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Front Propagation in Stochastic Neural Fields:

A Rigorous Mathematical Framework

JENNIFER KRÜGER†, WILHELM STANNAT‡

Abstract. We develop a complete and rigorous mathematical framework for the analysis
of stochastic neural field equations under the influence of spatially extended additive
noise. By comparing a solution to a fixed deterministic front profile it is possible to
realise the difference as strong solution to an L2(R)-valued SDE. A multiscale analysis of
this process then allows us to obtain rigorous stability results. Here a new representation
formula for stochastic convolutions in the semigroup approach to linear function-valued
SDE with adapted random drift is applied. Additionally, we introduce a dynamic phase-
adaption process of gradient type.

Keywords. travelling fronts, stochastic convolution, additive noise, strong solution,
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1 Introduction

Neural field equations are used to model the spatiotemporal evolution of neural activity
in thin layers of cortical tissue from a macroscopic point of view. Under the influence of
spatially extended additive noise ξ they can be formulated as

∂tu(x, t) = −u(x, t) +

∫ ∞

−∞
w(x− y) F (u(y, t)) dy +

√
ε ξ̇(x, t) (1)

where u is meant to describe the activity of a neuron at position x and time t. The
probability kernel w models the strength of nonlocal excitatory synaptic connections,
whereas F : R → R constitutes a nonlinear firing rate function. A precise interpreta-
tion of the stochastic forcing term ξ, characterising extrinsic fluctuations of the system,
will be given below. Several approaches (e.g. in [2], [13] and [20]) have been developed
to derive neural field equations as continuum limit of spatially extended, synaptically
coupled neural systems under different assumptions on the underlying microscopic net-
work structure. Here, the particular importance of a macroscopic perspective on neural
activity primarily arises from the capability of field equations like (1) to model a wide
range of neurophysiological phenomena. In the deterministic theory (ε = 0) Amari first
provided a complete taxonomy of pattern dynamics exhibited by such fields (cf. [1]),
which includes the propagation of activity in form of travelling waves. For the simplified
case that each neuron only switches between a spiking and a non-spiking state, i.e. that
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the firing rate function F is given by a Heaviside nonlinearity, even an explicit travelling
wave solution of (1) can be constructed (cf. [6]), whereas for more general input data w

and F sufficient criteria for the existence and uniqueness of such solutions have been for-
mulated in [10] resp. [7]. Extending the deterministic field equation to scalar stochastic
neural fields, the objective of Bressloff and Webber in [6] was to investigate the effect of
spatially extended, extrinsic stochastic perturbations on such travelling wave dynamics.
As it turned out, random forcing terms result in two distinct structural phenomena:
‘fast’ perturbations of the front shape as well as a ‘slow’ horizontal displacement of the
wave profile from its uniformly translating position. Under these observations a sep-
aration of time-scales method was applied to solve a neural field equation (subject to
multiplicative noise) by decomposing the solution into a fixed deterministic front pro-
file, a diffusion-like horizontal translation process as well as time- and space-dependent
fluctuations. However, as the authors of [6] themselves state, they “base [their] ana-
lysis on formal perturbation methods developed previously for PDEs, since a rigorous
mathematical framework is currently lacking”.

The purpose of our paper therefore is to introduce such a complete and mathemat-
ically rigorous framework, which qualitatively captures the above phenomena and - by
comparing a solution of (1) to a fixed reference profile - allows us to realise a stochastic
neural field as stochastic evolution equation on a suitable function space (for the under-
lying theory refer to [9], [16]). Here, ξ will be chosen as Q-Wiener process on the Hilbert
space L2(R). In contrast to the more direct rigorous approach recently suggested in [11],
where a stochastic neural field is interpreted as SDE on a suitable weighted L2-space, our
approach via decomposition has the advantage of providing information on the precise
structure of solutions and even more, allows us to prove new stability results.

The paper is structured as follows: Section 2 provides a brief introduction to the
representation of stochastic travelling waves as developed in [6]. These ideas are then
given rigorous meaning by the decompositions presented in Section 3. As part of this
framework, in Subsection 3.2 we introduce a gradient-descent-type ODE for a dynamic
phase-adaption and prove existence and uniqueness of a classical solution to this ODE
in Theorem 3.5. Moreover, the fluctuations are further specified by a suitable decompos-
ition into processes of different order, namely into an Ornstein-Uhlenbeck-like process
satisfying a linear SDE with non-autonomous adopted random drift as well as a lower-
order differentiable remainder process on L2(R). As a consequence of the randomness
of the linear drift term it is not possible to directly define a stochastic convolution of
the (possibly non-adapted) semigroup with the driving Wiener process as required for
a mild-solution concept. We therefore represent the Ornstein-Uhlenbeck process via a
stochastic convolution of new type (recently introduced in [17]) that is applicable to gen-
eral adapted random drifts and allows us to derive a locally uniform (in time) pathwise
control on the Ornstein-Uhlenbeck component. A similar approach based on a pathwise
control of the stochastic convolution has also been taken in [19]. Section 4 then contains
our main results, Theorem 4.2 and Theorem 4.3, on the stability of stochastic travelling
waves. The crucial assumption to obtain this type of stochastic stability is the existence
of a spectral gap of the time-dependent random drift.

