{τ<ν}Yτ+1{τ≥ν}Yτν

P

]
= EP

[
Yτ

]
≤ EP

[
Yτε

]
+ ε≤ sup

ζ∈T t

EP

[
Yζ

]
+ε.

Letting ε → 0 and then taking supremum over τ ∈ T t on the left-hand-side yield (7.42).

7.4 Proofs of the results in Section 5

Proof of Remark 5.1: Let τ ∈ T and (t, ω) ∈ [0, T ]×Ω. As Yτ and Zτ are FT−measurable by Remark 4.2,

Proposition 2.1 (1) shows that (Yτ )
t,ω and (Zτ )

t,ω are in turn F t
T−measurable. Since Yτ∧t, Zτ∧t ∈ Ft, one can

deduce from (2.2) that

∣∣(Zτ )
t,ω(ω̃)

∣∣ = 1{τ(ω⊗tω̃)<t}

∣∣Z(τ(ω ⊗t ω̃) ∧ t, ω ⊗t ω̃)
∣∣+ 1{τ(ω⊗tω̃)≥t}

∣∣Z(τ(ω ⊗t ω̃) ∨ t, ω ⊗t ω̃)
∣∣

= 1{τ(ω⊗tω̃)<t}

∣∣Zτ∧t(ω ⊗t ω̃)
∣∣+ 1{τ(ω⊗tω̃)≥t}

∣∣Zt,ω(
(τ ∨ t)t,ω(ω̃), ω̃

)∣∣

= 1{τ(ω⊗tω̃)<t}

∣∣Zτ∧t(ω)
∣∣+ 1{τ(ω⊗tω̃)≥t}

∣∣Zt,ω

(τ∨t)t,ω(ω̃)
∣∣,

and similarly
∣∣(Yτ )

t,ω(ω̃)
∣∣ ≤ 1{τ(ω⊗tω̃)<t}

∣∣Yτ∧t(ω)
∣∣+ 1{τ(ω⊗tω̃)≥t}Y

t,ω
∗ (ω̃), ∀ ω̃ ∈ Ωt.

For any P∈P(t, ω), as (τ ∨ t)t,ω ∈ T t by Corollary 2.1, we see from (3.2), (4.2) and Proposition 4.2 that

EP

[∣∣(Yτ )
t,ω

∣∣+
∣∣(Zτ )

t,ω
∣∣] ≤

∣∣Yτ∧t(ω)
∣∣+

∣∣Zτ∧t(ω)
∣∣+ EP

[
Y t,ω
∗

]
+ EP

[∣∣Zt,ω

(τ∨t)t,ω

∣∣
]
< ∞.

Thus, Yτ , Zτ ∈ Lt. �

Proof of Theorem 5.1:

1) We first show that the random time τ∗ defined in (5.1) is an F−stopping time: Given δ ≥ 0, we define τδ :=

inf
{
t ∈ [0, T ] : Zt ≤ Yt + δ

}
. Since

ZT (ω)= inf
P∈P(T,ω)

EP

[
Y T,ω
T

]
= inf

P∈P(T,ω)
EP

[
Y (T, ω)

]
=Y (T, ω), ∀ω ∈ Ω, (7.45)

it follows that ZT = YT ≤ YT + δ. So τδ ≤ T . For any s ∈ [0, T ), Remark 3.1 (1), the continuity of process Z (by

Proposition 4.2) as well as the F−adaptness of Y and Z by Remark 4.2 imply that

{τδ>s} = {ω∈Ω: Zt(ω)−Yt(ω)>δ, ∀ t∈ [0, s]}= ∪
i∈N

{ω∈Ω: Zt(ω)−Yt(ω)≥δ+1/i, ∀ t∈ [0, s]}

= ∪
i∈N

{ω∈Ω: Zt(ω)−Yt(ω)≥δ+1/i, ∀ t∈Qs}= ∪
i∈N

∩
t∈Qs

{ω∈Ω: Zt(ω)−Yt(ω)≥δ+1/i}∈Fs,
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where Qs :=
(
[0, s] ∩Q

)
∪ {s}. So τδ is an F−stopping time. In particular, we see from (4.2) that

τ∗ := inf
{
t ∈ [0, T ] : Zt = Yt

}
= inf

{
t ∈ [0, T ] : Zt ≤ Yt

}

is an F−stopping time.

2) When t = T , (5.3) clearly holds. So let us fix (t, ω) ∈ [0, T )×Ω and γ ∈ T . We still define Y and Z as in (7.17). If

t̂ :=γ(ω)≤ t, i.e., ω∈
{
γ= t̂

}
∈Ft̂⊂Ft, Lemma 2.1 implies that ω⊗tΩ

t⊂
{
γ= t̂

}
. Then applying (2.2) to Z t̂∈Ft̂⊂Ft

yields that
(
Zγ

)t,ω
(ω̃)=

(
Zγ

)
(ω ⊗t ω̃)=Z

(
γ(ω ⊗t ω̃), ω ⊗t ω̃

)
=Z

(
t̂, ω ⊗t ω̃

)
=Z

(
t̂, ω

)
. It follows that

E t

[
Zγ

]
(ω) = inf

P∈P(t,ω)
EP

[(
Zγ

)t,ω]
= inf

P∈P(t,ω)
EP

[
Z(t̂, ω)

]
= Z

(
t̂, ω

)
= Z

(
γ(ω) ∧ t, ω

)
=

(
Zγ∧t

)
(ω). (7.46)

On the other hand, if γ(ω) > t, i.e., ω ∈ {γ > t} ∈ Ft. Lemma 2.1 again shows that ω ⊗t Ω
t ⊂ {γ > t}. Applying

Corollary 2.1 with (τ, s, r) = (γ, t, t) shows that γt,ω ∈ T t, then taking τ = ν = γt,ω in (4.6) yields that

(
Zγ∧t

)
(ω) = Zt(ω) ≥ inf

P∈P(t,ω)
sup
τ∈T t

EP

[
1{τ<γt,ω}Yτ + 1{τ≥γt,ω}Zγt,ω

]
≥ inf

P∈P(t,ω)
EP

[
Zγt,ω

]
= E t

[
Zγ

]
(ω), (7.47)

which together with (7.46) shows that Z is an E−supermartingale.

Next, let us show the E−submartingality of
{
Zτ∗∧t

}
t∈[0,T ]

: If τ∗(ω) ∧ γ(ω) ≤ t, an analogy to (7.46) shows that

E t

[
Zτ∗∧γ

]
(ω) =

(
Zτ∗∧γ∧t

)
(ω). (7.48)

Suppose τ∗(ω) ∧ γ(ω) > t, i.e., ω ∈ {τ∗ ∧ γ > t} ∈ Ft. By Lemma 2.1,

ω ⊗t Ω
t ⊂ {τ∗ ∧ γ > t}. (7.49)

The demonstration of

(
Zτ∗∧γ∧t

)
(ω)≤E t

[
Zτ∗∧γ

]
(ω) (7.50)

in case of τ∗(ω)∧γ(ω)> t is relatively lengthy. We split it into several steps. The main idea is: We approximate

τ∗ by the hitting time τn := inf
{
s∈ [0, T ] : Zs ≤ Ys+1/n

}
and then approximate the corresponding shifted stopping

time ζn :=
(
γ ∧ (τn ∨ t)

)t,ω
by stopping time ζnk that takes finite values tki := t+ i

k (T−t), i=1, · · ·, k. We will paste

in accordance with (P2 ) the local approximating minimizers Pi
ω̃ of Ztki

(ω̃) over the set {ζnk = tki } backwardly to get

a probability P1 ∈ P(t, ω) that satisfies EP1

[
Yτ

∣∣FP1

ζn
k

]
≤ Zζn

k
+ ε for all stopping times τ . Taking essential supremum

over τ ’s shows that

Z
P1

ζn
k

≤ Zζn
k
+ ε, (7.51)

where Z P1 denotes the Snell envelope of Y under the single probability P1. By the martingale property of Z P1 ,

Zt(ω) ≤ Z
P1
t ≤ EP1

[
Z

P1

ζn
k ∧τP1

]
, (7.52)

where τP1 is the optimal stopping time for Z P1 . As the first time Z P1 meets Y, τP1 ≥ (τ∗)t,ω. Since τ∗ = lim
n→∞

↑ τn

and lim
k→∞

ζnk = ζn, for n, k large enough we have τP1 ≥ ζnk except for a tiny probability. Then combining (7.52) with

(7.51) and applying a series of estimations yield that Zt(ω) ≤ EP1

[
Zζn

k

]
+ε ≤ EP

[
Zζn

k

]
+ε. Finally, letting k, n → ∞,

ε → 0 and taking infimum over P ∈ P(t, ω) lead to (7.50).

2a) In the first step, we paste the local approximating minimizers Pi
ω̃ of Ztki

(ω̃) over the set {ζnk = tki } backwardly.

Fix P∈P(t, ω), ε∈(0, 1) and α, n, k, λ∈N with k ≥ 2. We let {ωα
j }j∈N be a subsequence of {ω̂t

j}j∈N in Oα(0
t), and

have seen from part (1) that τn :=inf
{
s∈ [0, T ] : Zs≤Ys+1/n

}
is an F−stopping time. Since γ(ω⊗tΩ

t) ⊂ (t, T ] and

τ∗(ω⊗tΩ
t) ⊂ (t, T ] by (7.49), Corollary 2.1 shows that both ζn :=

(
γ ∧ (τn ∨ t)

)t,ω
and ζ∗ :=(τ∗)t,ω are T t−stopping

times. We set ti = tki := t+ i
k (T−t) for i=1, · · ·, k and define ζnk := 1{ζn≤t1}t1 +

∑k
i=2 1{ti−1<ζn≤ti}ti ∈ T t.
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There exists a δ ∈ Q+ such that ρ0(δ) ∨ ρ̂0(δ) ∨ ρ1(δ) < ε/4. Given (i, j) ∈ {1, · · ·, k}× {1, · · ·, λ}, we set

Ai
j := {ζnk = ti}∩

(
Oti

δ (ω
α
j )
∖

∪
j′<j

Oti
δ (ω

α
j′)

)
∈ F t

ti by (2.1). There exists a Pi
j∈P

(
ti, ω⊗tω

α
j

)
such that Zti(ω⊗tω

α
j ) ≥

sup
τ∈T ti

EPi
j

[
Y

ti,ω⊗tω
α
j

τ

]
− ε/4. For any ω̃ ∈ Ai

j with Ai
j 6= ∅, similar to (7.20), one can deduce from (3.1) and (4.3) that

sup
τ∈T ti

EPi
j

[
Yti,ω̃
τ

]
= sup

τ∈T ti

EPi
j

[
Y ti,ω⊗tω̃
τ

]
≤ sup

τ∈T ti

EPi
j

[
Y

ti,ω⊗tω
α
j

τ

]
+ρ0

(∥∥ω̃−ωα
j

∥∥
t,ti

)
≤Zti(ω ⊗t ω

α
j )+

ε

4
+ρ0

(∥∥ω̃−ωα
j

∥∥
t,ti

)

<Zti(ω ⊗t ω̃)+ρ1
(∥∥ω̃ − ωα

j

∥∥
t,ti

)
+
1

2
ε<Zti(ω ⊗t ω̃)+

3

4
ε = Zti(ω̃)+

3

4
ε. (7.53)

Setting Pλ
k := P, we recursively pick up Pλ

i , i = k − 1, · · ·, 1 from P(t, ω) such that (P2) holds for for
(
s, P̂,P,

{
(Aj , δj , ω̃j,Pj)

}λ

j=1

)
=

(
ti,P

λ
i ,P

λ
i+1,

{
(Ai

j , δ, ω
α
j ,P

i
j)
}λ

j=1

)
and A0=Ai

0 :=
( λ∪

j=1
Ai

j

)c

∈ F t
ti . Then

sup
τ∈T t

ti

EPλ
i

[
1A∩Ai

j
Y t,ω
τ

]
≤EPλ

i+1

[
1{ω̃∈A∩Ai

j}

(
sup

ζ∈T ti

EPi
j

[
Y ti,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]
, ∀ j=1, · · ·, λ, ∀A ∈ F t

ti . (7.54)

And similar to (7.21), we have

EPλ
i
[ξ] = EPλ

i+1
[ξ], ∀ ξ ∈ L1(F t

ti ,P
λ
i ) ∩ L1

(
F t

ti ,P
λ
i+1

)
, (7.55)

and EPλ
i
[1Ai

0
ξ] = EPλ

i+1
[1Ai

0
ξ], ∀ ξ ∈ L1(F t

T ,P
λ
i ) ∩ L1

(
F t

T ,P
λ
i+1

)
. (7.56)

2b) Now, let us consider the Snell envelope ZPλ
1 of Y under Pλ

1 , i.e., Z
Pλ
1

s := esssup

τ∈T
Pλ
1

s

E Pλ
1

[
Yτ

∣∣∣FPλ
1

s

]
, s ∈ [t, T ].

As mentioned in the proof of Proposition 4.3, ZPλ
1 admits an RCLL modification

{
Z

Pλ
1

s

}
s∈[t,T ]

such that for any

ς ∈ T Pλ
1 , τ ς

Pλ
1

:= inf
{
r ∈ [ς, T ] : Z

Pλ
1

r = Yr

}
∈ T Pλ

1
ς is an optimal stopping time for esssup

τ∈T
Pλ1
ς

E Pλ
1

[
Yτ

∣∣∣FPλ
1

ς

]
. Simply

denoting τ t
Pλ
1
by τ

λ
, we also know that Z Pλ

1

(
resp.

{
Z

Pλ
1

τ
λ
∧s

}
s∈[t,T ]

)
is a supermartingale (resp. martingale) with

respect to
(
FPλ

1 ,Pλ
1

)
. It follows from Optional Sampling Theorem that

Zt(ω) = inf
P∈P(t,ω)

sup
τ∈T t

EP

[
Yτ

]
≤ sup

τ∈T t

E Pλ
1

[
Yτ

]
≤ sup

τ∈T Pλ
1

E Pλ
1

[
Yτ

]
= Z

Pλ
1

t = Z
Pλ
1

t = E Pλ
1

[
Z

Pλ
1

ζn
k ∧τ

λ

]
. (7.57)

Applying (7.43) with P= Pλ
1 shows that Pλ

1

{
Zs ≤Z

Pλ
1

s , ∀ s∈ [t, T ]
}
= 1. By the continuity of Z and the right

continuity of Z Pλ
1 , it holds for Pλ

1−a.s. ω̃∈Ωt that Zs(ω̃)≤Z
Pλ
1

s (ω̃) for any s∈ [t, T ]. Since τ∗(ω ⊗t ω̃)>t by (7.49),

one can deduce that

ζ∗(ω̃)= τ∗(ω ⊗t ω̃) = inf{s ∈ [0, T ] : Zs(ω ⊗t ω̃) = Ys(ω ⊗t ω̃)} = inf{s ∈ [t, T ] : Zs(ω ⊗t ω̃) = Ys(ω ⊗t ω̃)}
= inf{s ∈ [t, T ] : Zs(ω̃) = Ys(ω̃)} ≤ inf{s ∈ [t, T ] : Z

Pλ
1

s (ω̃) = Ys(ω̃)} = τ
λ
(ω̃). (7.58)

Next, let us use (7.53)−(7.56) to show that

1k−1
∪

i=1
(Ai

0)
cZ

Pλ
1

ζn
k

≤ 1k−1
∪

i=1
(Ai

0)
c

(
Zζn

k
+ ε

)
, Pλ

1 − a.s. (7.59)

To see this, we let (i, j)∈{1, · · ·, k − 1}×{1, · · ·, λ}, τ ∈T t
ti and A∈F t

ti . Since Ai
j⊂Ai′

0 for i′∈{1, · · ·, k−1}\{i}, we
can deduce from (7.56), (3.2), (7.54), (7.53), (7.55) and Proposition 4.2 that

E Pλ
1

[
1A∩Ai

j
Yτ

]
= · · · = E Pλ

i−1

[
1A∩Ai

j
Yτ

]
= E Pλ

i

[
1A∩Ai

j
Yτ

]
≤ EPλ

i+1

[
1{ω̃∈A∩Ai

j}

(
sup

ζ∈T ti

EPi
j

[
Y ti,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]

≤EPλ
i+1

[
1A∩Ai

j

(
Zti + ε

)]
= EPλ

i

[
1A∩Ai

j

(
Zti + ε

)]
= · · · = E Pλ

1

[
1A∩Ai

j

(
Zti + ε

)]
,
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where we used the fact that Zti ∈ F t
ti by Remark 4.2 and Proposition 2.1 (2). Letting A vary over F t

ti and applying

Lemma A.4 (1) with (P, X) =
(
Pλ
1 , B

t
)
yield that

1Ai
j

(
Zti + ε

)
≥ E Pλ

1

[
1Ai

j
Yτ

∣∣F t
ti

]
= E Pλ

1

[
1Ai

j
Yτ

∣∣∣FPλ
1

ti

]
, Pλ

1 − a.s. (7.60)

For any τ ∈T Pλ
1

ti , similar to (7.27), one can find a sequence
{
τ iℓ
}
ℓ∈N

of T t
ti such that lim

ℓ→∞
E Pλ

1

[∣∣Yτ i
ℓ
−Yτ

∣∣]=0. Then
{
τ iℓ
}
ℓ∈N

in turn has a subsequence
(
we still denote it by

{
τ iℓ
}
ℓ∈N

)
such that lim

ℓ→∞
Yτ i

ℓ
= Yτ , P

λ
1−a.s. As E Pλ

1

[
Y∗

]
<∞

by (3.2), a conditional-expectation version of the dominated convergence theorem and (7.60) imply that

E Pλ
1

[
1Ai

j
Yτ

∣∣∣FPλ
1

ti

]
= lim

ℓ→∞
E Pλ

1

[
1Ai

j
Yτ i

ℓ

∣∣∣FPλ
1

ti

]
≤ 1Ai

j

(
Zti + ε

)
, Pλ

1 − a.s.

Since Ai
j ∈ F t

ti , it follows that

1Ai
j
Z

Pλ
1

ζn
k

= 1Ai
j
Z

Pλ
1

ti = 1Ai
j
Z

Pλ
1

ti = 1Ai
j
esssup

τ∈T
Pλ1
ti

E Pλ
1

[
Yτ

∣∣∣FPλ
1

ti

]
= esssup

τ∈T
Pλ1
ti

1Ai
j
E Pλ

1

[
Yτ

∣∣∣FPλ
1

ti

]

= esssup

τ∈T
Pλ
1

ti

E Pλ
1

[
1Ai

j
Yτ

∣∣∣FPλ
1

ti

]
≤ 1Ai

j

(
Zti + ε

)
= 1Ai

j

(
Zζn

k
+ ε

)
, Pλ

1 − a.s.

Summing them up over j∈{1, · · ·, λ} and then over i∈{1, · · ·, k − 1} yields (7.59).

2c) In this step, we will use (7.57) and (7.59) to show

Zt(ω) ≤ E Pλ
1

[
1Aλ

Zζn
k
+ 1A c

λ
Yτ

λ

]
+ ε, (7.61)

where Aλ := {ζnk ≤ ζ∗} ∩
( k−1∪

i=1
(Ai

0)
c
)
= {ζnk ≤ ζ∗} ∩

( k−1∪
i=1

λ∪
j=1

Ai
j

)
.

We first claim that Aλ ∈ F t
ζn
k ∧ζ∗∩F Pλ

1

ζn
k ∧τ

λ

. To see this claim, we set an auxiliary set Âλ :={ζnk ≤ τ
λ
}∩

(
k−1∪
i=1

(Ai
0)

c
)
.

Given s ∈ [t, T ], if s < t1, then Aλ∩ {ζnk ∧ζ∗ ≤ s} = Aλ∩{ζnk ≤ s} = ∅ and Âλ∩{ζnk ∧τ
λ
≤ s} = Âλ∩{ζnk ≤ s} = ∅.

Otherwise, let k′ be the largest integer from {1, · · ·, k − 1} such that tk′ ≤ s. Since (Ai
0)

c
=

λ∪
j=1

Ai
j ⊂ {ζnk = ti} for

i = 1, · · ·, k − 1,

Aλ ∩ {ζnk ∧ ζ∗ ≤ s} = Aλ ∩ {ζnk ≤ s} = {ζnk ≤ ζ∗} ∩
(

k′

∪
i=1

(Ai
0)

c
)
∩ {ζnk ≤ s}

and Âλ ∩ {ζnk ∧ τ
λ
≤ s} = Âλ ∩ {ζnk ≤ s} = {ζnk ≤ τ

λ
} ∩

(
k′

∪
i=1

(Ai
0)

c
)
∩ {ζnk ≤ s}.

Clearly,
k′

∪
i=1

(Ai
0)

c ∈ F t
tk′

⊂ F t
s ⊂ F Pλ

1
s . As {ζnk ≤ ζ∗} ∈ F t

ζn
k
∧ζ∗ ⊂ F t

ζn
k

and {ζnk ≤ τ
λ
} ∈ F Pλ

1

ζn
k
∧τ

λ
⊂ F Pλ

1

ζn
k
, we also

have {ζnk ≤ ζ∗} ∩ {ζnk ≤ s} ∈ F t
s and {ζnk ≤ τ

λ
} ∩ {ζnk ≤ s} ∈ F Pλ

1

s . It follows that Aλ∩{ζnk ∧ ζ∗ ≤ s} ∈ F t
s and

Âλ∩{ζnk ∧ τ
λ
≤s}∈F Pλ

1

s . Hence Aλ ∈ F t
ζn
k ∧ζ∗ and Âλ ∈ F Pλ

1

ζn
k ∧τ

λ
.

