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Network Synchronization with Convexity∗

Guodong Shi, Alexandre Proutiere, and Karl Henrik Johansson†

Abstract

In this paper, we establish a few new synchronization conditions for complex networks with nonlinear

and nonidentical self-dynamics with switching directed communication graphs. In light of the recent

works on distributed sub-gradient methods, we impose integral convexity for the nonlinear node self-

dynamics in the sense that the self-dynamics of a given node is the gradient of some concave function

corresponding to that node. The node couplings are assumed to be linear but with switching directed

communication graphs. Several sufficient and/or necessary conditions are established for exact or

approximate synchronization over the considered complex networks. These results show when and how

nonlinear node self-dynamics may cooperate with the linear diffusive coupling, which eventually leads

to network synchronization conditions under relaxed connectivity requirements.

Keywords: Coupled oscillator, Complex networks, Synchronization, Switching graphs

1 Introduction

The past few decades have witnessed tremendous research interest in the emergence of collective behaviors

for dynamics over complex networks [26, 41, 20, 44]. The new understanding we gained lies in that certain

global network-level tasks, such as synchronization or consensus, can be achieved by local interactions

under cooperative couplings of individual node dynamics [45, 44, 13]. More advanced strategies have also

been developed for problems like formation, swarming, optimization, and signaling [10, 20, 25, 23, 24, 15].

Synchronization problems require the node states to asymptotically reach a common trajectory or a

common value over a network. In [26], a master stability function method was proposed for the local

synchronization of linearly coupled oscillators, where the dynamics of each node consists of a term of

nonlinear self-dynamics and another term of local linear couplings. In [45], a thorough treatment was

established for synchronization of linear diffusive couplings. When the node self-dynamics is nonlinear, it

was shown that the coupling strength must dominant the influence of this self-dynamics in order for global

synchronization [2, 44]. Further extensions for linearly coupled oscillators have been established under
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more restrictions on the individual self-dynamics, e.g., passivity, symmetry, and linearity [27, 28, 17, 46].

These works mainly focused on fixed interaction graph and identical self-dynamics.

Efforts have also been made on synchronization under switching interactions, non-identical node self-

dynamics, or nonlinear couplings, which turned out to be far more challenging [33, 7]. Some recent

improvements to classical synchronization results include [39] and [19]. In [39], connectivity requirements

were relaxed to jointly connected undirected graphs, where only the union of the switching communication

graphs is assumed to be connected over certain intervals, for linear agent models. In [19], the authors

provided a graph comparison perspective, based on which some new graphical conditions were obtained

for synchronization conditions with nonlinear node self-dynamics but fixed communication graphs.

The difficulty in analyzing synchronization conditions comes from the nontrivial coupling between

node self-dynamics and the local interactions, as well as the coupling between different node states,

especially under a switching communication graph. While without self-dynamics in each node, network

synchronization falls to a distributed consensus problem. For consensus seeking, it has been shown that

various convergence conditions can be derived based on much relaxed connectivity conditions with even

directed node interactions [40, 13, 10, 30, 3, 21, 18, 36]. On the other hand, it has also been shown

that if the node self-dynamics can be properly designed, this node self-dynamics can cooperate with the

consensus couplings leading to distributed solutions to certain network optimization problems [23, 24, 42,

37, 14, 9, 11], which generalized the classical incremental methods for distributed optimization [38, 22, 29].

In this paper, we try to borrow the insights from consensus-based distributed optimization methods

[23, 24, 42, 37, 11], with the aim of establishing some new synchronization conditions which can partially

relax the in general strong assumptions on the nonlinear node self-dynamics [45, 19]. We assume that the

network nodes have non-identical nonlinear self-dynamics as gradients of some concave functions. This

allows for a new class of nonlinear self-dynamics which to the best of our knowledge has not been addressed

in the literature. The node couplings are linear diffusive with switching directed communication graphs.

Several sufficient and/or necessary conditions are established for exact or approximate synchronization

of the overall node states. These results reveal when and how nonlinear node self-dynamics may coop-

erate with the linear consensus coupling, which leads to synchronization conditions under much relaxed

connectivity requirements to the communication graphs.

The remainder of the paper is organized as follows. In Section 2, some preliminary mathematical

concepts and lemmas are introduced. In Section 3, we formulate the considered network dynamics and

define the problem of interest. Section 4 presents some results on fixed graphs, and then Section 5 discusses

time-varying graphs. Finally some concluding remarks are given in Section 6.

2 Preliminaries

In this section, we introduce some notations and provide preliminary results that will be used in the rest

of the paper.
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2.1 Directed Graphs

A directed graph (digraph) G = (V,E) consists of a finite set V of nodes and an arc set E, where an arc is

an ordered pair of distinct nodes of V [12]. An element (i, j) ∈ E describes an arc which leaves i and enters

j. A walk in G is an alternating sequence W : i1e1i2e2 . . . em−1im of nodes iκ and arcs eκ = (iκ, iκ+1) ∈ E

for κ = 1, 2, . . . ,m − 1. A walk is called a path if the nodes of the walk are distinct, and a path from i

to j is denoted as i → j. A digraph G is called undirected when for any two nodes i and j, (i, j) ∈ E

if and only if (j, i) ∈ E; strongly connected if it contains path i → j and j → i for every pair of nodes

i and j. Ignoring the direction of the arcs, the connectivity of a undirected digraph is transformed to

that of the corresponding undirected graph. A time-varying graph is defined as Gσ(t) = (V,Eσ(t)) where

σ : [0,+∞) → Q denotes a piecewise constant function, where Q is a finite set containing all possible

graphs with node set V. Moreover, the joint graph of Gσ(t) in time interval [t1, t2) with t1 < t2 ≤ +∞ is

denoted as G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)Eσ(t)).

2.2 Dini Derivatives and Limit Sets

The upper Dini derivative of a continuous function h : (a, b) → R (−∞ ≤ a < b ≤ ∞) at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s
.

When h is continuous on (a, b), h is non-increasing on (a, b) if and only if D+h(t) ≤ 0 for any t ∈ (a, b).

The next result is convenient for the calculation of the Dini derivative [6, 18].

Lemma 1 Let Vi(t, x) : R × Rd → R (i = 1, . . . , n) be C1 and V (t, x) = maxi=1,...,n Vi(t, x). If I(t) =

{i ∈ {1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices where the maximum is reached at t, then

D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

Next, consider the following autonomous system

ẋ = f(x), (1)

where f : Rd → R
d is a continuous function. Let x(t) be a solution of (1) with initial condition x(t0) = x0.

Then Ω0 ⊂ R
d is called a positively invariant set of (1) if, for any t0 ∈ R and any x0 ∈ Ω0, we have

x(t) ∈ Ω0, t ≥ t0, along every solution x(t) of (1).

We call y a ω-limit point of x(t) if there exists a sequence {tk} with limk→∞ tk = ∞ such that

limk→∞ x(tk) = y. The set of all ω-limit points of x(t) is called the ω-limit set of x(t), and is denoted as

Λ+
(

x(t)
)

. The following lemma is well-known [32].

Lemma 2 Let x(t) be a solution of (1). Then Λ+
(

x(t)
)

is positively invariant. Moreover, if x(t) is

contained in a compact set, then Λ+
(

x(t)
)

6= ∅.