An interesting issue for future research would be to investigate the underlying stat-
istics of the dynamic wave speed as well as the Ornstein-Uhlenbeck component of the
fluctuations, which, unlike in the case of deterministic associated drift operators, cannot
be expected to be a Gaussian process. Moreover, our hope is that the presented approach
can be carried over to spatially discrete models in order to examine the stochastic sta-
bility of fluctuating travelling waves in discrete neural networks.
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2 Phenomenological Motivation

Interpreting (1) as stochastic evolution equation on a suitable function space we now
analyse the following nonlinear, scalar neural field equation

{

dut = [−ut +w ∗ F (ut)] dt+
√
ε dW

Q
t ,

u(0) = u0
(2)

where the additive stochastic forcing term is given by a Q-Wiener process WQ on L2(R)
(for a detailed introduction of Q-Wiener processes on general Hilbert spaces refer to [9]).
Let the weight kernel w be a bounded probability density function, i.e. in particular

∫

R

w(x) dx = 1

and let the nonlinear gain function F be in C2
b (R), i.e. twice continuously differentiable

with bounded derivatives.
Even though [6] examined the effect of extrinsic multiplicative noise on the above

field equation, the structural separation of the dynamics on different time-scales is also
adoptable to the setting of additive extrinsic forcing terms as assumed in (2). Basically,
the analysis in [6] splits up the dynamics into its behaviour on short and long time-
scales, i.e. the process is represented via a “slow” diffusive-like displacement of the
front from its uniformly translating position and “fast” fluctuations in the front profile.
More precisely, a fixed deterministic wave profile U0 with uniformly translating position
ξ = x−ct is horizontally displaced by ∆(t), a diffusive-like stochastic process on the real
line. Already taking account of the correct order w.r.t. ε the ansatz in [6] is to solve (2)
by decomposing

u(x, t) = U0(ξ −∆(t)) +
√
ε Φ(ξ −∆(t), t), (3)

where U0 is a travelling wave solution of (2) in the deterministic case ε = 0 and Φ
can - at least formally - be derived as a process on L2(R). For more detailed insights
into the nature of these processes as well as the applied methodology we refer to the
original paper. In the following sections this phenomenological motivation is translated
into a rigorous mathematical analysis, which will partly proceed along lines of a similar
approach having been developed in the context of stochastic reaction diffusion equations
(cf. [18], [21]).

3 Mathematical Modelling on L
2(R)

In the sequel assume the input data w and F to allow for a unique travelling wave solution
û with intrinsic wave speed c solving the deterministic neural field equation (2) in the case
ε = 0. In addition, the wave profile should connect two stable fixed points 0 and 1 of the
dynamics, i.e. we impose the boundary conditions limξ→∞ û(ξ) = 1, limξ→−∞ û(ξ) = 0.
Sufficient criteria on w and F ensuring the existence and uniqueness of such solutions
are stated in [10] resp. [7].

3.1 Decomposition of the solution

In analogy with [6] we decompose the solution of the stochastic neural field (2) into

ut = ût + vt, (4)
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with ût = û(· − ct) being a travelling wave solution of the deterministic ODE

−cûx = −û+ w ∗ F (û) (5)

Since by classical calculus ût is a solution of

dût(x) = ∂tû(x− ct) dt = −cûx(x− ct) dt

= [−ût(x) + (w ∗ F (ût)) (x)] dt (6)

vt satisfies the following evolution equation

dvt = dut − dût

= [−vt + w ∗ (F (vt + ût)− F (ût))] dt+
√
εdW

Q
t (7)

Expanding to first order yields

dvt = [−vt + w ∗
(

F ′(ût) vt
)

] dt+Rt(ût, vt) dt+
√
εdW

Q
t , (8)

where the remainder is given by

Rt(ût, vt) = w ∗
(

1

2
F ′′(ξ(ût, vt)) v

2
t

)

(9)

with ξ(ût, vt) denoting an intermediate point between ût and vt. For a given travelling
wave solution û the remainder Rt(ût, ·) is indeed a well-defined map on L2(R) satisfying
the estimate

‖Rt(ût, vt)‖2L2 ≤ c

∫

R

(
∫

R

w(x− y) v2t (y) dy

)2

dx = c̃ ‖vt‖4L2 . (10)

Theorem 3.1. For v0 ∈ L2(R) equation (7) has a unique mild solution v with v ∈
L∞([0, T ];L2(R)) almost surely. This solution is also a strong solution and admits a
continuous modification.

Proof. For proving existence of a unique mild solution we define

B(t, v) := −v + w ∗ (F (v + ût)− F (ût)) .

Applying Jensen’s inequality we obtain that B is well-defined as a map [0, T ]×L2(R) →
L2(R) satisfying the following estimate

‖B(t, v)‖2L2(R) ≤ 2‖v‖2L2(R) + 2‖F ′‖2∞ ‖v‖2L2(R).

For a given topological space X let B(X) denote the Borelian σ-algebra onX. Then, B is
obviously measurable from the measurable space ([0, T ] × L2(R), B([0, T ])⊗ B(L2(R)))
to (L2(R), B(L2(R))).

As one can easily verify for v1, v2 ∈ L2(R), t ∈ [0, T ], we obtain the Lipschitz property

‖B(t, v1)−B(t, v2)‖2L2(R) ≤ 2 (1 + ‖F ′‖2∞) ‖v1 − v2‖2L2(R),

which, together with the property

B(t, 0) = w ∗ (F (0 + ût)− F (ût)) = 0,

directly implies a linear growth condition for B. Considering (7) as semilinear evolution
equation with linear part Avt, A = 0, [9, Theorem 7.4] provides the existence of a unique
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mild solution v ∈ L∞([0, T ], L2(R)) a.s., which allows for a continuous modification and
can be represented as

vt = v0 +

∫ t

0
B(s, vs) ds+

√
εW

Q
t . (11)

This immediately shows that v is also a strong solution of (7).

