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COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING

F. JEAN∗ AND D. PRANDI†‡

Abstract In this paper we study the complexity of the motion planning problem for control-affine
systems. Such complexities are already defined and rather well-understood in the particular case
of nonholonomic (or sub-Riemannian) systems. Our aim is to generalize these notions and results
to systems with a drift. Accordingly, we present various definitions of complexity, as functions of
the curve that is approximated, and of the precision of the approximation. Due to the lack of time-
rescaling invariance of these systems, we consider geometric and parametrized curves separately.
Then, we give some asymptotic estimates for these quantities.
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1. Introduction

The concept of complexity was first developed for the non-holonomic motion planning problem
in robotics. Given a control system on a manifold M , the motion planning problem consists in
finding an admissible trajectory connecting two points, usually under further requirements, such as
obstacle avoidance. If a cost function is given, it makes sense to try to find the trajectory costing
the least.

Different approaches are possible to solve this problem (see [24]). Here we focus on those based
on the following scheme:

(1) find any (usually non-admissible) curve or path solving the problem,
(2) approximate it with admissible trajectories.

The first step is independent of the control system, since it depends only on the topology of the
manifold and of the obstacles, and it is already well understood (see [28]). Here, we are interested
in the second step, which depends only on the local nature of the control system near the path.
The goal of the paper is to understand how to measure the complexity of the approximation task.
By complexity we mean a function of the non-admissible curve Γ ⊂ M (or path γ : [0, T ] → M),
and of the precision of the approximation, quantifying the difficulty of the latter by means of the
cost function.
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1.1. Control theoretical setting. In this paper, we consider a control-affine system on a smooth
manifold M is a control system in the form

(1) q̇(t) = f0(q(t)) +
m
∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ],

where u : [0, T ] → R
m is an integrable control function and f0, f1, . . . , fm are (not necessarily

linearly independent) smooth vector fields. The uncontrolled vector field f0 is called the drift.
These kind of systems appear in plenty of applications. As examples we cite: mechanical systems
with controls on the acceleration (see e.g., [9, 5]), where the drift is the velocity, quantum control (see
e.g., [10, 8]), where the drift is the free Hamiltonian, or the swimming of microscopic organisms
(see, e.g., [27]). We always assume the strong Hörmander condition, i.e., that the iterated Lie
brackets of the controlled vector fields f1, . . . , fm generate the whole tangent space at any point.
This guarantees the small time local controllability of system (1) and allows us to associate to
(1) a sub-Riemannian control system. Such assumption is generically satisfied, e.g., by finite-
dimensional quantum control systems with two controls, as the ones studied in [6, 7, 11]. Except
when explicitly stated, we do not make any assumption on the dimension of span{f1(q), . . . , fm(q)}
which, in particular, can depend on the point q ∈ M .

When posing f0 = 0 in (1) we obtain the (small) sub-Riemannian control system associated with
(1), i.e., the driftless control system in the form

(2) q̇(t) =
m
∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ],

This system satisfies the Hörmander condition is satisfied, i.e., the iterated Lie brackets of the
vector fields f1, . . . , fm generate the whole tangent space at any point. Moreover, we will always
assume the sub-Riemannian structure to be equiregular (see Section 2.1). Given a sub-Riemannian
control system, a natural choice for the cost is the L1-norm of the controls. Due to the linearity
and the reversibility in time of such a system, the associated value function is in fact a distance,
called Carnot-Carathéodory distance, that endows M with a metric space structure.

Our work will focus on the following cost functions,

(3) J (u, T ) =

∫ T

0

√

√

√

√

m
∑

j=1

uj(t)2 dt and I(u, T ) =

∫ T

0

√

√

√

√1 +

m
∑

j=1

uj(t)2 dt.

Namely, J (u, T ) = ‖u‖L1([0,T ],Rm) and I(u, T ) = ‖(1, u)‖L1([0,T ],Rm+1). Let q ∈ M and define

qu : [0, T ] → M as the trajectory associated with a control u ∈ L1([0, T ],Rm) such that qu(0) = q.
The cost J , measuring the L1-norm of the control, quantifies the cost spent by the controller to
steer the system (1) along qu. On the other hand, I measures the Riemannian length of qu with
respect to a Riemannian metric1 such that f0, f1, . . . , fm are orthonormal.

Fix a time T > 0 and consider the two value functions VJ (q, q′) and VI(q, q′) as the infima
of the costs J and I, respectively, over all controls u ∈ UT =

⋃

0<T≤T L1([0, T ],Rm) steering the

system from q to q′. Contrarily to what happens in sub-Riemmanian geometry with the Carnot-
Carathéodory distance, these value functions are not symmetric, and hence do not induce a metric
space structure on M . In fact, system (1) is not reversible – i.e., changing orientation to an
admissible trajectory does not yield an admissible trajectory.

We consider controls defined on T ≤ T since we are interested in the local behavior of system
(1). Indeed, without an upper-bound for the time of definition of the controls, the reacheable sets

1Whenever it exists, which is not always the case since the vector fields f0, f1, . . . , fm could be not linearly
independent.
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Rf0(q, ε) = {q′ ∈ M | VJ (q, q′) ≤ ε} are in general non-compact for any q ∈ M and ε > 0. As a
byproduct of this choice, by taking T sufficiently small, it is then possible to prevent any exploitation
of the geometry of the orbits of the drift (that could be, for example, closed). Let us also remark
that, since the controls can be defined on arbitrarily small times, it is possible to approximate
admissible trajectories for system (1) via trajectories for the sub-Riemannian associated system
(i.e., the one obtained by posing f0 ≡ 0) rescaled on small intervals.

1.2. Complexities. Heuristically, the complexity of a curve Γ (or path γ : [0, T ] → M) at precision
ε is defined as the ratio

(4)
“cost” to track Γ at precision ε

“cost” of an elementary ε-piece
.

In order to obtain a precise definition of complexity, we need to give a meaning to the notions
appearing above. Namely, we have to specify what do we mean by “cost”2, tracking at precision ε,
and elementary ε-piece. Indeed, these choices will depend on the type of motion planning problem
at hand.

First of all, we classify motion planning problems as time-critical or static, depending on wether
the constraints depend on time or not. The typical example of static motion planning problem
is the obstacle avoidance problem with fixed obstacles. On the other hand, the same problem
where the position of the obstacles depends on time, or the rendez-vous problems, are examples of
time-critical motion planning problems.

For static motion planning problems, the solution of the first step of the motion planning scheme
(introduced at the beginning of the paper) is usually given as a curve, i.e., a dimension 1 connected
submanifolds of Γ ⊂ M diffeomorphic to a closed interval. On the other hand, in time-critical
problems we have to keep track of the time. Thus, for this type of problems, the solution of the
first step is a path, i.e., a smooth injective function γ : [0, T ] → M . As a consequence, when
computing the complexity of paths we will require the approximating trajectories to respect also
the parametrization, and not only the geometry, of the path. While in the sub-Riemannian case,
due to the time rescaling properties of the control system, these concepts coincide, this is not the
case for control-affine systems.

In this work, we consider four distinct notions of complexity, two for curves (static problems)
and two for paths (time-critical problems). In both cases, one of the two will be based on the
interpolation of the given curve or path, while the other will consider trajectories that stays near
the curve or path. Thus, for this complexity, we will need to fix a metric. In this work we will
consider only the sub-Riemannian metric of the associated sub-Riemannian control system (2)).

We remark that the two complexity for curves are the same as the sub-Riemannian ones already
introduced in [20, 21]. This is true also for what we call the neighboring approximation complexity of
a path, since in the sub-Riemannian case it coincides with the tubular approximation complexity.
On the other hand, what we call the interpolation by time complexity never appeared in the
literature, to our knowledge. Here we give the definitions for a generic cost J : UT → [0,+∞).

Fix a curve Γ and, for any ε > 0, define the following complexities for Γ.

• Interpolation by cost complexity: (see Figure 1) For ε > 0, let an ε-cost interpolation of
Γ to be any control u ∈ UT such that there exist 0 = t0 < t1 < . . . < tN = T ≤ T for
which the trajectory qu with initial condition qu(0) = x satisfies qu(T ) = y, qu(ti) ∈ Γ and
J(u|[ti−1,ti), ti − ti−1) ≤ ε, for any i = 1, . . . , N . Then, let

Σint(Γ, ε) =
1

ε
inf
{

J(u, T ) | u is an ε-cost interpolation of Γ
}

.

2The cost appearing in (4) is not necessarily related with the cost function (J or I) taken into account. This is
the reason for the quotation marks.
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x

Γ

yqu(ti−1)

qu(ti)

≤ ε

Figure 1. Interpolation by
cost complexity

x

Γ
y

Tube(Γ, ε)

qu(·)

Figure 2. Tubular approxi-
mation complexity

x

y

qu(ti−1) = γ(ti−1)

qu(ti) = γ(ti)on avg. ≤ ε

Figure 3. Time interpola-
tion complexity

x

yqu(t)

γ(t)

BSR(γ(t), ε)

Figure 4. Neighboring ap-
proximation complexity

This function measures the number of pieces of cost ε necessary to interpolate Γ. Namely,
following a trajectory given by a control admissible for Σint(Γ, ε), at any given moment it
is possible to go back to Γ with a cost less than ε.

• Tubular approximation complexity: (see Figure 2) Let Tube(Γ, ε) to be the tubular neigh-
borhood of radius ε around the curve Γ w.r.t. the small sub-Riemannian system associated
with (1) (obtained by putting f0 ≡ 0, see Section 2.2), and define

Σapp(Γ, ε) =
1

ε
inf







J(u, T )

∣

∣

∣

∣

∣

∣

0 < T ≤ T ,
qu(0) = x, qu(T ) = y,
qu
(

[0, T ]
)

⊂ Tube(Γ, ε)







This complexity measures the number of pieces of cost ε necessary to go from x to y
staying inside the sub-Riemannian tube Tube(Γ, ε). Such property is especially useful for
motion planning with obstacle avoidance. In fact, if the sub-Riemannian distance of Γ from
the obstacles is at least ε0 > 0, then trajectories obtained from controls admissible for
Σapp(Γ, ε), ε < ε0, will avoid such obstacles.

We then define the following complexities for a path γ : [0, T ] → M at precision ε > 0.

• Interpolation by time complexity: (see Figure 3) Let a δ-time interpolation of γ to be any
control u ∈ L1([0, T ],Rm) such that its trajectory qu : [0, T ] → M in (1) with qu(0) = γ(0)
is such that qu(T ) = γ(T ) and that, for any interval [t0, t1] ⊂ [0, T ] of length t1 − t0 ≤ δ,
there exists t ∈ [t0, t1] with qu(t) = γ(t). Then, fix a δ0 > 0 and let

σint(γ, ε) = inf

{

T

δ

∣

∣

∣

∣

δ ∈ (0, δ0) and exists u ∈ L1([0, T ],Rm),
δ-time interpolation of γ, s.t. δ J(u, T ) ≤ ε

}

.

Controls admissible for this complexity will define trajectories such that the minimal average
cost between any two consecutive times such that γ(t) = qu(t) is less than ε. It is thus well
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suited for time-critical applications where one is interested in minimizing the time between
the interpolation points - e.g. motion planning in rendez-vous problem.

• Neighboring approximation complexity: (see Figure 4) Let BSR(p, ε) denote the ball of radius
ε centered at p ∈ M w.r.t. the small sub-Riemannian system associated with (1) (obtained
by putting f0 ≡ 0, see Section 2.2), and define

σapp(γ, ε) =
1

ε
inf

{

J(u, T )

∣

∣

∣

∣

qu(0) = x, qu(T ) = y,
qu(t) ∈ BSR(γ(t), ε), ∀t ∈ [0, T ]

}

.

This complexity measures the number of pieces of cost ε necessary to go from x to y
following a trajectory that at each instant t ∈ [0, T ] remains inside the sub-Riemannian ball
BSR(γ(t), ε). Such complexity can be applied to motion planning in rendez-vous problems
where it is sufficient to attain the rendez-vous only approximately, or to motion planning
with obstable avoidance where the obstacles are moving.