2.3 Convex Analysis

A set K ⊂ R
d is said to be convex if (1 − λ)x + λy ∈ K whenever x ∈ K, y ∈ K and 0 ≤ λ ≤ 1. For

any set S ⊂ Rd, the intersection of all convex sets containing S is called the convex hull of S, denoted by

co(S).
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Let K be a closed convex subset in Rd and denote |x|K
.
= infy∈K |x−y| as the distance between x ∈ Rd

andK, where |·| is the Euclidean norm. There is a unique element PK(x) ∈ K satisfying |x−PK(x)| = |x|K

associated to any x ∈ Rd [1]. The map PK is called the projector onto K. The following lemma holds [1].

Lemma 3 (i). 〈PK(x)− x, PK(x)− y〉 ≤ 0, ∀y ∈ K.

(ii). |PK(x)− PK(y)| ≤ |x− y|, x, y ∈ Rd.

(iii) |x|2K is continuously differentiable at x with ∇|x|2K = 2
(

x− PK(x)
)

.

Let f : Rd → R be a real-valued function. We call f a convex function if for any x, y ∈ R
d and

0 ≤ λ ≤ 1, it holds that f
(

(1 − λ)x + λy
)

≤ (1 − λ)f(x) + λf(y). The following lemma states some

well-known properties for convex functions.

Lemma 4 Let f : Rd → R ∈ C1 be a convex function.

(i). f(x) ≥ f(y) +
〈

x− y,∇f(y)
〉

.

(ii). Any local minimum is a global minimum, i.e., argmin f =
{

z : ∇f(z) = 0
}

.

The following lemma is established in [34] (Lemma 13, [34])

Lemma 5 Suppose K ⊆ Rm is a convex set and let xa, xb ∈ R
m.

(i)
〈

xa − PK(xa), xb − xa〉 ≤ |xa|K ·
∣

∣|xa|K − |xb|K
∣

∣;

(ii) If |xa|K > |xb|K , then
〈

xa − PK(xa), xb − xa〉 ≤ −|xa|K ·
(

|xa|K − |xb|K
)

.

3 Problem Definition

Consider a network with node set V = {1, 2, . . . , N}. The node interactions are modeled by a time-varying

directed graph Gσ(t) = (V,Eσ(t)) with σ : [0,+∞) → Q being a piecewise constant function, where Q is

the finite set containing all possible digraphs over node set V. We assume that there is a lower bound

τD > 0 between two consecutive switching time instants of σ(t).

A node j is said to be a neighbor of i at time t when there is an arc (j, i) ∈ E, and we let Ni(σ(t))

represent the set of agent i’s neighbors at time t. Each node holds a state xi(t) ∈ R
m. Let aij(t) > 0 be

a function marking the weight associated with arc (j, i) at time t. The nodes’ dynamics are described as

follows:

d

dt
xi(t) = fi

(

xi(t)
)

+K
∑

j∈Ni(σ(t))

aij(t)
(

xj(t)− xi(t)
)

, i = 1, . . . , N, (2)

where fi(·) : R
m → R

m is a continuous function denoting the self-dynamics of node i and K ≥ 0 is a given

constant. Let the weighted adjacency matrix be denoted asAσ(t) where [Aσ(t)]ij = aij(t) if j ∈ Ni(σ(t)) and

[Aσ(t)]ij = 0 otherwise. The weighted degree matrix is then defined as Dσ(t) = diag(d1(σ(t)), . . . , dN (σ(t)))

with di(σ(t)) =
∑

j∈Ni(σ(t))
aij(t). Then Pσ(t) = Dσ(t) −Aσ(t) is the time-varying Lapacian of the network

representing the coupling of the node dynamics. For the time-varying weight function aij(t), we assume

that there are a∗ > 0 and a∗ > 0 such that a∗ ≤ aij(t) ≤ a∗, t ∈ R+.

For the self-dynamics fi, we first impose the following assumption.

[A1] There are Fi : R
m → R, i = 1, . . . , N such that fi = −∇Fi, where each Fi is a C1 convex function

with argminFi 6= ∅.
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Remark 1 System (2) is one of the standard forms in the literature for complex network synchronization,

where the first term fi represents nonlinear node self-dynamics and the second term describes linear dif-

fusive couplings, e.g., just to name a few [45, 2, 28, 19]. On the other hand, synchronization of networks

with linear (even constant) self-dynamics but nonlinear diffusive couplings is also widely studied, e.g., the

Kuramoto model [16] (see [8] for a comprehensive survey).

Remark 2 To investigate the synchronization of System (2) under Assumption A1 is inspired by the

recent developments of distributed optimization methods [23, 24]. Evidently System (2) is the continuous-

time correspondence of the distributed sub-gradient algorithm proposed in [23] for solving

minimize
∑N

i=1 Fi(zi)

subject to zi ∈ R
m, z1 = · · · = zN .

(3)

Continuous-time solutions to the above problem have indeed been well studied, e.g., [42, 43, 9, 11, 37],

where second-order dynamics are shown to be able to derive exact solutions with fixed interaction graphs

[42, 11]. The current paper is however more focused on the ability of reaching a synchronization for System

(2), instead of the performance serving as a continuous-time solver of (3). In fact, clearly our results are

based on weaker assumptions, e.g., the fi are not necessarily Lipschitz and the interactions are directed,

switching, and unbalanced (cf., [23, 42, 43, 11]).

Remark 3 Compared to the existing work [2, 27, 28, 17, 46, 33]: Assumption A1 does not require global

Lipschitz condition, nor identical dynamics for the fi. For instance, A1 allows for the case with

fi(x) = −(x−mi)
3

with mi ∈ R being a constant. To the best of our knowledge, network synchronization conditions under

such class of self-dynamics have not been studied in the literature.

The initial time is set to be 0. Let x(t) = (xT1 (t), . . . , x
T
N (t))T ∈ RmN be the Caratheodory solution

of system (2) for initial condition x0 = x(0). We refer to [5] regarding the existence of the Caratheodory

solution for (2). We introduce the following standard synchronization definition [19].

Definition 1 Global synchronization of System (2) is achieved if for all x0 ∈ RmN , we have limt→+∞ |xi(t)−

xj(t)| = 0 for all i, j = 1, . . . , N .

Remark 4 By Assumption A1 itself there might be finite-time escape for the trajectory of System (2), i.e.,

x(t) approaches infinity in a finite time interval. With suitable assumptions finite-time escape can however

be excluded. We refer to the coming Lemma 6, Eq. (9), and Lemma 8, respectively, which guarantee the

existence of x(t) for the entire [0,∞) under the corresponding conditions.

4 Fixed Undirected Graphs – Global Results

In this section, we consider the possibility of synchronization under fixed and undirected interaction

graphs. We first establish a necessary and sufficient condition for global exact synchronization, and then a

global approximate synchronization condition is established. Detailed discussions regarding the feasibility

of the assumptions will be presented in the end of this section.
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4.1 Exact Synchronization

We make another assumption on the Fi.

[A2]
{

z : fi(z) = 0
}

6= ∅ is a bounded set, and
〈

xi−PΘ∗(xi), fi(xi)
〉

≤ 0 for all xi ∈ R
m and i = 1, . . . , N ,

where Θ∗ = co
(
⋃

i∈V{z : fi(z) = 0}
)

.