It is clear from the above that if the initial condition u0 of problem (2) is chosen
such that v0 := u0 − û0 ∈ L2(R), then ut := ût + vt is a solution of (2). Uniqueness of
the components only holds after we have fixed an initial phase for the travelling wave
solution ût.

3.2 Gradient-descent type ODE for random phase-shift

The intention of this subsection is to find a suitable derivation of a slow horizontal trans-
lation process (C(t))t∈[0,T ], as mentioned in Section 2, such that the initial representation
ut = ût + vt can be replaced by

ut = û(· − ct− C(t)) + ṽt, (12)

where ṽt denotes a new L2-component. The phase-shift process (C(t)) should have the
effect of dynamically matching the deterministic profile û with the stochastic travelling
wave in the sense of minimising the L2-distance between the solution u and all possible
translations of û, for which reason (as already proposed in [14], [18]) we consider the
gradient-descent-type (pathwise) ODE

{

Ċ(t) = −m 〈ûx(· − ct− C(t)), u(t, ·) − û(· − ct− C(t))〉L2

C(0) = 0
(13)

with relaxation rate m > 0. This phase-adaption can be seen as an alternative approach
to the phase conditions specified by certain algebraic constraints in the classical stability
analysis (refer to [12]). Existence and uniqueness of a classical global solution to the
ODE (13) are proven under the following assumptions on the weight kernel:

Assumption 3.2. (a) w is piecewise continuously differentiable

(b) w satisfies

∫

R

w2
x

w
(x) dx < ∞

Remark. (i) Note that Assumption 3.2(b) ensures that in the case c = 0 the travelling
wave satisfies ûxx ∈ L2(R), which is used in the proof of Lemma 3.4(ii). In the case
c 6= 0 part (b) of the above assumption is not needed.

(ii) The above conditions are satisfied for the exponential weight function

w(x) = 1
2σ e

− |x|
σ as well as for a Gaussian kernel w(x) = 1√

2πσ2
e
− x

2

2σ2 , which are

both common choices in modelling synaptic excitatory connections.
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Lemma 3.3. For bounded weight kernel w and F ∈ C1
b (R) we obtain

ûx ∈ L2(R).

Proof. In the case c 6= 0 multiplying (5) with the gradient ûx yields

û2x =
1

c
û ûx −

1

c
(w ∗ F (û)) ûx

such that by integration by parts for y, z ∈ R

∫ z

y
û2x(r)dr ≤ 1

2|c|
(

û2(z) + û2(y)
)

+
1

|c| ‖w ∗ F (û)‖∞(û(z) + û(y))

−→ 1

2|c| +
1

|c| ‖w ∗ F (û)‖∞ as y → −∞, z → ∞.

Here, the boundary conditions of û were applied.

In the case c = 0 (5) yields û = w ∗ F (û) and under Assumption 3.2 (b) one obtains

ûx = w ∗ F ′(û)ûx.

Note that trivially for all c ∈ R we have ûx ∈ L1(R). This suffices to obtain

‖ûx‖2L2(R) =

∫

∣

∣

∣

∫

w(x− y)F ′(û(y))ûx(y) dy
∣

∣

∣

2
dx

=

∫ ∫ ∫

w(x− y)w(x− ỹ)F ′(û(y))F ′(û(ỹ))ûx(y)ûx(ỹ) dydỹdx

≤
(

sup
y,ỹ

∫

w(x− y)w(x− ỹ) dx

)

‖F ′‖2∞‖ûx‖2L1(R)

≤ ‖w‖∞‖F ′‖2∞‖ûx‖2L1(R)

With the above considerations the following Lipschitz properties for û as well as ûx are
obtained:

Lemma 3.4. Given Assumption 3.2 let C1, C2 ∈ R. Then

(i)
‖û(· −C1)− û(· − C2)‖L2 ≤ ‖ûx‖L2 |C1 − C2|

(ii) There exists a constant c̃ > 0 such that

‖ûx(· − C1)− ûx(· − C2)‖L2 ≤ c̃ |C1 − C2|

Proof. The proof of property (i) only requires Hölder’s inequality, whereas for (ii) note
that in the case c 6= 0 equation (5) determines the gradient of the travelling wave by

ûx =
1

c
(û− w ∗ F (û)).

Then, (i) and Jensen’s inequality suffice to verify the above Lipschitz property. In the
case c = 0 equation (5) yields the identity û = w∗F (û) such that by differentiating we see
that the gradient satisfies ûx = w ∗F ′(û)ûx. The rest again follows from straightforward
calculations and Assumption 3.2.
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After these preparatory considerations we state the main existence and uniqueness
result of this subsection:

Proposition 3.5. Let m > 0 and let Assumption 3.2 be satisfied. Then P -almost surely
there exists a unique global solution of the (pathwise) ODE (13).

Proof. Let
B(t, C) := 〈ûx(· − ct− C), u(t, ·)− û(· − ct− C)〉L2 .