By (7.58), N := {ζ∗ > τ
λ
} ∈ N Pλ

1 . Since Aλ ∩N c ⊂ {ζnk ≤ τ
λ
} and since {ζnk ≤ ζ∗ ∧ τ

λ
} ∈ F Pλ

1

ζn
k ∧ζ∗∧τ

λ
⊂ F Pλ

1

ζn
k ∧τ

λ
,

one can deduce that

Aλ ∩ N c=Aλ ∩ {ζnk ≤τ
λ
} ∩ N c={ζnk ≤ζ∗∧τ

λ
} ∩

( k−1∪
i=1

(Ai
0)

c
)
∩ N c={ζnk ≤ζ∗∧τ

λ
} ∩ Âλ ∩ N c∈F Pλ

1

ζn
k ∧τ

λ
.

As Aλ ∩ N ∈ N Pλ
1 , we see that Aλ ∈ F P

λ
1

ζn
k ∧τ

λ

.

Since
{

Z
Pλ
1

τ
λ
∧s

}
s∈[t,T ]

is a martingale with respect to
(
FPλ

1 ,Pλ
1

)
, it follows from Optional Sampling Theorem that

1A c
λ
Z

Pλ
1

ζn
k ∧τ

λ
= 1A c

λ
EPλ

1

[
Z

Pλ
1

τ
λ

∣∣∣F Pλ
1

ζn
k ∧τ

λ

]
= EPλ

1

[
1A c

λ
Z

Pλ
1

τ
λ

∣∣∣F Pλ
1

ζn
k ∧τ

λ

]
, Pλ

1 − a.s.
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Taking expectation EPλ
1
yields that

EPλ
1

[
1A c

λ
Z

Pλ
1

ζn
k ∧τ

λ

]
= EPλ

1

[
1A c

λ
Z

Pλ
1

τ
λ

]
= EPλ

1

[
1A c

λ
Yτ

λ

]
. (7.62)

Since ζnk ≤ τ
λ
holds Pλ

1−a.s. on Aλ by (7.58), we can deduce from (7.57), (7.62) and (7.59) that

Zt(ω) ≤ E Pλ
1

[
Z

Pλ
1

ζn
k
∧τ

λ

]
= E Pλ

1

[
1Aλ

Z
Pλ
1

ζn
k

+ 1A c
λ
Yτ

λ

]
≤ E Pλ

1

[
1Aλ

Zζn
k
+ 1A c

λ
Yτ

λ

]
+ ε.

2d) In the next step, we replace E Pλ
1

[
1Aλ

Zζn
k
+1A c

λ
Yτ

λ

]
on the right-hand-side of (7.61) by an expectation under P.

For i = 1, · · ·, k− 1, as Aλ ∈ F t
ζn
k ∧ζ∗ ⊂ F t

ζn
k
, one has A i

λ := Aλ ∩ {ζnk = ti} = {ζnk ≤ ζ∗} ∩ (Ai
0)

c ∈ F t
ti . By (7.56),

(7.55), Remark 4.2 and Proposition 4.2,

E Pλ
1

[
1A i

λ
Zti

]
= · · ·=E Pλ

i

[
1A i

λ
Zti

]
=E Pλ

i+1

[
1A i

λ
Zti

]
= · · ·=E Pλ

k

[
1A i

λ
Zti

]
=EP

[
1A i

λ
Zti

]
.

Their sum over i ∈ {1, · · ·, k − 1} is

E Pλ
1

[
1Aλ

Zζn
k

]
= EP

[
1Aλ

Zζn
k

]
. (7.63)

Using (7.58) and the fact that ZT = YT

(
see (7.45)

)
, we obtain

E Pλ
1

[
1{T=ζn

k ≤ζ∗}Yτ
λ

]
= E Pλ

1

[
1{T=ζn

k ≤ζ∗}YT

]
= E Pλ

1

[
1{T=ζn

k ≤ζ∗}ZT

]
= E Pλ

1

[
1{T=ζn

k ≤ζ∗}Zζn
k

]
. (7.64)

Since {T = ζnk ≤ ζ∗} ⊂ {ζnk = T } ⊂ k−1∩
i=1

Ai
0, one can deduce from (7.56) and Proposition 4.2 again that

E Pλ
1

[
1{T=ζn

k ≤ζ∗}Zζn
k

]
= E Pλ

2

[
1{T=ζn

k ≤ζ∗}Zζn
k

]
= · · · = E Pλ

k

[
1{T=ζn

k ≤ζ∗}Zζn
k

]
= EP

[
1{T=ζn

k ≤ζ∗}Zζn
k

]
, (7.65)

and similarly that

E Pλ
1

[
1(k−1

∩
i=1

Ai
0

)∖
{T=ζn

k ≤ζ∗}
Yτ

λ

]
= EP

[
1(k−1

∩
i=1

Ai
0

)∖
{T=ζn

k ≤ζ∗}
Yτ

λ

]
≤ EP

[
1(k−1

∩
i=1

Ai
0

)∖
{T=ζn

k ≤ζ∗}
Y∗

]
. (7.66)

Similar to (7.27), one can find a sequence
{
τ ℓλ
}
ℓ∈N

of T t such that lim
ℓ→∞

E Pλ
1

[∣∣Yτℓ
λ
− Yτ

λ

∣∣] = 0. Let ℓ ∈ N and

(i, j)∈ {1, · · ·, k − 1}×{1, · · ·, λ}. Since {ζ∗ < ζnk } ∈ F t
ζ∗∧ζn

k
⊂ F t

ζn
k
, we have {ζ∗ < ζnk } ∩ Ai

j = {ζ∗ < ζnk } ∩ {ζnk =

ti} ∩ Ai
j ∈ F t

ti . As Ai
j⊂Ai′

0 for i′∈{1, · · ·N−1}\{i}, we can deduce from (3.2) and (7.54)−(7.56) that

E Pλ
1

[
1{ζ∗<ζn

k }∩Ai
j
Yτℓ

λ

]
= · · ·=E Pλ

i

[
1{ζ∗<ζn

k }∩Ai
j
Yτℓ

λ

]
=EPλ

i

[
1{ζ∗<ζn

k }∩Ai
j∩{τℓ

λ≤ti}Yτℓ
λ∧ti+1{ζ∗<ζn

k }∩Ai
j∩{τℓ

λ>ti}Yτℓ
λ∨ti

]

≤EPλ
i+1

[
1{ζ∗<ζn

k }∩Ai
j∩{τℓ

λ≤ti}Yτℓ
λ∧ti+1{ζ∗(ω̃)<ζn

k (ω̃)}1{ω̃∈Ai
j}
1{τℓ

λ(ω̃)>ti}

(
sup

ζ∈T ti

EPi
j

[
Y ti,ω⊗tω̃
ζ

]
+ρ̂0(δ)

)]
. (7.67)

If M := sup
(t,ω′)∈[0,T ]×Ω

Yt(ω
′) < ∞, it follows that

E Pλ
1

[
1{ζ∗<ζn

k }∩Ai
j
Yτℓ

λ

]
≤ EPλ

i+1

[
1{ζ∗<ζn

k }∩Ai
j
(1 +M+)

]
. (7.68)

Suppose otherwise that M = ∞. The right continuity of process Y and Proposition 2.1 (2) imply that ξi :=

sup
r∈[t,ti]

|Yr| =
(

sup
r∈Q∩[t,ti)

|Yr|
)
∨ |Yti | is F t

ti−measurable. For any ζ ∈ T ti , ω̃ ∈ Ωt and ω̂ ∈ Ωti , since t̂ := ζ(ω̂) ≥ ti

and since Yr

(
ω⊗t(ω̃⊗ti ω̂)

)
=Yr(ω) for any r∈ [0, t] by (2.2) again, (5.2) implies that

Y ti,ω⊗tω̃
ζ (ω̂)= Y

(
t̂, ω ⊗t (ω̃ ⊗ti ω̂)

)
≤Y

(
ti, ω⊗t(ω̃⊗ti ω̂)

)
+L+ sup

r∈[0,ti]

∣∣Y
(
r, ω⊗t(ω̃⊗ti ω̂)

)∣∣+ρ1

(
sup

r∈[ti,t̂ ]

∣∣ω̂(r)
∣∣
)

=Y
(
ti, ω̃ ⊗ti ω̂

)
+ L+ sup

r∈[0,t]

∣∣Y
(
r, ω

)∣∣ ∨ sup
r∈[t,ti]

∣∣Y
(
r, ω̃ ⊗ti ω̂

)∣∣+ ρ1

(
sup

r∈[ti,t̂ ]

∣∣Bti
r (ω̂)

∣∣
)

≤L+2ξi(ω̃ ⊗ti ω̂)+ sup
r∈[0,t]

∣∣Yr(ω)
∣∣+ρ1

(
sup

r∈[ti,T ]

∣∣Bti
r (ω̂)

∣∣
)
=L+2ξi(ω̃)+ sup

r∈[0,t]

∣∣Yr(ω)
∣∣+ρ1

(
sup

r∈[ti,T ]

∣∣Bti
r (ω̂)

∣∣
)
.
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Since ‖ω ⊗t ω
α
j ‖0,ti ≤ ‖ω‖0,t+ ‖ωα

j ‖t,ti ≤ ‖ω‖0,t+ ‖ωα
j ‖t,T < ‖ω‖0,t+α := α′, (4.4) shows that EPi

j

[
Y ti,ω⊗tω̃
ζ

]
≤

L̃+2Y∗ + ρα′(T − ti), where L̃ := L+ sup
r∈[0,t]

∣∣Yr(ω)
∣∣ < ∞ by Lemma A.9. Plugging this into (7.67) yields that

E Pλ
1

[
1{ζ∗<ζn

k }∩Ai
j
Yτℓ

λ

]
≤EPλ

i+1

[
1{ζ∗<ζn

k }∩Ai
j

(
1+L̃+2Y∗+ρα′(T −ti)

)]
, which together with (7.68), (7.56) and (3.2)

shows that

E Pλ
1

[
1{ζ∗<ζn

k }∩Ai
j
Yτℓ

λ

]
≤EPλ

i+1

[
1{ζ∗<ζn

k }∩Ai
j
(1+ηα′)

]
= · · ·=EPλ

k

[
1{ζ∗<ζn

k }∩Ai
j
(1+ηα′)

]
=EP

[
1{ζ∗<ζn

k }∩Ai
j
(1+ηα′)

]

for ηα′ :=1{M<∞}M
++1{M=∞}

(
L̃+2Y∗+ρα′(T )

)
. Summing them up over j∈{1, · · ·, λ} and then over i∈{1, · · ·, k−1}

gives that

E Pλ
1

[
1
{ζ∗<ζn

k }∩
(
k−1
∪

i=1
(Ai

0)
c
)Yτ

λ

]
≤ E Pλ

1

[
1
{ζ∗<ζn

k }∩
(
k−1
∪

i=1
(Ai

0)
c
)Yτℓ

λ

]
+ E Pλ

1

[∣∣Yτ
λ
− Yτℓ

λ

∣∣]

= EP

[
1
{ζ∗<ζn

k }∩
(
k−1
∪

i=1
(Ai

0)
c
)(1 + ηα′)

]
+ E Pλ

1

[∣∣Yτ
λ
− Yτℓ

λ

∣∣].

As ℓ → ∞, we obtain E Pλ
1

[
1
{ζ∗<ζn

k }∩
(
k−1
∪

i=1
(Ai

0)
c
)Yτ

λ

]
≤ EP

[
1
{ζ∗<ζn

k }∩
(
k−1
∪

i=1
(Ai

0)
c
)(1 + ηα′)

]
.

Putting this and (7.63)-(7.66) back into (7.61) yields that

Zt(ω)≤EP

[(
1
{ζn

k
≤ζ∗}∩

(
k−1
∪

i=1
(Ai

0)
c
)+1{T=ζn

k ≤ζ∗}

)
Zζn

k
+1(k−1

∩
i=1

Ai
0

)∖
{T=ζn

k
≤ζ∗}

Y∗+1
{ζ∗<ζn

k
}∩
(
k−1
∪

i=1
(Ai

0)
c
)(1+ηα′)

]
+ε. (7.69)

2e) In the last step, we will gradually send the parameters λ, k, n, α to ∞ to obtain (7.50).

Let Aα
n,k := ∪

λ∈N

k−1∪
i=1

(Ai
0)

c
and Oα

δ := ∪
j∈N

Oδ(ω
α
j ). As Oδ(ω

α
j ) ⊂ Oti

δ (ω
α
j ) for (i, j) ∈ {1, · · ·, k − 1} × N, one can

deduce that

Aα
n,k =

k−1∪
i=1

∪
λ∈N

(Ai
0)

c
=

k−1∪
i=1

∪
j∈N

Ai
j=

k−1∪
i=1

(
{ζnk = ti}∩

(
∪

j∈N
Oti

δ (ω
α
j )
))

⊂ k−1∪
i=1

{ζnk = ti}={ζnk < T } and

Aα
n,k =

k−1∪
i=1

(
{ζnk = ti}∩

(
∪

j∈N
Oti

δ (ω
α
j )
))

⊃k−1∪
i=1

(
{ζnk = ti}∩Oα

δ

)
=
( k−1∪

i=1
{ζnk = ti}

)
∩Oα

δ ={ζnk < T }∩Oα
δ . (7.70)

Since EP

[
Y∗+ηα′

]
< ∞ by (3.2), and since

{
Zζn

k

}
n,k∈N

is P−uniformly integrable by Proposition 4.2, letting λ → ∞
in (7.69) and applying the dominated convergence theorem yield that

Zt(ω) ≤ EP

[(
1{ζn

k ≤ζ∗}∩Aα
n,k

+1{T=ζn
k ≤ζ∗}

)
Zζn

k
+1(Aα

n,k)
c\{T=ζn

k ≤ζ∗}Y∗+1{ζ∗<ζn
k }∩Aα

n,k
(1+ηα′)

]
+ε

≤ EP

[
1{ζn

k ≤ζ∗}Zζn
k
+1(Oα

δ )cY∗+1(Oα
δ )c∪{T=ζn

k >ζ∗}Y∗+1{ζ∗<ζn
k }(1+ηα′)

]
+ε, (7.71)

where the second inequality is due to the fact that

1{ζn
k ≤ζ∗}∩Aα

n,k
Zζn

k
=1{ζn

k ≤ζ∗}∩{ζn
k <T}Zζn

k
−1{ζn

k≤ζ∗}∩({ζn
k <T}\Aα

n,k)
Zζn

k
≤1{ζn

k ≤ζ∗}∩{ζn
k <T}Zζn

k
−1{ζn

k≤ζ∗}∩({ζn
k <T}\Aα

n,k)
Yζn

k

≤1{ζn
k ≤ζ∗}∩{ζn

k <T}Zζn
k
+1{ζn

k≤ζ∗}∩{ζn
k <T}∩(Oα

δ )cY∗≤1{ζn
k ≤ζ∗}∩{ζn

k <T}Zζn
k
+ 1(Oα

δ )cY∗.

As ζ∗=(τ∗)t,ω>t by (7.49), we see that lim
k→∞

ζnk =ζn≤(τn∨t)t,ω=(τn)t,ω∨t<ζ∗≤T . Then letting k → ∞ in (7.71),

using the continuity of Z (Proposition 4.2), and applying the dominated convergence theorem again yield that

Zt(ω)≤EP

[
Zζn+1(Oα

δ )
c2Y∗

]
+ε = EP

[
Z(γ∧(τn∨t))t,ω+1(Oα

δ )
c2Y∗

]
+ ε. (7.72)

Clearly, τ ′ := lim
n→∞

↑ τn ≤ inf{t∈ [0, T ] : Zt=Yt}= τ∗. For any n∈N, Zτn ≤Yτn+1/n. As n→∞, the continuity

of Z and Remark 3.1 (1) show that Zτ ′ ≤Yτ ′−≤Yτ ′ ≤Zτ ′ , which implies that τ∗=τ ′= lim
n→∞

↑ τn. Since ∪
α∈N

Oα
δ =Ωt,

letting n→∞, α→∞ and then letting ε→0 in (7.72), we can deduce from the continuity of Z and (7.49) that

(
Zτ∗∧γ∧t

)
(ω) = Zt(ω) ≤ EP

[
Z(γ∧(τ∗∨t))t,ω

]
= EP

[
Z(γ∧τ∗)t,ω

]
= EP

[(
Zτ∗∧γ

)t,ω]
,
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where we used the fact that for any ω̃ ∈ Ωt

Z(γ∧τ∗)t,ω (ω̃)=Z
t,ω(

(γ ∧ τ∗)t,ω(ω̃), ω̃
)
=Z

(
(γ ∧ τ∗)(ω ⊗t ω̃), ω ⊗t ω̃

)
=
(
Zτ∗∧γ

)
(ω ⊗t ω̃)=

(
Zτ∗∧γ

)t,ω
(ω̃).

Eventually, taking infimum over P ∈ P(t, ω) yields (7.50), which together with (7.48) leads to (7.50). Therefore,{
Zτ∗∧t

}
t∈[0,T ]

is an E−submartingale and it follows that

inf
P∈P

sup
τ∈T

EP

[
Yτ

]
=Z0≤E 0

[
Zτ∗

]
= inf

P∈P
EP

[
Zτ∗

]
= inf

P∈P
EP

[
Yτ∗

]
≤ sup

τ∈T
inf
P∈P

EP[Yτ ]≤ inf
P∈P

sup
τ∈T

EP

[
Yτ

]
. �

7.5 Proofs of the results in Section 6

Proof of Lemma 6.1: Define a mapping Ψ : [t, T ]× Ωt × Rd×d → [t, T ]× Ω× Rd×d by Ψ(r, ω̃, u) = (r, ω ⊗t ω̃, u),

∀ (r, ω̃, u) ∈ [t, T ]× Ωt × Rd×d. Given D ∈ P and U ∈ B(Rd×d), one can deduce from Proposition 2.1 (3) that

Ψ−1
(
D × U

)
=

{(
r, ω̃, u

)
∈ [t, T ]× Ωt × Rd×d :

(
r, ω ⊗t ω̃, u

)
∈ D × U

}
= Dt,ω × U ∈ P

t ⊗ B(Rd×d).

So D×U ∈ Λ :=
{
J ⊂ [0, T ]×Ω×Rd×d : Ψ−1(J ) ∈ Pt⊗B(Rd×d)

}
, which is clearly a σ−field of [0, T ]×Ω×Rd×d.

It follows that P ⊗ B(Rd×d) ⊂ Λ, i.e., Ψ−1(J ) ∈ Pt ⊗ B(Rd×d) for any J ∈ P ⊗ B(Rd×d).

For any E ∈ B
(
Rd

)
, the measurability of b assures that J̃ :=

{
(r, ω′, u) ∈ [0, T ]× Ω× Rd×d : b(r, ω′, u) ∈ E

}
∈

P ⊗ B(Rd×d). Thus,
{(

r, ω̃, u
)
∈ [t, T ]× Ωt × Rd×d : bt,ω

(
r, ω̃, u

)
= b(r, ω ⊗t ω̃, u)∈E

}
=Ψ−1(J̃ )∈Pt⊗B(Rd×d),

which gives the measurability of bt,ω. �

Proof of the wellposedness of SDE (6.2):

1) Fix t ∈ [0, T ]. Let S2
F

t([t, T ];Rd) denote the space of all Rd−valued, F
t−adapted continuous processes X with

Et[X
2
∗ ]=Et

[
‖X‖2t,T

]
<∞, and let us consider the following norm on S2

F
t([t, T ];Rd):

∥∥X
∥∥
κ
:=

(
Et

[
sup

s∈[t,T ]

e−2κ2Ts|Xs|2
])1/2

, ∀X∈S2
F

t([t, T ];Rd).

Also, fix ω∈Ω and µ∈Ut. Given X∈S2
F

t([t, T ];Rd),

Xs :=

∫ s

t

bt,ω(r,X, µr)dr +

∫ s

t

µr dB
t
r, s ∈ [t, T ]

defines an Rd−valued, F
t−adapted continuous process. Since

‖ω⊗tX‖0,r≤‖ω‖0,t+‖X‖t,r, ∀ r∈ [t, T ], (7.73)

(6.1) implies that

‖X‖t,T = sup
s∈[t,T ]

∣∣Xs

∣∣≤
∫ T

t

(∣∣b(s, ω⊗tX,µs)−b(s,0, µs)
∣∣+

∣∣b(s,0, µs)
∣∣
)
ds+ sup

s∈[t,T ]

∣∣∣∣
∫ s

t

µrdB
t
r

∣∣∣∣

≤ κ
(
‖ω‖0,t+‖X‖t,T+1+κ

)
(T−t) + sup

s∈[t,T ]

∣∣∣∣
∫ s

t

µrdB
t
r

∣∣∣∣ , Pt
0 − a.s.

The Doob’s martingale inequality then shows that

Et

[
‖X‖2t,T

]
≤2κ2T 2Et

[(
‖ω‖0,t+‖X‖t,T+1+κ

)2]
+8Et

∫ T

t

|µs|2ds ≤ 4κ2T 2
((

‖ω‖0,t+1+κ
)2
+Et

[
‖X‖2t,T

])
+8κ2T <∞.

So X ∈S2
F

t([t, T ];Rd).

