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Abstract. In this note, Black–Scholes implied volatility is expressed in terms of various
optimisation problems. From these representations, upper and lower bounds are derived
which hold uniformly across moneyness and call price. Various symmetries of the Black–
Scholes formula are exploited to derive new bounds from old. These bounds are used to
reprove asymptotic formulae for implied volatility at extreme strikes and/or maturities.

1. Introduction

We define the Black–Scholes call price function CBS : R× [0,∞)→ [0, 1) by the formula

CBS(k, y) =

∫ ∞
−∞

(eyz−y
2/2 − ek)+φ(z)dz

=

{
Φ
(
− k

y
+ y

2

)
− ekΦ

(
− k

y
− y

2

)
if y > 0

(1− ek)+ if y = 0,

where φ(z) = 1√
2π
e−z

2/2 is the standard normal density and Φ(x) =
∫ x
−∞ φ(z)dz is its dis-

tribution function. As is well known, the financial significance of the function CBS is that,
within the context of the Black–Scholes model [4], the minimal replication cost of a European
call option with strike K and maturity T written on a stock with initial price S0 is given by

replication cost = S0e
−δTCBS

[
log

(
Ke−rT

S0e−δT

)
, σ
√
T

]
where δ is the dividend rate, r is the interest rate and σ is the volatility of the stock.
Therefore, in the definition of CBS(k, y), the first argument k plays the role of log-moneyness
of the option and the second argument y is the total standard deviation of the terminal log
stock price.

Of the six parameters appearing in the Black–Scholes formula for the replication cost, five
are readily observed in the market. Indeed, the strike K and maturity date T are specified
by the option contract, and the initial stock price S0 is quoted. The interest rate is the
yield of a zero-coupon bond B0,T with maturity T and unit face value, and can be computed
from the initial bond price B0,T = e−rT . Similarly, the dividend rate can computed from the
stock’s initial time-T forward price F0,T = S0e

(r−δ)T .
As suggested by Latané & Rendleman [17] in 1976, the remaining parameter, the volatility

σ, can also be inferred from the market, assuming that the call has a quoted price C0,T,K .
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Indeed, note that for fixed k, the map CBS(k, ·) is strictly increasing and continuous, so we
can define the inverse function

YBS(k, ·) : [(1− ek)+, 1)→ [0,∞)

by

y = YBS(k, c)⇔ CBS(k, y) = c.

The implied volatility of the call option is then defined to be

σimplied =
1√
T
YBS

[
log

(
Ke−rT

S0e−δT

)
,
C0,T,K

S0e−δT

]
.

Because of its financial significance, the function YBS has been the subject of much in-
terest. For instance, approximations for YBS can be found in several papers [5, 7, 19, 22].
Unfortunately, there seems to be only one case where the function YBS can be expressed
explicitly in terms of elementary functions: when k = 0 we have

CBS(0, y) = 2 Φ
(y

2

)
− 1

= 1− 2 Φ
(
−y

2

)
and hence

YBS(0, c) = 2 Φ−1

(
1 + c

2

)
= −2 Φ−1

(
1− c

2

)
.

The main contribution of this article is to provide bounds on the quantity YBS(k, c) in
terms of elementary functions of (k, c). As an example, in Proposition 4.3 below we will see
that

(1) YBS(k, c) ≤ −2Φ−1

(
1− c
1 + ek

)
for every (k, c) such that (1− ek)+ ≤ c < 1.

We list here two possible applications of such bounds. When k 6= 0, the function YBS can
be evaluated numerically. A simple way to do so is to implement the bisection method for
finding the root of the map y 7→ CBS(k, y)− c. That is to say, for fixed (k, c) pick two points
` < u such that CBS(k, `) < c and CBS(k, u) > c. By the intermediate value theorem, we
know that the root is in the the interval (`, u). We then let m = 1

2
(` + u) be the midpoint.