Whenever we will need to specify with respect to which cost a complexity is measured, we will
write the cost function as apex – e.g., to we will denote the interpolation by cost complexity w.r.t.
J as Σint

J .
We remark that for the interpolation by time complexity the “cost” in (4) is the time, while for

all the other complexities it is the cost function associated with the system. For the motivation of
the bound on δ in the definition of the interpolation by time complexity, see Remark 5.3. Finally,
whenever a metric is required, we use the sub-Riemannian one. Although such metric is natu-
ral for control-affine systems satisfying the Hörmander condition, nothing prevents from defining
complexities based on different metrics.

Two functions f(ε) and g(ε), tending to ∞ when ε ↓ 0 are weakly equivalent (denoted by f(ε) ≍
g(ε)) if both f(ε)/g(ε) and g(ε)/f(ε), are bounded when ε ↓ 0. When f(ε)/g(ε) (resp. g(ε)/f(ε))
is bounded, we will write f(ε) 4 g(ε) (resp. f(ε) < g(ε)). In the sub-Riemannian context, the
complexities are always measured with respect to the L1cost of the control, J . Then, for any curve
Γ ⊂ M and path γ : [0, T ] → M such that γ([0, T ]) = Γ it holds ΣJ

int(Γ, ε) ≍ ΣJ
app(Γ, ε) ≍ σJ

app(γ, ε).
A complete characterization of weak asymptotic equivalence of sub-Riemannian complexities is

obtained in [23]. We state here such characterization in the special case where {f1, . . . , fm} defines
an equiregular structure.

Theorem 1.1. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure. Let
Γ ⊂ M be a curve and γ : [0, T ] → M be a path such that γ([0, T ]) = Γ. Then, if there exists k ∈ N

such that TqΓ ⊂ ∆k(q) \∆k−1(q) for any q ∈ Γ, it holds

Σint(Γ, ε) ≍ Σapp(Γ, ε) ≍ σapp(γ, ε) ≍
1

εk
.

Here the complexities are measured w.r.t. the cost J (u, T ) = ‖u‖
L
1([0,T ],Rm).

We mention also that for a restricted set of sub-Riemannian systems, i.e., one-step bracket
generating or with two controls and dimension not larger than 6, strong asymptotic estimates and
explicit asymptotic optimal syntheses are obtained in the series of papers [26, 15, 16, 17, 18, 19, 14]
(see [13] for a review).

1.3. Main results. Our first result is the following. It completes the description of the sub-
Riemannian weak asymptotic estimates started in Theorem 1.1, describing the case of the interpo-
lation by time complexity. It is proved in Section 5.

Theorem 1.2. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and let
γ : [0, T ] → M be a path. Then, if there exists k ∈ N such that γ̇(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for
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any t ∈ [0, T ], it holds

σint(γ, ε) ≍
1

εk
.

Here the complexity is measured w.r.t. the cost J (u, T ) = ‖u‖
L1([0,T ],Rm).

Since in the sub-Riemannian context one is only interested in the cost J , Theorems 1.1 and
1.2 completely characterize the weak asymptotic equivalences of complexities of equiregular sub-
Riemannian manifolds.

The main result of the paper is then a weak asymptotic equivalence of the above defined com-
plexities in control-affine systems, generalizing Theorems 1.1 and 1.2.

Theorem 1.3. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and that
f0 ⊂ ∆s \∆s−1 for some s ≥ 2. Also, assume that the complexities are measured w.r.t. the cost
function J (u, T ) = ‖u‖

L
1([0,T ],Rm) or I(u, T ) = ‖(1, u)‖

L
1([0,T ],Rm+1). We then have the following.

i. Let Γ ⊂ M be a curve and define κ = max{k : TpΓ ∈ ∆k(p) \∆k−1(p), for any p in an open
subset of Γ}. Then, whenever the maximal time of definition of the controls T is sufficiently
small, it holds

Σint(Γ, ε) ≍ Σapp(Γ, ε) ≍
1

εκ
.

ii. On the other hand, let γ : [0, T ] → M be a path such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for
any t ∈ [0, T ] and define κ = max{k : γ(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for any t in an open subset
of [0, T ]}. Then, it holds

σint(γ, ε) ≍ σapp(γ, ε) ≍
1

εmax{κ,s}
,

where the first asymptotic equivalence is true only when δ0, i.e., the maximal time-step in
σint(γ, ε), is sufficiently small.

This theorem shows that, asymptotically, the complexity of curves is not influenced by the drift,
and only depends on the underlying sub-Riemannian system, while the one of paths depends also
on how “bad” the drift is with respect to this system. We remark also that for the neighboring
approximation complexity, σapp, it is not necessary to have an a priori bound on T .

1.4. Long time local controllability. As an application of the above theorem, let us briefly
mention the problem of long time local controllability (henceforth simply LTLC ), i.e., the problem
of staying near some point for a long period of time T > 0. This is essentially a stabilization
problem around a non-equilibrium point.

Since the system (1) satisfies the strong Hörmander condition, it is always possible to satisfy
some form of LTLC. Hence, it makes sense to quantify the minimal cost needed, by posing the
following. Let T > 0, q0 ∈ M , and γq0 : [0, T ] → M , γq0(·) ≡ q0.

• LTLC complexity by time:

LTLCtime(q0, T, ε) = σint(γq0 , ε).

Here, we require trajectories defined by admissible controls to pass through q0 at intervals
of time such that the minimal average cost between each passage is less than ε.

• LTLC complexity by cost:

LTLCcost(q0, T, ε) = σapp(γq0 , ε).

Admissible controls for this complexity, will always be contained in the sub-Riemannian
ball of radius ε centered at q0.
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Clearly, if f0(q0) = 0, then LTLCtime(q0, T, δ) = LTLCcost(q0, T, ε) = 0, for any ε, δ, T > 0.
Although γq0 is not a path by our definition, since it is not injective and γ̇q0 ≡ 0, the arguments of
Theorem 1.3 can be applied also to this case. Hence, we get the following asymptotic estimate for
the LTLC complexities.

Corollary 1.4. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and
that f0 ⊂ ∆s \∆s−1 for some s ≥ 2. Also, assume that the complexities are measured w.r.t. the
cost function J (u, T ) = ‖u‖

L1([0,T ],Rm) or I(u, T ) = ‖(1, u)‖
L1([0,T ],Rm+1). Then, for any q0 ∈ M

and T > 0 it holds

LTLCtime(q0, T, δ) ≍ LTLCcost(q0, T, ε) ≍
1

εs
.

1.5. Structure of the paper. In Section 2 we introduce more in detail the setting of the prob-
lem. In Section 3 we present some technical results regarding families of coordinates depending
continuously on the base point. These results will be essential in the sequel. Section 4 collects some
useful properties of the costs J and I, proved mainly in [25], while Section 5 is devoted to relate
the complexities of the control-affine system with those of the associated sub-Riemannian systems,
and to prove Theorem 1.2. In this section we also prove Proposition 5.5, that gives a first result
in the direction of Theorem 1.3 showing when the sub-Riemannian and control-affine complexities
coincide. Finally, the proof of the main result is contained in Sections 6 and 7, for curves and paths
respectively.

2. Preliminaries

Throughout this paper, M is an n-dimensional connected smooth manifold.

2.1. Sub-Riemannian control systems. As already stated, a sub-Riemannian (or non-holonomic)
control system on a connected smooth manifold M is a control system in the form

(SR) q̇(t) =

m
∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ]

where u : [0, T ] → R
m is an integrable and bounded control function and {f1, . . . , fm} is a family

of smooth vector fields on M . We let fu =
∑m

i=1 ui fi. The value function dSR associated with the

L1 cost is in fact a distance, called Carnot-Carathéodory (or sub-Riemannian) distance. Namely,
for any q, q′ ∈ M ,

dSR(q, q
′) = inf

∫ T

0

√

√

√

√

m
∑

j=1

uj(t)2 dt,

where the infimum is taken among all the controls u ∈ L1([0, T ],Rm), for some T > 0, such that
its trajectory in (SR) is such that qu(0) = q and qu(T ) = q′. An absolutely continuous curve
γ : [0, T ] → M is admissible for (SR) if there exists u ∈ L1([0, T ],Rm) such that γ̇(t) = fu(t).

Let ∆ be the C∞-module generated by the vector fields {f1, . . . , fm} (in particular, it is closed
under multiplication by C∞(M) functions and summation). Let ∆1 = ∆, and define recursively
∆s+1 = ∆s+[∆s,∆], for every s ∈ N. Due to the Jacobi identity ∆s is the C∞-module of linear
combinations of all commutators of f1, . . . , fm with length ≤ s. For q ∈ M , let ∆s(q) = {f(q) : f ∈
∆s} ⊂ TqM . We say that {f1, . . . , fm} satisfies the Hörmander condition (or that it is a bracket-
generating family of vector fields) if

⋃

s≥1∆
s(q) = TqM for any q ∈ M . Moreover, {f1, . . . , fm}

defines an equiregular sub-Riemannian structure if dim∆i(q) does not depend on the point for any
i ∈ N. In the following we will always assume these two conditions to be satisfied.

By the Chow–Rashevsky theorem (see for instance [1]), the hypothesis of connectedness of M
and the Hörmander condition guarantee the finiteness and continuity of dSR with respect to the
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topology of M . Hence, the sub-Riemannian distance, induces on M a metric space structure. The
open balls of radius ε > 0 and centered at q ∈ M , with respect to dSR, are denoted by BSR(q, ε).

We say that a control u ∈ L1([0, T ],Rm), T > 0, is a minimizer of the sub-Riemannian distance
between q, q′ ∈ M if the associated trajectory qu with qu(0) = q is such that qu(T ) = q′ and
‖u‖L1([0,T ],Rm) = dSR(q, q

′). Equivalently, u is a minimizer between q, q′ ∈ M if it is a solution of

the free-time optimal control problem, associated with (SR),

(5) ‖u‖L1(0,T ) =

∫ T

0

√

√

√

√

m
∑

j=1

u2j (t) dt → min, qu(0) = q, qu(T ) = q′, T > 0.

It is a classical result that, for any couple of points q, q′ ∈ M sufficiently close, there exists at least
one minimizer.

Remark 2.1. This control theoretical setting can be stated in purely geometric terms even if
we drop the equiregularity assumption. Indeed, it is equivalent to a generalized sub-Riemannian
structure. Such a structure is defined by a rank-varying smooth distribution and a Riemannian
metric on it (see [1] for a precise definition).

In a sub-Riemannian control system, in fact, the map q 7→ span{f1(q), . . . , fm(q)} ⊂ TqM defines
a rank-varying smooth distribution, which is naturally endowed with the Riemannian norm defined,
for v ∈ ∆(q), by

(6) g(q, v) = inf

{

|u| =
√

u21 + · · ·+ u2m : fu(q) = v

}

.

The pair (∆,g) is thus a generalized sub-Riemannian structure on M . Conversely, every rank-
varying distribution is finitely generated, see [2, 1, 3, 12], and thus a sub-Riemannian distance can
be written, globally, as the value function of a control system of the type (SR).

Since {f1, . . . , fm} is bracket-generating, the values of the sets ∆s at q form a flag of subspaces
of TqM ,

∆1(q) ⊂ ∆2(q) ⊂ . . . ⊂ ∆r(q) = TqM.

The integer r, which is the minimum number of brackets required to recover the whole TqM , is called
degree of non-holonomy (or step) of the family {f1, . . . , fm} at q. The degree of non-holonomy is
independent of q since we assumed the family {f1, . . . , fm} to define an equiregular sub-Riemannian
structure. Let ns = dim∆s(q) for any q ∈ M . The integer list (n1, . . . , nr) is called the growth
vector associated with (SR). Finally, let w1 ≤ . . . ≤ wn be the weights associated with the flag,
defined by wi = s if ns−1 < i ≤ ns, setting n0 = 0.