Note that the inequality of Assumption A2 is not a direct consequence of convexity of the fi. However,

we will later show that convexity does lead to such inequality when the argument of each fi is in R. We

present the following result.

Theorem 1 Assume that A1 and A2 hold. Let Gσ(t) ≡ G for some fixed, undirected, and connected graph

G, and let aij(t) ≡ aji(t) ≡ aij for some aij > 0, i, j = 1, . . . , N . Then global synchronization for System

(2) is achieved if and only if
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅.

Proof. (Necessity) We first prove the necessity statement in Theorem 1 by a contradiction argument.

Suppose global synchronization is reached under the condition that
⋂N

i=1

{

z : fi(z) = 0
}

= ∅. Let x(t) be

a trajectory of system (2) Λ+(x(t)) be its ω-limit set.

First we show that Λ+(x(t)) is a nonempty set. Introduce

θ(x(t)) := max
i∈V

|xi(t)|
2
Θ∗

.

The following lemma holds (which in fact does not rely on a fixed or undirected graph), whose proof is in

Appendix A.

Lemma 6 Let A1 and A2 hold. Then θ(x(t)) is non-increasing along each solution of System (2).

From the above lemma we immediately know that each trajectory x(t) is contained in a compact set.

Let

M
.
=
{

x = (xT1 . . . xTN )T : x1 = · · · = xN ; xi ∈ R
m, i = 1, . . . , N

}

(4)

denote the consensus manifold. Based on Lemma 2 and in view of the assumption that synchronization

has been reached, we conclude that Λ+(x(t)) ⊆ M 6= ∅. Moreover, Λ+(x(t)) is positively invariant since

(2) defines an autonomous system when the interaction graph is fixed. This is to say, any trajectory of

system (2) must stay within Λ+(x(t)) for any initial value in Λ+(x(t)).

Now we take y ∈ Λ+(x(t)). Then we have y = (zT∗ . . . zT∗ )
T for some z∗ ∈ Rm. Suppose there exist

two indices i1, i2 ∈ {1, . . . , N} with i1 6= i2 such that fi1(z∗) 6= fi2(z∗). Consider the solution of (2) for

initial time 0 and initial value y. We have ẋi1(0) 6= ẋi2(0). As a result, there exists a constant ε > 0 such

that xi1(t) 6= xi2(t) for t ∈ (0, ε). In other word, the trajectory will leave the consensus manifold M for

(0, ε), and therefore will also leave the set Λ+(x(t)). This contradicts the fact that Λ+(x(t)) is positively

invariant. The necessity part of Theorem 1 has been proved.

(Sufficiency) Note that G is undirected, i.e., (i, j) ∈ E if and only if (j, i) ∈ E, and aij = aji for all i and

j. We use unordered pair {i, j} to denote the edge between node i and j. Denote F(z) =
∑N

i=1 Fi(z) and

FG(x;K) =
∑N

i=1 Fi(xi) +
K
2

∑

{j,i}∈E aij
∣

∣xj − xi
∣

∣

2
. Denote the N ’th Cartesian product of a set S as SN .

The following lemma holds with proof given in Appendix B.

6
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Lemma 7 Suppose
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅. Let the communication graph G be fixed, undirected, and

connected. Then argminFG(x;K) =
(
⋂N

i=1

{

z : fi(z) = 0
})N ⋂

M.

Note that

K
∑

j∈Ni

aij
(

xj − xi
)

+ fi
(

xi
)

= −∇xi
FG(x;K). (5)

As a result,

d

dt
FG(x(t);K) = −

∣

∣

∣
∇FG(x;K)

∣

∣

∣

2
(6)

along each trajectory of System (2). Then by LaSalle’s invariance principle we have

lim
t→∞

dist
(

x(t), argminFG(x;K)
)

= 0.

Lemma 7 further ensures

lim
t→∞

dist

(

x(t),
(

N
⋂

i=1

{

z : fi(z) = 0
}

)N⋂

M

)

= 0

if G is undirected and connected. Equivalently, global synchronization is reached and we can even predict

that each limit point of xi(t) lies in
⋂N

i=1

{

z : fi(z) = 0
}

for all i.

The proof of Theorem 1 is now complete. �

Remark 5 We see from the proof above that the construction of FG(x) is critical because the convergence

argument is based on the fact that the gradient of FG(x) is consistent with the interaction graph in the

sense that no additional links will be introduced in the gradient.

4.2 Approximate Synchronization

Theorem 1 indicates that exact synchronization is impossible unless
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅ is fulfilled. In

this subsection, we discuss the possibility of approximate synchronization in the absence of this nonempty

interaction condition. We introduce the following definition.

Definition 2 Global ǫ-synchronization is achieved if for all x0 ∈ RmN , we have

lim sup
t→+∞

∣

∣xi(t)− xj(t)
∣

∣ ≤ ǫ, i, j = 1, . . . , N. (7)

We use the following assumption.

[A3] (i) argminF(z) 6= ∅; (ii) argminFG(x;K) 6= ∅ for allK ≥ 0; (iii)
⋃

K≥0 argminFG(x;K) is bounded.

For ǫ-synchronization, we present the following result.

Theorem 2 Assume that A1 and A3 hold. Let the interaction graph Gσ(t) ≡ G for some fixed, undirected,

and connected G, and let aij(t) ≡ aji(t) ≡ aij for some aij > 0, i, j = 1, . . . , N . Then for any ǫ > 0, there

exists Kǫ > 0 such that global ǫ-synchronization is achieved for all K ≥ Kǫ.

7
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Proof. Let’s fix ǫ. Again, since

K
∑

j∈Ni

aij
(

xj − xi
)

+ fi
(

xi
)

= −∇xi
FG(x;K), (8)

the convexity of FG(x;K) ensures that

lim
t→∞

dist
(

x(t), argminFG(x;K)
)

= 0. (9)

Define F̃(x) =
∑N

i=1 Fi(xi). Under Assumptions A1 and A3, we have that

L0
.
= sup

{

∣

∣∇F̃(x)
∣

∣ : x ∈
⋃

K≥0

argminFG(x;K)
}

(10)

is a finite number. We also define

D0
.
= sup

{

∣

∣z∗ − xi
∣

∣ : i = 1, . . . , N, x ∈
⋃

K≥0

argminFG(x;K)
}

, (11)

where z∗ ∈ argminF is an arbitrarily chosen point.

Let p = (pT1 . . . pTN )T ∈ argminFG(x;K) with pi ∈ R
m, i = 1, . . . , N . Let P be the Laplacian of the

graph G. Since the graph is undirected and connected, we can sort the eigenvalues of the matrix P ⊗ Im

as

0 = λ1 = · · · = λm < λm+1 ≤ · · · ≤ λmN .

Let l1 . . . , lmN be the orthonormal basis of RmN formed by the right eigenvectors of P⊗Im, where l1, . . . , lm

are eigenvectors corresponding to the zero eigenvalue. Suppose p =
∑mN

k=1 cklk with ck ∈ R, k = 1, . . . ,mN .

According to (43), we have

∣

∣

∣
K(P ⊗ Im)p

∣

∣

∣

2
= K2

∣

∣

∣

mN
∑

k=m+1

ckλklk

∣

∣

∣

2
= K2

mN
∑

k=m+1

c2kλ
2
k ≤ L2

0, (12)

which yields

mN
∑

k=m+1

c2k ≤
( L0

Kλ∗
2

)2
, (13)

where λ∗
2 > 0 denotes the second smallest eigenvalue of P .