If CBS(k,m) > c we know that the root YBS(k, c) is in the the interval (`,m), in which case
we relabel m as u. Similarly, if CBS(k,m) < c we relabel m as `. This process is repeated
until |CBS(k,m) − c| < ε, where ε > 0 is a given tolerance level whereupon we declare
YBS(k, c) ≈ m. (We note here that a more sophisticated idea is apply the Newton–Raphson
method as suggested by Manaster & Koehler [21] in 1982. We will return to this idea in
Section 3.)

In order to implement the bisection method, we need a lower bound ` and upper bound
u to initialise the algorithm. However, aside from the obvious lower bound ` = 0, there do
not seem to be many well-known explicit upper and lower bounds on the quantity YBS(k, c)
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which hold uniformly in (k, c). This note provides such bounds, and indeed, equation (1) is
an example.

We now consider another application of our bounds. Consider a market model with a
zero-coupon bond with maturity date T whose time-t price is Bt,T and a stock with time
t-price St. Suppose the initial price of a call option with strike K and maturity T is given
by

C0,T,K = B0,TET [(ST −K)+]

where the expectation is under a fixed T -forward measure. Further, suppose the stock’s
initial time-T forward price is given by

F0,T = ET [ST ].

(If the stock pays no dividend, static arbitrage considerations would imply F0,T = S0/B0,T .
We do not need this formula here so the stock is allowed to pay dividends in the present
discussion; however, we will return to this point in Remark 4.13 below.) Now, equation (1)
implies that the implied volatility is bounded by

σimplied =
1√
T
YBS

[
log

(
K

F0,T

)
,
C0,T,K

F0,TB0,T

]
(2)

≤ − 2√
T

Φ−1

(
ET [ST ∧K]

ET [ST ] +K

)
.

Note that the above bound is the composition of two ingredients: the model-dependent
formulae for the quantities C0,T,K and F0,T , and a uniform and model-independent bound on
the function YBS.

There has been much recent interest in implied volatility asymptotics. See for instance
the papers [2, 3, 6, 9, 12, 13, 14, 15, 18, 23, 26] for asymptotic formulae which depend on
minimal model data, such as the distribution function or the moment generating function
of the returns of the underlying stock. Paralleling the discussion above, such asymptotic
formulae can be seen as compositions of two limits: first, the asymptotic shape of the call
surface as predicted by the model at, for instance, extreme strikes and/or maturities; and
second, asymptotics of the model-independent function YBS. The uniform bounds on YBS

that are presented in this note are used to provide short, new proofs of these second model-
independent asymptotic formulae.

In their long survey article, Andersen & Lipton [1] warn that many of the asymptotic
implied volatility formulae that have appeared in recent years may not be applicable in
practice, since typical market parameters are usually not in the range of validity of any of
the proposed asymptotic regimes. Our new bounds on the function YBS are uniform, and
hence side-step the critique of Andersen & Lipton.

The rest of the note is organised as follows. In Section 2 we discuss various symme-
tries of the Black–Scholes pricing function CBS. These symmetries will be used repeatedly
throughout the remainder of the note. In Section 3 the Black–Scholes implied total standard
deviation function YBS is represented as the value function of several optimisation prob-
lems. These results constitute the main contribution of this note since they allow YBS to be
bounded arbitrarily well from above and below by choosing suitable controls to insert into
the respective objective functions. In Section 4 these bounds are used to reprove some known
asymptotic formulae. As a by-product, we derive formulae which have the same asymptotic
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behaviour as the known formulae, but are guaranteed to bound YBS either from above or
below.

2. Put-call and close-far symmetries

The Black–Scholes call price function CBS contains a certain amount of symmetry. In
order to streamline the presentation of our bounds, we begin with an exploration of two of
these symmetries.

To treat the two cases k ≥ 0 and k < 0 as efficiently as possible, we begin with an
observation. Suppose c is the normalised price of a call option with log-moneyness k. Then
by the usual put-call parity formula, the corresponding normalised price of a put option with
the same log-moneyness is

p = c+ ek − 1.