For any smooth vector field f , we denote its action, as a derivation on smooth functions, by
f : a ∈ C∞(M) 7→ fa ∈ C∞(M). For any smooth function a and every vector field f with f 6≡ 0
near q, their (non-holonomic) order at q is

ordq(a) = min{s ∈ N : ∃i1, . . . , is ∈ {1, . . . ,m} s.t. (fi1 . . . fis a)(q) 6= 0},

ordq(f) = max{σ ∈ Z : ordq(fa) ≥ σ + ordq(a) for any a ∈ C∞(M)}.

In particular it can be proved that ordq(a) ≥ s if and only if a(q′) = O(dSR(q
′, q))s.

Definition 2.2. A system of privileged coordinates at q for {f1, . . . , fm} is a system of local coor-
dinates z = (z1, . . . , zn) centered at q and such that ordq(zi) = wi, 1 ≤ i ≤ n.

Let q ∈ M . A set of vector fields {f1, . . . , fn} such that

(7) {f1(q), . . . , fn(q)} is a basis of TqM, and fi ∈ ∆wi for i = 1, . . . , n,
8



is called an adapted frame at q. We remark that to any system of privileged coordinates z at q is
associated a (non-unique) adapted frame at q such that ∂zi = z∗fi(q) (i.e., privileged coordinates
are always linearly adapted to the flag).

For any ordering {i1, . . . , in}, the inverse of the local diffeomorphisms

(z1, . . . , zn) 7→ ezi1 fi1+···+zin fin (q), (z1, . . . , zn) 7→ ezin fin ◦ · · · ◦ ezi1 fi1 (q),

defines privileged coordinates at q, called canonical coordinates of the first kind and of the second
kind, respectively. We remark that, for the canonical coordinates of the second kind, it holds
z∗fin(z) ≡ ∂zin .

We recall the celebrated Ball-Box Theorem, that gives a rough description of the shape of small
sub-Riemannian balls.

Theorem 2.3 (Ball-Box Theorem). Let z = (z1, . . . , zn) be a system of privileged coordinates at
q ∈ M for {f1, . . . , fm}. Then there exist C, ε0 > 0 such that for any ε < ε0, it holds

Box

(

1

C
ε

)

⊂ BSR(q, ε) ⊂ Box (Cε) ,

where, BSR(q, ε) is identified with its coordinate representation z(BSR(q, ε)) and, for any η > 0, we
let

(8) Box (η) = {z ∈ R
n : |zi| ≤ ηwi},

Remark 2.4. Let N ⊂ M be compact and let {zq}q∈N be a family of systems of privileged
coordinates at q depending continuously on q. Then there exist uniform constants C, ε0 > 0 such
that the Ball-Box Theorem holds for any q ∈ N in the system zq.

2.2. Control-affine systems. Let f0 and {f1, . . . , fm} be smooth vector fields on M and, for some
T > 0, define UT =

⋃

0<T<T L1([0, T ],Rm). Consider the control-affine control system

(D) q̇(t) = f0(q(t)) +
m
∑

j=1

uj fj(q(t)), u ∈ UT .

An absolutely continuous curve γ : [0, T ] → M is admissible for (D) if γ̇(t) = f0(γ(t))+fu(t)(γ(t))

for some control u ∈ L1([0, T ],Rm). Observe, however, that contrary to what happens in the sub-
Riemannian case, the admissibility for (D) is not invariant under time reparametrization, e.g., a
time reversal. Thus there is no canonical choice for the cost, and we will focus on the two costs
given in (3).

In the rest of the paper we will always assume the following hypotheses to be satisfied.

(H1) Equiregularity: dim∆k(q) does not depend on q ∈ M ;
(H2) Strong Hörmander condition: there exists r ∈ N such that ∆r(q) = TqM for any q ∈ M ;

Hypotheses (H1) is made for technical reasons and to lighten the notation. It would be possible to
avoid it through a desingularization procedure similar to the one in [22]. On the other hand, (H2)
is essential to apply our methods.

We will also often assume that, for some s ∈ N, the following “equiregularity” for (D) holds.

(Hs) f0 ⊂ ∆s \∆s−1 .

Due to hypothesis (H1), this is equivalent to the fact that ordq(f0) = −s for any q ∈ M .
For any u ∈ L1([0, T ],Rm), by the variation formula (see [4]), it holds

(9) −→exp

∫ T

0

(

f0 +
m
∑

i=1

ui(t) fi

)

dt = eTf0 ◦ −→exp

∫ T

0

m
∑

i=1

ui(t) (e
−tf0)∗fi dt.

9



This shows that a control steering system (D) from p ∈ M to q ∈ M in time T > 0, steers from p
to e−Tf0q the time-dependent control system

(TD) q̇(t) =
m
∑

j=1

uj(t) (e
−tf0)∗fj(q(t)).

Sometimes proofs will be eased by considering (TD) instead of (D), due to the linearity w.r.t. the
control of the former.

In the following we will often consider also the two sub-Riemannian control systems associated
with (D), called respectively small and big, and defined as

q̇(t) =

m
∑

j=1

uj(t) fj(q(t)),(SR-s)

q̇(t) = u0(t)f0(q(t)) +
m
∑

j=1

uj(t) fj(q(t)).(SR-b)

We will denote by dSR and BSR the Carnot-Carathéodory metric and metric balls, respectively,
associated with (SR-s). This distance is well-defined due to Hypothesis (H2)

3. Continuous families of coordinates

In this section we consider properties of families of coordinates depending continuously on the
points of the curve or path, in order to be able to exploit Remark 2.4.

From the definition of privileged coordinates, we immediately get the following.

Proposition 3.1. Let γ : [0, T ] → M be a path. Let t > 0 and let z be a system of privileged
coordinates at γ(t) for {f1, . . . , fm}. Then, there exists C > 0 such that

(10) |zj(γ(t+ ξ))| ≤ C|ξ| for any j = 1, . . . , n and any t+ ξ ∈ [0, T ].

Moreover, if for k ∈ N it holds that γ̇(t) /∈ ∆k−1(γ(t)), then there exist C1, C2, ξ0 > 0 and a
coordinate zα, of weight ≥ k, such that for any t ∈ [0, T ] and any |ξ| ≤ ξ0 with t+ ξ ∈ [0, T ] it holds

(11) C1ξ ≤ zα(γ(t+ ξ)) ≤ C2ξ.

Finally, if γ̇(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)), the coordinate zα can be chosen to be of weight k.

Proof. By the smoothness of γ, there exists a constant C > 0 such that |(zj)∗γ̇(t+ ξ)| ≤ C for any
j = 1, . . . , n and any t+ ξ ∈ [0, T ]. Thus, we obtain

|zj(γ(t+ ξ))| ≤

∣

∣

∣

∣

∫ t+ξ

t
|(zj)∗γ̇(t+ η)| dη

∣

∣

∣

∣

≤ C |ξ|.

Let us prove (11). Let {f1, . . . , fn} be an adapted basis associated with the system of coordinates

z. In particular it holds that z∗fi(γ(t)) = ∂zi . Moreover, let k′ ≥ k be such that γ̇(t) ∈ ∆k′(γ(t)) \

∆k′−1(γ(t)) and write γ̇(t) =
∑

wi≤k′ ai(t)fi(γ(t)) for some ai ∈ C∞([0, T ]). Hence

z∗γ̇(t) =
∑

wi≤k′

ai(t) z∗fi(γ(t)) =
∑

wi≤k′

ai(t) ∂zi .

Since there exists i with wi = k′ such that ai(t) 6= 0, this implies that (zi)∗γ̇(t) 6= 0. Since k′ ≥ k,
we have then proved (10). �
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As already observed in Remark 2.4, in order to be apply the estimates of Theorem 2.3 uniformly
on γ we need to consider a continuous family of coordinates {zt}t∈[0,T ] such that each zt is privileged
at γ(t) for {f1, . . . , fm}. We will call such a family a continuous coordinate family for γ.

Let us remark that, fixed any basis {f1, . . . , fn} adapted to the flag in a neighborhood of γ([0, T ]),
letting zt be the inverse of the diffeomorphism

(12) (z1, . . . , zn) 7→ ez1f1 ◦ . . . ◦ eznfn(γ(t)),

defines a continuous coordinate family for γ.
The following proposition precises Proposition 3.1.

Proposition 3.2. Let γ : [0, T ] → M be a path and let k ∈ N such that γ̇(s) ∈ ∆k(γ(s)) for
any t ∈ [0, T ]. Then, for any continuous coordinate family {zt}t∈[0,T ] for γ there exists constants
C, ξ0 > 0 such that for any t ∈ [0, T ] and 0 ≤ ξ ≤ ξ0 it holds

(13) |ztj(γ(t+ ξ))| ≤ Cξ if wj ≤ k and |ztj(γ(t+ ξ))| ≤ Cξ
wj
k if wj > k.

Proof. Fix t ∈ [0, T ] and let {f1, . . . , fn} be an adapted basis associated with the privileged coordi-
nate system zt. To lighten the notation, we do not explicitly write the dependence on time of such

basis. Writing zt∗fi(z) =
∑n

j=1 f
j
i (z)∂ztj , it holds that f

j
i is of weighted order ≥ wj −wi, and hence

there exists a constant C > 0 such that

(14) |f j
i (z)| ≤ C‖z‖(wj−wi)

+

.

Here ‖z‖ is the pseudo-norm |z1|
1

w 1 + · · ·+ |zn|
1

wn and h+ = max{0, h} for any h ∈ R. Due to the
compactness of [0, T ], the constant C can be choosen to be uniform w.r.t. the time.

Since γ̇(ξ) ∈ ∆k(γ(ξ)) for ξ > 0, there exist functions ai ∈ C∞([0, T ]) such that

(15) γ̇(ξ) =
∑

wi≤k

ai(ξ)fi(γ(ξ)) for any ξ ∈ [0, T ].

Observe that, for any t ∈ [0, T ], it holds that

(16)
1

ξ

∫ t+ξ

t
|ai(η)| dη = |ai(t)|+O(ξ) as ξ ↓ 0,

where O(ξ) is uniform w.r.t. t. In particular, for any ξ sufficiently small, this integral is bounded.
By (15), for any t ∈ [0, T ] we get

(17) ztj(γ(t+ ξ)) =
∑

wi≤k

∫ t+ξ

t
ai(η)f

j
i (z

t(γ(η))) dη, for any t+ ξ ∈ [0, T ]

Then, applying (14) we obtain

max
ρ∈[0,ξ]

|ztj(γ(t+ ρ))| ≤
∑

wi≤k

∫ t+ξ

t
|ai(η)| |f

j
i (z

t(γ(η)))| dη

≤ C

(

max
ρ∈[0,ξ]

‖zt(γ(t+ ρ))‖

)(wj−k)+
∑

wi≤k

∫ t+ξ

t
|ai(η)| dη.

(18)
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Up to enlarging the constant C, this and (16) yield

maxρ∈[0,ξ] |z
t
j(γ(t+ ρ))|

ξwj
≤ C

(

maxρ∈[0,ξ] ‖z
t(γ(t+ ̺k))‖

ξ

)(wj−k)+
∑

wi≤k

1

ξk

∫ t+ξk

t
|ai(η)| dη

≤ C

(

maxρ∈[0,ξ] ‖z
t(γ(t+ ̺k))‖

ξ

)(wj−k)+

.

(19)

Clearly, if maxρ∈[0,ξ] ‖z
t(γ(t+ ρk))‖/ξ ≤ C uniformly in t, inequality (19) proves (13). Then, let

us assume by contradiction that maxρ∈[0,ξ] ‖z
t(γ(t+ ρk))‖/ξ is unbounded as ξ ↓ 0. For any ξ let

ξ̄ ∈ [0, ξ] to be such that ‖zt(γ(t+ ξ̄k))‖ = maxρ∈[0,ξ] ‖z
t(γ(t+ ρk))‖. Then, there exists a sequence

ξν → +∞ such that

bν =
|ztj(γ(t+ ξ̄kν ))|

ξ
wj
ν

−→ +∞ and
1

n

‖zt(γ(t+ ξ̄kν ))‖

ξν
≤ b

1

wj
ν ≤

‖zt(γ(t+ ξ̄kν ))‖

ξν
.