Now recall that

M
.
=
{

x = (xT1 . . . xTN )T : x1 = · · · = xN ; xi ∈ R
m, i = 1, . . . , N

}

. (14)

is the consensus manifold. Noticing that M = span{l1, . . . , lm}, we conclude from (13) that

mN
∑

k=m+1

c2k =
∣

∣

∣

mN
∑

k=m+1

cklk

∣

∣

∣

2
= |p|2M =

N
∑

i=1

∣

∣

∣
pi − pave

∣

∣

∣

2
≤
( L0

Kλ∗
2

)2
, (15)

where pave =
∑

N

i=1 pi
N

. The last equality in (15) is due to the fact that 1N ⊗
(∑

N

i=1 pi
N

)

is the projection

of p on to M. From (15),
∑N

i=1

∣

∣

∣
pi − pave

∣

∣

∣

2
can be sufficiently small as long as K is chosen sufficiently

8
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large. Noticing that F is a C1 function, we conclude that for any ς > 0, there is K1(ς) > 0 such that

when K ≥ K1(ς), there hold

∣

∣

∣
pi − pave

∣

∣

∣
≤ ς, i = 1, . . . , N (16)

and

|F(pi)−F(pave)
∣

∣

∣
≤ ς, i = 1, . . . , N. (17)

On the other hand, with (43), we have

N
∑

i=1

fi(pi) =
N
∑

i=1

fi(pave + p̂i) = 0, (18)

where p̂i = pi − pave. Now according to (16) and (18), since Fi ∈ C1, for any ς > 0, there is K2(ς) > 0

such that when K ≥ K2(ς),

∣

∣

∣

N
∑

i=1

fi(pave)
∣

∣

∣
≤

ς

D0
. (19)

This implies

F(pave) ≤ F(z∗) + |z∗ − pave| ×
∣

∣

∣

N
∑

i=1

fi(pave)
∣

∣

∣
≤ F(z∗) + ς. (20)

Therefore, for any ǫ > 0, we can take K0 = max{K1(ǫ/2),K2(ǫ/2)}. Then when K ≥ K0, we have

|pi − pj| ≤ ǫ; F(pi) ≤ min
z

F(z) + ǫ (21)

for all i and j. Now with (9), every limit point of system (2) is contained in the set argminFG(x;K).

Noting that p is arbitrarily chosen from argminFG(x;K), ǫ-synchronization is achieved as long as we

choose Kǫ ≥ K0. This completes the proof. �

From Theorems 1 and 2, we conclude that even though without the nonempty intersection condition,

it is impossible to reach exact synchronization for the considered coupled dynamics, it is still possible to

find a control law that guarantees approximate synchronization with arbitrary accuracy.

4.3 Assumption Feasibility

This subsection discusses the feasibility of Assumptions A2 and A3.

Proposition 1 If F̃(x) =
∑N

i=1 Fi(xi) is coercive, i.e., F̃(x) → ∞ as long as |x| → ∞, then
{

z : fi(z) =

0
}

6= ∅ is a bounded set for all i = 1, . . . , N , and A3 holds.

Proof. First of all, since F̃(x) =
∑N

i=1 Fi(xi) is coercive, it follows straightforwardly that F(z) =
∑N

i=1 Fi(z) and each Fi(z) are also coercive. This implies immediately that
{

z : fi(z) = 0
}

6= ∅ is a

bounded set for all i = 1, . . . , N and A3.(i) hold.

Next, Observing that K
2

∑

{j,i}∈E aij
∣

∣xj − xi
∣

∣

2
≥ 0 for all x = (xT1 . . . xTN )T ∈ RmN and that F̃(x) =

∑N
i=1 Fi(xi) is coercive, we obtain that argminFG(x;K) 6= ∅ for all K ≥ 0. Thus, A3.(ii) holds.

9
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Finallly, we denote F∗ = minz F(z) = F(z∗). Since
∑N

i=1 Fi(xi) is coercive, there exists a constant

M(F∗) > 0 such that
∑N

i=1 Fi(xi) > F∗ for all |x| > M(F∗). This implies

FG(x;K) > FG(1N ⊗ z∗;K) = F∗ (22)

for all |x| > M . That is to say, the global minimum of FG(x;K) is reached within the set {|x| ≤ M} for

all K > 0. Therefore, we have

⋃

K≥0

argminFG(x;K) ⊆
{

|x| ≤ M(F∗)
}

. (23)

This proves A3.(iii). �

Proposition 2 Suppose
{

z : fi(z) = 0
}

6= ∅ is a bounded set for all i = 1, . . . , N and the node state space

is R, i.e., m = 1. Then A2 and A3 hold.

Proof. Since each
{

z : fi(z) = 0
}

is a finite interval when the node state is one dimensional, it is

straightforward to verifying that
〈

xi − PΘ∗(xi), fi(xi)
〉

≤ 0 for all xi ∈ R. Thus A2 holds. We now prove

A3 also holds.

(i). Let x∗i ∈ argminFi. Denote y∗ = min{x∗1, . . . , x
∗
N}. Then for any i = 1, . . . , N , we have

0 ≥ Fi(x
∗
i )− Fi(y∗) ≥ −(x∗i − y∗)fi(y∗) (24)

according to inequality (i) of Lemma 4. This immediately yields fi(y∗) ≥ 0 for all i = 1, . . . , N .

Thus, for any y < y∗, we have

F(y)−F(y∗) ≥ (y − y∗)∇F(y∗) = −
N
∑

i=1

(y − y∗)fi(y∗) ≥ 0, (25)

which implies F (y) ≥ F (y∗) for all y < y∗.

A symmetric analysis leads to that F(y) ≥ F(y∗) for all y > y∗ with y∗ = max{x∗1, . . . , x
∗
N}. Therefore,

we obtain F(y) ≥ min{F(y∗),F(y∗)} for all y 6= [y∗, y
∗]. This implies that a global minimum is reached

within the interval [y∗, y
∗] = co{x∗1, . . . , x

∗
N} and A3.(i) thus follows.

(ii). Introduce the following cube in RN :

Cη
∗

.
=
{

x = (xT1 . . . xTN )T : xi ∈ [y∗ − η, y∗ + η], i = 1, . . . , N
}

,

where η > 0 is a given constant.

Claim. For any K ≥ 0, Cη
∗ is an invariant set of System (2).

Define Ψ(x(t)) = maxi∈V xi(t). Then based on Lemma 1, we have

D+Ψ(x(t)) = max
i∈I0(t)

d

dt
xi(t)

= max
i∈I0(t)

[

∑

j∈Ni

aij
(

xj − xi
)

+ fi
(

xi
)

]

≤ max
i∈I0(t)

[

fi
(

xi
)

]

, (26)

10
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where I0(t) denotes the index set which contains all the nodes reaching the maximum for Ψ(x(t)).

Since

0 ≥ Fi(x
∗
i )− Fi(y∗ + η) ≥ −(x∗i − y∗ − η)fi(y∗ + η), i = 1, . . . , N (27)

we have fi(y
∗ + η) ≤ 0 for all i = 1, . . . , N . As a result, we obtain

D+Ψ(x(t))
∣

∣

∣

Ψ(x(t))=y∗+η
≤ 0, (28)

which implies Ψ(x(t)) ≤ y∗ + η for all t ≥ t0 under initial condition Ψ(x(t0)) ≤ y∗ + η. Similar analysis

ensures that mini∈V xi(t) ≥ y∗ − η for all t ≥ t0 as long as mini∈V xi(t0) ≥ y∗ − η. This proves the claim.