We set Ψt,ω,µ(X) :=X . To see that Ψt,ω,µ defines a contraction map on S2
F

t([t, T ];Rd) under the norm ‖ · ‖κ, let
X̃ be another process in S2

F
t([t, T ];Rd) and let X̃ :=Ψt,ω,µ

(
X̃
)
. Setting ∆X :=X−X̃, ∆X :=X −X̃ and applying
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Itô’s formula to process e−2κ2Ts|∆Xs|2 over the interval [t, T ], we can deduce from (6.1) that Pt
0−a.s.

e−2κ2Ts|∆Xs|2 =

∫ s

t

e−2κ2Tr
[
2
〈
∆Xr, b

t,ω(r,X, µr)−bt,ω(r, X̃, µr)
〉
−2κ2T |∆Xr|2

]
dr

≤
∫ s

t

e−2κ2Tr
[
2κ|∆Xr|

∥∥ω⊗tX−ω⊗tX̃
∥∥
0,r

−2κ2T |∆Xr|2
]
dr

≤ 1

2T

∫ s

t

e−2κ2Tr
∥∥X−X̃

∥∥2
t,r
dr ≤ 1

2
sup

r∈[t,T ]

e−2κ2Tr|∆Xr|2, s ∈ [t, T ].

It follows that ‖∆X‖2k=Et

[
sup

s∈[t,T ]

e−2κ2Ts|∆Xs|2
]
≤ 1

2Et

[
sup

s∈[t,T ]

e−2κ2Ts|∆Xs|2
]
= 1

2‖∆X‖2k.

Hence, Ψt,ω,µ is a contraction mapping on S2
F

t([t, T ];Rd) under the norm ‖ · ‖κ. Then the unique fixed point

Xt,ω,µ of Ψt,ω,µ forms a unique solution of (6.2) in S2
F

t([t, T ];Rd).

2) Now, let p ≥ 1 and s∈ [t, T ]. Since (6.2), (6.1) and (7.73) show that

‖Xt,ω,µ‖t,s = sup
r∈[t,s]

∣∣Xt,ω,µ
r

∣∣≤
∫ s

t

(∣∣b(r, ω⊗tX
t,ω,µ, µr)−b(r,0, µr)

∣∣+
∣∣b(r,0, µr)

∣∣
)
dr + sup

r∈[t,s]

∣∣∣∣
∫ r

t

µr′dB
t
r′

∣∣∣∣

≤ κ

∫ s

t

(
‖ω‖0,t+‖Xt,ω,µ‖t,r+1+κ

)
dr + sup

r∈[t,s]

∣∣∣∣
∫ r

t

µr′dB
t
r′

∣∣∣∣ , Pt
0 − a.s.,

Using the inequality

( n∑

i=1

ai

)p

≤np−1
n∑

i=1

api , ∀ a1, · · · , an ∈ (0,∞), (7.74)

we can deduce from Hölders inequality, the Burkholder-Davis-Gundy inequality and Fubini’s Theorem that for some

constant cp>0

Et

[
‖Xt,ω,µ‖pt,s

]
≤ 3p−1κp

(
‖ω‖0,t+1+κ

)p
(s−t)p+3p−1κpEt

[(∫ s

t

‖Xt,ω,µ‖t,rdr
)p

]
+cpEt

[( ∫ s

t

|µr|2dr
)p/2

]

≤ κp
[
3p−1

(
‖ω‖0,t+1+κ

)p
(s−t)p+cp(s−t)p/2

]
+3p−1κp(s−t)p−1

∫ s

t

Et‖Xt,ω,µ‖pt,rdr.

Then an application of Gronwall’s inequality shows that

Et

[
‖Xt,ω,µ‖pt,s

]
≤

[
3p−1

(
‖ω‖0,t+1+κ

)p
(s−t)p+cp(s−t)p/2

]
exp{3p−1κp(s−t)p} < ∞, ∀ s∈ [t, T ]. (7.75)

Proof of (6.3): Let t∈ [0, T ], ω, ω′∈Ω and µ∈Ut. For any r∈ [t, T ], we set ∆Xr :=Xt,ω,µ
r −Xt,ω′,µ

r . Given s∈ [t, T ],

since (6.2) and (6.1) show that

‖∆X‖t,s= sup
r∈[t,s]

∣∣∆Xr

∣∣≤κ

∫ s

t

∥∥ω⊗tX
t,ω,µ−ω′⊗tX

t,ω′,µ
∥∥
0,r

dr≤κ

∫ s

t

(
‖ω−ω′‖0,t+‖∆X‖t,r

)
dr, Pt

0−a.s.

we can deduce from (7.74), Hölder’s inequality and Fubini’s Theorem that

Et

[
‖∆X‖pt,s

]
≤2p−1κp

{
‖ω−ω′‖p0,t(s−t)p+(s−t)p−1

∫ s

t

Et‖∆X‖pt,rdr
}
.

Similar to (7.75), Gronwall’s inequality implies that (6.3) holds for Cp :=2p−1κp exp{2p−1κpT p}. �

Proof of (6.4): Fix (t, ω)∈ [0, T ]×Ω and µ∈Ut. Let ζ be an F
t−stopping time and δ>0.

Given s∈ [t, T ], set νs :=(ζ∨s)∧(ζ+δ). Since an analogy to (7.73), (6.2) and (6.1) show that

∣∣Xt,ω,µ
νs −Xt,ω,µ

ζ

∣∣ ≤
∫ νs

ζ

(
|b(r, ω⊗tX

t,ω,µ, µr)−b(r,0, µr)|+|b(r,0, µr)|
)
dr+

∣∣∣∣
∫ νs

ζ

µr dB
t
r

∣∣∣∣

≤ κ
(
‖ω‖0,t+

∥∥Xt,ω,µ
∥∥
t,T

+1+κ
)
(νs−ζ)+

∣∣∣∣
∫ s

t

1{ζ≤r≤(ζ+δ)∧T}µr dB
t
r

∣∣∣∣, Pt
0−a.s.,
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we see from 0≤νs−ζ≤δ that Pt
0−a.s.

sup
r∈[ζ,(ζ+δ)∧T ]

∣∣Xt,ω,µ
r −Xt,ω,µ

ζ

∣∣= sup
s∈[t,T ]

∣∣Xt,ω,µ
νs −Xt,ω,µ

ζ

∣∣ ≤ κ
(
‖ω‖0,t+

∥∥Xt,ω,µ
∥∥
t,T

+1+κ
)
δ + sup

s∈[t,T ]

∣∣∣∣
∫ s

t

1{ζ≤r≤(ζ+δ)∧T}µr dB
t
r

∣∣∣∣.

Using (7.74) again, we can deduce from Hölders inequality, the Burkholder-Davis-Gundy inequality, Fubini’s Theorem

and (7.75) that

Et

[
sup

r∈[ζ,(ζ+δ)∧T ]

∣∣Xt,ω,µ
r −Xt,ω,µ

ζ

∣∣p
]
≤ 3p−1κpδp

{
(‖ω‖0,t+1+κ)p+Et

[
‖Xt,ω,µ‖pt,T

]}
+cpEt

[(∫ T

t

1{ζ≤r≤(ζ+δ)∧T}|µr|2dr
)p/2

]

≤ϕp

(
‖ω‖0,t

)
δp/2

for the continuous function ϕp(x) :=3p−1κpT p/2
{
(x+1+κ)p+

[
3p−1

(
x+1+κ

)p
T p+cpT

p/2
]
exp{3p−1κpT p}

}
+cpκ

p,

∀x>0. �

Proof of Proposition 6.1: The conclusion clearly holds when t = s. So let us just consider the case t < s.

1) In the first step, we will apply (6.2) to path ω̃⊗sω̂ so as to get a rough version (7.80) of the shifted SDE.

By (6.2), it holds except on an N1 ∈ N
t
that

Xr−Xs =

∫ r

s

bt,ω
(
r′,X , µr′

)
dr′+

∫ r

s

µr′dB
t
r′ , r ∈ [s, T ]. (7.76)

Applying Lemma A.4 (3) with (P, X)=(Pt
0, B

t) shows that X has a (Ft,Pt
0)−version X̃ . Set N2 :=

{
ω̃∈Ωt : Xr(ω̃) 6=

X̃r(ω̃) for some r∈ [t, T ]
}
∈N

t
and let N := N1 ∪ N2∈N

t
. Since D := {(r, ω̃) ∈ [t, T ]× Ωt : |µr(ω̃)| > κ} satisfies

(dr × dPt
0)(D) = 0, Lemma 2.5 shows that for all ω̃∈Ωt except on some N3 ∈ N

t
,

N s,ω̃∈N
s

and (dr × dPs
0)
(
Ds,ω̃

)
= 0. (7.77)

Fix ω̃ ∈
(
N2 ∪ N3

)c
and set Xω̃

r (ω̂) := X s,ω̃
r (ω̂)−Xs(ω̃), (r, ω̂) ∈ [s, T ]×Ωs. Since the shifted process X̃ s,ω̃ is

Fs−adapted by Proposition 2.1 (2), we can deduce from (7.77) that for any (r, E)∈ [s, T ]×B(Rd)

{
ω̂ ∈ Ωs : Xω̃

r (ω̂) ∈ E
}
=

{
ω̂ ∈ N s,ω̃ : Xω̃

r (ω̂) ∈ E
}
∪
{
ω̂ ∈

(
N s,ω̃

)c
= (N c)s,ω̃ : X̃ s,ω̃

r (ω̂) ∈ E + Xs(ω̃)
}
∈ Fs

r .

So Xω̃ is F
s−adapted.

For any r ∈ [t, s], since X̃r ∈ F t
r ⊂ F t

s, we see from (2.2) that

Xr(ω̃ ⊗s ω̂) = X̃r(ω̃ ⊗s ω̂) = X̃r(ω̃) = Xr(ω̃), ∀ ω̂ ∈
(
N s,ω̃

)c
. (7.78)

Let ω̂ ∈
(
N s,ω̃

)c
. The equality (7.78) implies that Xω̃

s (ω̂) = 0 and thus Xω̃(ω̂) ∈ Ωs. By (7.78) again

(
ω ⊗t X (ω̃ ⊗s ω̂)

)
(r) = 1{r∈[0,t)}ω(r) + 1{r∈[t,T ]}

(
Xr(ω̃ ⊗s ω̂) + ω(t)

)

= 1{r∈[0,t)}ω(r) + 1{r∈[t,s)}

(
Xr(ω̃) + ω(t)

)
+ 1{r∈[s,T ]}

(
Xω̃

r (ω̂) + Xs(ω̃) + ω(t)
)

= 1{r∈[0,s)}

(
ω ⊗t X (ω̃)

)
(r)+1{r∈[s,T ]}

(
Xω̃

r (ω̂)+
(
ω ⊗t X (ω̃)

)
(s)

)
=
((

ω ⊗t X (ω̃)
)
⊗s X

ω̃(ω̂)
)
(r), ∀ r ∈ [0, T ].

It follows that

bt,ω
(
r,X (ω̃ ⊗s ω̂), µr(ω̃ ⊗s ω̂)

)
=b

(
r, ω ⊗t X (ω̃ ⊗s ω̂), µ

s,ω̃
r (ω̂)

)
=bs,ω⊗tX (ω̃)

(
r,Xω̃(ω̂), µs,ω̃

r (ω̂)
)
, ∀ r∈ [s, T ]. (7.79)

Applying (7.76) to path ω̃⊗s ω̂ and using (7.78), (7.79) yield that

Xω̃
r (ω̂) = X s,ω̃

r (ω̂)−Xs(ω̃)=

∫ r

s

bs,ω⊗tX (ω̃)
(
r′,Xω̃(ω̂), µs,ω̃

r′ (ω̂)
)
dr′ +

( ∫ r

s

µr′dB
t
r′

)
(ω̃ ⊗s ω̂), ∀ r ∈ [s, T ]. (7.80)

2) Next, we show that for Ps
0−a.s. ω̂ ∈Ωs,

( ∫ r

s
µr′dB

t
r′

)
(ω̃⊗s ω̂) =

( ∫ r

s
µr′dB

t
r′

)s,ω̃
=
( ∫ r

s
µs,ω̃
r′ dBs

r′

)
(ω̂), ∀ r ∈ [s, T ].

This is quite technically involved since the stochastic integral
∫ r

s µr′dB
t
r′ is not constructed pathwisely.
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Clearly, Mr :=
∫ r

t µr′dB
t
r′ , r ∈ [t, T ] is a martingale with respect to

(
F

t
,Pt

0

)
. Applying Lemma A.4 (3) with

(P, X)=(Pt
0, B

t) shows that M has a (Ft,Pt
0)−version M̃. Let N4 :=

{
ω̃∈Ωt : the path M·(ω̃) is not continuous

}
∪{

ω̃∈Ωt :Mr(ω̃) 6=M̃r(ω̃) for some r∈ [t, T ]
}
∈N

t
. Similar to (7.77), it holds for all ω̃∈Ωt except on an N5 ∈ N

t

N s,ω̃
4 ∈N

s
. (7.81)

We know that (see e.g. Problem 3.2.27 of [19]) there is a sequence of S>0
d −valued, F

t−simple processes
{
Φ

n

r =
∑ℓn

i=1 ξ
n

i 1{r∈(tni ,t
n
i+1]}

, r ∈ [t, T ]
}
n∈N

(
where t = tn1 < · · · < tnℓn+1 = T and ξ

n

i ∈ F t

tni
for i = 1, · · · , ℓn

)
such that

Pt
0− lim

n→∞

∫ T

t

trace
{(

Φ
n

r −µr

)(
Φ

n

r −µr

)T}
dr=0 and Pt

0− lim
n→∞

sup
r∈[t,T ]

∣∣Mn

r −M̃r

∣∣=Pt
0− lim

n→∞
sup

r∈[t,T ]

∣∣Mn

r −Mr

∣∣=0,

where M
n

r :=
∫ r

t Φ
n

r′dB
t
r′ =

∑ℓn
i=1 ξ

n

i

(
Bt

r∧tni+1
−Bt

r∧tni

)
. Given n ∈ N, applying Lemma A.4 (2) with (P, X) = (Pt

0, B
t)

shows that there exists an Rd×d−valued, F t
tni
−measurable random variable ξni such that ξni = ξ

n

i , P
t
0−a.s. for any

i = 1, · · · , ℓn. Then the Ft−simple processes
{
Φn

r =
∑ℓn

i=1 ξ
n
i 1{r∈(tni ,t

n
i+1]}

, r ∈ [t, T ]
}
n∈N

satisfy

Pt
0− lim

n→∞

∫ T

t

trace
{(

Φn
r − µr

)(
Φn

r − µr

)T}
dr = 0 and Pt

0− lim
n→∞

sup
r∈[t,T ]

∣∣Mn
r − M̃r

∣∣ = 0,

where Mn
r :=

∫ r

t Φn
r′dB

t
r′ =

∑ℓn
i=1 ξ

n
i

(
Bt

r∧tni+1
−Bt

r∧tni

)
. Since

∫ T

t trace
{(

Φn
r −µr

)(
Φn

r −µr

)T}
dr and sup

r∈[t,T ]∩Q

∣∣Mn
r −

M̃r

∣∣ are both F t
T−measurable, Lemma A.10 shows that {Φn}n∈N has a subsequence

{
Φ̂n

r =
∑ℓ̂n

i=1 ξ̂
n
i 1

{
r∈
(
t̂n
i ,t̂

n
i+1

]}, r ∈

[t, T ]
}
n∈N

such that for any ω̃ ∈ Ωt except on some N6 ∈ N
t

0 = Ps
0− lim

n→∞

∫ T

s

trace

{((
Φ̂n

)s,ω̃
r

− µs,ω̃
r

)((
Φ̂n

)s,ω̃
r

− µs,ω̃
r

)T
}
dr (7.82)

and 0 = Ps
0− lim

n→∞
sup

r∈[s,T ]∩Q

∣∣∣
(
M̂n

)s,ω̃
r

−
(
M̂n

)s,ω̃
s

− M̃s,ω̃
r + M̃s,ω̃

s

∣∣∣, (7.83)

where M̂n
r :=

∫ r

t Φ̂n
r′dB

t
r′ =

∑ℓ̂n
i=1 ξ̂

n
i

(
Bt

r∧t̂n
i+1

−Bt
r∧t̂n

i

)
.

Fix ω̃ ∈
(
N5 ∪ N6

)c
. For any ω̂ ∈ (N s,ω̃

4 )c = (N c
4 )

s,ω̃ , the path M̃·(ω̃ ⊗s ω̂) = M·(ω̃ ⊗s ω̂) is continuous, so

sup
r∈[s,T ]∩Q

∣∣∣
(
M̂n

)s,ω̃
r

−
(
M̂n

)s,ω̃
s

− M̃s,ω̃
r + M̃s,ω̃

s

∣∣∣(ω̂) = sup
r∈[s,T ]

∣∣∣
(
M̂n

)s,ω̃
r

−
(
M̂n

)s,ω̃
s

− M̃s,ω̃
r + M̃s,ω̃

s

∣∣∣(ω̂), ∀n ∈ N.

As N s,ω̃
4 ∈N

s
by (7.81), it follows from (7.83) that

0 = Ps
0− lim

n→∞
sup

r∈[s,T ]

∣∣∣
(
M̂n

)s,ω̃
r

−
(
M̂n

)s,ω̃
s

− M̃s,ω̃
r + M̃s,ω̃

s

∣∣∣. (7.84)

Given n ∈ N, there exists some jn ∈ {1, · · ·, ℓ̂n} such that s ∈
(
t̂njn , t̂

n
jn+1

]
. Since ξ̂ n

jn ∈ F t
t̂n
jn

⊂ F t
s, (2.2) shows

that
(
ξ̂ n
jn

)s,ω̃
= ξ̂ n

jn
(ω̃) and Proposition 2.1 (1) shows that

(
ξ̂ n
i

)s,ω̃ ∈ Fs
t̂n
i

for i = jn +1, · · ·, ℓ̂n. It then holds for any

(r, ω̂) ∈ [s, T ]× Ωs that

(
Φ̂n

)s,ω̃
r

(ω̂) = Φ̂n
r (ω̃ ⊗s ω̂) = ξ̂ n

jn(ω̃ ⊗s ω̂)1{
r∈
[
s,t̂n

jn+1

]} +

ℓ̂n∑

i=jn+1

ξ̂ n
i (ω̃ ⊗s ω̂)1{

r∈
(
t̂n
i ,t̂

n
i+1

]}

= ξ̂ n
jn(ω̃)1

{
r∈
[
s,t̂n

jn+1

]} +

ℓ̂n∑

i=jn+1

(
ξ̂ n
i

)s,ω̃
(ω̂)1{

r∈
(
t̂n
i ,t̂

n
i+1

]},
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so
{(

Φ̂n
)s,ω̃
r

}
r∈[s,T ]

is an Fs−simple process. Applying Proposition 3.2.26 of [19], we see from (7.82) that

0 = Ps
0− lim

n→∞
sup

r∈[s,T ]

∣∣∣∣∣

∫ r

s

(
Φ̂n

)s,ω̃
r′

dBs
r′ −

∫ r

s

µs,ω̃
r′ dBs

r′

∣∣∣∣∣. (7.85)

For any n ∈ N and ω̂ ∈ Ωs, one can deduce that for any r∈ [s, T ]

((
M̂n

)s,ω̃
r

−
(
M̂n

)s,ω̃
s

)
(ω̂)=

[
ξ̂ n
jn

(
Bt

r∧t̂n
jn+1

−Bt
s

)
+

ℓ̂n∑

i=jn+1

ξ̂ n
i

(
Bt

r∧t̂n
i+1

−Bt
r∧t̂n

i

)]
(ω̃⊗s ω̂)

= ξ̂ n
jn(ω̃) · ω̂

(
r∧ t̂njn+1

)
+

ℓ̂n∑

i=jn+1

(
ξ̂ n
i

)s,ω̃
(ω̂)

(
ω̂
(
r∧ t̂ni+1

)
−ω̂

(
r∧ t̂ni

))

=

[
ξ̂ n
jn(ω̃) ·Bs

r∧t̂n
jn+1

+

ℓ̂n∑

i=jn+1

(
ξ̂ n
i

)s,ω̃(
Bs

r∧t̂n
i+1

−Bs
r∧t̂n

i

)]
(ω̂)=

(∫ r

s

(
Φ̂n

)s,ω̃
r′

dBs
r′

)
(ω̂),

which together with (7.84), (7.85) and (7.81) shows that Ps
0−a.s.

∫ r

s

µs,ω̃
r′ dBs

r′ = M̃s,ω̃
r − M̃s,ω̃

s = Ms,ω̃
r −Ms,ω̃

s =
(∫ r

s

µr′dB
t
r′

)s,ω̃

, r ∈ [s, T ]. (7.86)

3) Let ω̃∈
(
N2 ∪ N3 ∪ N5 ∪ N6

)c
. Proposition 2.1 (2) shows the shift process µs,ω̃ is Fs−progressively measurable.

And (7.77) implies that

(dr×dPs
0){(r, ω̂)∈ [s, T ]×Ωs : |µs,ω̃

r (ω̂)|>κ}=(dr×dPs
0){(r, ω̂)∈ [s, T ]×Ωs : (r, ω̃⊗sω̂)∈D}=(dr×dPs

0)
(
Ds,ω̃

)
=0.

So µs,ω̃ ∈ Us. In light of (7.86) and (7.80), it holds Ps
0−a.s. that

Xω̃
r =

∫ r

s

bs,ω⊗tX (ω̃)
(
r′,Xω̃, µs,ω̃

r′

)
dr′ +

∫ r

s

µs,ω̃
r′ dBs

r′ , r ∈ [s, T ].