Since (13) constitutes an initial value problem of first order it suffices to show that
the map (t, C) ∈ [0, T ]× R 7→ B(t, C) is continuous and Lipschitz continuous w.r.t. C

uniformly in t. Decomposing

B(t, C) = 〈ûx(· − ct− C), u(t, ·)− û(· − ct)〉L2 + 〈ûx(· − ct− C), û(· − ct)− û(· − ct− C)〉L2

observe that the maps

(i) (t, C) 7→ ûx(· − ct−C)

(ii) (t, C) 7→ u(t, ·)− û(· − ct)

(iii) (t, C) 7→ û(· − ct)− û(· − ct− C)

are continuous in L2(R). By Lemma 3.4 this holds true due to the continuity of û, ûx
and vt = u(t, ·)− ût, where we take the continuous modification provided by Theorem
3.1. Next, for any C1, C2 ∈ R, t ∈ [0, T ],

B(t, C1)−B(t, C2) = 〈ûx(· − ct− C1)− ûx(· − ct−C2), u(t, ·) − û(· − ct)〉L2

+ 〈ûx(· − ct−C1), û(· − ct)− û(· − ct− C1)〉L2

− 〈ûx(· − ct−C2), û(· − ct)− û(· − ct− C2)〉L2

= I + II + III, say.

Applying Cauchy-Schwarz as well as Lemma 3.4 the first summand is P -a.s. controlled
by

|I| ≤ ‖ûx(· − ct− C1)− ûx(· − ct− C2)‖L2‖vt‖L2

≤ c ‖v‖C([0,T ];L2(R)) |C1 − C2|.

After the substitution · − C1 → · (analogously for C2) the second and third part can
similarly be estimated by

|II + III| = |〈ûx(· − ct), û(· − ct+ C1)− û(· − ct)〉L2

− 〈ûx(· − ct), û(· − ct+ C2)− û(· − ct)〉L2 |
= |〈ûx(· − ct), û(· − ct+ C1)− û(· − ct+ C2)〉L2 |
≤ ‖ûx(· − ct)‖L2‖û(· − ct+ C1)− û(· − ct+ C2)‖L2

≤ ‖ûx‖2L2 |C1 − C2|.

Overall, this provides us with the P -a.s. existence and uniqueness of a classical global
solution C ∈ C1([0, T ];R).

The representation

ut = û(· − ct− C(t)) + ṽt,
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i.e.

ṽt = ut − û(· − ct− C(t)) = vt + (û(· − ct)− û(· − ct−C(t))) (14)

should now phenomenologically correspond to the representation established by Bressloff
and Webber in [6].
Introducing the notation

˜̂u(t) := û(· − ct−C(t)), ˜̂ux(t) := ûx(· − ct− C(t))

it is obvious that (ṽt)t∈[0,T ] is again a process on L2(R) and strong solution of the
function-valued SDE

dṽt = dvt + ∂tû(· − ct) dt− ∂tû(· − ct− C(t)) dt

= [−vt + w ∗ (F (vt + ût)− F (ût))] dt− cûx(· − ct) dt

+
(

c+ Ċ(t)
)

ûx(· − ct− C(t)) dt+
√
εdW

Q
t

=
[

− vt + w ∗ (F (vt + ût)− F (ût))− ût + w ∗ F (ût) + û(· − ct− C(t))

− w ∗ F (û(· − ct− C(t))) + Ċ(t)ûx(· − ct− C(t))
]

dt+
√
εdW

Q
t

= [−ṽt + w ∗ (F (vt + ût)− F (ût)) + w ∗ (F (ût)− F (û(· − ct− C(t))))] dt

+ Ċ(t) ûx(· − ct− C(t)) dt+
√
εdW

Q
t

=
[

−ṽt + w ∗
(

F (ṽt + ˜̂ut)− F (˜̂ut)
)]

dt+ Ċ(t) ûx(· − ct− C(t)) dt+
√
εdW

Q
t

=: [A(t)ṽt +Rt(˜̂ut, ṽt)]dt+
√
εdW

Q
t (15)

for the time- and ω-dependent linear operator

A(t)v = −v + w ∗
(

F ′(˜̂ut) v
)

−m 〈ûx(· − ct− C(t)), v〉L2 · ûx(· − ct− C(t)) (16)

and the remainder Rt as introduced in (9). Here, the ω-dependence of A results from
the ω-dependence of the process C. Note that 〈ûx, v〉 · ûx in the above formula denotes
an orthogonal projection of v onto the linear span generated by ûx(· − ct − C(t)) that,
in the case c 6= 0, describes the infinitesimal tangential direction of the travelling wave
û w.r.t. time, because

∂tû = −û+ w ∗ F (û) = −cûx.

To obtain an even deeper understanding of the behaviour of the stochastic travelling
wave u, its stability and the exact influence of the noise strength

√
ε the following analysis

works out the inner structure of the fluctuations ṽ. To this end it is necessary to more
thoroughly examine the family of linear operators (A(t))t∈[0,T ].

3.3 Properties of the associated family of linear operators

For t ∈ [0, T ] let A0(t) denote the linear operator on L2(R) defined by

A0(t)z = −z + w ∗
(

F ′(˜̂ut) z
)

, z ∈ L2(R).

We work under the following

Assumption 3.6. There exist κ∗ > 0, C∗ > 0 such that

〈A0(t)z, z〉 ≤ −κ∗‖z‖2 + C∗

(

〈˜̂ux(t), z〉
)2

∀z ∈ L2(R). (A1)

Furthermore, in the sequel the relaxation rate m is chosen such that

m > C∗. (A2)
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In the following Lemma relevant properties of the family of linear operators (A(t)) are
proven. We denote by L (L2(R)) the space of all bounded linear operators on L2(R).