Moreover, by (19), it has to hold that wj > k. Then, again by (19), follows that

bν ≤ Cn b
1− k

wj
ν −→ 0 as ν → +∞.

This contradicts the fact that bν → +∞, and proves that there exists ξ0 > 0, a priori depending
on t, such that ‖zt(γ(t+ ξ̄k))‖/ξ ≤ C for any ξ < ξ0. Since [0, T ] is compact, both constants ξ0, C
are uniform for t ∈ [0, T ], thus completing the proof of (13) and of the proposition. �

We now focus on coordinate systems adapted to the drift. In particular, if for some s ∈ N it
holds that f0 ⊂ ∆s \∆s−1, it makes sense to consider the following definition.

Definition 3.3. A privileged coordinate system adapted to f0 at q is a system of privileged coordi-
nates z at q for {f1, . . . , fm} such that there exists a coordinate zℓ such that z∗f0 ≡ ∂zℓ .

Observe that completing f0 to an adapted basis {f1, . . . , f0, . . . , fn} allows us to consider the
coordinate system adapted to f0 at q, given by the inverse of the diffeomorphism

(20) (z1, . . . , zn) 7→ ezℓf0 ◦ . . . ◦ eznfn(q).

The following definition combines continuous coordinate families for a path γ : [0, T ] → M with
coordinate systems adapted to a drift.

Definition 3.4. A continuous coordinate family for γ adapted to f0 is a continuous coordinate
family {zt}t∈[0,T ] for γ, such that each zt is a privileged coordinate system adapted to f0 at γ(t).

Such coordinates systems can be built as per (20), letting the point q vary on the curve.
Recall that f0 ⊂ ∆s \∆s−1 for some s, and consider a path γ : [0, T ] → M such that γ̇(t) ∈

∆s(γ(t)) and that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ]. In this case, there exists
fα ⊂ ∆s \∆s−1 and two functions ϕℓ, ϕα ∈ C∞([0, T ]), ϕα ≥ 0, such that

γ̇(t) mod ∆s−1(γ(t)) = ϕℓ(t)f0(γ(t)) + ϕα(t)fα(γ(t)).

Moreover, by the assumption f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)), if ϕℓ(t) = 1 then ϕα(t) > 0. Then,
using fα as an element of the adapted basis used to define a continuous coordinate family for γ
adapted to f0, it holds (zti)∗γ̇(t) = ϕi(t) for i = α, ℓ and any t ∈ [0, T ]. The following lemma will
be essential to study this case.

Lemma 3.5. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ] → M be a
path such that γ̇(t) ∈ ∆s(γ(t)) and such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ].
Consider the continuous coordinate family {zt}t∈[0,T ] for γ adapted to f0 defined above. Then, there

12



exist constants ξ0, ρ,m > 0 and a coordinate α 6= ℓ of weight s such that for any t ∈ [0, T ] and
0 ≤ ξ ≤ ξ0, it holds

(ztℓ)∗γ̇(t+ ξ) ≤ 1− ρ if t ∈ E1 = {ϕℓ < 1− 2ρ},(21)

(ztα)∗γ̇(t+ ξ) ≥ m if t ∈ E2 = {1− 2ρ ≤ ϕℓ ≤ 1 + 2ρ},(22)

(ztℓ)∗γ̇(t+ ξ) ≥ 1 + ρ if t ∈ E3 = {ϕℓ > 1 + 2ρ}.(23)

In particular, it holds that E1 ∪ E2 ∪E3 = [0, T ].

Proof. Since ϕα > 0 on ϕ−1
ℓ (1), by continuity of ϕℓ and ϕα there exists ρ > 0 such that ϕα > 0 on

ϕ−1
ℓ ([1− 2ρ, 1 + 2ρ]). Since E2 = ϕ−1

ℓ ([1−2ρ, 1+2ρ]) is closed, letting 2m = minE2
ϕα > 0 property

(22) follows by the uniform continuity of (t, ξ) 7→ (ztα)∗γ̇(t+ ξ) on E2 × [0, ξ0], for sufficiently small
ξ0. Finally, the uniform continuity of (t, ξ) 7→ (ztℓ)∗γ̇(t+ ξ) over E1 × [0, ξ0] and E3 × [0, ξ0] yields
(21) and (23). �

We end this section by observing that when the path is well-behaved with respect to the sub-
Riemannian structure, it is possible to construct a very special continuous coordinate family, rec-
tifying both γ and f0 at the same time.

Proposition 3.6. Let γ : [0, T ] → M be a path and k ∈ N be such that γ̇(t) ∈ ∆k(γ(t))\∆k−1(γ(t))
for any t ∈ [0, T ], there exists a continuous coordinate family {zt}[0,T ] for γ adapted such that

(1) there exists a coordinate zα of weight k such that zt∗γ̇ ≡ ∂zα ;

(2) for any ξ, t ∈ [0, T ] it holds that ztα = zt−ξ
α + ξ and zti = zξi if i 6= α.

Moreover, if there exists s ∈ N such that f0 ⊂ ∆s \∆s−1 and such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t))
for any t ∈ [0, T ] whenever s = k, such family can be chosen adapted to f0.

Proof. By the assumptions on γ̇, it is possible to choose fα ⊂ ∆k \∆k−1 such that γ̇(t) = fα(γ(t)).
Let then {f1, . . . , fn} be the adapted basis obtained by completing fα and f0. Finally, to complete
the proof it is enough to consider the family of coordinates given by the inverse of the diffeomor-
phisms

(z1, . . . , zn) 7→ ezℓf0 ◦ · · · ◦ ezαfα(γ(t)). �

4. Cost functions

In this section we focus on properties of the cost functions defined in (3) and of the associated
value functions, respectively denoted by VJ (·, ·) and VI(·, ·). For J such function is defined by

(24) VJ (q, q′) = inf
{

J (u, T )| T > 0, qu(0) = q, qu(T ) = q′
}

.

The definition of VI is analogous.

4.1. Regularity of the value function. The following result, in the case of J is contained in
[25, Proposition 4.1], The proof can easily be extended to I.

Theorem 4.1. For any T > 0, the functions VJ and VI are continuous from M ×M → [0,+∞)
(in particular they are finite). Moreover, for any q, q′ ∈ M it holds

VJ (q, q′) ≤ min
0≤t≤T

dSR(e
tf0q, q′),

VI(q, q′) ≤ min
0≤t≤T

(

t+ dSR(e
tf0q, q′)

)

.

Here etf0 denotes the flow of f0 at time t and dSR denotes the Carnot-Carathéodory distance w.r.t.
the system (SR-s), obtained from (D) by putting f0 = 0.
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We remark that this fact follows from the following proposition (obtained adapting [25, Lemma
3.6] to control-affine systems).

Proposition 4.2. For any η > 0 sufficiently small and for any q0, q1 ∈ M , it holds

inf{J (u, η) | if qu(0) = q0 then qu(η) = q1} ≤ dSR(q0, q1).

We denote the reachable set from the point q ∈ M with cost J less than ε > 0 as

(25) Rf0
T (q, ε) =

{

p ∈ M | VJ (q, p) ≤ ε
}

.

Recall de definition of Box (η) in (8) and that {∂zi}
n
i=1 is the canonical basis in R

n. Then, we define
the following sets, for parameters η > 0 and T > 0:

ΞT (η) =
⋃

0≤ξ≤T

(

ξ∂zℓ + Box (η)

)

,

ΠT (η) = Box (η) ∪
⋃

0<ξ≤T

{z ∈ R
n : 0 ≤ zℓ − ξ ≤ ηs, |zi| ≤ ηwi + ηξ

wi
s for wi ≤ s, i 6= ℓ,

and |zi| ≤ η(η + ξ
1

s )wi−1 for wi > s}.

In [25] is proved a more general version of the following result, in the same spirit of Theorem 2.3.

Theorem 4.3. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Assume, moreover, that
z = (z1, . . . , zn) is a privileged coordinate system adapted to f0, i.e., such that z∗f0 = ∂zℓ. Then,
there exist C, ε0, T0 > 0 such that

(26) ΞT

(

1

C
ε

)

⊂ Rf0
T (q, ε) ⊂ ΠT (Cε), for ε < ε0 and T < T0.

Here, with abuse of notation, we denoted by Rf0
T (q, ε) the coordinate representation of the reachable

set. In particular,

(27) Box

(

1

C
ε

)

∩ {zℓ ≤ 0} ⊂ Rf0
T (q, ε) ∩ {zℓ ≤ 0} ⊂ Box (Cε) ∩ {zℓ ≤ 0}.

Remark 4.4. Let N ⊂ M be compact and let {zq}q∈N be a family of systems of privileged
coordinates at q depending continuously on q. Then, as for Theorem 2.3 (see Remark 2.4), there
exist uniform constants C, ε0, T0 > 0 such that Theorem 4.3 holds for any q ∈ N in the system zq.

We notice also that, since [25, Example 21] is easily extendable to I, it follows that, for neither J
nor I, the existence of minimizers is assured. Recall that a control u ∈ UT is a minimizer between
q1, q2 ∈ M for the cost J if its associated trajectory with initial condition qu(0) = q1 is such that
qu(T ) = q2 and VJ(q1, q2) = J(u, T ).

4.2. Behavior along the drift. The following proposition assures that a minimizer for J and I
always exists when moving in the drift direction.

Proposition 4.5. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. For any 0 < t < T ,
the unique minimizer between any q0 ∈ M and etf0q0 for the cost J is the null control on [0, t].
Moreover, if f0 /∈ ∆(q0), i.e. s ≥ 2, and the maximal time of definition of the controls T is
sufficiently small, the same is true for I.

Proof. Since, for t ∈ [0,T ], we have that VJ (q, etf0q) = 0, the first statement is trivial.
To prove the second part of the statement we proceed by contradiction. Namely, we assume that

there exists a sequence T n −→ 0 such that for any n ∈ N there exists a control vn ∈ L1([0, tn],R
m) ⊂

UT n , vn 6≡ 0 , steering the system from q0 to eT n f0(q0) and such that

(28) tn + ‖vn‖L1([0,tn],Rm) = I(vn, tn) ≤ I(0,T n) = T n .
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Let z = (z1, . . . , zn) be a privileged coordinate system adapted to f0 at q, as per Definition 3.3.
Thus, by Theorem 4.3, it holds

|zℓ(e
T n f0(q0))| ≤ tn + C‖vn‖

2
L1([0,tn],Rm).(29)

Since zℓ(e
T n f0(q0)) = T n, putting together (28) and (29) yields ‖vn‖L1([0,tn],Rm) ≤ C‖vn‖

2
L1([0,tn],Rm)

for any n ∈ N. Since by the continuity of VI we have that ‖vn‖L1([0,tn],Rm) → 0, this is a contra-
diction. �

We remark that, in the case of I, the assumption f0 /∈ ∆(q0) of Proposition 4.5 is essential. In
particular, in the following example we show that when f0 ⊂ ∆ even if a minimizer between q0 and
etf0(q0) exists, it could not coincide with an integral curve of the drift.

Example 4.6. Consider the control-affine system on R
2,

(30)
d

dt
x = f0(x) + u1f0(x) + u2f(x),

where f0 = (1, 0) and f = (φ1, φ2) for some φ1, φ2 : R2 → R, with φ2 6= 0 and ∂x(φ1/φ2)|(0,0) 6= 0.
Since f0 and f are always linearly independent, the underlying small sub-Riemannian system is
indeed Riemannian with metric

g =

(

1 −φ1/φ2

−φ1/φ2
1−φ2

1

φ2
2

)

.

Let us now prove that the curve γ : [0, 1] → R
2, γ(t) = (t T, 0) is not a minimizer of the

Riemannian distance between (0, 0) and (T, 0). In particular, it is enough to prove that γ is not a
geodesic for small T > 0. For γ the geodesic equation writes

{

t2Γ1
11(γ(t)) = 0,

t2Γ2
11(γ(t)) = 0,

for any t ∈ [0, 1] ⇐⇒ Γ1
11(·, 0) = Γ2

11(·, 0) = 0 near 0.