Then the uniqueness of solutions to the SDE (6.2) over period [s, T ] with drift bs,ω⊗tX (ω̃) and control µs,ω̃ leads to

that X s,ω̃−Xs(ω̃) = Xω̃ = Xs,ω⊗tX (ω̃),µs,ω̃

. �

Proof of Proposition 6.2: Fix (t, ω)∈ [0, T ]×Ω and µ∈Ut. Let us set X = Xt,ω,µ and consider the induced filtra-

tion X−1(Ft) =
{
X−1(F t

s) := {X−1(A) : A ∈ F t
s}
}
s∈[t,T ]

. Also, we define a mapping ΨX : [t, T ]×Ωt → [t, T ]×Ωt

by ΨX (r, ω̃) :=
(
r,X (ω̃)

)
, ∀ (r, ω̃) ∈ [t, T ]×Ωt. Clearly, σX := (ΨX )−1(Pt) = {(ΨX )−1(D) : D ∈ Pt} is a

σ−field of [t, T ] × Ωt. A process K = {Ks}s∈[t,T ] on Ωt is called Pt
0−a.s. X−1(Ft)−progressively measurable

(resp. Pt
0−a.s. σX−measurable) if K has a Pt

0−indistinguishable version that is X−1(Ft)−progressively measur-

able (resp. σX−measurable).

1) We first show that Bt is Pt
0−a.s. σX−measurable.

1a) In the first step, we show that the inverse of the S>0
d −valued control process {µs}s∈[t,T ] is ds × dPt

0−a.s. equal

to an X−1(Ft)−progressively measurable process.

Given i, j∈{1, · · ·, d}, let X i be the ith component of X . It is known that (see e.g. Proposition IV.2.13 of [31])

Pt
0− lim

n→∞
sup

s∈[t,T ]

∣∣∣∣Mn
s −

∫ s

t

X i
rdX j

r

∣∣∣∣=0, (7.87)

where Mn
s =M i,j,n

s :=
n−1∑

ℓ=0

X i
s∧tnℓ

(
X j

s∧tnℓ+1
−X j

s∧tnℓ

)
and tnℓ := t+ ℓ

n (T−t). Clearly, X is X−1(Ft)−adapted, so is X i. For

any t′ ∈ [t, T ], the continuity of X implies that

the process {X i
s∧t′}s∈[t,T ] is X−1(Ft)−progressively measurable. (7.88)
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So each processMn is X−1(Ft)−progressivelymeasurable. Then we can deduce from (7.87) that the Pt
0−stochastic

integral
∫ ·

t
X i

rdX j
r is Pt

0−a.s. X−1(Ft)−progressively measurable, so is the process Υi,j
s := X i

sX j
s −

∫ s

t
X i

rdX j
r −∫ s

t
X j

r dX i
r , s ∈ [t, T ]. It follows that for any n ∈ N, the process Υn,i,j

s := n
(
Υi,j

s − Υi,j
(s−1/n)∨t

)
, s ∈ [t, T ] is

Pt
0−a.s. X−1(Ft)−progressively measurable. Hence, Υ̃i,j

s :=
(
lim
n→∞

Υn,i,j
s

)
1{

lim
n→∞

Υn,i,j
s <∞

}, s ∈ [t, T ] is still a

Pt
0−a.s. X−1(Ft)−progressively measurable process.

Let µi denote the ith row of µ. Since it holds except on an Ni,j ∈ N
t
that

∫ s

t
µi
r · µj

rdr = 〈X i,X j〉P
t
0

s = Υi,j
s for

any s ∈ [t, T ], the Lebesgue differentiation theorem implies that for any ω̃ ∈ N c
i,j ,

(
µi
s · µj

s

)
(ω̃) = lim

n→∞
n
(
Υi,j

s −Υi,j
(s−1/n)∨t

)
(ω̃) = lim

n→∞
Υn,i,j

s (ω̃), for a.e. s ∈ [t, T ],

which implies that

µ2 = Υ̃, ds× dPt
0 − a.s. (7.89)

For any ℓ ∈ N, let cℓ := −1× 3× · · · × (2ℓ− 3)

2ℓ ℓ!
, which is the ℓ−th coefficient of the power series of

√
1− x,

x ∈ [−1, 1]. Given Γ ∈ S>0
d with |Γ| ≤ 1, we know (see e.g. Theorem VI.9 of [30]) that Γ̂ := Id×d+

∑
ℓ∈N cℓ(Id×d−Γ)ℓ

is the unique element in S>0
d such that Γ̂2 = Γ̂ · Γ̂ = Γ. Given (s, ω̃) ∈ [t, T ] × Ωt, since ns(ω̃) :=

µ2(ω̃)

|µ(ω̃)|2 ∈ S>0
d ,

n̂s(ω̃) := Id×d +
∑

ℓ∈N cℓ(Id×d − ns(ω̃))
ℓ is the unique element in S>0

d such that n̂2s(ω̃) = ns(ω̃) =
µ2
s(ω̃)

|µs(ω̃)|2
, thus

n̂s(ω̃) =
µs(ω̃)

|µs(ω̃)|
. (7.90)

On the other hand, since Υ̃ is an Rd×d−valued, Pt
0−a.s. X−1(Ft)−progressively measurable process, so is the

process Υ̂s := 1{|Υ̃s|>0}

Υ̃s

|Υ̃s|
, s ∈ [t, T ]. It follows that us(ω̃) := Id×d +

∑
ℓ∈N cℓ(Id×d − Υ̂s(ω̃))

ℓ, s ∈ [t, T ] is also an

Rd×d−valued, Pt
0−a.s. X−1(Ft)−progressively measurable process. By (7.89), we see that Υ̂s = ns, ds×dPt

0−a.s. and

thus us = n̂s, ds×dPt
0−a.s. Then (7.90) and (7.89) imply that µs = n̂s|µs| = us

√
|Υ̃s|, ds×dPt

0−a.s. Clearly, u

√
|Υ̃|

is still an Rd×d−valued, Pt
0−a.s. X−1(Ft)−progressively measurable process. Let µ̃ be its Pt

0−indistinguishable

version that is X−1(Ft)−progressively measurable, so

µs = µ̃s, ds× dPt
0 − a.s. (7.91)

Let aij (resp. ãij) denote the determinant of the (d−1)×(d−1) matrix that results from deleting row i and column

j of µ (resp. µ̃). As det(µ̃) and ãij ’s are all X−1(Ft)−progressively measurable, the Rd×d−valued process

qs := 1{det(µ̃s) 6=0}
1

det(µ̃s)

[
(−1)i+j ãjis

]
d×d

, ∀ s ∈ [t, T ]

is also X−1(Ft)−progressively measurable. Then we see from (7.91) that

µ−1
s = 1{det(µs) 6=0}

1

det(µs)

[
(−1)i+j ajis

]
d×d

= qs, ds× dPt
0 − a.s. (7.92)

1b) In the second step, we show that the Pt
0−stochastic integral

∫ ·

t qrdXr is Pt
0−a.s. σX−measurable.

Let φ be an Rd×d−valued, X−1(Ft)−progressively measurable bounded processes such that sup
s∈[t,T ]

|φs| ≤ Cφ,

Pt
0−a.s. for someCφ > 0. Given i, j∈{1, · · ·, d}, since Φi,j

s :=
∫ s

t φi,j
r dr, s∈ [t, T ] defines a real−valued, X−1(Ft)−adapted

continuous process, for any n ∈ N the process Φn,i,j
s := n

(
Φi,j

s −Φi,j
(s−1/n)∨t

)
is again a real−valued, X−1(Ft)−adapted

continuous process with sup
s∈[t,T ]

∣∣Φn,i,j
s

∣∣ ≤ Cφ, P
t
0−a.s. In light of the Lebesgue differentiation theorem, it holds for

Pt
0−a.s. ω̃ ∈ Ωt that

φi,j
s (ω̃) = lim

n→∞
n
(
Φi,j

s − Φi,j
(s−1/n)∨t

)
(ω̃) = lim

n→∞
Φn,i,j

s (ω̃), for a.e. s ∈ [t, T ].
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The bounded convergence theorem then implies that

lim
n→∞

d∑

i=1

Et

[〈∫ ·

t

(Φn,i
r − φi

r)dXr

〉Pt
0

T

]
= lim

n→∞

d∑

i,j,k=1

Et

[∫ T

t

(Φn,i,j
r − φi,j

r )(Φn,i,k
r − φi,k

r )d
〈
X j ,X k

〉Pt
0

r

]

= lim
n→∞

d∑

i,j,k,l=1

Et

∫ T

t

(Φn,i,j
r − φi,j

r )(Φn,i,k
r − φi,k

r )µj,l
r µk,l

r dr = lim
n→∞

Et

∫ T

t

∣∣(Φn
r − φr)µr

∣∣2dr (7.93)

≤ κ2 lim
n→∞

Et

∫ T

t

∣∣Φn
r − φr

∣∣2dr = 0.

It follows that (see e.g. Problem 1.5.25 of [19])

Pt
0− lim

n→∞
sup

s∈[t,T ]

∣∣∣
∫ s

t

(Φn
r − φr)dXr

∣∣∣=0. (7.94)

Given n ∈ N, since the process Φn is continuous, using Proposition IV.2.13 of [31] again yields that

Pt
0− lim

m→∞
sup

s∈[t,T ]

∣∣∣M̃n,m
s −

∫ s

t

Φn
r dXr

∣∣∣=0, (7.95)

where M̃n,m
s :=

m−1∑

ℓ=0

Φn
s∧tmℓ

(
Xs∧tm

ℓ+1
−Xs∧tm

ℓ

)
=

m−1∑

ℓ=0

1{s>tm
ℓ
}Φ

n
tmℓ

(
Xs∧tm

ℓ+1
−Xs∧tm

ℓ

)
and tmℓ := t+ ℓ

m (T − t). For any

m ∈ N and ℓ = 0, · · · ,m−1, since
{
1{s>tm

ℓ
}Φ

n
tm
ℓ

}
s∈[t,T ]

is a X−1(Ft)−adapted process with all left-continuous paths.

Lemma A.11 and (7.88) show that
{
1{s>tmℓ }Φ

n
tmℓ

}
s∈[t,T ]

is σX−measurable, and so is M̃n,m. It follows from (7.95)

that each Pt
0−stochastic integral

∫ ·

t
Φn

r dXr is Pt
0−a.s. σX−measurable, and so is

∫ ·

t
φrdXr thanks to (7.94).

Now for α ∈ N, taking φ =
{
qαs :=

α

|qs| ∨ α
qs

}
s∈[t,T ]

shows that
∫ ·

t
qαr dXr is Pt

0−a.s. σX−measurable. Similar to

(7.93), we can deduce that lim
α→∞

d∑

i=1

Et

[〈∫ ·

t

(qαr − qr)dXr

〉Pt
0

T

]
= lim

α→∞
Et

∫ T

t

∣∣(qαr − qr)µr

∣∣2dr. Since
∣∣(qαs − qs)µs

∣∣ =
(
1 − α

|qs| ∨ α

)∣∣qsµs

∣∣ ≤
∣∣qsµs

∣∣ =
∣∣µ−1

s µs

∣∣ =
∣∣Id×d

∣∣ =
√
d, ds × dPt

0−a.s. by (7.92), the bounded convergence

theorem implies that lim
α→∞

d∑

i=1

Et

[〈 ∫ ·

t

(qαr − qr)dXr

〉Pt
0

T

]
= 0. Then applying Problem 1.5.26 of [19] again shows

that Pt
0 − lim

α→∞
sup

s∈[t,T ]

∣∣∣
∫ s

t
(qαr − qr)dXr

∣∣∣ = 0. It follows that the Pt
0−stochastic integral

∫ ·

t
qrdXr is also Pt

0−a.s.

σX−measurable. Let K1 be its Pt
0−indistinguishable version that is σX−measurable. (As we have seen from

(6.6) that any X−1(Ft)−progressively measurable process is also F
t−progressively measurable, the Pt

0−stochastic

integrals mentioned in this part are all well-defined.)

1c) Fix U ∈ B(Rd×d). For any s ∈ [t, T ], we define a mapping Ψ̂s : [t, s]×Ωt → [t, s]×Ωt×Rd×d by Ψ̂s(r, ω̃) :=(
r,X (ω̃), µ̃r(ω̃)

)
, ∀ (r, ω̃)∈ [t, s]×Ωt. Given E ∈B

(
[t, s]

)
and A∈F t

s, one can deduce from the X−1(Ft)−progressive

measurability of µ̃ that

Ψ̂−1
s (E ×A× U) =

{
(r, ω̃) ∈ [t, s]× Ωt :

(
r,X (ω̃), µ̃r(ω̃)

)
∈ E ×A× U

}

=
(
E × X−1(A)

)
∩
{
(r, ω̃) ∈ [t, s]× Ωt : µ̃r(ω̃) ∈ U

}
∈ B

(
[t, s]

)
⊗X−1(F t

s).

So E ×A ∈ ΛU :=
{
D ⊂ [t, s]× Ωt : Ψ̂−1

s (D × U) ∈ B
(
[t, s]

)
⊗X−1(F t

s)
}
, which is clearly a σ−field of [t, s]× Ωt. It

follows that B
(
[t, s]

)
⊗F t

s ∈ ΛU , i.e., Ψ̂
−1
s (D × U) ∈ B

(
[t, s]

)
⊗X−1(F t

s) for any D ∈ B
(
[t, s]

)
⊗F t

s.

Now, let D̃ ∈ Pt. For any s ∈ [t, T ], as D̃ ∩
(
[t, s]× Ωt

)
∈ B

(
[t, s]

)
⊗F t

s, one can deduce that

Ψ̂−1
T (D̃ × U) ∩

(
[t, s]× Ωt

)
=

{
(r, ω̃) ∈ [t, s]× Ωt :

(
r,X (ω̃), µ̃r(ω̃)

)
∈ D̃ × U

}

=
{
(r, ω̃)∈ [t, s]×Ωt :

(
r,X (ω̃), µ̃r(ω̃)

)
∈
(
D̃ ∩ ([t, s]×Ωt)

)
×U

}
=Ψ̂−1

s

((
D̃ ∩ ([t, s]×Ωt)

)
×U

)
∈B

(
[t, s]

)
⊗X−1(F t

s).
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So Ψ̂−1
T (D̃ × U) ∈ PX−1 , the X−1(Ft)−progressively measurable σ−field of [t, T ]× Ωt. Then D̃ × U ∈ Λ̂ :=

{
J ∈

[t, T ]×Ωt×Rd×d : Ψ̂−1
T (J ) ∈ PX−1

}
, which is clearly a σ−field of [t, T ]×Ωt×Rd×d. It follows that Pt⊗B(Rd×d) ∈ Λ̂,

i.e., Ψ̂−1
T (J ) ∈ PX−1 for any J ∈ Pt ⊗ B(Rd×d). Hence, the mapping Ψ̂T is PX−1

/
Pt ⊗ B(Rd×d)−measurable.

Then we see from Lemma 6.1 that the mapping

(r, ω̃) → bt,ω
(
r,X (ω̃), µ̃r(ω̃)

)
= bt,ω(Ψ̂T (r, ω̃)) is PX−1

/
B(Rd)−measurable,

which together with the X−1(Ft)−progressive measurability of q shows that the integral K2
s :=

∫ s

t
qrb

t,ω(r,X , µ̃r)dr,

s ∈ [t, T ] is X−1(Ft)−adapted. By Lemma A.11 again, K2 is also σX−measurable. Then we can deduce from (7.91)

and (7.92) that Pt
0−a.s.

Bt
s=

∫ s

t

qrdXr−
∫ s

t

qrb
t,ω(r,X , µ̃r)dr = K1

s +K2
s , s ∈ [t, T ]. (7.96)

Since the process K1+K2 is σX−measurable, an application of Doob-Dynkin Lemma shows that there exists a

Pt−measurable (or Ft−progressively measurable) process W = W t,ω,µ satisfying (K1+K2)(s, ω̃)=W
(
ΨX (s, ω̃)

)
=

W
(
s,X (ω̃)

)
, ∀ (s, ω̃)∈ [t, T ]×Ωt, which together with (7.96) shows that for all ω̃ ∈ Ωt except on a Pt

0−null set NX

Bt
s(ω̃) = Ws

(
X (ω̃)

)
, ∀ s ∈ [t, T ]. (7.97)

2) Setting (P, p) =
(
Pt,ω,µ, pt,ω,µ

)
, we next show that the filtration FP is right-continuous and thus P∈Pt.

2a) We first claim that W is actually a Brownian motion on Ωt under p:

By (7.97), it holds for any ω̃ ∈ N c
X that Xs(ω̃) = Xs

(
W

(
X (ω̃)

))
, ∀ s ∈ [t, T ]. It follows that for any ω̃′ ∈ AX :=

{ω̃′ ∈ Ωt : ∃ ω̃ ∈ N c
X such that ω̃′ = X (ω̃)} = {ω̃′ ∈ Ωt : N c

X ∩ X−1(ω̃′) 6= ∅}, one has

Bt
s(ω̃

′) = Xs

(
W(ω̃′)

)
, ∀ s ∈ [t, T ]. (7.98)

As Ac
X = {ω̃′ ∈ Ωt : X−1(ω̃′) ⊂ NX }, we see that X−1(Ac

X ) ⊂ NX , i.e. X−1(Ac
X ) ∈ N

t ⊂ F t

T . So Ac
X ∈ GX

T =
{
A ⊂

Ωt : X−1(A) ∈ F t

T

}
with p(Ac

X ) = Pt
0

(
X−1(Ac

X )
)
= 0, namely, Ac

X is a p−null set. (It is worth pointing out that Ac
X

may not belong to FP
T though X−1(Ac

X ) ∈ F t

T . In general, the inverse conclusion of (6.6) may not be true.) Since

AX = {ω̃′ ∈ Ωt : ∃ ω̃ ∈ N c
X such that ω̃′ = X (ω̃)} ⊂ {ω̃′ ∈ Ωt : W·(ω̃

′) ∈ Ωt} (7.99)

by (7.97), the process W has p−a.s. continuous paths starting from 0.

(i) Given t ≤ s ≤ r ≤ T , (7.97) implies that for any E ∈ B(Rd)

p
{
ω̃∈Ωt : Wr(ω̃)−Ws(ω̃)∈E

}
= Pt

0

{
ω̃ ∈ Ωt : Wr

(
X (ω̃)

)
−Ws

(
X (ω̃)

)
∈ E

}

= Pt
0

{
ω̃∈Ωt : Bt

r(ω̃)−Bt
s(ω̃)∈E

}
, (7.100)

which shows that the distribution of Wr−Ws under p is the same as that of Bt
r−Bt

s under Pt
0 (a d−dimensional

normal distribution with mean 0 and variance matrix (r−s)Id×d).

(ii) Given t ≤ s1 ≤ r1 ≤ s2 ≤ r2 ≤ T , similar to (7.100), it holds for any E1, E2 ∈ B(Rd) that

p
{
ω̃∈Ωt : Wri(ω̃)−Wsi(ω̃)∈Ei, i=1, 2

}
=Pt

0

{
ω̃ ∈ Ωt : Bt

ri(ω̃)−Bt
si(ω̃) ∈ Ei, i = 1, 2

}

=

2∏

i=1

Pt
0

{
ω̃ ∈ Ωt : Bt

ri(ω̃)−Bt
si(ω̃) ∈ Ei

}
=

2∏

i=1

p
{
ω̃ ∈ Ωt : Wri(ω̃)−Wsi(ω̃) ∈ Ei

}
,

which shows that Wr1 −Ws1 is independent of Wr2 −Ws2 under p. Hence, W is a d−dimensional standard Brownian

motion on Ωt under p and the corresponding augmented Brownian filtration

F̃W,p
s := σ

(
FW

s ∪ N
W,p

)
, s ∈ [t, T ] (7.101)

is right-continuous, where N W,p :=
{
N ′⊂Ωt : N ′⊂A for some A∈FW

T with p(A)=0
}
(see e.g. Proposition 2.7.7 of

[19]).
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2b) In the second step, we show that the right-continuity of the augmented Brownian filtration
{
F̃W,p

s

}
s∈[t,T ]

implies

that of the filtration FW,P.

Since FW
T ⊂F t

T by the Ft−adaptedness of W , we see from Lemma A.12 (1) that N W,p=
{
N ′⊂Ωt : N ′⊂A for

some A∈FW
T with P(A)=0

}
⊂
{
N ′⊂Ωt : N ′⊂A for some A∈F t

T with P(A)=0
}
=N P. It follows that

σ
(
F̃W,p

s ∪ N
P
)
= σ

(
FW

s ∪ N
P
)
= FW,P

s , ∀ s ∈ [t, T ].

Similar to Problem 2.7.3 of [19], one can show that

FW,P
s =

{
A ⊂ Ωt : A∆Ã ∈ N

P for some Ã ∈ F̃W,p
s

}
, ∀ s ∈ [t, T ]. (7.102)

Let s ∈ [t, T ) and A ∈ FW,P
s+ := ∩

s′∈(s,T ]
FW,P

s′ . For any n ≥ ns :=
⌈

1
T−s

⌉
, as A ∈ FW,P

s+1/n, there exists An ∈ F̃W,p
s+1/n such

that A∆An ∈ N P. By (7.101), Ã := ∩
n≥ns

∪
i≥n

Ai ∈ F̃W,p
s+ = F̃W,p

s . Since Ã\A ⊂ ∩
n≥ns

∪
i≥n

(Ai\A) ⊂ ∩
n≥ns

∪
i≥n

(A∆Ai)

and since A\Ã = ∪
n≥ns

∩
i≥n

(
A\Ai

)
⊂ ∪

n≥ns

∩
i≥n

(
A∆Ai

)
, we see that A∆Ã ⊂ ∪

n≥ns

(
A∆An

)
∈ N P, namely A ∈ FW,P

s

by (7.102). So FW,P
s+ = FW,P

s , which shows that

FW,P =
{
FW,P

s

}
s∈[t,T ]

is also a right-continuous filtration. (7.103)

2c) In the last step, we show that the filtration FW,P is exactly FP.