Lemma 3.7. A : [0, T ]×Ω → L (L2(R)) is well-defined, strongly measurable and strongly
adapted. Furthermore,

(i) For all t ∈ [0, T ], almost all ω ∈ Ω, A(t)(ω) is a bounded linear operator on L2(R).

(ii) For almost all ω ∈ Ω the map t 7→ A(t)(ω) is continuous in the uniform operator
topology.

In particular, A P -a.s. generates an evolution family (P (t, s))0≤s≤t≤T on L2(R) and for
m > C∗:

(iii) 〈v,A(t)v〉L2 ≤ −κ∗‖v‖2L2 .

(iv) ‖P (t, s)‖L (L2(R)) ≤ e−κ∗(t−s) ∀ 0 ≤ s ≤ t ≤ T .

Proof. Let z ∈ L2(R). As a combination of measurable, adapted functions A(·, ·)z itself
is measurable and adapted.
(i) Linearity of the operator is obvious. Furthermore, straightforward calculations yield
the bound

sup
r∈[0,T ]

‖A(r)‖ ≤ 1 + ‖F ′‖∞ +m ‖ûx‖2L2 .

(ii) Let s, t ∈ [0, T ]. We estimate

‖A(t)z −A(s)z‖

≤
∥

∥w ∗
(

F ′(˜̂ut) z
)

− w ∗
(

F ′(˜̂us) z
)

∥

∥+
∥

∥−m 〈˜̂ux(t), z〉 ˜̂ux(t) +m 〈˜̂ux(s), z〉 ˜̂ux(s)
∥

∥

=
∥

∥w ∗
(

F ′(˜̂ut)− F ′(˜̂us)
)

z
∥

∥

+m
∥

∥〈˜̂ux(t), z〉 ˜̂ux(t)− 〈˜̂ux(t), z〉 ˜̂ux(s) + 〈˜̂ux(t), z〉 ˜̂ux(s)− 〈˜̂ux(s), z〉 ˜̂ux(s)
∥

∥

=: I + II

Applying Jensen’s inequality one obtains

I2 ≤
∫

R

∫

R

w(x− y)
∣

∣F ′(˜̂ut(y))− F ′(˜̂us(y))
∣

∣

2
z2(y) dy dx

≤ ‖F ′′‖2∞
∫

R

∫

R

w(x− y)
∣

∣˜̂ut(y)− ˜̂us(y)
∣

∣

2
z2(y) dy dx

≤ ‖F ′′‖2∞
∫

R

∫

R

w(x− y) ‖û‖2C1 |ct− cs+ C(t)− C(s)|2 z2(y) dy dx

≤ ‖F ′′‖2∞‖û‖2C1 (c |t− s|+ ‖C‖C1 |t− s|)2
∫

R

z2(y)

∫

R

w(x− y) dx dy

≤ c̃ |t− s|2 ‖z‖2L2 .

The second summand is estimated as follows:

II ≤ m
(

‖〈˜̂ux(t), z〉
(

˜̂ux(t)− ˜̂ux(s)
)

‖L2 + ‖〈˜̂ux(t)− ˜̂ux(s), z〉 ˜̂ux(s)‖L2

)

≤ m
(

‖˜̂ux(t)‖L2 ‖z‖L2 ‖˜̂ux(t)− ˜̂ux(s)‖L2 + ‖˜̂ux(t)− ˜̂ux(s)‖L2 ‖z‖L2 ‖˜̂ux(s)‖L2

)

According to Lemma 3.4 there exists a constant c̃ > 0 such that

‖˜̂ux(t)− ˜̂ux(s)‖L2 ≤ c̃ |ct+ C(t)− cs −C(s)| ≤ c̃ (c |t− s|+ ‖C‖C1 |t− s|)
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Thus, II is also of order |t − s|, which then yields the continuity (even Lipschitz con-
tinuity) of t 7→ A(t) in the uniform operator norm.

Given (i) and (ii) the existence of an evolution family (P (t, s))0≤s≤t≤T on L2(R) gener-
ated by (A(t))t∈[0,T ] is now provided by [15, Chapter 5, Theorem 5.1].

(iii) The negative definiteness of the operator is a direct consequence of Assumption 3.6.
(iv) Let Q(t, s) = eκ∗(t−s)P (t, s), s ≤ t. Then,

∂t‖Q(t, s)z‖2 = 2 〈Q(t, s)z, κ∗e
κ∗(t−s)P (t, s)z + eκ∗(t−s)A(t)P (t, s)z〉

= 2 〈Q(t, s)z, (A(t) + κ∗) Q(t, s)z〉
≤ −2 κ∗‖Q(t, s)z‖2 + 2 κ∗‖Q(t, s)z‖2

= 0

which implies
‖Q(t, s)z‖2 ≤ ‖Q(s, s)z‖2 = ‖z‖2.

3.4 Ornstein-Uhlenbeck decomposition of the L
2-component

To even better characterise the behaviour of the L2(R)-valued fluctuations ṽ we will de-
rive a decomposition into an Ornstein-Uhlenbeck process (Zt)t∈[0,T ] and a corresponding
remainder process (yεt )t∈[0,T ], which turn out to display different orders of the intrinsic
dynamics of ṽ. To this end let us first introduce

ṽεt :=
1√
ε
ṽt, (17)

which by equation (15) satisfies the SDE







dṽεt =
[

A(t) ṽεt +
√
ε Rε

t (
˜̂ut, ṽ

ε
t )
]

dt+ dW
Q
t

ṽε(0) = 1√
ε
v0

with

Rε
t (
˜̂ut, ṽ

ε
t ) = w ∗

(

1

2
F ′′(ξ(˜̂ut,

√
εṽεt ))(ṽ

ε
t )

2

)

.