Here, Γi
kℓ are the Christoffel numbers of the second kind associated with g. A simple computation

shows that

Γ1
11 =

φ1

φ2
∂x1

(

φ1

φ2

)

, Γ2
11 = ∂x1

(

φ1

φ2

)

.

Thus, if ∂x1
(φ1/φ2)|(0,0) 6= 0, then Γ2

11(0, 0) 6= 0, showing that γ is not a geodesic.

We now show that this fact implies that for any minimizing sequence un = (u1n, u
2
n) ∈ L1([0, tn],R

2

for VI between (0, 0) and eTf0((0, 0)) = (T, 0), such that J(un+1, tn+1) ≤ J(un, tn), then u2n 6= 0
for sufficiently big n. To this aim, fix any tn → 0, let un(s) = u(s/tn) and qn(·) be the trajectory
associated with un in system (30). Moreover, let v = (v1, 0) ∈ L1([0, S],R2) be the minimizer
of I between (0, 0) and (T, 0) in the system ẋ1 = 1 + v1. Since the trajectory of v is exactly γ,
by rescaling it holds length(γ) = I(v, S). Then, by standard results in the theory of ordinary
differential equations, it follows that qn(tn) → (T, 0) and the fact that γ is not a Riemannian
minimizing curve implies that

‖un‖L1 = ‖u‖L1 < length(γ) = I(v, S).

Hence, for sufficiently big n it holds that I(un, tn) < I(v, S), proving the claim.

As a consequence of Proposition 4.5, we get the following property for the complexities defined
in the previous section with respect to the costs J and I. It generalizes to the control-affine setting
the trivial minimality of the sub-Riemannian complexity on the path Γ = {q}.
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Corollary 4.7. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let x ∈ M and
y = eTf0x, for some 0 < T < T . Then, for any ε > 0, the minimum over all curves Γ ⊂ M (resp.

paths γ : [0, T ] → M) connecting x and y of ΣJ
int(·, ε) and ΣJ

app(·, ε) (resp. σJ
int(·, δ) and σJ

app(·, ε))

is attained at Γ = {etf0}t∈[0,T ] (resp. at γ(t) = etf0x). Moreover, the same is true for the cost I,
whenever T is sufficiently small.

4.3. Behavior transversally to the drift. When we consider two points on different integral
curves of the drift, it turns out that the two costs J and I are indeed equivalent, as proved in the
following.

Proposition 4.8. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let q, q′ ∈ M be such
that there exists a set of privileged coordinates adapted to f0 at q. Then, there exists C, ε0,T > 0
such that, for any u ∈ UT such that, for some T < T , qu(T ) = q′ and J (u, T ) < ε0, it holds

J (u, T ) ≤ I(u, T ) ≤ CJ (u, T ).

The proof of this fact relies on the following particular case of [25, Lemma 25].

Lemma 4.9. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let q ∈ M and let
z = (z1, . . . , zn) be a system of privileged coordinate system adapted to f0 at q. Then, there exist
C, ε0,T > 0 such that, for any u ∈ UT , with J (u, T ) < ε0 for some T < T , it holds

T ≤ C
(

J (u, T )s + zℓ(qu(T ))
+
)

.

Here, we let ξ+ = max{ξ, 0}.

This Lemma is crucial, since it allows to bound the time of definition of any control through its
cost. We now prove Proposition 4.8.

Proof of Proposition 4.8. The first inequality is trivial. The second one follows by applying Lemma 4.9,
and computing

I(u, T ) ≤ T + J (u, T ) ≤ (Cεs−1
0 + 1)J (u, T ).

�

5. First results on complexities

In this section we collect some first results regarding the various complexities we defined.
Firstly, we prove a result on the behavior of complexities. For all the complexities under consid-

reation, except the interpolation by time complexity, such result will hold with respect to a generic
cost function J : UT → [0,+∞), satisfying some weak hypotheses.

Proposition 5.1. Assume that for any q1 ∈ M and any q2 /∈ {etf0q1}t∈[0,T ], it holds V
J(q1, q2) > 0.

Then, the following holds.

i. For any curve Γ ⊂ M it holds the following.
(a) If the maximal time of definition of the controls, T , is sufficiently small, then limε↓0Σint(Γ, ε) =

limε↓0 Σapp(Γ, ε) = +∞.
(b) If Γ is an admissible curve for (D), then εΣint(Γ, ε) and εΣapp(Γ, ε) are bounded from

above, for any ε > 0.
ii. For any path γ : [0, T ] → M it holds the following.

(a) If γ is not a solution of (D), limε↓0 σapp(γ, ε) = +∞.

(b) If the cost is either J or I, f0 ⊂ ∆s \∆s−1, γ̇(t) ⊂ ∆k(γ(t)) \∆k−1(γ(t)) and f0(γ(t)) 6=
γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ], then limε↓0 σint(γ, ε) = +∞ whenever δ0 < η.

(c) If γ is an admissible curve for (D), then εσint(γ, ε) and ε σapp(γ, ε) are bounded by above,
for any δ, ε > 0.
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f0(x)

e·f0(x)

f0

Figure 5. An example of a curve satisfying Remark 5.3, with a rectified drift.

Proof. The last statement for curves and paths follows simply by considering the control whose
trajectory is the curve or the path itself, which is always admissible regardless of ε.

We now prove the first statement for the interpolation by cost complexity of a curve Γ. The
same reasonings will hold for Σapp and σapp. Let x, y be the two endpoints of Γ and assume T to

be sufficiently small so that VJ(x, y) > 0. Then, the first statement follows from

lim
ε↓0

Σint(Γ, ε) ≥ V (x, y) lim
ε↓0

1

ε
= +∞.

Consider now the interpolation by time complexity and proceed by contradiction. Namely, let
us assume that there exists a constant C > 0 such that σint(γ, ε) ≤ C for any ε > 0. Then,
by definition of σint, this implies that for any ε > 0 there exists δε ∈ [CT/2, δ0) and a δε-time
interpolation uε ∈ L1([0, T ],Rm) such that δεJ(uε, T ) ≤ ε.

Firstly, observe that by Lemma 4.9 and the assumptions on f0 and γ̇, we obtain that there exist
η > 0 and an interval I ⊂ [0, T ], with |I| > η, such that

(31) V
(

γ(th1), γ(t
h
2 )
)

−→0 as h ↓ 0 =⇒ th2 − th1−→0 as h ↓ 0,

whenever th1 ∈ I and th2 > th1 for any h in a right neighborhood of zero.
For any ε, let 0 = tε0 < tε1 < . . . < tεNε

= T be a partition of [0, T ] such that quε(t
ε
i ) = γ(tεi )

for any i ∈ {0, Nε} and tεi − tεi−1 ≤ δε. It is clear that, up to removing some tεi ’s, we can assume
that tεi − tεi−1 ≥ δε/2 ≥ CT/4. Let us fix, τ ε1 = tεiε ∈ I for some index iε and τ ε2 = tεiε+1. Such τ ε1
always exists, since |I| > δ0. Since, by the definition of uε and the choice of the cost, follows that
VJ(γ(τ ε1 ), γ(τ

ε
2 )) → 0 as ε ↓ 0 we obtain a contradiction. In fact, this implies that

0 = lim
ε↓0

(

τ ε2 − τ ε1
)

≥
CT

4
> 0.

�

Remark 5.2. Result ii.b, regarding the interpolation by time complexity, holds for any cost satis-
fying the assumptions of Proposition 5.1, such that for any path γ it holds (31), and that, for any
u ∈ L1([0, T ],Rm), there exists a constant such that, if t1, t2 ∈ [0, T ], t1 < t2, then

J(u|[t1,t2](·+ t1), t2 − t1) ≤ CJ(u, T ).

Remark 5.3. The bound on δ0 in Proposition 5.1 is essential. For example, consider the cost
J (u, T ) = ‖u‖L1([0,T ],Rm), and a curve such that, for someN ∈ N, it holds γ(jT/N) = ej(T/N)f0(γ(0))

for any j = 1, . . . , T/N (see, e.g., Figure 5). In this case, the null control is a (T/N)-time interpo-
lation of γ, with J (0, T ) = 0. In particular, if δ0 > T/N , it holds σint(γ, ε) ≤ N .
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In the following, we will denote with an apex “SR-s” – e.g. ΣSR-s
int – the complexities associated

with the small sub-Riemannian system (SR-s) defined at p. 10, and with an apex “SR-b”, e.g.
ΣSR-b
int , the ones associated with the big sub-Riemannian system (SR-b).
We immediately get the following.

Proposition 5.4. Let Γ ⊂ M be a curve and γ : [0, T ] → M be a path.

(i) Any complexity relative to the cost J is smaller than the same complexity relative to I.
Namely, for any ε, δ > 0, it holds

ΣJ
int(Γ, ε) ≤ ΣI

int(Γ, ε), ΣJ
app(Γ, ε) ≤ ΣI

app(Γ, ε),

σJ
int(γ, ε) ≤ σI

int(γ, ε), σJ
app(γ, ε) ≤ σI

app(γ, ε).

(ii) For any cost, the neighboring approximation complexity of some path is always bigger than
the tubular approximation complexity of its support. Namely, for any γ : [0, T ] → M and
any ε > 0, it holds

ΣJ
app(γ([0, T ]), ε) ≤ σapp

J (γ, ε), ΣI
app(γ([0, T ]), ε) ≤ σI

app(γ, ε)

(iii) Any complexity relative to the cost I is bigger than the same complexity computed for the
system (SR-b). Namely, for any ε, δ > 0, it holds

ΣSR-b
int (Γ, ε) ≤ ΣI

int(Γ, ε), ΣSR-b
app (Γ, ε) ≤ ΣI

app(Γ, ε),

σSR-b
int (γ, ε) ≤ σI

int(γ, ε), σSR-b
app (γ, ε) ≤ σI

app(γ, ε).

(iv) In the case of curves, the complexities relative to the cost I are always smaller than the
same complexities computed for the system (SR-s). Namely, for any ε > 0 it holds

ΣI
int(Γ, ε) ≤ ΣSR-s

int (Γ, ε), ΣI
app(Γ, ε) ≤ ΣSR-s

app (Γ, ε).

Proof. The inequality in (ii) is immediate, since any control admissible for the σapp(γ, ε) is also
admissible for Σapp(γ([0, T ]), ε).

On the other hand, the inequalities in (iii) between the complexities in (SR-b) and the ones
in (D), with cost I, is a consequence of the fact that, for every control u ∈ UT , the trajectory
qu is admissible for (SR-b) and associated with the control u0 = (1, u) : [0, T ] → R

m+1 with
‖u0‖L1([0,T ],Rm+1) = I(u, T ). The inequalities in (i) between the complexities in (D) with respect
to the different costs follows from the fact that J ≤ I.

Finally, to complete the proof of the proposition, observe that, by Theorem 4.1, it holds that

VI(q, q′) ≤ dSR(q, q
′), for any q, q′ ∈ M.

This shows, in particular, that every ε-cost interpolation for (SR-s), is an ε-cost interpolation for
(D), proving the statement regarding the cost interpolation complexity in (iv). The part concerning
the tubular approximation follows in the same way. �

We conclude this section by proving an asymptotic equivalence for the complexities of a control-
affine system in a very special case. In particular, we will prove that if we cannot generate the
direction of Γ with an iterated bracket of f0 and some f1, . . . , fm, then the curve complexities for
the systems (D), (SR-s) and (SR-b) behaves in the same way.

Let Lf0 be the ideal of the Lie algebra Lie(f0, f1, . . . , fm) generated by the adjoint endomorphism
ad(f0) : f 7→ ad(f0)f = [f0, f ], f ∈ Vec(M). Then the following holds.

Proposition 5.5. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1, and let Γ ⊂ M be a
curve such that there exists k ∈ N for which TΓ ⊂ ∆k \ ∆k−1. Assume, moreover, that for any
q ∈ Γ it holds that TqΓ 6⊂ Lf0(q). Then, for sufficiently small T ,

(32) ΣJ
int(Γ, ε) ≍ ΣI

int(Γ, ε) ≍ ΣJ
app(Γ, ε) ≍ ΣI

app(Γ, ε) ≍
1

εk
.
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Proof. By the fact that TqΓ 6⊂ Lf0(q), follows that TqΓ ⊂ Liekq (f0, f1, . . . , fm)\Liek−1
q (f0, f1, . . . , fm).