Note that every trajectory of system (2) asymptotically reaches argminFG(x;K)). This immediately

leads to that FG(x;K) reaches its minimum within Cη
∗ for any K ≥ 0 since Cη

∗ is an invariant set. Then

A3.(ii) holds.

(iii). Since argminFi is bounded for i = 1, . . . , N , there exist bi ≤ di, i = 1, . . . , N such that argminFi =

[bi, di]. Define b∗ = min{b1, . . . , bN} and d∗ = max{d1, . . . , dN}. We will prove the conclusion by showing

argminFG(x;K) ⊆ C∗ for all K ≥ 0, where

C∗
.
=
{

x = (xT1 . . . xTN )T : xi ∈ [b∗, d
∗], i = 1, . . . , N

}

.

Let z = (z1 . . . , zN )T ∈ argminFG(x;K). First we show max{z1, . . . , zN} ≤ d∗ by a contradiction

argument. Suppose max{z1, . . . , zN} > d∗.

Now let i1, . . . , ik be the nodes reaching the maximum state, i.e., zi1 = · · · = zik = max{z1, . . . , zN}.

There will be two cases.

• Let k = N . We have z1 = · · · = zN = y in this case. Then for all i and x∗i ∈ argminFi, we have

0 > Fi(x
∗
i )− Fi(y) ≥ −(x∗i − y)fi(y) (29)

which yields fi(y) > 0, i = 1, . . . , N since y > d∗. This immediately leads to

FG(z;K) = F(y) > minF ≥ minFG(z;K), (30)

which contradicts the fact that z ∈ argminFG(x;K).

• Let k < N . Then we denote s∗ = max
{

zi : i /∈ {i1, . . . , ik}, i = 1, . . . , N
}

, which is actually

the second largest value in {z1, . . . , zN}. We define a new point ẑ = (ẑ1 . . . , ẑN )T by ẑi = zi, i /∈

{i1, . . . , ik} and

ẑi =







d∗, if s∗ < d∗

s∗, otherwise
(31)

for i ∈ {i1, . . . , ik}. Then it is easy to obtain that FG(z;K) > FG(ẑ;K), which again contradicts

the choice of z.

Therefore, we have proved that max{z1, . . . , zN} ≤ d∗. Based on a symmetric analysis we also have

min{z1, . . . , zN} ≥ b∗. Therefore, we obtain argminFG(x;K) ⊆ C∗ for all K ≥ 0 and A3.(iii) follows. �

11
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5 Time-varying Directed Graphs – Global Exact and Semi-global Ap-

proximate Synchronization

In this section, we consider time-varying graphs. We introduce the following definition [13, 18].

Definition 3 Gσ(t) is said to be uniformly jointly strongly connected if there exists a constant T > 0 such

that G([t, t+ T )) is strongly connected for any t ≥ 0.

We present the following result.

Theorem 3 Let A1 hold. Suppose Gσ(t) is uniformly jointly strongly connected and
⋂N

i=1

{

z : fi(z) =

0
}

6= ∅ contains at least one interior point. Then global synchronization is achieved for System (2). In

fact, for any initial value x0, there exists x∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

such that limt→∞ xi(t) = x∗ for all

i ∈ V.

Note that the condition limt→∞ xi(t) = x∗ is indeed a stronger conclusion than our definition of syn-

chronization as Theorem 3 guarantees that all the node states converge to a common point. We will

see from the proof of Theorem 3 that this state convergence highly relies on the existence of an interior

point of
⋂N

i=1

{

z : fi(z) = 0
}

. In the absence of such an interior point condition, it turns out that global

synchronization still stands. We present another theorem stating the fact.

Theorem 4 Let A1 hold. Suppose Gσ(t) is uniformly jointly strongly connected and
⋂N

i=1

{

z : fi(z) =

0
}

6= ∅. Then global synchronization is achieved for System (2).

For ǫ-synchronization under switching interactions, we present the following result.

Theorem 5 Let A1 and A2 hold. Suppose Gσ(t) is uniformly jointly strongly connected. Then for any

ǫ > 0 and any initial value x0 ∈ RmN , there exist a sufficiently small T †
ǫ (x0) > 0 and a sufficiently large

K†
ǫ (x0) such that ǫ-synchronization is achieved under x0 for all T ≤ T †

ǫ (x0) and K ≥ K†
ǫ (x0).

Note that compared to the results under discrete-time dynamics [23, 24], Theorems 3 and 4 stand on

quite general assumptions, which applies to the case when the
{

z : fi(z) = 0
}

are unbounded. Compared

to Theorem 2, Theorem 5 is semi-global in the sense that the control gain K†
ǫ (x0) depends on the initial

value. With switching interaction graphs, it becomes fundamentally difficult to characterize the limit set

of the trajectories, and a general global result as Theorem 2 may not hold.

The remaining of this section presents the proofs of the above results. We first present some useful

lemmas, and then the proofs of Theorems 3, 4, and 5 will be established, respectively.

5.1 Preliminary Lemmas

We establish three useful lemmas in this subsection. Suppose
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅ and take z∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

. We define

Vi(t) =
∣

∣xi(t)− z∗
∣

∣

2
, i = 1, . . . , N, (32)

12
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and

V (t) = max
i=1,...,N

Vi(t). (33)

The following lemma holds, whose proof is given in Appendix C.

Lemma 8 Let A1 hold. Suppose
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅. Then along any trajectory of System (2), we

have D+V (t) ≤ 0 for all t ∈ R+.

A direct consequence of Lemma 8 is that when
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅, we have

lim
t→∞

V (t) = d2∗ (34)

for some d∗ ≥ 0 along any trajectory of system (2) with control law J⋆(ni, gi). However, it is still unclear

whether Vi(t) converges or not. We establish another lemma indicating that with proper connectivity

condition for the communication graph, all Vi(t)’s have the same limit d2∗. The following Lemma holds

with proof given in Appendix D.

Lemma 9 Let A1 hold. Suppose
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅ and Gσ(t) is uniformly jointly strongly

connected. Then along any trajectory of System (2), we have limt→∞ Vi(t) = d2∗ for all i.

Finally, the next lemma shows that each xi(t) asymptotically reaches argminFi along the trajectories

of system (2), whose proof is in Appendix E.

Lemma 10 Let A1 hold. Suppose
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅ and Gσ(t) is uniformly jointly strongly

connected. Then along any trajectory of system (2), we have

lim sup
t→∞

∣

∣xi(t)
∣

∣

argminFi

= 0

for all i.

5.2 Proofs of Statements

5.2.1 Proof of Theorem 3

The proof of Theorem 3 relies on the following lemma.

Lemma 11 Let z1, . . . , zm+1 ∈ Rm and d1, . . . , dm+1 ∈ R+. Suppose there exist solutions to equations

(with variable y)


















|y − z1|
2 = d1;

...

|y − zm+1|
2 = dm+1.

(35)

Then the solution is unique if rank
(

z2 − z1, . . . , zm+1 − z1
)

= m.