Now if c = CBS(k, y) is for some y > 0, then we have

p = CBS(k, y) + ek − 1

= ekΦ

(
k

y
+
y

2

)
− Φ

(
k

y
− y

2

)
= ekCBS(−k, y).

The above calculation is the well-known Black–Scholes put-call symmetry formula. We have
just proven the following result:

Proposition 2.1. For any k ∈ R and c ∈ [(1− ek)+, 1) we have

YBS(k, c) = YBS(−k, e−kc+ 1− e−k).

One conclusion of proposition 2.1 is that it is sufficient to study the function YBS(k, ·) only
in the case k ≥ 0. Indeed, to study the case k < 0 one simply applies the above put-call
symmetry formula.

We now come to another, less well-known, symmetry of the Black–Scholes formula. While
put-call symmetry involves replacing the log-moneyness k with −k, the symmetry discussed
here involves replacing the total standard deviation y with 2|k|/y. By put-call symmetry,
we can confine our discussion to the case k > 0.

Proposition 2.2. For all k > 0 and 0 < c < 1, let

Ĉ(k, c) = 1−
∫ c

0

2k

[YBS(k, u)]2
du.

Then Ĉ(k, c) > 0 and we have

YBS(k, c) =
2k

YBS(k, Ĉ(k, c))
.

Figure 1 is shows the graph of c 7→ Ĉ(k, c) when k = 0.2.

Proof. We must prove that

Ĉ (k, c) = CBS

(
k,

2k

YBS(k, c)

)
,
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Figure 1. The function Ĉ(k, ·).

or equivalently

Ĉ (k, CBS(k, y)) = CBS

(
k,

2k

y

)
,

The above identity can be verified by differentiating both sides with respect to y, and using
the Black–Scholes vega formula: for k > 0, we have

CBS(k, y) =

∫ y

0

φ(−k/x+ x/2)dx.

�

Remark 2.3. Fix k > 0 and y > 0, and let c = CBS(k, y). Note that c ≈ 0 when y is very
small, and indeed it is a straightforward exercise to verify (see Section 4) that

log c = − k2

2y2
+O(log y) as y ↓ 0.

On the other hand, we have c ≈ 1 when y is very large, and furthermore

log(1− c) = −y
2

8
+O(log y) as y ↑ ∞.

Now, let ĉ = CBS(k, 2k/y) so that by Proposition 2.2 we have ĉ = Ĉ(k, c). From the above
calculations we have

log(1− ĉ) = − k2

2y2
+O(log y) as y ↓ 0,

and

log ĉ = −y
2

8
+O(log y) as y ↑ ∞.

In the context of the Black–Scholes model, the quantity y has the interpretation as the
total standard deviation y = σ

√
T , where σ is the volatility and T is the maturity date of
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the option. Proposition 2.2 then is a symmetry relation between the prices of short-dated
and long-dated options.

We conclude this section with some easy observations which we will use later.

Proposition 2.4. For all k > 0, the function Ĉ(k, ·) is convex and satisfies the functional
equation

Ĉ(k, Ĉ(k, c)) = c

holds for all 0 < c < 1.

Proof. It is easy to see that YBS(k, ·) is strictly increasing. That Ĉ(k, ·) is convex follows
from the fact that its gradient −2k/YBS(k, ·)2 is increasing.

That the functional equation is proven by noting

YBS(k, c) =
2k

YBS(k, Ĉ(k, c))
= YBS(k, Ĉ(k, Ĉ(k, c)))

and using the fact that that YBS(k, ·) is strictly increasing. �

Proposition 2.5. For k > 0, let

J(k, c) =

∫ c

0

1

YBS(k, u)
du.

Then

J(k, c) + J(k, ĉ) = J(k, 1)

where ĉ = Ĉ(k, c).

Proof. By setting c = CBS(k, y) and hence ĉ = CBS(k, 2k/y), the identity can be proven by
computing the derivative with respect to y of the left-hand side, and note that it is vanishes
identically. �

Remark 2.6. By changing variables, we have the identities

J(k, 1) =

∫ ∞
0

φ(−k/y + y/2)

y
dy

=

∫ ∞
−∞

φ(x)√
x2 + 2k

dx

=
ek/2√

2π
K0(k/2)

where K0 is a modified Bessel function. See [11].