As before, ξ(u, v) denotes an intermediate point between u and v.
To work out the inner structure of the solution w.r.t. different order terms we

introduce the decomposition

ṽεt = Zt + yεt ,

where (Zt) satisfies the linear SDE

{

dZt = A(t)Zt dt+ dW
Q
t

Z0 = 0
(18)

with ω-dependent operator A(t) and (yεt ) consequently solves the pathwise function-
valued ODE

{

y′ε(t) = A(t)yε(t) +
√
ε Rε

t (
˜̂ut, Zt + yε(t))

yε(0) =
1√
ε
v0

(19)

The well-posedness of this decomposition is provided by the following existence and
uniqueness theorems:
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Theorem 3.8. There exists a unique mild solution Z of equation (18) satisfying

Zt =

∫ t

0
A(s)Zs ds+W

Q
t . (20)

Thus, Z is also a strong solution.

Proof. To prove existence and uniqueness of a mild solution to equation (18) set

B(t, ω, Z) := A(t)(ω)Z

and verify that B satisfies a Lipschitz- as well as linear growth condition as required
in the standard existence and uniqueness result for mild solutions ([9, Theorem 7.4]).
Since one can formally enhance equation (18) by the linear operator A = 0, generating
the semigroup Tt = Id, t ∈ [0, T ], the unique mild solution Z ∈ L∞([0, T ];L2(R)) even
satisfies the identity

Zt =

∫ t

0
A(s)Zs ds+W

Q
t .

Given the unique strong solutions (vεt )t∈[0,T ] and (Zt)t∈[0,T ] the following theorem is a
direct consequence:

Theorem 3.9. For all T > 0 there exists a differentiable L2(R)-valued process (yεt ),
which is the unique strong solution of the pathwise ODE (19).

Even though Theorem (3.8) ensures existence and uniqueness of a strong solution
(Zt), equation (20) only yields an implicit representation of the process. As already
shown in Lemma 3.7, the family (A(t)) P -almost surely generates an evolution family
(P (t, s)), which will even allow us to find an explicit mild-solution-like representation of
(Zt) via the following representation formula for weak solutions. This formula has been
introduced as so-called “pathwise mild solution” in a much more general setting (cf.
[17]) and manifests a way to pass around the difficulty of defining a mild-solution-like
stochastic convolution in the case where the integrand cannot be assumed to be adapted.
This indeed occurs if the operator A(t) depends on the underlying probability space.

Theorem 3.10. The process Z : [0, T ] × Ω → L2(R) defined by

Zt = P (t, 0)Z0 +

∫ t

0
P (t, r)A(r)WQ

r dr +W
Q
t

= P (t, 0)Z0 +

∫ t

0
P (t, r)A(r)(WQ

r −W
Q
t ) dr + P (t, 0)WQ

t

is an adapted weak solution of the linear SDE

dZt = A(t)Zt dt+ dW
Q
t

with Z0 ∈ L2(R).

Using this representation, the Ornstein-Uhlenbeck process can now be controlled by the
following pathwise order estimate, which yields a significant ε-independent bound on
(Zt). This is not trivial since the operator A(t) indirectly depends on ε:

Lemma 3.11. Let η ∈ (0, 12). The unique mild (and also strong) solution of equation
(18) satisfies

sup
t∈[0,T ]

‖Zt‖L2(R) ≤ C ξ,

with a constant C = C(κ∗, η, ‖F ′‖∞, ‖ûx‖L2) and ξ = ‖WQ‖Cη([0,T ];L2(R)). In particular,
we have ξ < ∞ almost surely.
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Proof. By Theorem 3.10 the unique strong solution can be represented as

Zt =

∫ t

0
P (t, r)A(r)(WQ

r −W
Q
t ) dr + P (t, 0)WQ

t

and for each η ∈ (0, 12) we have WQ ∈ Cη([0, T ];L2(R)) a.s. (refer to [9]).
Consequently, for t ∈ [0, T ] and ξ = ‖WQ‖Cη([0,T ];L2(R)):

‖Zt‖L2 ≤
∫ t

0
‖P (t, r)‖ ‖A(r)(WQ

r −W
Q
t )‖ dr + ‖P (t, 0)WQ

t ‖

≤ sup
r∈[0,T ]

‖A(r)‖
∫ t

0
e−κ∗(t−r) ‖WQ

r −W
Q
t ‖ dr + e−κ∗t ‖WQ

t ‖

≤ sup
r∈[0,T ]

‖A(r)‖
∫ t

0
e−κ∗(t−r) ‖WQ‖Cη |t− r|η dr + e−κ∗t ‖WQ‖Cη tη

≤ sup
r∈[0,T ]

‖A(r)‖
[
∫ t

0
e−κ∗(t−r) |t− r|η dr + e−κ∗t tη

]

ξ

=: sup
r∈[0,T ]

‖A(r)‖ [I + II] ξ.