Thus, approximating Γ in the big or in the small sub-Riemannian system is equivalent, and by The-
orem 1.1 follows

ΣSR-s
int (Γ, ε) ≍ ΣSR-b

int (Γ, ε) ≍ ΣSR-s
app (Γ, ε) ≍ ΣSR-b

app (Γ, ε) ≍
1

εk
.

The statement then follows by applying Proposition 5.4. �

Remark 5.6. Observe that if f0 ∈ ∆ in a neighborhood U of Γ, it holds that Liekq (f0, f1, . . . , fm) =

∆k(q) for any q ∈ U . Then, by the same argument as above, we get that (32) holds. This shows
that, where f0 ⊂ ∆, the asymptotic behavior of complexities of curves is the same as in the
sub-Riemannian case.

6. Complexity of curves

This section is devoted to prove the statement on curves of Theorem 1.3. Namely, we will prove
the following.

Theorem 6.1. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let Γ ⊂ M be a curve
and define κ = max{k : TpΓ ∈ ∆k(p) \ ∆k−1(p) for some p ∈ Γ}. Then, if the maximal time of
definition of the controls T is small enough,

ΣJ
int(Γ, ε) ≍ ΣI

int(Γ, ε) ≍ ΣJ
app(Γ, ε) ≍ ΣI

app(Γ, ε) ≍
1

εκ
,

Due to the fact that the value functions associated with the costs J and I are always smaller
than the sub-Riemannian distance associated with system (SR-s), the 4 immediately follows from
the results in [23].

Proposition 6.2. Let Γ ⊂ M be a curve such that there exists k ∈ N for which TΓ ⊂ ∆k. Then,

ΣJ
int(Γ, ε) 4 ΣI

int(Γ, ε) 4
1

εk
, ΣJ

app(Γ, ε) 4 ΣI
app(Γ, ε) 4

1

εk
.

Proof. By (i) in Proposition 5.4, follows that we only have to prove the upper bound for the
complexities relative to the cost I. Moreover, by the same proposition and [23, Theorem 3.14],
follows immediately that ΣI

int(Γ, ε) and ΣI
app(Γ, ε) 4 ε−k, completing the proof of the proposition.

�

In order to prove <, we will need to exploit a sub-additivity property of the complexities. In order
to have this property, it is necessary to exclude certain bad behaving points, called cusps. Near
these points, the value function behaves like the Euclidean distance does near algebraic cusps (e.g.,

(0, 0) for the curve y =
√

|x| in R2). In the sub-Riemannian context, they have been introduced in
[23].

Definition 6.3. The point q ∈ Γ is a cusp for the cost J if it is not an endpoint of Γ and if,
for every c, η > 0, there exist two points q1, q2 ∈ Γ such that q lies between q1 and q2, with q1
before q and q2 after q w.r.t. the orientation of Γ (in particular q 6= q1, q2), V

J(q1, q2) ≤ η and
VJ(q, q2) ≥ c V(q1, q2).

In [23] is proved that no curve has cusps in an equiregular sub-Riemannian stucture. As the
following example shows, the equiregularity alone is not enough for control-affine systems.

Example 6.4. Consider the following vector fields on R
3, with coordinates (x, y, z),

f1(x, y, z) = ∂x, f2(x, y, z) = ∂y + x∂z.

Since [f1, f2] = ∂z, {f1, f2} is a bracket-generating family of vector fields. The sub-Riemannian
control system associated with {f1, f2} on R

3 corresponds to the Heisenberg group.
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Let now f0 = ∂z ⊂ ∆2 \∆ be the drift, and let us consider the curve Γ = {(t2, 0, t) | t ∈ (−η, η)}.
Let q = (0, 0, 0). Since TqΓ /∈ ∆(q), by smoothness of Γ and ∆, for η sufficiently small TΓ ⊂ ∆2 \∆.
We now show that the point q is indeed a cusp for the cost J . In fact, for any ξ > 0 such that
2ξ < T , it holds that the null control defined over time [0, 2ξ] steers the control affine system from
q1 = (ξ2, 0,−ξ) ∈ Γ to q2 = (ξ2, 0, ξ) ∈ Γ. Hence, by Proposition 4.5, V J (q1, q2) = 0. Moreover,
since q and q2 are not on the same integral curve of the drift, V J (q, q2) > 0 = V J (q1, q2). This
proves that q is a cusp for J .

The following proposition shows that cusps appear only where the drift becomes tangent to the
curve at isolated points, as in the above example.

Proposition 6.5. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let Γ ⊂ M be a curve
such that TΓ ⊂ ∆k \∆k−1. Moreover, if s = k, let Γ be such that either f0(p) /∈ TpΓ⊕∆s−1(p) for

any p ∈ Γ or f0|Γ ⊂ TΓ⊕∆s−1. Then Γ has no cusps for the cost VJ .

Proof. If f0|Γ ⊂ TpΓ ⊕ ∆s−1(p), the statement is a consequence of Proposition 4.5. Hence, we
assume that f0(p) /∈ TpΓ ⊕∆s−1(p) for any p ∈ Γ. Let γ : [0,T] → M be a path parametrizing Γ
and consider the continuous coordinate family {zt}t∈[0,T] adapted to f0 given by Proposition 3.6.

In particular, it holds that zt∗γ̇(·) ≡ ∂zα for some coordinate zα of weight k and for any t ∈ [0,T].
We now fix any t0 ∈ (0,T) and prove that γ(t0) is not a cusp. In fact, letting η > 0 be sufficiently
small, by Theorem 4.3 and the fact that ztℓ(γ(·)) ≡ 0 we get

V J (γ(t0), γ(t0 + η)) ≤ C
n
∑

j=1

|zt0j (γ(t0 + η))|
1

wj = C|zt0α γ(t0 + η)|
1

k

= 2C|zt0−η
α (γ(t0 + η))|

1

k ≤ CV (γ(t0 − η), γ(t0 + η)).

Letting t1 = t0 − η and t2 = t0 + η, this proves that V J (γ(t0), γ(t2)) ≤ V J (γ(t1), γ(t2)). By
definition, this implies that γ(t0) is not a cusp, completing the proof of the proposition. �

Finally, we can prove the sub-additivity of the curve complexities.

Proposition 6.6. Let Γ′ ⊂ Γ ⊂ M be two curves. Then, if the endpoints of Γ′ are not cusps for
the cost J , there exists a constant C > 0 such that for sufficiently small T it holds

ΣJ
int(Γ

′, ε) 4 ΣJ
int(Γ, ε), ΣJ

app(Γ
′, ε) 4 ΣJ

app(Γ, ε).

Proof. Cost interpolation complexity. Let u ∈ L1([0, T ],Rm) be a control admissible for ΣJ
int(Γ, ε),

and let 0 = t1 < . . . < tN = T be such that ‖u‖L1([ti−1,ti])
≤ ε. Recall that by Theorem 4.1, V J is

a continuous function. Since for small T > 0, for any ε > 0 and for any q0 ∈ M the reachable set
RT (q, ε) is bounded, it holds thatRT (q, ε) ց {etf0(q0) | t ∈ [0,T ]} as ε ↓ 0, in the sense of pointwise
convergence of characteristic functions. From this follows that, for ε and T sufficiently small, there
exist i1 6= i2 such that qu(ti) ∈ Γ′ for any i ∈ {i1, . . . , i2} and qu(ti) 6∈ Γ′ for any i /∈ {i1, . . . , i2}.
Since x′ and y′ are not cusps, there exists c > 0 such that, letting x′ and y′ be the endpoints of Γ′, it
holds VJ (x′, qu(ti1)) ≤ cVI(qu(ti1−1, qu(ti1)) ≤ ε and VJ (qu(ti2), y

′) ≤ VJ (qu(ti2), qu(ti2+1)) ≤ cε.
Thus, there exists a constant C > 0 such that

ΣJ
int(Γ

′, ε) ≤
J (u|[ti1 ,ti2 ])

ε
+ 2c ≤ C

J (u|[ti1−1,ti2+1])

ε
≤ C

J (u)

ε
.

Taking the infimum over all controls u, admissible for ΣJ
int(Γ, ε) completes the proof.

Tubular approximation complexity. Let u ∈ L1([0, T ],Rm) be a control admissible for ΣJ
app(Γ, ε).

Then, letting qu be its trajectory such that qu(0) = x, there exists two times t1 and t2 such that
qu(t1) ∈ BSR(x

′, Cε) and qu(t2) ∈ BSR(y
′, Cε). Then, since V J ≤ dSR by Theorem 4.1, the same

argument as above applies. �
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Thanks to the sub-additivity, we can prove the < part of Theorem 6.1 in the case where the
curve is always tangent to the same stratum ∆k \∆k−1.

Proposition 6.7. Assume, that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let Γ ⊂ M be a
curve such that there exists k ∈ N for which TpΓ ∈ ∆k(p) \ ∆k−1(p) for any p ∈ Γ. Then, for
sufficiently small time T , it holds

ΣI
int(Γ, ε) < ΣJ

int(Γ, ε) <
1

εk
, ΣI

app(Γ, ε) < ΣJ
app(Γ, ε) <

1

εk
.

Proof. By Proposition 5.4, ΣI
int(Γ, ε) < ΣJ

int(Γ, ε) and ΣI
app(Γ, ε) < ΣJ

app(Γ, ε). We will only prove

that ΣJ
int(Γ, ε) < ε−k, since the same arguments apply to ΣJ

app(Γ, ε).
Let γ : [0,T] → M be a path parametrizing Γ. We will distinguish three cases.

Case 1 f0(p) /∈ ∆s−1(p)⊕ TpΓ for any p ∈ Γ: Fix η > 0 and consider a control u ∈ L1([0, T ],Rm),
admissible for Σint(Γ, ε) such that

(33)
‖u‖L1

ε
≤ Σint(Γ, ε) + η.

Let ui = u|[ti−1,ti], i = 1, . . . , N =
⌈

‖u‖
L1

ε

⌉

to be such that ‖ui‖L1 = ε for any 1 ≤ i < N ,

‖uN‖L1 ≤ ε. Moreover, let si be the times such that γ(si) = qu(ti).
By (33), it holds N ≤ ⌈Σint(Γ, ε) + η + 1⌉. However, we can assume w.l.o.g. that N ≤

⌈Σint(Γ, ε) + η⌉. In fact, N > ⌈Σint(Γ, ε) + η⌉ only if ‖uN‖ < ε. In this case we can simply

restrict ourselves to compute Σint(Γ̃, ε) where Γ̃ is the segment of Γ comprised between x

and qu(tN−1). Indeed, by Propositions 6.5 and 6.6, it follows that Σint(Γ̃, ε) 4 Σint(Γ, ε).
We now assume that ε and T are sufficiently small, in order to satisfy the hypotheses

of Theorem 4.3 at any point of Γ. Moreover, let {zt}t∈[0,T] be the continuous coordinate
family for Γ adapted to f0 given by Proposition 3.6. Then, it holds

(34) T =
N
∑

i=1

(si − si−1) =
N
∑

i=1

|z
si−1
α (γ(si))| =

N
∑

i=1

|z
si−1
α (qu(ti))| ≤ C(Σint(Γ, ε) + η)εk.

Here, in the last inequality we applied Theorem 4.3 and the fact that zsi−1
ℓ (qu(ti)) = 0 by

Proposition 3.6. Finally, letting η ↓ 0 in (34), we get that for any ε sufficiently small it
holds Σint(Γ, ε) ≥ CT ε−k. This completes the proof in this case.