Let s ∈ [t, T ]. Since W is Ft−adapted, it is clear that FW,P
s = σ

(
FW

s ∪ N P
)
⊂ σ

(
F t

s ∪ N P
)
= FP

s . So we only

need to show the reverse inclusion. For any r∈ [t, s] and E ∈B(Rd), (7.97) implies that {ω̃∈Ωt : Bt
r(ω̃)∈E}∆ {ω̃∈Ωt :

Wr

(
X (ω̃)

)
∈E}⊂NX ∈ N

t
, which shows that

(
Bt

r

)−1
(E) ∈ Λ̂s :=

{
A ⊂ Ωt : A∆Ã ∈ N

t
for some Ã ∈ X−1(FW

s )
}
.

As X−1(FW
s ) is a σ−field of Ωt, an analogy to Problem 2.7.3 of [19] yields that Λ̂s forms a σ−field of Ωt. It follows

that F t
s ⊂ Λ̂s. Clearly, N

t ⊂ Λ̂s, so we further have F t

s ⊂ Λ̂s.

For any A∈FP
s , Lemma A.12 (1) shows that X−1(A)∈F t

s ⊂ Λ̂s, i.e., for some Ã∈FW
s ⊂F t

s, one has X−1
(
A∆ Ã

)
=(

X−1(A)
)
∆
(
X−1

(
Ã
))

∈ N
t
. As A∆ Ã ∈ FP

s ⊂ FP
T , applying Lemma A.12 (1) again yields that P

(
A∆ Ã

)
=

p
(
A∆ Ã

)
= Pt

0

(
X−1(A∆ Ã)

)
= 0, i.e., A∆ Ã ∈ N P. It follows that A = Ã∆

(
A∆ Ã

)
∈ FW,P

s . Therefore,

FP
s = FW,P

s , which together with (7.103) shows that P ∈ Pt. �

Proof of Lemma 6.2: Fix (t, ω)∈ [0, T ]×Ω and µ∈Ut. We set (X ,P)=
(
Xt,ω,µ,Pt,ω,µ

)
. Given ω̃∈Ωt, (3.1) shows

∣∣Y t,0
r (X (ω̃))−Yr(0)

∣∣=
∣∣Yr(0⊗tX (ω̃))−Yr(0)

∣∣≤ρ0
(
‖0⊗tX (ω̃)‖0,r

)
≤κ

(
1+‖X (ω̃)‖̟t,r

)
, ∀ r∈ [t, T ].

It follows that Y t,0
∗ (X (ω̃)) = sup

r∈[t,T ]

∣∣Y t,0
r (X (ω̃))

∣∣ ≤ κ
(
1 + ‖X (ω̃)‖̟t,T

)
+ mY , where mY := sup

r∈[t,T ]

∣∣Yr(0)
∣∣ < ∞ by

Lemma A.9. Then we can deduce from (6.4) that

EP

[
Y t,0
∗

]
=Et

[
Y t,0
∗ (X )

]
≤κ

(
1+Et

[
‖X‖̟t,T

])
+mY ≤κ

(
1+ϕ̟

(
‖ω‖0,t

)
T̟/2

)
+mY <∞.

Namely, Y t,0 ∈ D(Ft,P), which together with Proposition 6.2 shows that P = Pt,ω,µ ∈ PY
t . �

Proof of Proposition 6.3: Fix 0 ≤ t < s ≤ T , ω ∈ Ω and µ ∈ Ut. We will denote (Pt,ω,µ, pt,ω,µ, Xt,ω,µ,W t,ω,µ) by

(P, p,X ,W). For any r ∈ [t, T ], (6.6) and Lemma A.12 (2) show that Fr :=σ
(
F t

r ∪ N p
)
⊂GX

r .

Let AX as defined in (7.98). As Ac
X ∈ N p, we see from the Ft−adaptedness of W and (7.99) that the process

W̃r(ω̃) :=1{ω̃∈AX}Wr(ω̃), ∀ (r, ω̃)∈ [t, T ]×Ωt is adapted to the filtration {Fr}r∈[t,T ] and all its paths belong to Ωt.

Given r ∈ [t, T ], for any r′ ∈ [t, r] and E ∈ B(Rd), an analogy to (6.5) shows that W̃−1
(
(Bt

r′)
−1(E)

)
=

{
ω̃ ∈ Ωt :

W̃(ω̃) ∈ (Bt
r)

−1(E)
}
=
{
ω̃ ∈Ωt : W̃r′(ω̃) ∈ E

}
∈ FW̃

r . Thus,
(
Bt

r′

)−1
(E) ∈Λr :=

{
A⊂Ωt : W̃−1(A) ∈FW̃

r

}
, which is

clearly a σ−field of Ωt. It follows that F t
r⊂Λr, i.e.,

W̃−1(A) ∈ FW̃
r ⊂ Fr, ∀A ∈ F t

r, ∀ r∈ [t, T ]. (7.104)
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1) We first show that for p−a.s. ω̃ ∈ Ωt, Ps,ω̃ = Ps,ω⊗tω̃,µs,W(ω̃) ∈ P(s, ω ⊗t ω̃), and thus the probability class

{P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies (P1 ).

1a) In the first step, we show that for a given set A ∈ Fs
T , its shifted probability Ps,ω̃(A) is equal to ξA

(
W̃(ω̃)

)
for

p−a.s. ω̃ ∈ Ωt, where ξA := Et

[
1X−1(A)

∣∣F t
s

]
and A := (Πt

s)
−1(A).

Since A = (Πt
s)

−1(A) ∈ F t
T by Lemma A.1, applying (2.6) yield that for P−a.s. ω̃ ∈ Ωt

Ps,ω̃(A) = Ps,ω̃
(
A

s,ω̃
)
= EPs,ω̃

[
1
A

s,ω̃

]
= EPs,ω̃

[
(1A)

s,ω̃
]
= EP

[
1A

∣∣F t
s

]
(ω̃). (7.105)

For any ω̃ ∈ N c
X , set ω̃′ := X (ω̃). As ω̃ ∈ N c

X ∩ X−1(ω̃′), we see that X (ω̃) = ω̃′ ∈ AX . Then (7.97) shows that

ω̃ = Bt(ω̃) = W
(
X (ω̃)

)
= W̃

(
X (ω̃)

)
, ∀ ω̃ ∈ N c

X . (7.106)

Given N ′ ∈ N
t
, there exists an A ∈ F t

T with Pt
0(A) = 0 such that N ′ ⊂ A. Since W̃−1(A) ∈ FT ⊂ GX

T by

(7.104), one can deduce from (7.106) that

p
(
W̃−1(A)

)
= Pt

0

(
X−1

(
W̃−1(A)

))
= Pt

0

{
W̃(X ) ∈ A

}
= Pt

0(A) = 0,

which implies that W̃−1(A) ∈ N p and thus

W̃−1(N ′) ∈ N
p. (7.107)

Hence, it holds for any r ∈ [t, T ] that N
t ∈ Λ̃r := {A′ ⊂ Ωt : W̃−1(A′) ∈ Fr}. Clearly Λ̃r is a σ−field of Ωt, then we

see from (7.104) that F t

r ⊂ Λ̃r, i.e.

W̃−1(A′) ∈ Fr, ∀A′ ∈ F t

r, ∀ r ∈ [t, T ]. (7.108)

Let A∈Fs. Similar to Problem 2.7.3 of [19], there exists an A′∈F t
s such that A∆A′∈N p. Then

∫

A

1A dp=

∫

A′

1A dp=

∫

A′

1A dP=

∫

A′

EP

[
1A

∣∣F t
s

]
dP=

∫

A′

EP

[
1A

∣∣F t
s

]
dp=

∫

A

EP

[
1A

∣∣F t
s

]
dp. (7.109)

As X−1(A) ∈ F t

T by (6.6), applying Lemma A.4 (1) again with (P, X) = (Pt
0, B

t) shows that ξA = Et

[
1X−1(A)

∣∣F t
s

]
=

Et

[
1X−1(A)

∣∣F t

s

]
, Pt

0−a.s. Since A ∈ Fs ⊂ GX
s , i.e. X−1(A) ∈ F t

s, we can deduce from (7.106) that

Ep

[
1A∩A

]
= Et

[
1X−1(A∩A)

]
=Et

[
1X−1(A)∩X−1(A)

]
=Et

[
1X−1(A)Et

[
1X−1(A)

∣∣F t

s

]]
=Et

[
1X−1(A)ξA

]

= Et

[
1X−1(A)ξA(W̃(X ))

]
= Ep

[
1AξA(W̃)

]
. (7.110)

Given E ∈ B(R), as ξ−1
A (E) ∈ F t

s, (7.108) shows that
{
ω̃ ∈ Ωt : ξA

(
W̃(ω̃)

)
∈ E

}
= W̃−1

(
ξ−1
A (E)

)
∈ Fs, namely the

random variable ξA(W̃) is Fs−measurable. So letting A vary over Fs in (7.109) and (7.110), we see from (7.105) that

ξA
(
W̃(ω̃)

)
= Ep

[
1A

∣∣Fs

]
(ω̃) = EP

[
1A

∣∣F t
s

]
(ω̃) = Ps,ω̃(A) (7.111)

holds for all ω̃ ∈ Ωt except on some N(A) ∈ N p.

1b) In the second step, we show that for Pt
0−a.s. ω̃ ∈ Ωt, ξA(ω̃) is equal to Ps,ω⊗tX (ω̃),µs,ω̃

(A).

Since X−1(A) ∈ F t

T , Proposition 2.3 and Lemma 2.4 yield that for all ω̃ ∈ Ωt except on an N1(A) ∈ N
t

ξA(ω̃) = Et

[
1X−1(A)

∣∣F t
s

]
(ω̃) = Es

[(
1X−1(A)

)s,ω̃]
. (7.112)

By (7.78), there exists N2 ∈ N
t
such that for any ω̃∈N c

2 , it holds for P
s
0−a.s. ω̂∈Ωs that Xs(ω̃⊗s ω̂)=Xs(ω̃), so

Πt
s(X (ω̃ ⊗s ω̂))(r) = Xr(ω̃ ⊗s ω̂)−Xs(ω̃ ⊗s ω̂) = X s,ω̃

r (ω̂)−Xs(ω̃), ∀ r ∈ [s, T ]. (7.113)

Moreover, Proposition 6.1 shows that for all ω̃ ∈ Ωt except on an N3 ∈ N
t

µs,ω̃ ∈ Us and Xω̃ := Xs,ω⊗tX (ω̃),µs,ω̃

= X s,ω̃ −Xs(ω̃). (7.114)
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For any ω̃ ∈ N c
3 , we set P ω̃ := Ps

0 ◦
(
Xω̃

)−1
= Ps,ω⊗tX (ω̃),µs,ω̃

.

Let N (A) :=N1(A)∪N2∪N3∈N
t
. For any ω̃∈(N (A))c, we can deduce from (7.113) and (7.114) that for Ps

0−a.s.

ω̂ ∈Ωs,
(
1X−1(A)

)s,ω̃
(ω̂) = 1{

ω̃⊗sω̂∈X−1(A)
} = 1{X (ω̃⊗sω̂)∈A} = 1{Πt

s(X (ω̃⊗sω̂))∈A} = 1{X s,ω̃(ω̂)−Xs(ω̃)∈A} = 1{Xω̃(ω̂)∈A}.

Plugging this into (7.112) yields that

ξA(ω̃) = Es

[
1{Xω̃∈A}

]
= EP ω̃ [1A] = P ω̃(A). (7.115)

1c) Now, we will combine the above two steps to obtain the conclusion:

By (7.107), N̂(A) :=Ac
X ∪ N(A) ∪ W̃−1

(
N (A)

)
∈ N p. Given ω̃ ∈

(
N̂(A)

)c
=AX ∩

(
N(A)

)c ∩ W̃−1
(
(N (A))c

)
,

(7.111) and (7.115) imply that Ps,ω̃(A) = ξA
(
W̃(ω̃)

)
= P W̃(ω̃)(A).

Since C s
T is a countable set, N∗ := ∪

A∈C s
T

N̂(A) belongs to N p. Then C s
T ⊂ Λ :=

{
A ∈ Fs

T : Ps,ω̃(A) =

PW̃(ω̃)(A), ∀ ω̃ ∈ Nc
∗

}
, which is clearly a Dynkin system. As C s

T is closed under intersection, Lemma A.2 and

Dynkin System Theorem show that Fs
T = σ

(
C s
T

)
⊂ Λ ⊂ Fs

T . To wit, it holds for any ω̃ ∈ Nc
∗ that Ps,ω̃ = PW̃(ω̃) on

Fs
T , which together with (7.98) and (7.114) leads to that

Ps,ω̃=PW̃(ω̃)=Ps,ω⊗tX (W̃(ω̃)),µs,W̃(ω̃)

=Ps,ω⊗tX (W(ω̃)),µs,W̃(ω̃)

=Ps,ω⊗tω̃,µ
s,W̃(ω̃) ∈P(s, ω ⊗t ω̃), ∀ ω̃ ∈ Nc

∗.

Hence the probability class {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies (P1) with (F ′,P′,Ω′) =
(
GX
T , p,Nc

∗

)
.

2) We next show that the probability class {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies (P2 ). Given δ∈Q+ and λ∈N, let {Aj}λj=0

be a F t
s−partition of Ωt such that for j = 1, · · ·, λ, Aj ⊂ Os

δj
(ω̃j) for some δj ∈

(
(0, δ]∩Q

)
∪ {δ} and ω̃j ∈ Ωt, and

let {µj}λj=1 ⊂ Us. We will paste these Us−controls {µj}λj=1 with the given Ut−control µ to form a new Ut−control

µ̂, see (7.118) below. Then we will use the uniqueness of controlled SDE (6.2), the continuity (3.1) of Y and the

estimates (6.3) of Xt,ω,µ to show that {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies the conditions (P2 ) (i) and (ii).

Given j = 1, · · ·, λ, (6.6) shows that AX
j := X−1(Aj) ∈ F t

s. So there exists an Aj ∈ F t
s such that AX

j ∆Aj ∈ N
t

(see e.g. Problem 2.7.3 of [19]). Set Ãj := Aj

∖
∪

j′<j
Aj′ ∈ F t

s. As
{
AX

j

}λ

j=0
is a partition of Ωt with AX

0 :=

X−1(A0) ∈ F t

s, an analogy to (7.6) shows that AX
j \Ãj ⊂ ∪

j′≤j

(
AX

j′∆Aj′
)
∈ N

t
. On the other hand, it is clear that

Ãj\AX
j ⊂ Aj\AX

j ⊂ AX
j ∆Aj ∈ N

t
. Thus

AX
j ∆Ãj ∈ N

t
. (7.116)

Let Ã0 :=
(

λ∪
j=1

Ãj

)c

∈ F t
s. As AX

0 =
(

λ∪
j=1

AX
j

)c

, one can deduce that

Ã0\AX
0 = Ã0 ∩

(
λ∪

j=1
AX

j

)
=

λ∪
j=1

(
Ã0 ∩ AX

j

)
⊂ λ∪

j=1

(
Ãc

j ∩ AX
j

)
⊂ λ∪

j=1

(
AX

j ∆Ãj

)
∈ N

t

and AX
0 \Ã0 = AX

0 ∩
( λ∪

j=1
Ãj

)
=

λ∪
j=1

(
AX

0 ∩ Ãj

)
⊂ λ∪

j=1

(
(AX

j )c ∩ Ãj

)
⊂ λ∪

j=1

(
AX

j ∆Ãj

)
∈ N

t
.

Hence,

AX
0 ∆Ã0 ∈ N

t
. (7.117)

(2a) In the first step, we show that the pasted control

µ̂r(ω̃) := 1{r∈[t,s)}µr(ω̃) + 1{r∈[s,T ]}

(
1{ω̃∈Ã0}

µr(ω̃) +
λ∑

j=1

1{ω̃∈Ãj}
µj
r(Π

t
s

(
ω̃)

))
, ∀ (r, ω̃) ∈ [t, T ]× Ωt (7.118)

belongs to Ut.

We start with demonstrating the Ft−progressive measurability of µ̂: Let r ∈ [t, T ] and U ∈ B(S>0
d ). The

Ft−progressive measurability of µ implies that for any D ∈ B
(
[t, r]

)
⊗F t

r

{
(r′, ω̃) ∈ D : µr′(ω̃) ∈ U

}
=

{
(r′, ω̃) ∈ [t, r]× Ωt : µr′(ω̃) ∈ U

}
∩ D ∈ B

(
[t, r]

)
⊗F t

r. (7.119)
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If r < s, this shows that

{
(r′, ω̃) ∈ [t, r]× Ωt : µ̂r′(ω̃) ∈ U

}
=

{
(r′, ω̃) ∈ [t, r]× Ωt : µr′(ω̃) ∈ U

}
∈ B

(
[t, r]

)
⊗F t

r.

On the other hand, suppose r ≥ s. Since Ã0 ∈ F t
s ⊂ F t

r, applying (7.119) with D = [t, r]× Ã0, we obtain

{
(r′, ω̃) ∈ [t, r] × Ã0 : µ̂r′(ω̃) ∈ U

}
=

{
(r′, ω̃) ∈ [t, r]× Ã0 : µr′(ω̃) ∈ U

}
∈ B

(
[t, r]

)
⊗F t

r . (7.120)

Given j = 1, · · ·, λ, as Ãj ∈ F t
s ⊂ F t

r, applying (7.119) with D = [t, s)× Ãj gives that

{
(r′, ω̃) ∈ [t, s)× Ãj : µ̂r′(ω̃) ∈ U

}
=
{
(r′, ω̃)∈ [t, s)×Ãj : µr′(ω̃) ∈ U

}
∈B

(
[t, r]

)
⊗F t

r. (7.121)

Since Dj :=
{
(r′, ω̃) ∈ [s, r]×Ωs : µj

r′(ω̃) ∈ U
}
∈ B

(
[s, r]

)
⊗Fs

r by the Fs−progressive measurability of µj , one can

deduce from Lemma A.13 that

{
(r′, ω̃)∈ [s, r]×Ãj : µ̂r′(ω̃)∈U

}
=
{
(r′, ω̃)∈ [s, r]×Ãj : µ

j
r′

(
Πt

s(ω̃)
)
∈U

}
=
{
(r′, ω̃)∈ [s, r]×Ãj :

(
r′,Πt

s(ω̃)
)
∈ Dj

}

=
{
(r′, ω̃)∈ [s, T ]×Ωt : Π̂t

s(r
′, ω̃)∈Dj

}
∩
(
[s, r]×Ãj

)
=(Π̂t

s)
−1

(
Dj

)
∩
(
[s, r]×Ãj

)
∈B

(
[s, r]

)
⊗F t

r⊂B
(
[t, r]

)
⊗F t

r,

which together with (7.121) shows that
{
(r′, ω̃)∈ [t, r]×Ãj : µ̂r′(ω̃)∈U

}
∈ B

(
[t, r]

)
⊗ F t

r. Then taking union over

j ∈ {1, · · · , λ} and combining with (7.120) lead to that
{
(r′, ω̃)∈ [t, r]×Ωt : µ̂r′(ω̃)∈U

}
∈ B

(
[t, r]

)
⊗F t

r. Hence, µ̂ is

Ft−progressively measurable.

For any j = 1, · · · , λ, since D̃j :=
{
(r, ω̂)∈ [s, T ]×Ωs : |µj

r(ω̂)|>κ
}
is a dr × dPs

0−null set, we can deduce that

{
(r, ω̃)∈ [s, T ]×Ãj : |µ̂r(ω̃)|>κ

}
=
(
[s, T ]×Ãj

)
∩
{
(r, ω̃)∈ [s, T ]×Ωt : (r,Πt

s(ω̃))∈D̃j

}
=
(
[s, T ]×Ãj

)
∩ (Π̂t

s)
−1(D̃j).

Lemma A.13 again implies that

(dr×dPt
0)
{
(r, ω̃)∈ [s, T ]×Ãj : |µ̂r(ω̃)|>κ

}
≤ (dr×dPt

0)
(
(Π̂t

s)
−1(D̃j)

)
= (dr×dPs

0)(D̃j) = 0. (7.122)

Clearly, (dr×dPt
0)
{
(r, ω̃)∈ ([t, s)×Ωt)∪([s, T ]×Ã0) : |µ̂r(ω̃)|>κ

}
≤ (dr×dPt

0)
{
(r, ω̃)∈ [t, T ]×Ωt : |µr(ω̃)|>κ

}
= 0,

which together with (7.122) shows that |µ̂r| ≤ κ, dr × dPt
0−a.s. Therefore, µ̂ ∈ Ut.

Let (r, ω̃)∈ [s, T ]×Ãj for some j=0, · · ·, λ. For any ω̂∈Ωs, since ω̃⊗sω̂∈Ãj by Lemma 2.1, (7.118) shows that

µ̂s,ω̃
r (ω̂) = µ̂r

(
ω̃ ⊗s ω̂

)
=

{
µr

(
ω̃ ⊗s ω̂

)
= µs,ω̃

r (ω̂), if j = 0 ;

µj
r

(
Πt

s(ω̃ ⊗s ω̂)
)
= µj

r(ω̂), if j = 1, · · ·, λ.
(7.123)

(2b) In the second step, we use the uniqueness of controlled SDE (6.2) to show that the equality µ̂ = µ over(
[t, s] × Ωt

)
∪
(
[s, T ] × Ã0

)
implies the equality X̂ := Xt,ω,µ̂ = X over

(
[t, s] × Ωt

)
∪
(
[s, T ] × Ã0

)
. It follows that

P̂ := Pt,ω,µ̂ satisfies (P2 ) (i) and the first part of (P2 ) (ii).