3. Various optimisation problems

This section contains one of the main results of this note, formulae for the function YBS in
terms of various optimisation problems. The first result is that YBS(k, c) can be calculated
by solving a minimisation problem. In particular, we can use this formula to find an upper
bound simply by evaluating the objective function at a feasible control.
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Theorem 3.1. For all k ∈ R and (1− ek)+ ≤ c < 1 we have

YBS(k, c) = inf
d1∈R

[d1 − Φ−1
(
e−k(Φ(d1)− c)

)
]

= inf
d2∈R

[Φ−1
(
c+ ekΦ(d2)

)
− d2]

Furthermore, if c > (1− ek)+, then the two infima are attained at

d∗1 = −k
y

+
y

2
,

d∗2 = −k
y
− y

2

where y = YBS(k, c).

Remark 3.2. We are using the convention that Φ−1(u) = +∞ for u ≥ 1 and Φ−1(u) = −∞
for u ≤ 0.

The following proof is due to Pieter-Jan De Smet [25], simplifying the proof in an early
version of this paper. The idea is essentially that the inequality

(X −K)+ ≥ (X −K)1[H,∞)(X)

holds for all X,K,H ≥ 0 with equality if and only if H = K.

Proof. Fix k ∈ R and (1− ek)+ ≤ c < 1 and let y ≥ 0 be such that CBS(k, y) = c. Note that
for any d2 ∈ R we have

c =

∫ ∞
−∞

(eyz−y
2/2 − ek)+φ(z)dz

≥
∫ ∞
−d2

(eyz−y
2/2 − ek)+φ(z)dz

≥
∫ ∞
−d2

(eyz−y
2/2 − ek)φ(z)dz

= Φ(d2 + y)− ekΦ(d2).

There is equality from the first to second line only if −d2 ≤ k/y+ y/2, and there is equality
from the second to the third line only if −d2 ≥ k/y + y/2. Rearranging then yields

y ≤ Φ−1(c+ ekΦ(d2))− d2.

Let d2 = Φ−1
(
e−k(Φ(d1)− c)

)
in the above inequality to obtain the first expression. �

Let

(3) H1(d; k, c) = d− Φ−1
(
e−k(Φ(d)− c)

)
and

(4) H2(d; k, c) = Φ−1
(
c+ ekΦ(d)

)
− d,

and note that
H1(d; k, c) = H2(−d;−k, e−kc+ 1− e−k)
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in line with put-call symmetry. We use this notation to compute YBS(k, c) in terms of a
maximisation problem. This representation can be used, in principle, to find lower bounds.

Theorem 3.3. Let C be the space of continuous functions on [0, 1]. For k > 0 and 0 < c < 1,
we have

YBS(k, c) = sup
D∈C,d∈R

2k

Hi

(
d; k, 1−

∫ c
0

2k
Hj(D(u);k,u)2

du
)

for any i, j ∈ {1, 2}.

Proof. By Theorem 3.1 we have YBS(k, u) ≤ Hj(d; k, u) for all d, and since YBS(k, ·) is
increasing, we have for any D ∈ C that

YBS(k, Ĉ(k, c)) = YBS

(
k, 1−

∫ c

0

2k

YBS(k, u)2
du

)
≤ YBS

(
k, 1−

∫ c

0

2k

Hj(D(u); k, u)2
du

)
≤ Hi

(
d; k, 1−

∫ c

0

2k

Hj(D(u); k, u)2
du

)
.

The conclusion follows from Proposition 2.2. �

In light of Proposition 2.2 we now give a representation of Ĉ in terms of a minimisation
problem. We restrict attention to k > 0 with no real loss thanks to put-call symmetry.