Lemma 3.7(i) yields the bound

sup
r∈[0,T ]

‖A(r)‖ ≤ 1 + ‖F ′‖∞ +m ‖ûx‖2L2 ,

which, in particular, does not depend on ω. Furthermore, after suitable substitutions

I =

∫ t

0
e−κ∗yyη dy ≤ κ−η−1

∗ Γ(η + 1),

where Γ denotes the Gamma function

Γ(x) =

∫ ∞

0
tx−1e−t dt for x ∈ R+.

Likewise, term II is a bounded function on [0, T ], thus

II ≤ sup
[0,T ]

e−κ∗t tη < ∞.

Combining all results, there exists a positive constant C = C(κ∗, η, ‖F ′‖∞, ‖ûx‖L2) such
that

sup
t∈[0,T ]

‖Zt‖L2(R) ≤ C ξ.

4 Stability results

Summing up, we derived a decomposition

ṽt =
√
ε Zt +

√
ε yεt

such that (Zt) is P -a.s. of order O(1). Characterising the behaviour of the stochastic
travelling wave u for small noise strength

√
ε our main theorem of this section will show

that the remainder process (yεt ) is of lower order than O(1), i.e. limε→0 y
ε
t = 0 in L2(R)
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uniformly w.r.t. t ∈ [0, T ] P -a.s. The relevance of this result is that with high probability
we have the decomposition

ut = ˜̂ut +
√
ε Zt + lower order terms.

which, in comparison to the classical stability analysis via Evans functions (as conducted
in [8] for a Heaviside nonlinearity), yields an alternative approach to the stability of
fluctuating travelling waves.
From now on let us assume v0 = 0, hence also yε(0) = 0.

Lemma 4.1. There exists a constant c > 0 such that

∀v ∈ L2(R), t ∈ [0, T ] : ‖Rε
t (
˜̂ut, v)‖L2 ≤ c ‖v‖2L2 .

Explicitly, the constant is given by

c =
1

2
‖F ′′‖∞

(

sup
y,ỹ∈R

∫

R

w(x− y)w(x− ỹ) dx

)1/2

≤ 1

2
‖F ′′‖∞‖w‖1/2∞ .

Proof. Straightforward calculations.

For the proof of our main stability result (Theorem 4.3) the following bound on (yεt ) is
already a crucial achievement:

Theorem 4.2. Let
√
ε < κ∗

4c , where c is the constant from Lemma 4.1 and define

Z := sup
t∈[0,T ]

‖Zt‖2L2 .

On the set Ωε =
{

ω ∈ Ω | Z < κ∗

8c
√
ε

}

we obtain the following uniform bound on yεt :

sup
t∈[0,T ]

‖yεt ‖2L2 ≤ 3

2
Z.

In the limit ε ↓ 0 this bound even holds for P -almost all paths ω ∈ Ω, more precisely:

lim
ε→0

P [Ωε] = 1.

Proof. Applying Lemma 3.7 and Lemma 4.1, the process ‖yεt ‖2 satisfies the following
differential inequality:

1

2
∂t‖yεt ‖2L2 = 〈yεt , A(t)yεt 〉L2 +

√
ε 〈yεt , Rε

t (
˜̂ut, Zt + yεt ) 〉L2

≤ −κ∗‖yεt ‖2L2 +
√
ε ‖yεt ‖L2 c ‖Zt + yεt ‖2L2

≤ −κ∗‖yεt ‖2L2 + 2c
√
ε ‖yεt ‖L2

(

‖Zt‖2L2 + ‖yεt ‖2L2

)

(21)

W.l.o.g. assume c = 1. For
√
ε < κ∗

4 the right-hand side of (21) can be further estimated
from above by

1

2
∂t‖yεt ‖2L2 ≤ −κ∗‖yεt ‖2L2 +

√
ε
(

‖yεt ‖2L2 + ‖Zt‖4L2

)

+
√
ε
(

‖yεt ‖2L2 + ‖yεt ‖4L2

)

≤ −κ∗
2
‖yεt ‖2L2 +

√
ε‖Zt‖4L2 +

√
ε‖yεt ‖4L2

Writing gε(t) := ‖yεt ‖2L2 one obtains the following differential inequality
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ġε(t) ≤ −κ∗gε(t) + 2
√
εZ2 + 2

√
εg2ε(t) (22)

By the comparison principle for ODE this problem is now solved in the case of true
equality, i.e.

ġε(t)

−κ∗gε(t) + 2
√
εg2ε(t) + 2

√
εZ2

= 1

Integrating over [0, t] and carrying out a suitable substitution yields

t =

∫ gε(t)

0

1

−κ∗ g + 2
√
ε g2 + 2

√
εZ2

dg (23)

Note that ∆ := 16εZ2 − κ2∗ < 0 on the set Ωε. Thus, on this particular set of paths the
integral (23) is given by

t =
1√
−∆

log

(

4
√
εgε(t)− κ∗ −

√
−∆

4
√
εgε(t)− κ∗ +

√
−∆

)

− 1√
−∆

log

(−κ∗ −
√
−∆

−κ∗ +
√
−∆

)

(24)

since gε(0) = 0. Let

Mε :=
κ∗ +

√
−∆

κ∗ −
√
−∆

.