Since both
{
Xt,ω,µ

r

}
r∈[t,s]

and
{
Xt,ω,µ̂

r

}
r∈[t,s]

satisfy the same SDE:

Xr =

∫ r

t

bt,ω(r′, X, µr′) dr
′ +

∫ r

t

µr′ dB
t
r′ , r ∈ [t, s],

the uniqueness of solution to such a SDE shows that except on an N̂ ∈ N
t

Xr = Xt,ω,µ
r = Xt,ω,µ̂

r = X̂r, ∀ r ∈ [t, s]. (7.124)

Given A ∈ F t
s, we claim that X−1(A) ∩ N̂ c ∩ (X̂−1(A))c = ∅: Without loss of generality, assume that X−1(A) ∩ N̂ c

is not empty and contains some ω̃. By (7.124) and Lemma 2.1, X̂ (ω̃) ∈ X (ω̃) ⊗s Ω
s ⊂ A, i.e., ω̃ ∈ X̂−1(A). So

X−1(A) ∩ N̂ c ⊂ X̂−1(A), which shows that X−1(A) ∩ N̂ c ∩ (X̂−1(A))c = ∅, proving the claim. It then follows that

X−1(A)∩(X̂−1(A))c ⊂ N̂ . Exchanging the role of X−1(A) and X̂−1(A) gives that X̂−1(A)∩(X−1(A))c ⊂ N̂ . Hence,

X−1(A)∆X̂−1(A) ∈ N
t
, ∀A ∈ F t

s. (7.125)
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Multiplying 1Ã0
to the SDE (6.2) for X = Xt,ω,µ and X̂ = Xt,ω,µ̂ over period [s, T ] yields that

1Ã0
(Xr −Xs) =

∫ r

s

1Ã0
bt,ω(r′,1Ã0

X , µr′) dr
′ +

∫ r

s

1Ã0
µr′ dB

t
r′ , r ∈ [s, T ],

and 1Ã0
(X̂r − X̂s) =

∫ r

s

1Ã0
bt,ω(r′,1Ã0

X̂ , µ̂r′) dr
′ +

∫ r

s

1Ã0
µ̂r′ dB

t
r′

=

∫ r

s

1Ã0
bt,ω(r′,1Ã0

X̂ , µr′) dr
′ +

∫ r

s

1Ã0
µr′ dB

t
r′ , r ∈ [s, T ].

By (7.124),
{
1Ã0

Xr

}
r∈[s,T ]

and
{
1Ã0

X̂r

}
r∈[s,T ]

satisfy the same SDE:

X ′
r = 1Ã0

Xs +

∫ r

t

1Ã0
bt,ω(r′, X ′,1Ã0

µr′) dr
′ +

∫ r

t

1Ã0
µr′ dB

t
r′ , r ∈ [s, T ].

Similar to (6.2), this SDE admits a unique solution. So it holds Pt
0−a.s. on Ã0 that

Xr = X̂r, ∀ r ∈ [s, T ]. (7.126)

Let j = 1, · · ·, λ. Proposition 6.1, (7.124) and (7.123) show that for all ω̃ ∈ Ãj except on an Nj ∈ N
t

X̂ s,ω̃ = Xs,ω⊗tX̂ (ω̃),µ̂s,ω̃

+ X̂s(ω̃) = Xs,ω⊗tX (ω̃),µj

+ Xs(ω̃), (7.127)

where we used the fact that Xs,ω⊗tX̂ (ω̃),µ̂s,ω̃

depends only on ω ⊗t X̂ (ω̃)
∣∣
[0,s]

. Lemma 2.5 (1), an analogy to (7.78)

and the continuity of X imply that for all ω̃ ∈ Ωt except on an N̂ ′ ∈ N
t

N̂ s,ω̃ ∈ N
s

and Ps
0

{
ω̂ ∈ Ωs : Xr(ω̃ ⊗s ω̂) = Xr(ω̃), ∀ r ∈ [t, s]

}
= 1. (7.128)

Set Ñj := Nj ∪ N̂ ′ ∈ N
t
. Given ω̃ ∈ Ãj ∩ Ñ c

j , since

{
ω̂ ∈ Ωs : Xr(ω̃ ⊗s ω̂) 6= X̂r(ω̃ ⊗s ω̂) for some r ∈ [t, s]

}
= {ω̂ ∈ Ωs : ω̃ ⊗s ω̂ ∈ N̂} = N̂ s,ω̃ ∈ N

s
,

we can deduce from (7.127) and (7.128) that for all ω̂ ∈ Ωs except on some Nω̃∈N
s

X̂r(ω̃ ⊗s ω̂) = 1{r∈[t,s)}Xr(ω̃ ⊗s ω̂) + 1{r∈[s,T ]}

(
Xs,ω⊗tX (ω̃),µj

r (ω̂) + Xs(ω̃)
)

=1{r∈[t,s)}Xr(ω̃)+1{r∈[s,T ]}

(
Xs,ω⊗tX (ω̃),µj

r (ω̂)+Xs(ω̃)
)
=
(
X (ω̃)⊗sX

s,ω⊗tX (ω̃),µj

(ω̂)
)
(r), ∀ r∈ [t, T ]. (7.129)

For any A∈F t
T , applying (7.125) with A=A0, we can deduce from (7.117), (7.124) and (7.126) that

P̂(A ∩ A0) = Pt
0

(
X̂−1(A ∩ A0)

)
= Pt

0

(
X̂−1(A) ∩ X̂−1(A0)

)
= Pt

0

(
X̂−1(A) ∩ X−1(A0)

)
= Pt

0

(
X̂−1(A) ∩ Ã0

)

= Pt
0

{
ω̃ ∈ Ã0 : X̂ (ω̃) ∈ A

}
= Pt

0

{
ω̃ ∈ Ã0 : X (ω̃) ∈ A

}
= Pt

0

(
X−1(A) ∩ Ã0

)
= Pt

0

(
X−1(A) ∩ X−1(A0)

)

= Pt
0

(
X−1(A ∩ A0)

)
= P(A ∩ A0).

On the other hand, for any A ∈ F t
s and j = 1, · · ·, λ, applying (7.125) with A = A ∩ Aj yields that

P̂(A ∩ Aj) = Pt
0

(
X̂−1(A ∩Aj)

)
= Pt

0

(
X−1(A ∩ Aj)

)
= P(A ∩ Aj).

(2c) In the last step, we use the continuity (3.1) of Y and the estimates (6.3) of Xt,ω,µ to verify (3.4) for P̂.

Fix j = 1, · · ·, λ. We set (Pj , pj ,X j ,Wj) :=
(
Ps,ω⊗tω̃j ,µ

j

, ps,ω⊗tω̃j ,µ
j

, Xs,ω⊗tω̃j ,µ
j

,W s,ω⊗tω̃j ,µ
j)
. Similar to (7.97),

it holds for all ω̂ ∈ Ωs except on a Ps
0−null set NX j that

Bs
r(ω̂) = Wj

r

(
X j(ω̂)

)
, ∀ r ∈ [s, T ]. (7.130)

Set AX j := {ω̂′ ∈ Ωs : N c
X j ∩(X j)−1(ω̂′) 6= ∅} and Fj

r := σ
(
Fs

r ∪ N pj
)
⊂ GX j

r , ∀ r ∈ [s, T ]. The process W̃j
r (ω̂) :=

1{ω̂∈A
Xj }Wj

r (ω̂), ∀ (r, ω̂)∈ [s, T ]×Ωs is adapted to the filtration {Fj
r}r∈[s,T ] and all its paths belong to Ωs.
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By Proposition 2.1 (2) and Remark 3.1 (1), the shifted process Yr := Y t,ω
r , r ∈ [t, T ] as defined in (7.17) is

Ft−adapted and its paths are all RCLL. Then (6.6) implies that Y
(
X̂
)
is an F

t−adapted process whose paths are

all RCLL. Applying Lemma A.4 (3) with (P, X) = (Pt
0, B

t) shows that Y
(
X̂
)
has an (Ft,Pt

0)−version Y , which is

Ft−progressively measurable process with NY := {ω̃∈Ωt : Yr(ω̃) 6=Yr

(
X̂ (ω̃)

)
for some r∈ [t, T ]}∈N

t
. By Lemma

2.5 (1), it holds for all ω̃ ∈ Ωt except on an ÑY ∈ N
t
that N s,ω̃

Y ∈ N
s
.

Fix A ∈ F t
s, τ ∈ T t

s and set τ̂ = τ
(
X̂
)
. For any r ∈ [s, T ], since Ar := {τ ≤ r} ∈ F t

r , (6.6) shows that

{τ̂ ≤ r} =
{
ω̃ ∈ Ωt : τ

(
X̂ (ω̃)

)
≤ r

}
= {ω̃ ∈ Ωt : X̂ (ω̃) ∈ Ar} = X̂−1(Ar) ∈ F t

r, namely τ̂ ∈ T t

s.

By Lemma 2.5 (3), it holds for all ω̃∈Ωt except on a Nτ ∈ N
t
that τ̂s,ω̃ ∈ T s

.

For any ω̃ ∈ N c
Y , we have

Y (r, ω̃) = Y
(
r, X̂ (ω̃)

)
, ∀ r ∈ [t, T ]. (7.131)

In particular, taking r= τ̂ (ω̃) gives that Yτ̂ (ω̃)=Y
(
τ̂(ω̃), ω̃

)
=Y

(
τ̂(ω̃), X̂ (ω̃)

)
=Y

(
τ
(
X̂ (ω̃)

)
, X̂ (ω̃)

)
=Yτ

(
X̂ (ω̃)

)
. So

E
P̂

[
1A∩AjY

t,ω
τ

]
= E

P̂

[
1A∩AjYτ

]
= Et

[
1X̂−1(A∩Aj)

Yτ

(
X̂
)]

= Et

[
1X̂−1(A∩Aj)

Yτ̂

]
. (7.132)

Also, one can deduce from (7.131), Lemma 6.2 and (3.2) that

Et[Y∗] = Et

[
Y∗

(
X̂
)]

= E
P̂

[
Y∗

]
= E

P̂

[
Y t,ω
∗

]
< ∞. (7.133)

Since X̂−1(A∩Aj) ∈ F t

s by (6.6) and since Yτ̂ ∈ L1(F t

T ,P
t
0) by (7.133), applying Lemma A.4 (1) and Proposition

2.3 with (P, X, ξ)=
(
Pt
0, B

t,Yτ̂

)
as well as using (7.125) with A=A ∩ Aj , we can deduce from (7.132), Lemma 2.4

and (7.116) that

E
P̂

[
1A∩AjY

t,ω
τ

]
= Et

[
1X̂−1(A∩Aj)

Yτ̂

]
= Et

[
1X̂−1(A∩Aj)

Et

[
Yτ̂

∣∣F t

s

]]
=Et

[
1X−1(A∩Aj)Et

[
Yτ̂

∣∣F t
s

]]

= Et

[
1{ω̃∈X−1(A)∩AX

j }Es

[
(Yτ̂ )

s,ω̃
]]
=Et

[
1{ω̃∈X−1(A)∩AX

j ∩Ãj}
Es

[
(Yτ̂ )

s,ω̃
]]
. (7.134)

Let ω̃ ∈ AX
j ∩ Ãj ∩ Ñ c

j ∩ Ñ c
Y ∩ N c

τ . Then one has

{
ω̂ ∈ Ωs : Yr(ω̃ ⊗s ω̂) 6= Yr

(
X̂ (ω̃ ⊗s ω̂)

)
for some r ∈ [t, T ]

}
= {ω̂ ∈ Ωs : ω̃ ⊗s ω̂ ∈ NY } = N s,ω̃

Y ∈ N
s
. (7.135)

For any ω̂ ∈Ωs except on N s,ω̃
Y ∪NX j ∪Nω̃ ∈N

s
, similar to (7.106), we see that X j(ω̂)∈AX j , and can deduce

from (7.130) that ω̂=Bs(ω̂)=Wj
(
X j(ω̂)

)
=W̃j

(
X j(ω̂)

)
. Then (7.135), (7.129) and (3.1) imply that

(Yτ̂ )
s,ω̃(ω̂) = Y

(
τ̂ (ω̃ ⊗s ω̂), ω̃ ⊗s ω̂

)
= Y

(
τ̂s,ω̃(ω̂), X̂ (ω̃ ⊗s ω̂)

)
= Y

(
ζω̃

(
X j(ω̂)

)
, ω ⊗t

(
X (ω̃)⊗s X

s,ω⊗tX (ω̃),µj

(ω̂)
))

≤ Y
(
ζω̃

(
X j(ω̂)

)
, ω ⊗t

(
X (ω̃)⊗s X j(ω̂)

))
+ ρ0

(
∆Xj

ω̃(ω̂)
)
= Y

s,ω⊗tX (ω̃)
ζω̃

(
X j(ω̂)

)
+ ρ0

(
∆Xj

ω̃(ω̂)
)

≤Y
s,ω⊗tX (ω̃)
ζω̃

(
X j(ω̂)

)
+1{

∆Xj
ω̃
(ω̂)≤δ1/2

}ρ0
(
δ1/2

)
+1{

∆Xj
ω̃
(ω̂)>δ1/2

}κδ−1/2
(
∆Xj

ω̃(ω̂)+
(
∆Xj

ω̃(ω̂)
)̟+1

)
, (7.136)

where ζω̃(ω̂
′) := τ̂s,ω̃

(
W̃j(ω̂′)

)
, ∀ ω̂′ ∈ Ωs and ∆Xj

ω̃(ω̂) :=
∥∥Xs,ω⊗tX (ω̃),µj

(ω̂)−X j(ω̂)
∥∥
s,T

.

For any r ∈ [s, T ], as Ãr := {τ̂s,ω̃ ≤ r} ∈Fs

r, an analogy to (7.108) shows that
{
ζω̃ ≤ r

}
=

{
ω̂ ∈ Ωs : W̃j(ω̂) ∈

Ãr

}
= (W̃j)−1(Ãr) ∈ Fj

r. So ζω̃ is a Fj−stopping time.

Given ε > 0, similar to (7.26), there exists some ζ′ω̃ ∈ T s such that

Epj

[∣∣Y s,ω⊗tX (ω̃)
ζ′

ω̃
− Y

s,ω⊗tX (ω̃)
ζω̃

∣∣
]
< ε. (7.137)

As ω̃∈AX
j =X−1(Aj), i.e. X (ω̃)∈Aj ⊂Os

δj
(ω̃j), we see that ‖ω⊗tX (ω̃)−ω⊗tω̃j‖0,s=‖X (ω̃)−ω̃j‖t,s<δj≤δ. It then

follows from (7.136) and (6.3) that

Es

[
(Yτ̂ )

s,ω̃
]
≤Es

[
Y

s,ω⊗tX (ω̃)
ζω̃

(
X j

)]
+ρ0

(
δ1/2

)
+κδ−1/2

(
C1T ‖ω⊗tX (ω̃)−ω⊗tω̃j‖0,s+C̟+1T

̟+1‖ω⊗tX (ω̃)−ω⊗tω̃j‖̟+1
0,s

)

≤Epj

[
Y

s,ω⊗tX (ω̃)
ζω̃

]
+ρ0

(
δ1/2

)
+κ

(
C1Tδ

1/2+C̟+1T
̟+1δ̟+1/2

)
≤ Epj

[
Y

s,ω⊗tX (ω̃)
ζ′

ω̃

]
+ρ̂0(δ)+ε, (7.138)
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where ρ̂(δ) := ρ0
(
δ1/2

)
+κ

(
C1Tδ

1/2+C̟+1T
̟+1δ̟+1/2

)
. Since ζ′ω̃ ∈ T s, the F−adaptedness of Y and Proposition

2.1 (2) show that Y
s,ω⊗tX (ω̃)
ζ′

ω̃
∈ Fs

T , and thus

Epj

[
Y

s,ω⊗tX (ω̃)
ζ′

ω̃

]
= EPj

[
Y

s,ω⊗tX (ω̃)
ζ′

ω̃

]
≤ sup

ζ∈T s

EPj

[
Y

s,ω⊗tX (ω̃)
ζ

]
. (7.139)

Then plugging (7.138) into (7.134), we can deduce from (7.116) and Lemma A.12 (1) that

E
P̂

[
1A∩AjY

t,ω
τ

]
≤Et

[
1{ω̃∈X−1(A)∩X−1(Aj)∩Ãj}

(
sup
ζ∈T s

EPj

[
Y

s,ω⊗tX (ω̃)
ζ

]
+ρ̂0(δ)+ε

)]

=Et

[
1{ω̃∈X−1(A∩Aj)}

(
sup
ζ∈T s

EPj

[
Y

s,ω⊗tX (ω̃)
ζ

]
+ρ̂0(δ)+ε

)]
=EP

[
1{ω̃∈A∩Aj}

(
sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
+ ρ̂0(δ)+ε

)]
,

where we used the fact that the mapping ω̃ → sup
ζ∈T s

EPj

[
Y s,ω⊗tω̃
ζ

]
is continuous by Remark 3.3 (2). Letting ε → 0

and taking supremum over τ ∈T t
s , we see that (3.4) holds.

3) In this part, we still use the continuity (3.1) of Y and the estimates (6.3) of Xt,ω,µ to show that {P(t, ω)}(t,ω)∈[0,T ]×Ω

satisfies Assumption 4.1.

Let ω′ ∈ Ω. We set (X ′,P′) =
(
Xt,ω′,µ,Pt,ω′,µ

)
and δ := ‖ω′ − ω‖0,t. For any ω̃ ∈ Ωt, define ∆X(ω̃) :=

‖X ′(ω̃)−X (ω̃)‖t,T . Similar to (7.136), we can deduce from (3.1) that for any r ∈ [t, T ]

Y
(
r, ω′ ⊗t X ′(ω̃)

)
− Y

(
r, ω ⊗t X (ω̃)

)
≤ ρ0

(
‖ω′ ⊗t X ′(ω̃)− ω ⊗t X (ω̃)‖0,r

)
≤ ρ0

(
‖ω′ − ω‖0,t + ‖X ′(ω̃)−X (ω̃)‖t,r

)

≤ρ0
(
δ+∆X(ω̃)

)
≤1{∆X(ω̃)≤δ1/2}ρ0

(
δ+δ1/2

)
+1{∆X(ω̃)>δ1/2}κδ

−1/2
(
(1+2̟−1δ̟)∆X(ω̃)+2̟−1(∆X(ω̃))̟+1

)
.

Given τ ∈ T t, it follows from (6.3) that

Et

[
Y
(
τ(X ′), ω′⊗tX ′

)
−Y

(
τ(X ′), ω⊗tX

)]
≤ρ0(δ+δ1/2)+κ

(
1+2̟−1δ̟

)
C1Tδ

1/2+κ2̟−1C̟+1T
̟+1δ̟+1/2 :=ρ1(δ).

Clearly, ρ1 is a modulus of continuity function greater than ρ0. Then (7.106) implies that

EP′

[
Y t,ω′

τ

]
= Et

[
Y t,ω′

τ (X ′)
]
= Et

[
Y t,ω′(

τ(X ′),X ′
)]

= Et

[
Y
(
τ(X ′), ω′ ⊗t X ′

)]

≤ Et

[
Y
(
τ
(
X ′

)
, ω ⊗t X

))]
+ ρ1(δ)=Et

[
Y
(
τ
(
X ′

(
W̃(X )

))
, ω⊗tX

))]
+ρ1(δ)

= Et

[
Y
(
ζ(X ), ω⊗tX

)]
+ρ1(δ)=Et

[
Y t,ω
ζ (X )

]
+ρ1(δ)=Ep

[
Y t,ω
ζ

]
+ρ1(δ), (7.140)

where ζ := τ
(
X ′(W̃)

)
. For any r ∈ [t, T ], as Âr := {τ ≤ r} ∈ F t

r, (6.6) shows that (X ′)−1(Âr) ∈ F t

r. Then (7.108)

implies

{ζ ≤ r} =
{
ω̃ ∈ Ωt : X ′

(
W̃(ω̃)

)
∈ Âr

}
= W̃−1

(
(X ′)−1(Âr)

)
∈ Fr.

So ζ is a F−stopping time. Given ε> 0, similar to (7.137) and (7.139), there exists a ζ′ ∈T t such that Ep

[∣∣Y t,ω
ζ′ −

Y t,ω
ζ

∣∣
]
<ε and Ep

[
Y t,ω
ζ′

]
=EP

[
Y t,ω
ζ′

]
≤ sup

τ ′∈T t

EP

[
Y t,ω
τ ′

]
, which together with (7.140) shows that

EP′

[
Y t,ω′

τ

]
≤Ep

[
Y t,ω
ζ

]
+ρ1(δ)≤ sup

τ ′∈T t

EP

[
Y t,ω
τ ′

]
+ρ1(δ)+ε.

Letting ε → 0, taking supremum over τ ∈ T t on the left-hand-side and then taking infimum over µ ∈ Ut yield that

Zt(ω
′) = inf

µ∈Ut

sup
τ∈T t

EPt,ω′,µ

[
Y t,ω′

τ

]
≤ inf

µ∈Ut

sup
τ ′∈T t

EPt,ω,µ

[
Y t,ω
τ ′

]
+ρ1

(
‖ω′−ω‖0,t

)
= Zt(ω)+ρ1

(
‖ω′−ω‖0,t

)
.

Exchanging the roles of ω′ and ω shows that {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies Assumption 4.1.