Case 2 s = k and f0(p) ∈ ∆s−1(p)⊕ TpΓ for any p ∈ Γ: Let {zt}t∈[0,T] be a continuous co-

ordinate family for γ adapted to f0. In this case, since (ztℓ)∗f0 = 1, it holds that (ztℓ)∗γ̇(·) 6=
0. Hence, there exist C1, C2 > 0 such that for any t, ξ ∈ [0, T ]

C1(t− ξ) ≤ ztℓ(γ(ξ)) ≤ C2(t− ξ), if (ztℓ)∗γ̇(·) > 0;(35)

C1(t− ξ) ≤ −ztℓ(γ(ξ)) ≤ C2(t− ξ), if (ztℓ)∗γ̇(·) < 0.(36)

If (36) holds, then we can proceed as in Case 1 with α = ℓ. In fact, |z
si−1

ℓ (qu(ti)| ≤ Cεs by
Theorem 4.3. On the other hand, if (35) holds, by applying Theorem 4.3 we get

T =

N
∑

i=1

(si − si−1) ≤
1

C1

N
∑

i=1

|z
si−1

ℓ (γ(si))| =
1

C1

N
∑

i=1

|z
si−1

ℓ (qu(ti))|

≤
1

C1

N
∑

i=1

(Cεs + ti − ti−1) ≤ C
(

ΣJ
int(Γ, ε) + η

)

εs + T.

By taking T sufficiently small, it holds T ≤ T < T. Then, letting η ↓ 0 this proves that
ΣJ
int(Γ, ε) ≥ ((T − T )/C)ε−s < ε−s. This completes the proof of this case.
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Case 3 s = k and f0(p) ∈ ∆s−1(p)⊕ TpΓ for some p ∈ Γ: In this case, there exists an open
interval (t1, t2) ⊂ [0,T] such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ (t1, t2). Thus,

Γ′ = γ((t1, t2)), satisfies the assumption of Case 1 and hence ΣJ
int(Γ

′, ε) < ε−k. Moreover, by
Proposition 6.5, we can assume that γ(t1) and γ(t2) are not cusps. Then, by Proposition 6.6
we get

1

εk
4 ΣJ

int(Γ
′, ε) 4 ΣJ

int(Γ, ε),

completing the proof of the proposition.

�

Finally, we are in a condition to prove the main theorem of this section.

Proof of Theorem 6.1. Since it is clear that TΓ ⊂ ∆κ, the upper bound follows by Proposition 6.2.
Moreover, by Proposition 5.4 it suffices to prove that ΣJ

int(Γ, ε) and ΣJ
app(Γ, ε) < ε−κ. Since the

arguments are analogous, we only prove this for ΣJ
int.

By smoothness of Γ, the set A = {p ∈ Γ | TpΓ ∈ ∆κ(p) \∆κ−1(p)} has non-empty interior. Let
then Γ′ ⊂ A be a non-trivial curve such that either f0(p) /∈ TpΓ

′ ⊕∆s−1(p) for any p ∈ Γ′ or that
f0|Γ′ ⊂ TΓ′ ⊕∆s−1. Then, since by Proposition 6.5 we can choose Γ′ such that it does not contain

any cusps, applying Proposition 6.6 yields that ΣJ
int(Γ

′, ε) 4 ΣJ
int(Γ, ε). Finally, the result follows

from the fact that, by Proposition 6.7, it holds ΣJ
int(Γ

′, ε) < ε−κ. �

7. Complexity of paths

In this section we will prove the statement on paths of Theorems 1.2 and 1.3.
Recall the definition of δ-time interpolation given in Section 1.2, and define the following function

of a path γ : [0, T ] → M and a time-step δ > 0

ω(γ, δ) = δ inf
{

J(u, T )| u is a δ-time interpolation of γ
}

.

Controls admissible for the above infimum define trajectories touching γ at intervals of time of
length at most δ. Then, function ω(γ, δ) measures the minimal average cost on each of these
intervals. It is possible to express the interpolation by time complexity through ω. Namely,

(37) σint(γ, ε) = inf
δ≤δ0

{

T

δ

∣

∣

∣

∣

ω(γ, δ) ≤ ε

}

= sup
δ≤δ0

{

T

δ

∣

∣

∣

∣

ω(γ, δ′) ≥ ε for any δ′ ≥ δ

}

.

From (37) follows immediately that, for any k ∈ N,

(38) σint(γ, ε) 4 ε−k ⇐⇒ ω(γ, δ) 4 δ
1

k and σint(γ, ε) < ε−k ⇐⇒ ω(γ, δ) < δ
1

k .

Exploiting this fact, we are able to prove Theorem 1.2.

Proof of Theorem 1.2. Let {zt}t∈[0,T ] to be the continuous family of coordinates for γ given by

Proposition 3.6. We start by proving that ω(γ, δ) 4 δ
1

k which, by (38), will imply σSR-s
int (γ, ε) 4

ε−k. Fix any partition 0 = t0 < t1 < . . . < tN = T such that δ/2 ≤ ti − ti−1 ≤ δ. If δ is
sufficiently small, from Theorem 2.3 follows that there exists a constant C > 0 such that for any

i = 0, . . . , N in the coordinate system zti it holds that Box(γ(ti), Cδ
1

k ) ⊂ BSR(γ(ti), δ
1

k ). Hence,

since z
ti−1
α (γ(ti)) = ti − ti−1, that z

ti−1

j (γ(ti)) = 0 for any j 6= α, and that N ≤ ⌈2T/δ⌉ ≤ CT/δ,
we get

ω(γ, δ) ≤ δ

N
∑

i=1

dSR(γ(ti−1), γ(ti)) ≤ Cδ

N
∑

i=1

n
∑

j=1

|z
ti−1

j (γ(ti))|
1

wj = Cδ

N
∑

i=1

(ti − ti−1)
1

k ≤ CTδ
1

k .

This proves completes the proof of the first part of the Theorem.
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Conversely, to prove that σint(γ, ε) 4 ε−k we need to show that ω(γ, δ) < δ
1

k . To this aim, let
η > 0 and u ∈ L1 be a control admissible for ω(γ, δ) such that

‖u‖L1([ti−1,ti])
≤

ω(γ, δ)

δ
+ η.

Let 0 = t0 < t1 < . . . < tN = T be times such that qu(ti) = γ(ti), i = 0, . . . , N , 0 < ti − ti−1 ≤ δ.
Moreover, let ui ∈ L1([ti−1, ti]) be the restriction of u between ti−1 and ti. Observe that, up to
removing some ti’s, we can assume that ti − ti−1 ∈

(

δ
2 ,

3
2δ
]

. This implies that ⌈2T/(3δ)⌉ ≤ N ≤
⌈2T/δ⌉.

To complete the proof it suffices to show that ‖ui‖L1([ti−1,ti])
≥ Cδ

1

k . In fact, for any η > 0, this

yields

ω(γ, δ)

δ
≥ ‖u‖L1([0,T ],Rm) − η =

N
∑

i=1

‖ui‖L1([ti−1,ti])
− η ≥ C

N
∑

i=1

δ
1

k − η ≥ C
2T

3δ
δ

1

k − η.

Letting η ↓ 0, this will prove that ω(γ, δ) < δ
1

k , completing the proof.
Observe that, by Theorem 2.3, for any i = 1, . . . , N in the coordinate system zti−1 it holds

BSR(γ(ti), ‖ui‖L1([ti−1,ti])
) ⊂ Box

(

γ(ti), C‖ui‖L1([ti−1,ti])

)

. Since z
ti−1
α (ti) = ti − ti−1, this implies

that
δ

2
≤ ti − ti−1 = |z

ti−1
α (γ(ti))| ≤ C ‖ui‖

k
L1([ti−1,ti])

,

proving the claim and the theorem. �

The rest of the section will be devoted to the proof of the statement on paths of Theorem 1.3.
Namely, we will prove the following.

Theorem 7.1. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. let γ : [0, T ] → M be a
path such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ] and define κ = max{k : γ(t) ∈
∆k(γ(t)) \∆k−1(γ(t)) for any t in an open subset of [0, T ]}. Then, it holds

σJ
int(γ, ε) ≍ σI

int(γ, ε) ≍ σJ
app(γ, ε) ≍ σI

app(γ, ε) ≍
1

εmax{κ,s}
,

where the asymptotic equivalences regarding the interpolation by time complexity are true only when
δ0, i.e., the maximal time-step in σint(γ, ε), is sufficiently small.

Differently to what happened for curves, the 4 part does not immediately follow from the
estimates of sub-Riemannian complexities, but requires additional care. It is contained in the
following proposition.

Proposition 7.2. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ] → M be
a path such that γ̇(t) ∈ ∆k(γ(t)). Then, it holds

(39) σJ
int(γ, ε) 4 σI

int(γ, ε) 4
1

εmax{s,k}
, σJ

app(Γ, ε) 4 σI
app(Γ, ε) 4

1

εmax{s,k}
.

Proof. By (i) in Proposition 5.4, follows that we only have to prove the upper bound for the
complexities relative to the cost I. We will start by proving (39) for σI

int. In particular, by (38) it

will suffices to prove ωI(γ, δ) 4 δ
1

k

Let {zt}t∈[0,T ] be a continuous coordinate family for γ adapted to f0. Let γ̃t(ξ) = e−(ξ−t)f0(γ(ξ)).

Then, since zt∗f0 = ∂zℓ , it holds

(40) ztℓ(γ̃t(ξ)) = ztℓ(γ(ξ)) − (ξ − t), zti(γ̃t(ξ)) = zti(γ(ξ)) for any i 6= ℓ.

Fix ξ > 0 sufficiently small for Proposition 3.2 to hold and choose a partition 0 < t1 < . . . <
tN = T such that δ/2 ≤ ti − ti−1 ≤ δ. In particular, N ≤ ⌈2T/δ⌉. We then select a control
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u ∈ L1([0, T ],Rm) such that its trajectory qu in (D), with qu(0) = x, satisfies qu(ti) = γ(ti) for any
i = 1, . . . , N as follows. For each i, we choose ui ∈ L1([ti−1, ti],R

m) steering system (TD) from
γ(ti−1) = γ̃ti−1

(ti−1) to γ̃ti−1
(ti). Then, by (9) and the definition of γ̃ti−1

, the control ui steers
system (D) from γ(ti−1) to γ(ti).

Since by [25, Theorem 8] it holds VI
TD ≤ dSR, by (40), Proposition 3.2 and Theorem 2.3, if δ is

sufficiently small we can choose ui such that there exists C > 0 for which

I(ui, ti − ti−1) ≤ C

n
∑

j=1

|z
ti−1

j (γ̃ti−1
(ti))|

1

wj ≤ C

n
∑

j=1

|z
ti−1

j (γ(ti))|
1

wj + δ
1

s

≤ C





∑

wj≤k

δ
1

wj + δ
1

s +
∑

wj>k

δ
1

k



 ≤ Cδ
1

max{k,s} .

(41)

Hence, we obtain that

(42) I(u, T ) ≤ N I(ui, ti − ti−1) ≤ 3C
T

δ
δ

1

max{k,s} .

Since the control u is admissible for ωI(γ, δ), this implies that ωI(γ, δ) 4 δ
1

max{k,s} . This proves the
first part of the theorem.

To complete the proof for σapp(γ, ε), let δ = εmax{k,s}. Then, by Theorems 2.3 and 4.3, there

exists a constant C > 0 such that Rf0
δ (γ(t), ε) ⊂ BSR(γ(t), Cε) for any t ∈ [0, T ]. In particular,

dSR(γ(ti), qu(t)) ≤ Cε for any t ∈ [ti−1, ti]. Moreover, again by Theorem 2.3, Proposition 3.2, and
the fact that γ̇(·) ∈ ∆k(γ(·)), this choice of δ implies also that dSR(γ(ti−1), γ(t)) ≤ Cε for any
t ∈ [ti−1, ti]. Hence, for any t ∈ [ti−1, ti], we get

dSR(γ(t), qu(t)) ≤ dSR(γ(ti−1), qu(t)) + dSR(γ(ti−1), γ(t)) ≤ 2Cε.

Thus, u is admissible for σI
app(γ,Cε). Finally, from (42) we get that σI

app(γ,Cε) ≤ ε−1I(u, T ) ≤

3CTε−max{k,s}, proving that σapp(γ, ε) 4 ε−max{k,s}. This completes the proof. �

Now, we prove the < part of the statement, in the case where γ̇ is always contained in the same
stratum ∆k \∆k−1.