Proposition 3.4. For k > 0 and 0 < c < 1 we have

Ĉ(k, c) = sup
y≥0

[
CBS

(
k,

2k

y

)
− 2k

y2
(c− CBS(k, y))

]
Proof. Recall that by Proposition 2.4 that Ĉ(k, ·) is convex. Hence

Ĉ(k, c)− Ĉ(k, c∗) ≥ − 2k

YBS(k, c∗)2
(c− c∗).

for any c, c∗ ∈ (0, 1). Letting y = YBS(k, c∗) we have

Ĉ(k, c) ≥ CBS

(
k,

2k

y

)
− 2k

y2
(c− CBS(k, y))

as claimed. �

Of course, there are other representations of YBS in terms of an optimisation problems.
For instance, we have

YBS(k, c) = inf{y ≥ 0 : CBS(k, y) ≥ c}
= sup{y ≥ 0 : CBS(k, y) ≤ c}.

Indeed, this simple observation underlies the bisection method discussed in the introduction.
We conclude this section with a slightly more interesting representation. It be can used to

find upper and lower bounds of YBS(k, c), at least in principle. However, in practice it is not
clear how to choose candidate controls, so we do not explore this idea in the sequel. This
result is due to Manaster & Koehler [21], and is motivated by the Newton–Raphson method
for computing implied volatility numerically.
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Proposition 3.5 (Manaster & Koehler). Fix k ≥ 0 and 0 ≤ c < 1. If c ≤ CBS(k,
√

2k) =

1/2− ekΦ(−
√

2k) then

YBS(k, c) = inf
0≤y≤

√
2k

[
y +

c− CBS(k, y)

φ(−k/y + y/2)

]
.

Otherwise, if c ≥ 1/2− ekΦ(−
√

2k) then

YBS(k, c) = sup
y≥
√

2k

[
y +

c− CBS(k, y)

φ(−k/y + y/2)

]
.

Proof. The restriction of CBS(k, ·) to [0,
√

2k] is convex, as can be confirmed by differentia-
tion. Hence, by the Black–Scholes vega formula, we have

CBS(k, y∗)− CBS(k, y) ≥ φ(−k/y + k/y)(y∗ − y)

for any y, y∗ ∈ [0,
√

2k]. Fixing y∗ and letting c = CBS(k, y∗) we have proven

y∗ ≤ y +
c− CBS(k, y)

φ(−k/y + y/2)

as desired. Similarly, since the restriction of CBS(k, ·) to [
√

2k,∞) is concave the second
conclusion follows. �

4. Uniform bounds and asymptotics

In this section, we will offer quick proofs of some asymptotic formulae for the function
YBS. These formulae already appear in the literature, but the important novelty here is that
we will derive bounds on the function YBS which hold uniformly, not just asymptotically.
To obtain upper bounds in most cases, we simply choose a convenient d1 or d2 to plug into
Theorem 3.1. Note that the proposed upper bound is close to the true value of YBS(c, k)
when, for instance, the proposed value of d1 is close to the minimiser d∗1 = −k/y + y/2.
In principle, lower bounds could be found by choosing convenient controls into Theorem
3.3. However, in practice, we have found other arguments, while lacking the same unifying
principle, which do have the advantage of being simple. In the proofs that follow, we usually
only consider the k ≥ 0 case, as the k < 0 case follows directly from Proposition 2.1.

Before we begin, we need a lemma regarding the asymptotic behaviour of the standard
normal quantile function Φ−1.

Lemma 4.1. As ε ↓ 0 we have[
Φ−1(ε)

]2
= −2 log ε+O(log(− log ε)).

In particular, we have

Φ−1(ε) = −
√
−2 log ε+O

(
log(− log ε)√
− log ε

)
Proof. Let ε = Φ(−x) for large x > 0 and let

R(x) =
Φ(−x)x

φ(x)
.

9



In this notation we have the identity

log Φ(−x) = −x2/2− log(
√

2πx) + logR(x).

Since it is well known that R(x)→ 1 as x→∞ we have

log Φ(−x)

x2
→ −1/2

or equivalently
[Φ−1(ε)]2

log ε
→ −2.