13
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Proof. Take j > 1 and let y be a solution to the equations. Noticing that

〈y − z1, y − z1〉 = d1; 〈y − zj , y − zj〉 = dj

we obtain

〈y, zj − z1〉 =
1

2

(

d1 − dj + |zj |
2 − |z1|

2
)

, j = 2, . . . ,m+ 1. (36)

The desired conclusion follows immediately. �

Let r⋆ = (rT1 . . . rTN )T be a limit point of a trajectory of System (2). Based on Lemma 9, we have

limt→∞ Vi(t) = d∗ for all z∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

. This is to say, |ri − z∗| = d∗ for all i and z∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

. Since
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅ contains at least one interior point, it is obvious

to see that we can find z1, . . . , zm+1 ∈
⋂N

i=1

{

z : fi(z) = 0
}

with rank
(

z2 − z1, . . . , zm+1 − z1
)

= m and

d1, . . . , dm+1 ∈ R+, such that each ri, i = 1, . . . , N is a solution of equations (35). Then based on Lemma

11, we conclude that r1 = · · · = rN . Next, with Lemma 10, we have |ri|argminFi
= 0. This implies that

r1 = · · · = rN ∈
⋂N

i=1

{

z : fi(z) = 0
}

, i.e., global synchronization is achieved.

We turn to state convergence. We only need to show that r⋆ is unique along any trajectory of System (2).

Now suppose r1⋆ = 1N ⊗r1 and r2⋆ = 1N ⊗r2 are two different limit points with r1 6= r2 ∈
⋂N

i=1

{

z : fi(z) =

0
}

. According to the definition of a limit point, we have that for any ε > 0, there exists a time instant tε

such that |xi(tε)− r1| ≤ ε for all i. Note that Lemma 8 indicates that the disc B(r1, ε) = {y : |y− r1| ≤ ε}

is an invariant set for initial time tε. While taking ε = |r1 − r2|/4, we see that r2 /∈ B(r1, |r1 − r2|/4).

Thus, r2 cannot be a limit point.

Now that the limit point is unique along any trajectory of System (2), we denote it as 1N ⊗ x∗ with

x∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

. Then we have limt→∞ xi(t) = x∗ for all i = 1, . . . , N . This completes the proof.

5.2.2 Proof of Theorem 4

In this subsection, we prove Theorem 4. We need the following lemma on robust consensus, which is a

special case of Theorem 4.1 and Proposition 4.10 in [36].

Lemma 12 Consider the following dynamics for the considered network model:

ẋi = K
∑

j∈Ni(σ(t))

aij(t)
(

xj − xi
)

+ wi(t), i ∈ V (37)

where K > 0 is a given constant, aij(t) are weight functions satisfying our network model, and wi(t) is a

piecewise continuous function. Let Gσ(t) be uniformly jointly strongly connected with respect to T > 0.

(i). There holds limt→+∞

∣

∣xi(t)− xj(t)
∣

∣ = 0 for all i, j ∈ V if limt→∞wi(t) = 0, i ∈ V.

(ii). For any ǫ > 0, there exist a sufficiently small Tǫ > 0 and sufficiently large Kǫ such that

lim sup
t→+∞

∣

∣xi(t)− xj(t)
∣

∣ ≤ ǫ‖w(t)‖∞

for all initial value x0 when K ≥ Kǫ and T ≤ Tǫ, where ‖w(t)‖∞ := maxi∈V supt∈[0,∞) |wi(t)|.

14
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Lemma 10 indicates that lim supt→∞

∣

∣xi(t)
∣

∣

argminFi

= 0 for all i, which yields

lim
t→∞

fi
(

xi(t)
)

= 0 (38)

for all i according to Assumption A1. Then global synchronization follows immediately from Lemma

12.(i). Again by Lemma 10, we further conclude that

lim sup
t→∞

dist
(

xi(t),
N
⋂

i=1

{

z : fi(z) = 0
})

= 0.

The desired conclusion thus follows.

5.2.3 Proof of Theorem 5

From Lemma 6 we know that θ(x(t)) = maxi∈V |xi(t)|
2
Θ∗

is non-increasing under A2. As a result, we

conclude that

x(t) ∈ Γ(x0) :=
{

z ∈ RmN : θ(z) ≤ θ(x0)
}

for all t ≥ 0. Again by Assumption A2, Γ(x0) is a compact set. We can thus define

~(x0) := max
i∈V

sup
{

|fi(zi)| : z = (z1 . . . zN )T ∈ Γ(x0)
}

.

Now along the trajectory x(t) of (2) with initial value x0, we have

∣

∣fi(xi(t))
∣

∣ ≤ ~(x0)

for all t ≥ 0. Then the desired ǫ-synchronization result follows immediately from Lemma 12.(ii).

6 Conclusions

In light of recent works on consensus-based distributed optimization methods, we have established some

conditions on the synchronization problems of coupled oscillators. We assumed that the network nodes

have non-identical nonlinear self-dynamics which are gradients of some concave functions. This allowed for

functions that are not passive or globally Lipschitz. The node interactions were under switching directed

communication graphs. Some sufficient and/or necessary conditions are established regarding exact or

approximate synchronization of the overall node states. These results revealed when and how nonlinear

node self-dynamics can cooperate with the linear consensus coupling and reach synchronization with much

relaxed connectivity conditions. Some interesting future generalizations include the exact convergence rate

to a synchronization under strict convexity, and synchronization conditions with constrained node states.
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The authors thank Prof. Angelia Nedić for helpful discussions as well as for her pointing out relevant

literature.

15



Shi et al. Network Synchronization with Convexity

Appendix

A Proof of Lemma 6

Denote I†(t) :=
{

i ∈ V : |xi(t)|
2
Θ∗

= θ(x(t))
}

. Then from Lemma 1 and Lemma 3.(iii), we know

D+θ(x(t)) = 2 max
i∈I†(t)

〈

xi(t)− PΘ∗(xi(t)), fi
(

xi(t)
)

+K
∑

j∈Ni(σ(t))

aij(t)
(

xj(t)− xi(t)
)

〉

. (39)

Now with Lemma 5.(ii), there holds

〈

xi(t)− PΘ∗(xi(t)), xj(t)− xi(t)
〉

≤ 0 (40)

for all i ∈ I†(t) and j due to the definition of I†(t) and θ(x(t)). Combining (39), (40), and Assumption

A2 we further know

D+θ(x(t)) ≤ 2 max
i∈I†(t)

〈

xi(t)− PΘ∗(xi(t)), fi
(

xi(t)
)

〉

≤ 0. (41)

The desired lemma thus follows. �

B Proof of Lemma 7

When
⋂N

i=1

{

z : fi(z) = 0
}

6= ∅, it is clear that argminF =
⋂N

i=1

{

z : fi(z) = 0
}

.