Proposition 7.3. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ] → M be
a path, such that γ̇(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for any t ∈ [0, T ]. Moreover, if s = k, assume that
f0(γ(t)) 6= γ̇(t) mod ∆s−1 for any t ∈ [0, T ]. Then, it holds

σI
int(γ, ε) < σJ

int(γ, ε) <
1

εmax{s,k}
, σI

app(γ, ε) < σJ
app(γ, ε) <

1

εmax{s,k}
.

Proof. By Proposition 5.4, σJ
int(γ, ε) 4 σI

int(γ, ε) and σJ
app(γ, ε) 4 σI

app(γ, ε). Hence, to complete the

proof it suffices to prove the asymptotic lower bound for σJ
int(γ, ε) and σJ

app(γ, ε). In the following,

to lighten the notation, we write σint and σapp instead of σJ
int and σJ

app.

Interpolation by time complexity. By (38), it suffices to prove that ω(γ, δ) < δ
1

max{k,s} Let
η > 0 and u ∈ L1([0, T ],Rm) be a control admissible for ω(γ, δ) such that

(43) J (u, T ) = ‖u‖L1([0,T ],Rm) ≤
ω(γ, δ)

δ
+ η.

Let N = ⌈T/δ⌉ and 0 = t0 < t1 < . . . < tN = T be times such that qu(ti) = γ(ti), i = 0, . . . , N ,
and 0 < ti − ti−1 ≤ δ. Observe that, up to removing some ti’s, we can always assume δ/2 ≤
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ti − ti−1 ≤ (3/2)δ and N ≥ ⌈(2T )/(3δ)⌉. Moreover, let ui = u|[ti−1,ti]. Proceding as in the proof of

Theorem 1.2, p. 22, we get that in order to show that ω(γ, δ) < δ
1

max{k,s} it suffices to prove

(44) ‖ui‖L1([ti−1,ti])
≥ Cδ

1

max{s,k} , i = 1, . . . , N.

We distinguish three cases.

Case 1 k > s: Let {zt} be the continuous coordinate family for γ adapted to f0 given by
Proposition 3.6. Then, since ztℓ(γ(·)) = 0 and ztα(γ(ξ)) = ξ − t, by Theorem 4.3 it holds

(45)
δ

2
≤ (ti − ti−1) = |z

ti−1
α (γ(ti))| ≤ C‖ui‖

k
L1([ti−1,ti])

.

This proves (44).
Case 2 k < s: Also in this case, let {zt} be the continuous coordinate family for γ adapted

to f0 given by Proposition 3.6. Then, by Lemma 4.9 we get

δ

2
≤ ti − ti−1 ≤ C‖ui‖

s
L1([ti−1,ti])

,

which immediately proves (44).
Case 3 k = s: Let {zt}t∈[0,T ] be a continuous coordinate family for γ adapted to f0. By the

mean value theorem there exists ξ ∈ [ti−1, ti] such that

(46) z
ti−1

ℓ (γ(ti)) =

∫ ti

ti−1

(ztℓ)∗γ̇(t) dt =
(

(z
ti−1

ℓ )∗γ̇(ξ)
)

(ti − ti−1).

Consider the partition {E1, E2, E3} of [0, T ] given by Lemma 3.5 and let δ ≤ δ0. Then,
depending to which Ej belongs ti−1, we proceed differently.
(a) ti−1 ∈ E1: By Lemma 4.9 and (46) we get

ti − ti−1 ≤ C‖ui‖
s
L1([ti−1,ti])

+ z
ti−1

ℓ (γ(ti))
+ = C‖ui‖

s
L1([ti−1,ti])

+
(

(z
ti−1

ℓ )∗γ̇(ξ)
)

(ti − ti−1).

Then, by (21) of Lemma 3.5, we get

‖ui‖L1([ti−1,ti])
≥

(

1− (z
ti−1

ℓ )∗γ̇(ξ)

C

)
1

s

(ti − ti−1)
1

s ≥
( ρ

C

) 1

s
δ

1

s .

This proves (44).
(b) ti−1 ∈ E2: By (22) of Lemma 3.5, (46) and Theorem 4.3 we get

m(ti − ti−1) ≤ |z
ti−1
α (γ(ti))| ≤ C

(

‖ui‖
s
L1([ti−1,ti])

+ ‖ui‖L1([ti−1,ti])
|z

ti−1

ℓ (γ(ti))|
)

.

Reasoning as in (41) yields that we can assume ‖ui‖L1([ti−1,ti])
≤ Cδ

1

s . Then, by (46)

and letting δ ≤ (m/(2 + 4ρ))s, we get

‖ui‖L1([ti−1,ti])
≥ (m− δ

1

s (1 + 2ρ))
1

s (ti − ti−1)
1

s ≥
(m

2

) 1

s
δ

1

s ,

proving (44).
(c) ti−1 ∈ E3: By Theorem 4.3 it follows that

(47) |z
ti−1

ℓ (γ(ti))| ≤ C‖ui‖
s
L1([ti−1,ti])

+ (ti − ti−1).

Then, by (46) and (47) we obtain

‖ui‖L1([ti−1,ti])
≥

(

(z
ti−1

ℓ )∗γ̇(ξ)− 1

C

) 1

s

(ti − ti−1)
1

s ≥
( ρ

C

) 1

s
δ

1

s .
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The last inequality follows from (23) of Lemma 3.5. This proves (44).

Neighboring approximation complexity. Fix η > 0 and let u ∈ L1([0, T ],Rm) be admissible
for σapp(γ, ε) and such that ‖u‖L1([0,T ],Rm) ≤ σapp(γ, ε) + η. Let qu : [0, T ] → M be the trajectory

of u with qu(0) = γ(0). Let then N = ⌈σapp(γ, ε)+ η⌉ and 0 = t0 < t1 < . . . < tN = T be such that
‖u‖L1([ti−1,ti])

≤ ε for any i = 1, . . . , N . By Proposition 4.2 and the fact that qu(t) ∈ BSR(γ(t), ε) for

any t ∈ [0, T ], we can build a new control, still denoted by u, such that qu(ti) = γ(ti), i = 1, . . . , N ,
and ‖u‖L1([ti−1,ti])

≤ 3ε.

Fixed a δ0 > 0, w.l.o.g. we can assume that ti − ti−1 ≤ δ0. In fact, we can split each interval
[ti−1, ti] not satisfying this property as ti−1 = ξ1 < . . . < ξM = ti, with ξν − ξν−1 ≤ δ0. Then, as
above, it is possible to modify the control u so that qu(ξν) = γ(ξν) for any ν = 1, . . . ,M . Since
M ≤ ⌈T/δ0⌉ and qu(·) ∈ BSR(γ(·), ε), we have ‖u‖L1([ξi,ξi−1])

≤ 5ε and the new total number of

intervals is ≤ (1 + ⌈T/δ0⌉)⌈σapp(γ, ε) + η⌉ ≤ C(σapp(γ, ε) + η).

We claim that to prove σapp(γ, ε) < ε−max{s,k}, it suffices to show that there exists a constant
C > 0, independent of u, such that

(48) ti − ti−1 ≤ Cεmax{s,k}, for any i = 1, . . . , N.

In fact, since N ≤ C(σapp(γ, ε) + η), this will imply that

T =

N
∑

i=1

ti − ti−1 ≤ C(σapp(γ, ε) + η)εmax{s,k}.

Letting η ↓ 0, we get that σapp(γ, ε) < ε−max{s,k}, proving the claim.
We now let δ0 sufficiently small in order to apply Lemma 3.5, Theorem 4.3, and Lemma 4.9. As

before, we distinguish three cases.

Case 1 k > s: Let {zt} be the continuous coordinate family for γ adapted to f0 given by
Proposition 3.6. By Theorem 4.3, using the fact that γ(ti) = qu(ti) for i = 1, . . . , N , we get

(ti − ti−1) = |z
ti−1
α (γ(ti))| ≤ Cεk.(49)

This proves (48).
Case 2 k < s: Again, let {zt} be the continuous coordinate family for γ adapted to f0 given

by Proposition 3.6. As for the interpolation by time complexity, by Lemma 4.9 and the fact
that qu(ti) = γ(ti), we get

(ti − ti−1) ≤ Cεs,

thus proving (48).
Case 3 k = s: Let {zt}t∈[0,T ] to be a continuous coordinate family for γ adapted to f0. Con-

sider the partition {E1, E2, E3} of [0, T ] given by Lemma 3.5 and recall (46). We distinguish
three cases.
(a) ti−1 ∈ E1: By Lemma 4.9 and (46) we get

ti − ti−1 ≤ Cεs + z
ti−1

ℓ (γ(ti)) = 2Cεs +
(

(z
ti−1

ℓ )∗γ̇(ξ)
)

(ti − ti−1).

By (21) of Lemma 3.5, this implies

ti − ti−1 ≤

(

2C

1− (z
ti−1

ℓ )∗γ̇(ξ)

)

εs ≤
2C

ρ
εs.

Hence, (48) is proved.
(b) ti−1 ∈ E2: By (22) of Lemma 3.5, (46) and Theorem 4.3 we get

m(ti − ti−1) ≤ |z
ti−1
α (γ(ti))| ≤ C

(

εs + ε|z
ti−1

ℓ (γ(ti))|
)

≤ C
(

εs + εs+1 + ε(ti − ti−1)
)

.
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This, by taking ε sufficiently small and enlarging C, implies (48).
(c) ti−1 ∈ E3: By Theorem 4.3 it follows that

(50) |z
ti−1

ℓ (γ(ti))| ≤ Cεs + (ti − ti−1).

Then, by (46) and (50) we obtain

ti − ti−1 ≤
C

(z
ti−1

ℓ )∗γ̇(ξ)− 1
εs ≤

C

ρ
εs.

The last inequality follows from (23) of Lemma 3.5, and proves (48).

�

As for the case of curves, in order to extend Proposition 7.3 to paths not always tangent to the
same strata, we will need the following sub-additivity property. Let us remark that due to the
definition of the path complexities, we do not need to make any assumption regarding cusps.

Proposition 7.4. Let γ : [0, T ] → M be a path and let t1, t2 ⊂ [0, T ].

i. If there exists k ∈ N such that σJ
int(γ|[t1,t2], ε) < ε−k, then σJ

int(γ, ε) < ε−k,

ii. σJ
app(γ|[t1,t2], ε) 4 σJ

app(γ, ε).

Proof. Time interpolation complexity. By (38), it suffices to prove that ωJ (γ|[t1,t2], δ) 4 ωJ (γ, δ).

Let u ∈ L1([0, T ],Rm) be a control admissible for ΣJ
int(Γ, ε), and let 0 = ξ1 < . . . < ξN = T

be the times where qu(ξi) = γ(ξi). Let i1 6= i2 such that t1 ≤ ξi ≤ t2 for any i ∈ {i1, . . . , i2}.

Observe that, by Theorems 2.3 and 4.1, we have VJ (γ(t1), γ(ξi1)) ≤ dSR(γ(t1), γ(ξi1)) ≤ Cδ
1

r and

VJ (γ(ξi2), γ(t2)) ≤ dSR(γ(ξi2), γ(t2)) ≤ Cδ
1

r , where δ is sufficiently small, C is independent of δ,
and r is the nonholonomic degree of the distribution. Thus, assuming w.l.o.g. C ≥ 1,

ωJ (γ|[t1,t2], δ) ≤ δJ (u|[ti1 ,ti2 ]) + 2Cδ1+
1

r ≤ CδJ (u) +Cδ1+
1

r .

Taking the infimum over all controls u admissible for ωJ (γ, δ), and recalling that, by Proposition 7.2,

it holds ωJ (γ, δ) 4 δ
1

r , completes the proof.
Neighboring approximation complexity. In this case, the proof is identical to the one of Proposi-

tion 6.6 for the tubular approximation complexity. The sole difference is that here, by definition of
σJ
app, we do not need to assume the absence of cusps. �

We can now complete the proof of Theorem 1.3, by proving Theorem 7.1.

Proof. The proof is analogous to the one of Theorem 6.1, using Propositions 7.2, 7.3 and 7.4. �
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