Plugging in this limit into the identity yields the first conclusion, and Taylor’s theorem yields
the second. �

The first example comes from [26]. This asymptotic formula considers the behaviour of
YBS when c is close to its upper bound of 1. This result is useful in studying implied volatility
at very long maturities, when the strike is fixed.

Theorem 4.2. For fixed k ∈ R, we have

YBS(k, c) =
√
−8 log(1− c) +O

(
log[− log(1− c)]√
− log(1− c)

)
as c ↑ 1.

The proof of the above theorem relies the following simple bounds which hold uniformly
in (c, k).

Proposition 4.3. Fix k ∈ R and (1− ek)+ ≤ c < 1. For k ≥ 0 we have

−2Φ−1

(
1− c

2

)
≤ YBS(k, c) ≤ −2Φ−1

(
1− c
1 + ek

)
and for k < 0 we have

−2Φ−1

(
1− c
2ek

)
≤ YBS(k, c) ≤ −2Φ−1

(
1− c
1 + ek

)
.

Proof. For the upper bound, let d2 = Φ−1
(

1−c
1+ek

)
in Theorem 3.1.

For the lower bound, let y = YBS(k, c). Note that CBS(·, y) is decreasing and hence

1− 2Φ(−y/2) = CBS(0, y)

≥ CBS(k, y)

= c

when k ≥ 0. In the case when k < 0, note that

1− e−kp
1 + e−k

=
1− c
1 + ek

and that
1− e−kp

2
=

1− c
2ek

.

Now appeal to the put-call parity formula of Proposition 2.1. �
10



Proof of Theorem 4.2. By Proposition 4.3 and Lemma 4.1, we have

YBS(k, c) ≤ −2Φ−1

(
1− c
1 + ek

)
=
√
−8 log(1− c) +O

(
log[− log(1− c)]√
− log(1− c)

)
where we have used the fact that for fixed k we have√

−2 log

(
1− c
1 + ek

)
=
√
−2 log(1− c) +O(

1√
− log(1− c)

)

as c ↑ 1.
Similarly, by Proposition 4.3, we have for k ≥ 0 that

YBS(k, c) ≥ −2Φ−1

(
1− c

2

)
=
√
−8 log(1− c) +O

(
log[− log(1− c)]√
− log(1− c)

)
.

The k < 0 is identical. �

Figure 2 illustrates the behaviour of YBS(k, c) as c ↑ 1, compared with the uniform upper
and lower bounds of Proposition 4.3 and the asymptotic formula in Theorem 4.2. We fixed
the log-moneyness k = 0.2 and plotted four functions:

(1) Yupper(c) = −2Φ−1
(

1−c
1+ek

)
is the upper bound from Proposition 4.3;

(2) Y∗(c) = YBS(k, c) is the true function of our interest;
(3) Ylower(c) = −2Φ−1

(
1−c

2

)
is the lower bound from Proposition 4.3;

(4) Yasym(c) =
√
−8 log(1− c) is the asymptotic shape from Theorem 4.2.

Note that Yupper ≥ Y∗ ≥ Ylower as predicted. Also, it is interesting to see that Ylower is
remarkably good approximation over large range of c. Finally, note that Yasym ≥ Yupper for
this range of c. Indeed, Yasym is a rather poor approximation of Y∗ for realistic values of the

normalised call price c due to the fact that the error term log(− log(1 − c))/
√
− log(1− c)

is actually increasing for c < 1− e−e2 = 0.9994!
The next example we consider in this section is due to Roper & Rutkowski [23] and deals

with the case where c is close to its lower bound (1−ek)+. In particular, this regime is useful
for studying the implied volatility smile of options very near maturity.

Theorem 4.4 (Roper & Rutkowski). If k > 0 then

YBS(k, c) =
k√
−2 log c

+O

(
log(− log c)

(− log c)3/2

)
as c ↓ 0. If k < 0 then

YBS(k, c) =
−k√
−2 log p

+O

(
log(− log p)

(− log p)3/2

)
as c ↓ 1− ek, where p = c+ ek − 1.