Now take x∗ = (pT∗ . . . pT∗ )
T ∈

(
⋂N

i=1

{

z : fi(z) = 0
})N ⋂

M, where p∗ ∈
⋂N

i=1

{

z : fi(z) = 0
}

. First

we have x∗ ∈ argminx
∑N

i=1 Fi(xi). Second we have x∗ ∈ argminx
K
2

∑

{j,i}∈E aij
∣

∣xj − xi
∣

∣

2
. Therefore, we

conclude that x∗ ∈ argminFG(x;K). This gives

argminFG(x;K) ⊇
(

N
⋂

i=1

{

z : fi(z) = 0
}

)N ⋂

M. (42)

On the other hand, convexity gives

argminFG(x;K) =
{

x : −K(P ⊗ Im)x =
(

(

f1(x1)
)T

. . .
(

fN(xN )
)T
)T}

, (43)

where ⊗ represents the Kronecker product, Im is the identity matrix in Rm, and P is the Laplacian of

the graph G. Noticing that

(1TN ⊗ Im)(P ⊗ Im) = 1TNP ⊗ Im = 0,

where 1N = (1 . . . 1)T ∈ RN , we have

(

1TN ⊗ Im

)(

(

f1(x1)
)T

. . .
(

fN (xN )
)T
)T

=
N
∑

i=1

fi(xi) = 0 (44)

for any x ∈ argminFG(x;K).

Take x∗ = (qT1 . . . qTN )T ∈ argminFG(x;K). Suppose there exist two indices i∗ and j∗ such that

fi∗(qi∗) 6= fj∗(qj∗).
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Then at least one of fi∗(qi∗) and fj∗(qj∗) must be nonzero. Taking p̂ ∈
⋂N

i=1

{

z : fi(z) = 0
}

, we have

N
∑

i=1

Fi(qi) >

N
∑

i=1

Fi(p̂)

because for x = (xT1 . . . xTN )T ∈ argmin
∑N

i=1 Fi(xi), we have fi(xi) = 0, i = 1, . . . , N . Consequently, for

w∗ = (p̂T . . . p̂T )T , we have

FG(x
∗;K) > FG(w∗;K)

which is impossible according to the definition of x∗ so that such i∗ and j∗ cannot exist. In light of (44),

this immediately implies fi(qi) = 0, i = 1, . . . , N, or equivalently

qi ∈
{

z : fi(z) = 0
}

, i = 1, . . . , N (45)

for all x∗ = (qT1 . . . qTN )T ∈ argminFG(x). Therefore, we conclude from (45) that
∑N

i=1 Fi(qi) =
∑N

i=1 Fi(p∗),

and this implies
∑

{j,i}∈E

aij
∣

∣qj − qi
∣

∣

2
= 0

as long as x∗ = (qT1 . . . qTN )T ∈ argminFG(x). The connectivity of the communication graph thus further

guarantees that q1 = · · · = qN , so we have proved that x∗ ∈
(
⋂N

i=1

{

z : fi(z) = 0
})N ⋂

M. Consequently,

we obtain

argminFG(x;K) ⊆
(

N
⋂

i=1

{

z : fi(z) = 0
}

)N ⋂

M. (46)

The desired lemma holds from (42) and (46). �

C Proof of Lemma 8

Based on Lemma 1, we have

D+V (t) = max
i∈I(t)

d

dt
Vi(t)

= max
i∈I(t)

2
〈

xi(t)− z∗,
∑

j∈Ni(σ(t))

aij(t)
(

xj − xi
)

+ fi
(

xi
)

〉

, (47)

where I(t) denotes the index set which contains all the nodes reaching the maximum for V (t).

Let m ∈ I(t). Denote

Zt =
{

z : |z − z∗| ≤
√

V (t)
}

as the disk centered at z∗ with radius
√

V (t). Take y = xm(t) + (xm(t) − z∗). Then from some simple

Euclidean geometry it is obvious to see that PZt
(y) = xm(t), where PZt

is the projection operator onto

Zt. Thus, for all j ∈ Nm(σ(t)), we obtain

〈

xm(t)− z∗, xj(t)− xm(t)
〉

=
〈

y − xm(t), xj(t)− xm(t)
〉

=
〈

y − PZt
(y), xj(t)− PZt

(y)
〉

≤ 0 (48)
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according to inequality (i) in Lemma 3 since xj(t) ∈ Zt. On the other hand, based on inequality (i) in

Lemma 4, we also have

〈

xm(t)− z∗, fm
(

xm(t)
)〉

≤ Fm(z∗)− Fm

(

xm(t)
)

≤ 0 (49)

in light of the definition of z∗.

With (47), (48) and (49), we conclude that

D+V (t) = max
i∈I(t)

2
〈

xi(t)− z∗,
∑

j∈Ni(σ(t))

aij(t)
(

xj − xi
)

+ fi
(

xi
)〉

≤ 0, (50)

which completes the proof. �

D Proof of Lemma 9

In order to prove the desired conclusion, we just need to show lim inft→∞ Vi(t) = d2∗ for all i. With Lemma

8, we conclude that ∀ε > 0,∃M(ε) > 0, s.t.,

√

Vi(t) ≤ d∗ + ε (51)

for all i and t ≥ M .

Claim. For all t ≥ M and all i, j ∈ V, we have

〈

xi(t)− z∗, xj(t)− xi(t)
〉

≤ −Vi(t) + (d∗ + ε)
√

Vi(t). (52)

If xi(t) = z∗ (52) follows trivially from (51). Otherwise we take y∗ = z∗ + (d∗ + ε) xi(t)−z∗
|xi(t)−z∗|

and

Bt =
{

z : |z− z∗| ≤ d∗+ ε
}

. Here Bt is the disk centered at z∗ with radius d∗+ ε, and y∗ is a point within

the boundary of Bt and falls the same line with z∗ and xi0(t). Take also q∗ = y∗ + xi(t) − z∗. Then we

have

〈

xi(t)− z∗, xj(t)− y∗
〉

=
〈

q∗ − y∗, xj(t)− y∗
〉

=
〈

q∗ − PBt
(q∗), xj(t)− PBt

(q∗)
〉

≤ 0 (53)

according to inequality (i) in Lemma 3, which leads to

〈

xi(t)− z∗, xj(t)− xi(t)
〉

=
〈

xi(t)− z∗, xj(t)− y∗
〉

+
〈

xi(t)− z∗, y∗ − xi(t)
〉

≤
〈

xi(t)− z∗, y∗ − xi(t)
〉

= −Vi(t) + (d∗ + ε)
√

Vi(t). (54)

This proves the claim.

Now suppose there exists i0 ∈ V with lim inft→∞ Vi(t) = θ2i0 < d2∗. Then we can find a time sequence

{tk}
∞
1 with limk→∞ tk = ∞ such that

√

Vi0(tk) ≤
θi0 + d∗

2
. (55)

We divide the rest of the proof into three steps.

Step 1. Take tk0 > M . We bound Vi0(t) in this step.
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With (52) and inequality (i) in Lemma 4, we see that

d

dt
Vi0(t) = 2

〈

xi0(t)− z∗,
∑

j∈Ni0
(σ(t))

ai0j(t)
(

xj − xi0
)

+ fi0
(

xi0(t)
)

〉

≤ 2
∑

j∈Ni0
(σ(t))

ai0j(t)
〈

xi0(t)− z∗, xj(t)− xi0(t)
〉

+ Fi0

(

z∗
)

− Fi0

(

xi0(t)
)

≤ 2(N − 1)a∗
(

− Vi0(t) + (d∗ + ε)
√

Vi0(t)
)

, (56)

for all t ≥ tk0 , which implies

d

dt

√

Vi0(t) ≤ −(N − 1)a∗
(

√

Vi0(t)− (d∗ + ε)
)

, t ≥ tk0 . (57)

In light of Grönwall’s inequality, (55) and (57) yield
√

Vi0(t) ≤ e−(N−1)2a∗TD

√

Vi0(tk0) +
(

1− e−(N−1)2a∗TD

)

(d∗ + ε)

≤
e−(N−1)2a∗TD

2
θi0 +

(

1−
e−(N−1)2a∗TD

2

)

(d∗ + ε)

.
= Λ∗. (58)

for all t ∈ [tk0 , tk0 +(N − 1)TD] with TD = T + τD, where T comes from the definition of uniformly jointly

strongly connected graphs and τD represents the dwell time.