4) In last part of the proof, we use the estimates (6.3) once again to show that {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies As-

sumption 4.2.
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There exists a constant C̟̃ depending on ̟ and T such that ρ1(δ) ≤ κC̟̃(1 + δ̟+1/2), ∀ δ > 0. Let α > ‖ω‖0,t
and δ ∈ (0, T ]. We can deduce from (6.4) that

EP

[
ρ1

(
δ+2 sup

r∈[t,(t+δ)∧T ]

∣∣Bt
r

∣∣
)]

= Et

[
ρ1

(
δ+2 sup

r∈[t,(t+δ)∧T ]

∣∣Xr

∣∣
)]

≤ ρ1(δ + 2δ1/4) + κC̟̃Et

[
1{

sup
r∈[t,(t+δ)∧T ]

|Xr|>δ1/4
}
(
1 + 2̟−1/2δ̟+1/2 + 22̟ sup

r∈[t,(t+δ)∧T ]

∣∣Xr

∣∣̟+1/2
)]

≤ ρ1(δ + 2δ1/4) + κC̟̃δ−1/4Et

[(
1 + 2̟−1/2δ̟+1/2

)
sup

r∈[t,(t+δ)∧T ]

∣∣Xr

∣∣+ 22̟ sup
r∈[t,(t+δ)∧T ]

∣∣Xr

∣∣̟+3/2
)]

≤ ρ1(δ + 2δ1/4) + κC̟̃

(
1 + 2̟−1/2δ̟+1/2

)
ϕ1(α) δ

1/4 + κC̟̃22̟ϕ̟+ 3
2
(α) δ̟/2+1/2 := ρα(δ).

Clearly, ρα is a modulus of continuity function. Hence, {P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies Assumption 4.2. �

A Appendix: Technical Lemmata

Lemma A.1. Let 0 ≤ t ≤ s ≤ S ≤ T < ∞. The mapping Πt,T
s,S is continuous (under the uniform norms) and is

F t,T
r

/
Fs,S

r −measurable for any r ∈ [s, S]. The law of Πt,T
s,S under P

t,T
0 is exactly P

s,S
0 , i.e.,

P
t,T
0

((
Πt,T

s,S

)−1
(A)

)
= P

s,S
0 (A), ∀A ∈ Fs,S

S . (A.1)

It also holds for any r∈ [s, S] and τ ∈T s,S
r that τ

(
Πt,T

s,S

)
∈T t,T

r .

Proof: For simplicity, let us denote Πt,T
s,S by Π.

1) We first show the continuity of Π. Let A be an open subset of Ωs,S . Given ω ∈Π−1(A), since Π(ω)∈A, there

exist a δ>0 such that Oδ

(
Π(ω)

)
=
{
ω̃∈Ωs,S : ‖ω̃−Π(ω)‖s,S<δ

}
⊂A. For any ω′∈Oδ/2(ω), one can deduce that

∥∥Π(ω′)−Π(ω)
∥∥
s,S

≤
∣∣ω′(s)− ω(s)

∣∣+
∥∥ω′ − ω

∥∥
s,S

≤ 2‖ω′ − ω‖t,T < δ,

which shows that Π(ω′) ∈ Oδ

(
Π(ω)

)
⊂ A or ω′ ∈ Π−1(A). Hence, Π−1(A) is an open subset of Ωt,T .

Let r ∈ [s, S]. For any s′ ∈ [s, r] and E ∈ B(Rd), one can deduce that

Π−1
((

Bs,S
s′

)−1
(E)

)
=
{
ω ∈ Ωt,T : Bs,S

s′

(
Π(ω)

)
∈E

}
=
{
ω ∈ Ωt,T : ω(s′)−ω(s)∈E

}
=(Bt,T

s′ −Bt,T
s )−1(E)∈F t,T

r . (A.2)

Thus all the generating sets of Fs,S
r belong to Λ :=

{
A ⊂ Ωs,S : Π−1(A) ∈ F t,T

r

}
, which is clearly a σ−field of Ωs,S .

It follows that Fs,S
r ⊂ Λ, i.e., Π−1(A) ∈ F t,T

r for any A ∈ Fs,S
r .

2) Next, let us show that the induced probability P̃ := P
t,T
0 ◦Π−1 equals to P

s,S
0 on Fs,S

S : Since the Wiener measure

on
(
Ωs,S ,B(Ωs,S)

)
is unique (see e.g. Proposition I.3.3 of [31]), it suffices to show that the canonical process Bs,S is

a Brownian motion on Ωs,S under P̃: Let s ≤ r ≤ r′ ≤ S. For any E ∈ B(Rd), similar to (A.2), one can deduce that

Π−1
((
Bs,S

r′ −Bs,S
r

)−1
(E)

)
= (Bt,T

r′ −Bt,T
r )−1(E). (A.3)

Thus, P̃
((

Bs,S
r′ −Bs,S

r

)−1
(E)

)
= P

t,T
0

(
Π−1

((
Bs,S

r′ −Bs,S
r

)−1
(E)

))
= P

t,T
0

(
(Bt,T

r′ −Bt,T
r )−1(E)

)
, which shows that the

distribution of Bs,S
r′ −Bs,S

r under P̃ is the same as that of Bt,T
r′ −Bt,T

r under Pt,T
0 (a d−dimensional normal distribution

with mean 0 and variance matrix (r′ − r)Id×d).

On the other hand, for any A ∈ Fs,S
r , since Π−1(A) belongs to F t,T

r , its independence from Bt,T
r′ −Bt,T

r under

P
t,T
0 and (A.3) yield that for any E ∈ B(Rd)

P̃

(
A ∩

(
Bs,S

r′ −Bs,S
r

)−1
(E)

)
= P

t,T
0

(
Π−1(A) ∩ Π−1

((
Bs,S

r′ −Bs,S
r

)−1
(E)

))

= P
t,T
0

(
Π−1(A)

)
· Pt,T

0

(
Π−1

((
Bs,S

r′ −Bs,S
r

)−1
(E)

))
= P̃(A) · P̃

((
Bs,S

r′ −Bs,S
r

)−1
(E)

)
.
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Hence, Bs,S
r′ −Bs,S

r is independent of Fs,S
r under P̃.

3) Now, let r ∈ [s, S] and τ ∈ T s,S
r . For any r′ ∈ [r, S], as Ã := {ω̃ ∈ Ωs,S : τ(ω̃) ≤ r′} ∈ Fs,S

r′ , one can deduce that{
ω ∈ Ωt,T : τ

(
Πt,T

s,S(ω)
)
≤ r′

}
=

{
ω ∈ Ωt,T : Πt,T

s,S(ω) ∈ Ã
}
=

(
Πt,T

s,S

)−1
(Ã) ∈ F t,T

r′ . So τ
(
Πt,T

s,S

)
∈ T t,T

r . �

Lemma A.2. Let t ∈ [0, T ]. For any s∈ [t, T ], the σ−field F t
s is countably generated by

C
t
s :=

{
m∩
i=1

(
Bt

ti

)−1(
Oλi(xi)

)
: m ∈ N, ti ∈ Q with t ≤ t1 ≤ · · · ≤ tm ≤ s, xi ∈ Qd, λi ∈ Q+

}
.

Proof: For any s ∈ [t, T ], it is clear that σ
(
C t
s

)
⊂ σ

{(
Bt

r

)−1
(E) : r ∈ [t, s], E ∈ B(Rd)

}
= F t

s. To see the reverse,

we fix r ∈ [t, s]. For any x ∈ Qd and λ ∈ Q+, let {sj}j∈N ⊂ (r, s) ∩Q with lim
j→∞

↓ sj = r. The continuity of paths in

Ωt implies that

(
Bt

r

)−1(
Oλ(x)

)
=

∞∪
n=⌈ 2

λ ⌉
∪

m∈N
∩

j>m

((
Bt

sj

)−1(
Oλ− 1

n
(x)

))
∈ σ

(
C

t
s

)
,

which shows that O :=
{
Oλ(x) : x∈Qd, λ∈Q+

}
⊂Λr :=

{
E ⊂Rd :

(
Bt

r

)−1
(E)∈σ

(
C t
s

)}
. Clearly, O generates B(Rd)

and Λr is a σ−field of Rd. So one has B(Rd)⊂Λr. Then F t
s=σ

{(
Bt

r

)−1
(E) : r∈ [t, s], E ∈B(Rd)

}
⊂σ

(
C t
s

)
. �

Lemma A.3. Let 0 ≤ t ≤ s ≤ T . For any r ∈ [s, T ], The mapping Πt
s is further F t

r

/
Fs

r−measurable: i.e.

(Πt
s)

−1(A) ∈ F t

r, ∀A ∈ Fs

r.

Proof: Let r ∈ [s, T ] and A ∈ Fs

r. By e.g. Problem 2.7.3 of [19], there exists a A′ ∈ Fs
r such that A∆A′ ∈ N

s
, i.e.

A∆A′ ⊂ N for some N ∈ Fs
T with Ps

0(N ) = 0. Since (Πt
s)

−1(N ) ∈ F t
T by Lemma A.1 and since

(1(Πt
s)

−1(N ))
s,ω(ω̃) = 1{ω⊗sω̃∈(Πt

s)
−1(N )} = 1{Πt

s(ω⊗sω̃)∈N} = 1{ω̃∈N} = 1N (ω̃), ∀ω ∈ Ωt, ∀ ω̃ ∈ Ωs,

Lemma 2.4 and Proposition 2.2 (1) imply that

Pt
0

(
(Πt

s)
−1(N )

)
=Et

[
1(Πt

s)
−1(N )

]
=Et

[
Et

[
1(Πt

s)
−1(N )|F t

s

]]
=Et

[
Es

[
(1(Πt

s)
−1(N ))

s,ω
]]
=Et

[
Ps
0(N )

]
=Ps

0(N )=0.

It follows that (Πt
s)

−1(A)∆ (Πt
s)

−1(A′) = (Πt
s)

−1(A∆A′) ∈ N
t
. As Lemma A.1 also shows that (Πt

s)
−1(A′) ∈ F t

r,

one can deduce that (Πt
s)

−1(A) ∈ F t

r. �

Lemma A.4. Given t∈ [0, T ] and d̃, d̃′ ∈ N, let P be a probability on
(
Ωt,B(Ωt)

)
and let {Xs}s∈[t,T ] be an Rd̃−valued,

FP−adapted process.

1 ) For any s ∈ [t, T ] and any Rd̃′−valued, FX,P
T −measurable random variable ξ with EP

[
|ξ|

]
< ∞, EP

[
ξ
∣∣FX,P

s

]
=

EP

[
ξ
∣∣FX

s

]
, P−a.s.

2 ) For any s∈ [t, T ] and any Rd̃′−valued, FX,P
s −measurable random variable ξ, there exists an Rd̃′−valued, FX

s −measurable

random variable ξ̃ such that ξ̃=ξ, P−a.s.

3 ) For any Rd̃′−valued, FX,P−adapted process {Ks}s∈[t,T ] with P−a.s. right-continuous paths, there exists an Rd̃′−valued,

FX−progressively measurable process {K̃s}s∈[t,T ] such that
{
ω ∈ Ωt : K̃s(ω) 6= Ks(ω) for some s ∈ [t, T ]

}
∈ N P.

We call K̃ the (FX ,P)−version of K.

Proof: 1) Let s∈ [t, T ] and let ξ be an Rd̃′−valued, FX,P
T −measurable random variable with EP

[
|ξ|

]
< ∞. For any

A∈FX,P
s , similar to Problem 2.7.3 of [19], there exists an Ã ∈ FX

s such that A∆ Ã ∈ N P. Thus we can deduce that∫
A
ξdP=

∫
Ã
ξdP=

∫
Ã
EP

[
ξ
∣∣FX

s

]
dP=

∫
A
EP

[
ξ
∣∣FX

s

]
dP, which implies that EP

[
ξ
∣∣FX,P

s

]
=EP

[
ξ
∣∣FX

s

]
, P−a.s.

2) Let s∈ [t, T ] and let ξ be an Rd̃′−valued, FX,P
s −measurable random variable. We first assume d̃′ = 1. For any

n ∈ N, we set ξn := (ξ ∧ n) ∨ (−n) ∈ FX,P
s and see from part (1) that ξ̃n := EP

[
ξn
∣∣FX

s

]
= EP

[
ξn
∣∣FX,P

s

]
= ξn,

P−a.s. Clearly, the random variable ξ̃ :=
(
lim
n→∞

ξ̃n

)
1{

lim
n→∞

ξ̃n<∞
} is FX

s −measurable and satisfies ξ̃ = lim
n→∞

ξn = ξ,

P−a.s. When d̃′ > 1, let ξi be the i-th component of ξ, i = 1, · · · , d̃′. We denote by ξ̃i the real-valued, FX
s −measurable
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random variable such that ξ̃i = ξi, P−a.s. Then ξ̃ = (ξ̃1, · · · , ξ̃d̃′

) is an Rd̃′−valued, FX
s −measurable random variable

such that ξ̃ = ξ, P−a.s.

3) Let {Ks}s∈[t,T ] be an Rd̃′−valued, FX,P−adapted process with P−a.s. right-continuous paths. Like part (2), it

suffices to discuss the case of d̃′ = 1. For any s ∈ Qt,T := {s ∈ [t, T ] : s − t ∈ Q} ∪ {T }, part (2) shows that there
exists a real-valued, FX

s −measurable random variable Ks such that Ks = Ks, P−a.s. Set N :=
{
ω ∈Ωt : the path

K·(ω) is not right-continuous
}
∪
(

∪
s∈Qt,T

{Ks 6=Ks}
)
∈ N P. Since

K̃n
s := Kt1{s=t} +

⌈n(T−t)⌉∑

i=1

K(t+ i
n )∧T1{s∈(t+ i−1

n ,(t+ i
n )∧T ]}, s ∈ [t, T ]

is a real−valued, FX−progressively measurable process for any n ∈ N, we see that K̃s :=
(
lim
n→∞

K̃n
s

)
1{

lim
n→∞

Kn
s <∞

},

s ∈ [t, T ] also defines a real−valued, FX−progressively measurable process.

Let ω ∈ N c and s ∈ (t, T ]. For any n ∈ N, since s ∈ (sn − 1
n , sn ∧ T ] with sn := t +

⌈n(s− t)⌉
n

, one has

K̃n
s (ω) = Ksn∧T (ω) = Ksn∧T (ω). Clearly, lim

n→∞
sn ∧ T = s. As n → ∞, the right-continuity of K shows that

lim
n→∞

K̃n
s (ω) = lim

n→∞
Ksn∧T (ω) = Ks(ω), which implies that N c ⊂

{
ω ∈ Ωt : K̃s(ω) = Ks(ω), ∀ s ∈ [t, T ]

}
. �

Lemma A.5. Let 0 ≤ t ≤ r ≤ s ≤ T < ∞. For any A ∈ F t
r, Ã := Πt,T

t,s (A) =
{
Πt,T

t,s (ω) : ω ∈ A
}
belongs to F t,s

r and

satisfies
(
Πt,T

t,s

)−1
(Ã) = A. Then Πt,T

t,s induces an one-to-one correspondence between F t
r and F t,s

r .

Proof: Let Λ :=
{
A ∈ F t

r : Πt,T
t,s (A) ∈ F t,s

r

}
. Clearly, Πt,T

t,s (∅) = ∅ and Πt,T
t,s (Ω

t) = Ωt,s, so ∅,Ωt ∈ Λ. Given A ∈ Λ, if

Πt,T
t,s (A) intersected Πt,T

t,s (A
c) at some ω̃ ∈ Ωt,s, there would exist ω ∈ A and ω′ ∈ Ac such that ω̃ = ω

∣∣
[t,s]

= ω′
∣∣
[t,s]

.

It would then follow from Lemma 2.1 that ω′ ∈ ω ⊗r Ω
r ⊂ A, a contradiction appears. So Πt,T

t,s (A) ∩ Πt,T
t,s (A

c) = ∅.
On the other hand, for any ω̃ ∈ Ωt,s, the continuous path

ω(s′) := ω̃(s′ ∧ s), s′ ∈ [t, T ] (A.4)

is either in A or in Ac, which shows that ω̃ = Πt,T
t,s (ω) ∈ Πt,T

t,s (A) ∪ Πt,T
t,s (A

c). So Πt,T
t,s (A

c) = Ωt,s
∖
Πt,T

t,s (A) ∈ F t,s
r ,

i.e., Ac ∈ Λ. For any {An}n∈N ⊂ Λ, as Πt,T
t,s

(
∪

n∈N
An

)
= ∪

n∈N
Πt,T

t,s (An) ∈ F t,s
r , we see that ∪

n∈N
An ∈ Λ. Hence, Λ is a

σ−field of Ωt.

Let r′ ∈ [t, r] and ε ∈ B(Rd). For any ω̃ ∈ (Bt,s
r′ )

−1(E), we set the path ω ∈ Ωt as in (A.4). Since Bt
r′(ω) =

ω(r′) = ω̃(r′) =Bt,s
r′ (ω̃)∈ E , one can deduce that ω̃ =Πt,T

t,s (ω)∈Πt,T
t,s

(
(Bt

r′)
−1(E)

)
. On the other hand, for any ω̃′ ∈

Πt,T
t,s

(
(Bt

r′)
−1(E)

)
, there exists ω′∈

(
Bt

r′

)−1
(E) such that ω̃′=Πt,T

t,s (ω
′). So Bt,s

r′ (ω̃
′) = ω̃′(r′) = ω′(r′) = Bt

r′(ω
′) ∈ E ,

i.e., ω̃′ ∈
(
Bt,s

r′

)−1
(E). Then Πt,T

t,s

(
(Bt

r′)
−1(E)

)
=(Bt,s

r′ )
−1(E) ∈ F t,s

r , which shows that all the generating sets of F t
r

belong to Λ. It follows that Λ = F t
r. Moreover, for any Ã′ ∈ F t,s

r , since Πt,T
t,s is F t

r

/
F t,s

r −measurable by Lemma A.1,

one has A′ =
(
Πt,T

t,s

)−1
(Ã′) ∈ F t

r and Πt,T
t,s (A

′) = Ã′. Hence we can then regard Πt,T
t,s as a surjective mapping from

F t
r to F t,s

r .

Next, let A ∈ F t
r and set Ã := Πt,T

t,s (A). Clearly, A ⊂
(
Πt,T

t,s

)−1
(Ã). For any ω ∈

(
Πt,T

t,s

)−1
(Ã), Πt,T

t,s (ω) ∈
Ã = Πt,T

t,s (A). So there exists a ω′ ∈ A such that Πt,T
t,s (ω) = Πt,T

t,s (ω
′). Applying Lemma 2.1 again yields that

ω∈ω′⊗rΩ
r⊂A. Thus A=

(
Πt,T

t,s

)−1
(Ã), which implies that the mapping Πt,T

t,s from F t
r to F t,s

r is also injective. �

Lemma A.6. For any 0 ≤ t ≤ T < ∞, B(Ωt) = σ(Θt
T ) = σ

{
Oδ(ω̂

t
j) : δ ∈ Q+, j ∈ N

}
.

Proof: We only need to show that any open subset O of Ωt under ‖ · ‖t,T is a union of some open balls in Θt
T :

For any j ∈ N, if ω̂t
j /∈ O, we set Oj := ∅; otherwise, we choose a qj ∈ Q+ ∩ (δ̃j/2, δ̃j)

(
with δ̃j := dist

(
ω̂t
j ,Oc

)
=

inf
ω∈Oc

‖ω − ω̂t
j‖t,T

)
and set Oj := Oqj (ω̂

t
j) ⊂ Oδ̃j

(ω̂t
j) ⊂ O. Given ω ∈ O, let δ := dist

(
ω,Oc

)
. There exists an J ∈ N

such that ω̂t
J ∈ Oδ/3(ω) ⊂ O. As dist

(
ω̂t
J ,Oc

)
≥ dist

(
ω,Oc

)
−

∥∥ω̂t
J − ω

∥∥
t,T

> 2
3δ, we see that q

J
> δ

J
/2 > δ/3 and

thus ω ∈ Oδ/3

(
ω̂t
J

)
⊂ Oq

J
(ω̂t

J) = OJ . It follows that O = ∪
j∈N

Oj . �
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Lemma A.7. Given 0 ≤ t ≤ T < ∞, let P be a probability on
(
Ωt,B(Ωt)

)
. For any A ∈ B(Ωt) and ε > 0, there

exist a closed subset F and an open subset O of Ωt such that F ⊂ A ⊂ O and that P(A\F ) ∨ P(O\A) < ε.

Proof: Let Λ := {A ∈ B(Ωt) : for any ε > 0, there exist a closed F and an open O of Ωt such that F ⊂ A ⊂ O

and that P(A\F ) ∨ P(O\A) < ε}. Clearly, ∅,Ωt ∈ Λ as they are both open and closed. It is also easy to see

that Ac ∈ Λ if A ∈ Λ. Given {An}n∈N ⊂ Λ, let ε > 0. For any n ∈ N, there exist a closed Fn and an open

On such that Fn ⊂ An ⊂ On and that P(An\Fn) ∨ P(On\An) < ε2−(1+n). The open set O := ∪
n∈N

On contains

Ã := ∪
n∈N

An and satisfies P(O\Ã) ≤ ∑
n∈N

P(On\Ã) ≤
∑
n∈N

P(On\An) < ε/2. Similarly, it holds for Fo = ∪
n∈N

Fn that

P(Ã\Fo) ≤
∑
n∈N

P(An\Fn) < ε/2. We can find an N ∈ N such that P
( N∪

n=1
Fn

)
> P(Fo) − ε/2. Then F :=

N∪
n=1

Fn is

a closed set included in Ã such that P(Ã\F ) ≤ P(Ã\Fo) + P(Fo\F ) < ε, which shows Ã = ∪
n∈N

An ∈ Λ. Thus Λ is a

σ−field of Ωt.