11



Figure 2. Bounds and asymptotics of YBS(k, ·) as c ↑ 1.

As always, we will prove the asymptotic result by finding uniform bounds. As discussed in
Section 2, we can reuse of the bounds which are tight when c is close to 1 by first bounding
the function Ĉ.

Proposition 4.5. For k > 0 and 0 < c < 1, we have

1− c L(k, c) ≤ Ĉ(k, c) ≤ 1− c

where

(5) L(k, c) =
2

k

[
Φ−1

(
c

1 + ek

)2

+ 2

]
.

Proof. For the upper bound, simply note that

CBS(k, y) + CBS(k, 2k/y) = 1− 2ekΦ(−k/y − y/2) ≤ 1.

Now

Ĉ(k, c) = 1−
∫ c

0

2k

YBS(k, u)2
du

= 1−
∫ c

0

YBS(k, Ĉ(k, u))2

2k
du

≥ 1−
∫ c

0

YBS(k, 1− u)2

2k
du

by two applications of Proposition 2.2 and the upper bound.
Now, we appeal to the upper bound in Proposition 4.3 to conclude that

Ĉ(k, c) ≥ 1− 2

k

∫ c

0

Φ−1

(
u

1 + ek

)2

du

= 1− 2(1 + ek)

k

∫ ∞
−Φ−1

(
c

1+ek

) x2φ(x)dx.

12



To complete the proof, note that the bound∫ ∞
A

x2φ(x)dx = Aφ(A) + Φ(−A)

≤ (A2 + 2)Φ(−A)

which holds for all A ≥ 0. �

We now prove an inequality which provides an easy way to convert bounds which are good
when c ↑ 1 into bounds which are good when c ↓ 0.

Proposition 4.6. Fix k > 0 and 0 < c < 1. Then

2k

YBS(k, 1− c)
≤ YBS(k, c) ≤ 2k

YBS(k, 1− c L(k, c))
.

where L(k, c) is defined by equation (5). In particular, we have

YBS(k, c) ≥ k

−Φ−1
(

c
1+ek

)
and if c L(k, c) ≤ 1 we have

YBS(k, c) ≤ k

−Φ−1
(
c L(k,c)

2

) .
Proof. The first claim follows from the fact that YBS(k, ·) is increasing and Proposition 2.2.
The second set of claims follow from the bounds in Proposition 4.3. �

Remark 4.7. The inequality

YBS(k, c)YBS(k, 1− c) ≥ 2k

which holds for all k > 0 and 0 < c < 1, has an appealing symmetry!

Proof of Theorem 4.4. First fix k > 0. Using the second lower bound from Proposition 4.6,
together with Lemma 4.1, we have that

YBS(k, c) ≥ k

−2 log c
+O

(
log(− log c)

(− log c)3/2

)
.

Similarly, since Lemma 4.1 implies that the quantity L(k, c) from Proposition 4.5 is of as-
ymptotic order

L(k, c) = O(log c)

as c ↓ 0 thanks to Proposition 4.1, the upper bound follows.
The case k < 0 follows from the put-call symmetry of Proposition 2.1. �

Figure 3 illustrates the behaviour of YBS(k, c) as c ↓ 0, compared with the uniform upper
and lower bounds of Proposition 4.6 and the asymptotic formula in Theorem 4.4. We fixed
the log-moneyness k = 0.2 and plotted four functions:

(1) Yupper(c) = k

−Φ−1( c L(k,c)
2 )

is the upper bound from Proposition 4.6;

(2) Y∗(c) = YBS(k, c) is the true function of our interest;
(3) Ylower(c) = k

−Φ−1
(

c

1+ek

) is the lower bound from Proposition 4.6;

13



Figure 3. Bounds and asymptotics of YBS(k, ·) as c ↓ 0.

(4) Yasym(c) = k√
−2 log c

is the asymptotic shape from Theorem 4.4.