It is important to remark that Mε ∈ (1,∞) P-a.s. since Z > 0 a.s. and hence
−∆ = κ2∗ − 16εZ2 < κ2∗ a.s. Now, equation (24) is equivalent to

gε(t) =
−(κ∗ +

√
−∆) + (κ∗ −

√
−∆)e

√
−∆ tMε

4
√
ε
(

e
√
−∆ tMε − 1

)

Note that an explosion of gε(t) is excluded by the fact that Mε > 1 a.s. Given these
considerations and dropping the first negative summand in the numerator of gε(t) we
further estimate

gε(t) ≤
(κ∗ −

√
−∆) e

√
−∆ tMε

4
√
ε
(

e
√
−∆ tMε − 1

) =: fε(t)

It is easy to see that fε(t) is a non-increasing function, hence attains its supremum in
t = 0. This implies

sup
t∈[0,T ]

gε(t) ≤ fε(0) =
(κ∗ −

√
−∆)

4
√
ε

· Mε

Mε − 1
= I · II, say.

On Ωε one is able to estimate

√

κ2∗ − 16εZ2 ≥
√

κ2∗ −
√
16εZ2 = κ∗ − 4

√
εZ

which allows us to bound I as follows:

I =
κ∗ −

√

κ2∗ − 16εZ2

4
√
ε

≤ κ∗ − (κ∗ − 4
√
εZ)

4
√
ε

= Z.

Turning our attention to II and again restricting ourselves to the paths in Ωε we obtain
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II =
κ∗ +

√
−∆

2
√
−∆

=
κ∗

2
√

κ2∗ − 16εZ2
+

1

2
≤ κ∗

2κ∗ − 8
√
εZ

+
1

2
≤ 3

2
.

To prove that in the limit ε → 0 the obtained pathwise bound even holds for almost
every ω ∈ Ω note that for decreasing ε the sets Ωε constitute an ascending sequence of
sets converging to the event {Z < ∞}. Therefore,

P [Ωε] −→
ε→0

P [Z < ∞] = 1,

since Z is an integrable random variable.

This auxiliary result now allows us to state the main theorem of this section. Similar
results on the stability of certain macroscopic dynamics modelled by stochastic partial
differential equations on bounded domain have also been obtained by Blömker in [3], [4],
[5].

Theorem 4.3. Let q ∈ (0, 12) and let c denote the constant from Lemma 4.1. Define the
stopping time τ by

τ = inf
{

t ≥ 0
∣

∣

∫ t

0
‖ṽεs‖2L2 ds > ε−q

}

∧ T

Then we obtain the order estimate

sup
t∈[0,τ ]

‖yεt ‖L2 ≤ c ε1/2−q.

Moreover,
lim
ε→0

P [τ = T ] = 1.

Proof. Let t < τ . The process yε satisfies

yεt =
√
ε

∫ t

0
P (t, s)Rε

s(
˜̂us, ṽ

ε
s) ds.

With Lemma 3.7 and 4.1 we are able to estimate

‖yεt ‖L2 ≤
√
ε

∫ t

0
e−κ∗(t−s) c‖ṽεs‖2L2 ds ≤ c ε1/2−q

Hence,
sup

t∈[0,τ ]
‖yεt ‖L2 ≤ c ε1/2−q.

To prove the convergence P [τ = T ] → 1 for ε → 0 define the set

Ω∗ :=

{

ω ∈ Ω

∣

∣

∣

∣

sup
t∈[0,T ]

‖Zt‖2L2 ≤ ε−q

4T
, sup

t∈[0,T ]
‖yεt ‖2L2 ≤ ε−q

4T

}

which can be shown to be a subset of {τ = T}. Indeed,

{τ = T} =
{

ω ∈ Ω
∣

∣

∣

∫ T

0
‖ṽεs‖2L2 ds ≤ ε−q

}

and on Ω∗ one is able to estimate
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∫ T

0
‖ṽεs‖2L2 ds ≤ 2T

(

sup
t∈[0,T ]

‖Zt‖2L2 + sup
t∈[0,T ]

‖yεt ‖2L2

)

≤ ε−q.

In the following step we prove that in the limit ε ↓ 0 even the smaller set Ω∗ has full
measure: Let PΩε

= P [ · |Ωε] denote the conditional probability distribution on the set
Ωε with corresponding conditional expectation EΩε

= E[ · |Ωε].
By Lemma 3.11 the random variable Z = supt∈[0,T ] ‖Zt‖2L2 is bounded by the integrable

majorant C2ξ2, which, in particular, is independent of ε. With Markov’s inequality and
Proposition 4.2 one obtains

PΩε
[Ω∗] ≥ 1− PΩε

[

sup
t∈[0,T ]

‖Zt‖2L2 >
1

4 Tεq

]

− PΩε

[

sup
t∈[0,T ]

‖yεt ‖2L2 >
1

4 Tεq

]

≥ 1− 4 Tεq EΩε

[

sup
t∈[0,T ]

‖Zt‖2L2

]

− 4 Tεq EΩε

[

sup
t∈[0,T ]

‖yεt ‖2L2

]

≥ 1− 4 Tεq
E[C2ξ2 ; Ωε]

P [Ωε]
− 4 Tεq

E[supt∈[0,T ] ‖yεt ‖2L2 ; Ωε]

P [Ωε]

≥ 1− 4 Tεq

P [Ωε]
C2 E[ξ2]− 4 Tεq

P [Ωε]

3

2
E[Z]

−→ 1 as ε → 0.

In conclusion, the limit behaviour of the original probability measure P is immediately
determined by

P [Ω∗] ≥ PΩε
[Ω∗] P [Ωε] −→

ε→0
1,

which suffices to prove the assertion.
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