For any δ ∈ Q+, j ∈ N and ε > 0, since Oδ(ω̂
t
j) = ∪

k∈N
Oδ−δ/k(ω̂

t
j), there exists a k ∈ N such that P

(
Oδ−δ/k(ω̂

t
j)
)
>

P
(
Oδ(ω̂

t
j)
)
− ε. So Θt

T =
{
Oδ(ω̂

t
j) : δ ∈ Q+, j ∈ N

}
⊂ Λ. Lemma A.6 then implies that B(Ωt) = σ(Θt

T ) ⊂ Λ ⊂
B(Ωt), proving the lemma. �

Lemma A.8. Given 0 ≤ t ≤ s ≤ T < ∞, let P be a probability on
(
Ωt,B(Ωt)

)
. For any A ∈ F t

s and ε > 0,

the countable subset Θt
s =

{
Os

δ(ω̂
t
j) : δ ∈ Q+, j ∈ N

}
of F t

s has a sequence
{
Oi

}
i∈N

such that A ⊂ ∪
i∈N

Oi and that

P(A) > P

(
∪
i∈N

Oi

)
− ε.

Proof: Let A ∈ F t
s and ε > 0. We consider the induced probability P̂ := P ◦

(
Πt,T

t,s

)−1
on

(
Ωt,s,B(Ωt,s)

)
. Since

Ã = Πt,T
t,s (A) ∈ F t,s

s by Lemma A.5, applying Lemma A.7 with T = s shows that there exists an open subset O of

Ωt,s such that Ã ⊂ O and P̂(O) − P̂(Ã) < ε.

For any j ∈ N, set ω̃j := ω̂t
j

∣∣
[t,s]

∈ Ωt,s. Given ω̃ ∈ Ωt,s and ε̃ > 0, still setting the path ω ∈ Ωt as in (A.4), we

can find an J ∈ N such that
∥∥ω − ω̂t

J

∥∥
t,T

< ε̃. It follows that ‖ω̃ − ω̃J‖t,s =
∥∥ω − ω̂t

J

∥∥
t,s

≤
∥∥ω − ω̂t

J

∥∥
t,T

< ε̃, which

shows that {ω̃j}j∈N is a dense subset of Ωt,s. Similar to the proof of Lemma A.6, one can show that O is the union

of some open balls in Θ̃ :=
{
Oδ(ω̃j) : δ ∈ Q+, j ∈ N

}
.

For any δ ∈ Q+ and j ∈ N, one can deduce that

Πt,T
t,s

(
Os

δ(ω̂
t
j)
)
=

{
Πt,T

t,s (ω) : ω ∈ Ωt, ‖ω − ω̂t
j‖t,s < δ

}
=

{
ω̃ ∈ Ωt,s : ‖ω̃ − ω̃j‖t,s < δ

}
= Oδ(ω̃j).

Since Πt,T
t,s induces an one-to-one correspondence between F t

s and F t,s
s by Lemma A.5, we see that

(
Πt,T

t,s

)−1
(Ã) = A

and Lemma A.1 implies that

(
Πt,T

t,s

)−1(
Oδ(ω̃j)

)
= Os

δ(ω̂
t
j) is an open set of Ωt. (A.5)

Thus,
(
Πt,T

t,s

)−1
(O) is the union of some sequence

{
Oi

}
i∈N

in
(
Πt,T

t,s

)−1
(Θ̃) =

{(
Πt,T

t,s

)−1(
Oδ(ω̃j)

)
: δ ∈ Q+, j ∈

N

}
= Θt

s. It follows that A =
(
Πt,T

t,s

)−1
(Ã) ⊂

(
Πt,T

t,s

)−1
(O) = ∪

i∈N
Oi and that

P(A) = P̂(Ã) > P̂(O)− ε = P

((
Πt,T

t,s

)−1
(O)

)
− ε = P

(
∪
i∈N

Oi

)
− ε. �

Lemma A.9. It holds for any ω ∈ Ω that Y∗(ω) = sup
r∈[0,T ]

∣∣Yr(ω)
∣∣ < ∞.

Proof: Let us fist show Y∗(0)<∞: Assume not, then lim
n→∞

↑
∣∣Yrn(0)

∣∣=∞ for some sequence {rn}n∈N of [0, T ], from

which one can pick up a convergent subsequence (we still denote it by {rn}n∈N) with limit r∗∈ [0, T ]. If {rn}n∈N had a

subsequence {r′n}n∈N⊂ [r∗, T ], then the RCLL property of path Y·(0) by Remark 3.1 (1) would imply that |Yr∗(0)|=
lim
n→∞

↑
∣∣Yr′n(0)

∣∣=∞. A contradiction appear. On the other hand, if {rn}n∈N had a subsequence {r̃n}n∈N ⊂ [0, r∗],

then one would have lim
n→∞

↑
∣∣Yr̃n(0)

∣∣=∞. For any n∈N, (3.1) implies that Yr̃1(0)−Yr̃n(0)≤ρ0(r̃n−r̃1)≤ρ0(r∗−r̃1).
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This together with Remark 3.1 (1) shows that Yr̃1(0)−ρ0(r∗ − r̃1)≤ lim
n→∞

Yr̃n(0)≤ Yr∗(0), which contradicts with

lim
n→∞

↑
∣∣Yr̃n(0)

∣∣=∞. Hence, Y∗(0)<∞.

Given ω∈Ω, since |Yr(ω)−Yr(0)|≤ρ0
(
‖ω‖0,r

)
, ∀ r∈ [0, T ] by (3.1), we can deduce that Y∗(ω)= sup

r∈[0,T ]

∣∣Yr(ω)
∣∣≤

sup
r∈[0,T ]

∣∣Yr(0)
∣∣+ρ0

(
‖ω‖0,T

)
=Y∗(0)+ρ0

(
‖ω‖0,T

)
<∞. �

Lemma A.10. Given 0 ≤ t≤ s≤ T and d̃ ∈ N, for any sequence {ξi}i∈N of Rd̃−valued, F t
T−measurable random

variables that converges to 0 in probability Pt
0, we can find a subsequence

{
ξ̂ i

}
i∈N

of it such that for Pt
0−a.s. ω∈Ωt,{

ξ̂ s,ω
i

}
i∈N

converges to 0 in probability Ps
0.

Proof: Let {ξi}i∈N be a sequence of Rd̃−valued, F t
T−measurable random variables that converges to 0 in probability

Pt
0, i.e.

lim
i→∞

↓ Et

[
1{|ξi|>1/n}

]
= lim

i→∞
↓ Pt

0

(
|ξi| > 1/n

)
= 0, ∀n ∈ N. (A.6)

In particular, lim
i→∞

↓ Et

[
1{|ξi|>1}

]
= 0 allows us to extract a subsequence S1 =

{
ξ1i
}
i∈N

from {ξi}i∈N such that

lim
i→∞

1{|ξ1i |>1} = 0, Pt
0−a.s. Clearly, S1 also satisfies (A.6). Then as lim

i→∞
↓ Et

[
1{|ξ1i |>1/2}

]
= 0, we can find a

subsequence S2 =
{
ξ2i
}
i∈N

of S1 such that lim
i→∞

1{|ξ2i |>1/2} = 0, Pt
0−a.s. Inductively, for each n ∈ N we can select a

subsequence Sn+1 = {ξn+1
i }i∈N of Sn = {ξni }i∈N such that lim

i→∞
1{

|ξn+1
i |> 1

n+1

} = 0, Pt
0−a.s.

For any i ∈ N, we set ξ̂i := ξii , which belongs to Sn for n = 1, · · · , i. Given n ∈ N, since
{
ξ̂i
}∞

i=n
⊂ Sn, it holds

Pt
0−a.s. that lim

i→∞
1{

|ξ̂i|>
1
n

} = 0. Then Bound Convergence Theorem, (2.6) and Lemma 2.4 imply that

0 = lim
i→∞

Et

[
1{|ξ̂i|>1/n}

∣∣F t
s

]
(ω) = lim

i→∞
Es

[(
1{|ξ̂i|>1/n}

)s,ω]
(A.7)

holds for all ω ∈ Ωt except on some Nn ∈ N
t
. Let ω ∈

(
∪

n∈N
Nn

)c

. For any n ∈ N, one can deduce that

(
1{|ξ̂i|>1/n}

)s,ω
(ω̃) = 1{

|ξ̂i(ω⊗sω̃))|>1/n
} = 1{∣∣ξ̂ s,ω

i (ω̃)
∣∣>1/n

} =
(
1{

|ξ̂ s,ω
i |>1/n

}
)
(ω̃), ∀ ω̃ ∈ Ωs,

which together with (A.7) leads to that lim
i→∞

Ps
0

(
|ξ̂ s,ω

i | > 1/n
)
= lim

i→∞
Es

[(
1{|ξ̂i|>1/n}

)s,ω]
= 0. �

Lemma A.11. Given t ∈ [0, T ] and a metric space M, let {Xs}s∈[t,T ] be an Rd−valued process on Ωt such that all

its paths are continuous and starting from 0. Define a mapping ΨX : [t, T ]×Ωt→ [t, T ]×Ωt by ΨX(r, ω) :=
(
r,X(ω)

)
,

∀ (r, ω)∈ [t, T ]×Ωt. Clearly, σX := (ΨX)−1(Pt)={(ΨX)−1(D) : D∈Pt} is a σ−field of [t, T ]×Ωt. If an M−valued

process K is adapted to the induced filtration X−1(Ft) =
{
X−1(F t

s) := {X−1(A) : A ∈ F t
s}
}
s∈[t,T ]

and all its paths

are left-continuous, then K is σX−measurable. In particular, X is σX−measurable.

Proof: Let x0 ∈ Rd and δ > 0. Since the path K·(ω) is left-continuous for each ω ∈ Ωt, one can deduce that

{
(s, ω) ∈ [t, T ]× Ωt : K(s, ω) ∈ Oδ(x0)

}
= ∩

n∈N
∪

m∈N
∩

i≥m

i−1∪
j=0

{
(s, ω) ∈ [tij , t

i
j+1]× Ωt : Ktij

(ω) ∈ Oδ+1/n(x0)
}
,

where tij := t+j
i (T−t). For any n, i∈N and j=0, · · · , i−1, since

{
Ktij

∈Oδ+1/n(x0)
}
= X−1

(
An

i,j

)
for some An

i,j∈F t
tij
,

and since [tij , t
i
j+1]×An

i,j∈Pt, we see that
{
(s, ω)∈ [tij , t

i
j+1]×Ωt : Ktij

(ω)∈Oδ+1/n(x0)
}
=
{
(s, ω)∈ [tij , t

i
j+1]×Ωt : X(ω)∈An

i,j

}
=(ΨX)−1

(
[tij , t

i
j+1]×An

i,j

)
∈σX .

So
{
(s, ω) ∈ [t, T ]× Ωt : K(s, ω) ∈ Oδ(x0)

}
∈ σX , which shows that Oδ(x0) ∈ Λ :=

{
E ⊂ Rd :

{
(s, ω) ∈ [t, T ]× Ωt :

K(s, ω) ∈ E
}
∈ σX

}
. Clearly, Λ is a σ−field on Rd, it follows that B(Rd) ⊂ Λ. To wit, K is σX−measurable.

For any s ∈ [t, T ] and E ∈ B(Rd), since As := (Bt
s)

−1(E) ∈ F t
s,

X−1
s (E) = {ω ∈ Ωt : Xs(ω) ∈ E} = {ω ∈ Ωt : Bt

s(X(ω)) ∈ E} = {ω ∈ Ωt : X(ω) ∈ As} = X−1(As) ∈ X−1
(
F t

s

)
,

which shows that X is in particular adapted to the filtration X−1(Ft). By its continuity, X is σX−measurable. �
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Lemma A.12. Let (t, ω)∈ [0, T ]×Ω and let µ be a Ut−control considered in Section 6.

(1 ) It holds for any s∈ [t, T ] that FPt,ω,µ

s ⊂ GXt,ω,µ

s , and pt,ω,µ coincides with Pt,ω,µ on FPt,ω,µ

T .

(2 ) The σ−field GXt,ω,µ

T is complete under pt,ω,µ, and N Pt,ω,µ ⊂ N pt,ω,µ

:=
{
A∈GXt,ω,µ

T : pt,ω,µ(A)=0
}
⊂ GXt,ω,µ

t .

Proof: 1) Set ϑ = (t, ω, µ) and let s∈ [t, T ]. For any N ∈N Pϑ

, there exists an A∈F t
T with Pϑ(A) = 0 such that

N ⊂ A. By (6.6),
(
Xϑ

)−1
(A)∈F t

T and thus Pt
0

(
(Xϑ)−1(A)

)
=Pϑ(A)=0. Then, as a subset of

(
Xϑ

)−1
(A),

(
Xϑ

)−1(N
)
∈ N

t ⊂ F t

s . (A.8)

So N Pϑ⊂GXϑ

s , which already contains F t
s by (6.6). It follows that FPϑ

s ⊂GXϑ

s .

Given A∈FPϑ

T ⊂GXϑ

T , we know (see e.g. Proposition 11.4 of [34]) that A= Ã ∪ N for some Ã∈F t
T and N ∈N Pϑ

.

Since (Xϑ)−1
(
Ã
)
∈F t

T by (6.6) and since (Xϑ)−1
(
N
)
∈N

t
by (A.8), one can deduce that

pϑ(A)=Pt
0

(
(Xϑ)−1(A)

)
=Pt

0

(
(Xϑ)−1

(
Ã
)
∪(Xϑ)−1

(
N
))

=Pt
0

(
(Xϑ)−1

(
Ã
))

=Pϑ
(
Ã
)
=Pϑ(A).

2) Let N ⊂ A for some A ∈ GXϑ

T with pϑ(A) = 0. As (Xϑ)−1(N) ⊂ (Xϑ)−1(A) ∈ F t

T and 0 = pϑ(A) =

Pt
0

(
(Xϑ)−1(A)

)
, we see that

(Xϑ)−1(N) ∈ N
t
. (A.9)

In particular, N ∈ GXϑ

T , so the σ−field GXϑ

T is complete under pϑ. Then it easily follows from part (1) that

N Pϑ

=
{
A∈FPϑ

T : Pϑ(A)=0
}
=
{
A∈FPϑ

T : pϑ(A)=0
}
⊂

{
A∈GXϑ

T : pϑ(A)=0
}
=N pϑ

. Moreover, taking N=A for

any A∈GXϑ

T with pϑ(A)=0 in (A.9) shows that N pϑ ⊂GXϑ

t . �

Lemma A.13. Let 0 ≤ t ≤ s ≤ T and define Π̂t
s(r, ω) :=

(
r,Πt

s(ω)
)
, ∀ (r, ω) ∈ [s, T ]× Ωt. For any r ∈ [s, T ] and

D ∈ B([s, r]) ⊗Fs
r , we have (Π̂t

s)
−1(D) ∈ B([s, r]) ⊗F t

r and
(
dr × dPt

0

)(
(Π̂t

s)
−1(D)

)
=

(
dr × dPs

0

)
(D).

Proof: Given r ∈ [s, T ], for any E ∈ B([s, r]) and A ∈ Fs
r , applying Lemma A.1 with S = T yields that

(Π̂t
s)

−1
(
E ×A

)
=

{
(r, ω) ∈ [s, T ]× Ωt :

(
r,Πt

s(ω)
)
∈ E ×A

}
=E × (Πt

s)
−1(A) ∈ B([s, r]) ⊗F t

r. (A.10)

So all rectangular measurable sets of B([s, r]) ⊗Fs
r belongs to Λ :=

{
D ⊂ [s, r]× Ωs : (Π̂t

s)
−1(D) ∈ B([s, r]) ⊗F t

r

}
,

which is a σ−field of [s, r]× Ωs. It follows that B([s, r]) ⊗Fs
r ⊂ Λ, i.e.,

(Π̂t
s)

−1(D) ∈ B([s, r]) ⊗F t
r, ∀D ∈ B([s, r]) ⊗Fs

r .

Next, we show that
(
dr × dPt

0

)
◦ (Π̂t

s)
−1 =

(
dr × dPs

0

)
on B([s, T ]) ⊗ Fs

T : For any Ẽ ∈ B
(
[s, T ]

)
and Ã ∈ Fs

T ,

using (A.10) with r = T and (A.1) with S = T gives that
(
dr×dPt

0

)(
(Π̂t

s)
−1(Ẽ×Ã)

)
=
(
dr×dPt

0

)(
Ẽ×(Πt

s)
−1(Ã)

)
= |Ẽ |×Pt

0

(
(Πt

s)
−1(Ã)

)
= |Ẽ |×Ps

0(Ã)=
(
dr×dPs

0

)
(Ẽ×Ã),

where |Ẽ | denotes the Lebesgue measure of Ẽ . Thus the collection Cs of all rectangular measurable sets of B
(
[s, T ]

)
⊗

Fs
T is contained in Λ̃ :=

{
D ⊂ [s, T ]× Ωs :

(
dr × dPs

0

)
(D) =

(
dr × dPt

0

)(
(Π̂t

s)
−1(D)

)}
. In particular, ∅ × ∅ ∈ Λ̃ and

[s, T ]× Ωs ∈ Λ̃. For any D ∈ Λ̃, one can deduce that
(
dr×dPs

0

)(
([s, T ]×Ωs)\D

)
=
(
dr×dPs

0

)(
[s, T ]×Ωs

)
−
(
dr×dPs

0

)
(D)=

(
dr×dPt

0

)(
(Π̂t

s)
−1

(
[s, T ]×Ωs

))
−
(
dr×dPt

0

)(
(Π̂t

s)
−1(D)

)

=
(
dr×dPt

0

)(
(Π̂t

s)
−1

(
[s, T ]×Ωs

)
− (Π̂t

s)
−1(D)

)
=
(
dr×dPt

0

)(
(Π̂t

s)
−1

(
([s, T ]× Ωs)\D

))
.

On the other hand, for any pairwisely-disjoint sequence {Dn}n∈N of Λ̃ (i.e. Dm ∩ Dn = ∅ if m 6= n), it is clear that{
(Π̂t

s)
−1(Dn)

}
n∈N

is also a pairwisely-disjoint sequence. It follows that

(
dr×dPs

0

)(
∪

n∈N
Dn

)
=

∑

n∈N

(
dr×dPs

0

)(
Dn

)
=

∑

n∈N

(
dr×dPt

0

)(
(Π̂t

s)
−1(Dn)

)

=
(
dr×dPt

0

)(
∪

n∈N
(Π̂t

s)
−1(Dn)

)
=

(
dr×dPt

0

)(
(Π̂t

s)
−1

(
∪

n∈N
Dn

))
,

thus Λ̃ is a Dynkin system. Since Cs is closed under intersection, the Dynkin System Theorem shows that B
(
[s, T ]

)
⊗

Fs
T = σ(Cs) ⊂ Λ̃, i.e.

(
dr × dPt

0

)
◦ (Π̂t

s)
−1 =

(
dr × dPs

0

)
on B([s, T ])⊗Fs

T . �
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Lemma A.14. Let t ∈ [0, T ], δ ∈ R and let X be an Ft−adapted process.

(1 ) If all paths of X are left-lower-semicontinuous and right-continuous, then τδ := inf
{
s∈ [t, T ] : Xs≤ δ

}
∧ T is an

Ft−stopping time.

(2 ) If all paths of X satisfy

Xt(ω) ≥ lim
sրt

Xs(ω) ∧ lim
sցt

Xs(ω), ∀ (t, ω) ∈ [0, T ]× Ω, (A.11)

then νδ :=inf
{
s∈ [t, T ] : Xs<δ

}
∧ T is an Ft−optional time.

Proof: 1) Suppose that all paths of X are left-lower-semicontinuous and right-continuous. Let s∈ [t, T ]. We first

claim that for any ω∈Ω

if Xr(ω)>0, ∀ r∈ [t, s], then inf
r∈[t,s]

Xr(ω)>0. (A.12)

Assume not, i.e. there exists a ω′ ∈ Ωt such that Xr(ω
′)> 0, ∀ r ∈ [t, s] and inf

r∈[t,s]
Xr(ω

′)≤ 0. Then one can find

a sequence {rn = rn(t, ω
′)}n∈N of [t, s] such that lim

n→∞
↓ Xrn(ω

′) = inf
r∈[t,s]

Xr(ω
′). Clearly, {rn}n∈N has a convergent

subsequence {rni}i∈N with limit r∗ ∈ [t, s]. We can deduce from the lower-semicontinuity of X that 0<Xr∗(ω
′)≤

lim
r→r∗

Xr(ω
′)≤ lim

i→∞
↓ Xrni

(ω′)= inf
r∈[t,s]

Xr(ω
′)≤0. An contradiction appears. So (A.12) holds and it follows that

{τδ>s} = {ω∈Ωt : Xr(ω)>δ, ∀ r∈ [t, s]}= ∪
n∈N

{ω∈Ωt : Xr(ω)≥δ+1/n, ∀ r∈ [t, s]}. (A.13)

For any n ∈ N, the right-continuity of X implies that {ω ∈ Ωt : Xr(ω) ≥ δ+1/n, ∀ r ∈ [t, s]} = {ω ∈ Ωt : Xr(ω) ≥
δ+1/n, ∀ r∈Qt,s}, where Qt,s :=

(
[t, s]∩Q

)
∪{t, s}. Putting these equalities back into (A.13) yields that

{τδ>s} = ∪
n∈N

{ω∈Ωt : Xr(ω)≥1/n, ∀ r∈Qt,s}= ∪
n∈N

∩
s∈Qt,s

{ω∈Ωt : Xr(ω)≥1/n}∈F t
s,

which shows that τδ is an Ft−stopping time.

2) Under (A.11), it holds for any s ∈ [t, T ] that

{νδ≥s} = {ω̃∈Ωt : Xr(ω)≥δ, ∀ r∈ [t, s)} = {ω∈Ωt : Xr(ω)≥δ, ∀ r∈Qt,s}= ∩
r∈Qt,s

{ω∈Ωt : Xr(ω)≥δ}∈F t
s.

Thus νδ is an Ft−optional time. �
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