Step 2. Since the graph is uniformly jointly strongly connected, we can find an instant t̂ ∈ [tk0 , tk0 + T ]

and another node i1 ∈ V such that (i0, i1) ∈ Gσ(t) for t ∈ [t̂, t̂ + τD]. In this step, we continue to bound

Vi1(t).

Similar to (52), for all t ≥ M and all i, j ∈ V, we also have

〈

xi(t)− z∗, xj(t)− xi(t)
〉

≤ −
√

Vi(t)
(

√

Vi(t)−
√

Vj(t)
)

(59)

when Vj(t) ≤ Vi(t). Then based on (52), (58), and (59), we obtain

d

dt
Vi1(t) ≤ 2

∑

j∈Ni1
(σ(t))

ai1j(t)
〈

xi1(t)− z∗, xj(t)− xi1(t)
〉

= 2
∑

j∈Ni1
(σ(t))\{i0}

ai1j(t)
〈

xi1(t)− z∗, xj(t)− xi1(t)
〉

+ 2ai1i0(t)
〈

xi1(t)− z∗, xi0(t)− xi1(t)
〉

≤ 2(N − 2)a∗
(

− Vi1(t) + (d∗ + ε)
√

Vi1(t)
)

− 2a∗
√

Vi1(t)
(

√

Vi1(t)−
√

Vi0(t)
)

≤ −2
(

(N − 2)a∗ + a∗

)

Vi1(t) + 2
√

Vi1(t)
(

(N − 2)a∗(d∗ + ε) + Λ∗a∗

)

(60)

for t ∈ [t̂, t̂+ τD], where without loss of generality we assume Vi1(t) ≥ Vi0(t) during all t ∈ [t̂, t̂+ τD].

Then (60) gives

d

dt

√

Vi1(t) ≤ −
(

(N − 2)a∗ + a∗

)

√

Vi1(t) +
(

(N − 2)a∗(d∗ + ε) + Λ∗a∗

)

, t ∈ [t̂, t̂+ τD] (61)

which yields
√

Vi1(t̂+ τD) ≤ e−
(

(N−2)a∗+a∗

)

τD(d∗ + ε) +
(

1− e−
(

(N−2)a∗+a∗

)

τD
)(N − 2)a∗(d∗ + ε) + Λ∗a∗

(N − 2)a∗ + a∗

=
a∗
(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗
×

e−(N−1)2a∗TD

2
θi0

+
(

1−
a∗
(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗
×

e−(N−1)2a∗TD

2

)

(d∗ + ε) (62)
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again by Grönwall’s inequality and some simple algebra.

Next, applying the estimate of node i0 in Step 1 on i1 during time interval [t̂ + τD, tk0 + (N − 1)TD],

we arrive at

√

Vi1(t) ≤
a∗
(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗
×

e−2(N−1)2a∗TD

2
θi0

+
(

1−
a∗
(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗
×

e−2(N−1)2a∗TD

2

)

(d∗ + ε) (63)

for all t ∈ [tk0 + TD, tk0 + (N − 1)TD].

Step 3. Noticing that the graph is uniformly jointly strongly connected, the analysis of steps 1 and 2 can

be repeatedly applied to nodes i3, . . . , iN−1, and eventually we have that for all i0, . . . , iN−1,

√

Vim

(

tk0 + (N − 1)TD

)

≤
(a∗

(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗

)N−2
×

e−(N−1)3a∗TD

2
θi0

+

(

1−
(a∗

(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗

)N−2
×

e−(N−1)3a∗TD

2

)

(d∗ + ε)

< d∗ (64)

for sufficiently small ε because θi0 < d∗ and

(a∗
(

1− e−((N−2)a∗+a∗)τD
)

(N − 2)a∗ + a∗

)N−2
×

e−(N−1)3a∗TD

2
< 1

is a constant. This immediately leads to that

V
(

tk0 + (N − 1)TD

)

< d2∗, (65)

which contradicts the definition of d∗.

This completes the proof. �

E Proof of Lemma 10

With Lemma 9, we have that limt→∞ Vi(t) = d2∗ for all i ∈ V. Thus, ∀ε > 0,∃M(ε) > 0, s.t.,

d∗ ≤
√

Vi(t) ≤ d∗ + ε (66)

for all i and t ≥ M . If d∗ = 0, the desired conclusion follows straightforwardly. Now we suppose d∗ > 0.

Assume that there exists a node i0 satisfying lim supt→∞

∣

∣xi0(t)
∣

∣

argminFi0

> 0. Then we can find a time

sequence {tk}
∞
1 with limk→∞ tk = ∞ and a constant δ such that

∣

∣xi0(tk)
∣

∣

argminFi0

≥ δ, k = 1, . . . . (67)

Denote also B1
.
=
{

z : |z − z∗| ≤ d∗ + 1
}

and G1 = max
{

|fi0(y)| : y ∈ B1

}

. Assumption A1 ensures that

G1 is a finite number since B1 is compact. By taking ε = 1 in (66), we see that xi(t) ∈ B1 for all i and

t ≥ M(1). As a result, we have

∣

∣

∣

d

dt
xi0(t)

∣

∣

∣
=
∣

∣

∣

∑

j∈Ni0
(σ(t))

ai0j(t)(xj − xi0) + fi0(xi0)
∣

∣

∣
≤ 2(n− 1)a∗(d∗ + 1) +G1. (68)
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Combining (67) and (68), we conclude that

∣

∣xi0(t)
∣

∣

argminFi0

≥
δ

2
, t ∈ [tk, tk + τ ], (69)

for all k = 1, . . . , where by definition τ = δ

2
(

2(n−1)a∗(d∗+1)+G1

) .

Now we introduce

Dδ
.
= min

{

Fi0(y)− Fi0(z∗) :
∣

∣y
∣

∣

argminFi0

≥
δ

2
and y ∈ B1

}

.

Then we know Dδ > 0 again by the continuity of Fi0 . According to (56), (66), and (69), we obtain

d

dt
Vi0(t) ≤ 2(N − 1)a∗

(

− Vi0(t) + (d∗ + ε)
√

Vi0(t)
)

+ Fi0

(

z∗
)

− Fi0

(

xi0(t)
)

≤ 2(N − 1)a∗(2d∗ + ε)ε −Dδ , (70)

for t ∈ [tk, tk + τ ], k = 1, . . . . This leads to

Vi0(tk + τ) ≤ Vi0(tk) +
(

2(N − 1)a∗(2d∗ + ε)ε −Dδ

)

τ

≤ (d∗ + ε)2 +
(

2(N − 1)a∗(2d∗ + ε)ε−Dδ

)

τ

< d2∗ (71)

as long as ε is chosen sufficiently small. We see that (71) contradicts (66). The desired conclusion thus

follows. �
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