Note again that Yupper ≥ Y∗ ≥ Ylower as predicted. Finally, note that Yasym ≤ Ylower for this
range of c.

The next example is due to Gulisashvili [13]. This result is useful in studying the wings
of the implied volatility surface for extreme strikes but fixed maturity date.

Theorem 4.8 (Gulisashvili). If c(k) ↓ 0 as k ↑ +∞ then

YBS(k, c(k)) =
√
−2 log(e−kc(k))−

√
−2 log c(k) +O

(
log(− log c(k))√
− log c(k)

)
.

If e−kp(k) ↓ 0 as k ↓ −∞ then

YBS(k, c(k)) =
√
−2 log p(k)−

√
−2 log(e−kp(k)) +O

(
log(− log(e−kp(k)))√
− log(e−kp(k))

)
.

where c(k) = 1− ek + p(k).

As before, the proof will rely on appropriate uniform bounds:

Proposition 4.9. Fix k ∈ R and (1− ek)+ ≤ c < 1. If k ≥ 0 we have

Φ−1(c) +
√

[Φ−1(c)]2 + 2k ≤ YBS(k, c) ≤ Φ−1(2c)− Φ−1(e−kc)

and for k < 0 we have

Φ−1(e−kp) +
√

[Φ−1(e−kp)]2 − 2k ≤ YBS(k, c) ≤ Φ−1(2e−kp)− Φ−1(p)

where p = c+ ek − 1.

Proof. Consider the case k ≥ 0. For the upper bound, let d2 = Φ−1(e−kc) in Theorem 3.1.
14



For the lower bound, let y = YBS(k, c). Observe that

Φ

(
−k
y

+
y

2

)
= c+ ekΦ

(
−k
y
− y

2

)
≥ c.

The conclusion follows from noting that the strictly increasing map

x 7→ x+
√
x2 + 2k

from R to (0,∞) is the inverse of the map

y 7→ −k
y

+
y

2

from (0,∞) to R.
The case where k < 0 is handled by put-call symmetry as always. �

Remark 4.10. The idea behind the lower bound is the simple inequality

(X −K)+ ≤ X1[K,∞)(X)

which holds for all X,K ≥ 0.

Proof of Theorem 4.8. For k ≥ 0, we apply Proposition 4.9 and Lemma 4.1 to get

YBS(k, c(k)) ≤ Φ−1(2c(k))− Φ−1(e−kc(k))

= −
√
−2 log c(k) +

√
−2 log e−kc(k) +O

(
log(− log c(k))√
− log c(k)

)
where we have used

√
−2 log(2c) =

√
−2 log c+O( 1√

− log c
) as c ↓ 0 to control the error from

the first term, and the bound e−kc(k) ≤ c(k) to control the error from the second term.
Similarly, for the upper bound Proposition 4.9 and Lemma 4.1 yield

YBS(k, c(k)) ≥ Φ−1(c) +
√

[Φ−1(c)]2 + 2k

= −
√
−2 log c(k) +

√
−2 log e−kc(k) +O

(
log(− log c(k))√
− log c(k)

)
.

The k ↓ −∞ case is similar. �

Figure 4 illustrates the behaviour of YBS(k, c(k)) when c(k) ↓ 0 as k ↑ ∞, compared
with the uniform upper and lower bounds of Proposition 4.9 and the asymptotic formula
in Theorem 4.8. We have chosen the function c(·) according to the variance gamma model.
That is, we fix a time horizon T > 0 and let

c(k) = E[(X − ek)+]

where
X = eσW (GT )+ΘGT +mT

and σ and Θ are real constants, and the process W is a Brownian motion subordinated to
the gamma process G, which is an independent Lévy process with jump measure µ(dx) =
1
νx
e−x/νdx for some constant ν > 0. The constant m is chosen so that

E[X] = 1.
15



Figure 4. Bounds and asymptotics of YBS(·, c(·)) as c(k) ↓ 0 as k ↑ ∞.

It is well known that GT has the gamma distribution with mean T and variance νT . By
a routine calculation involving the moment generating functions of the normal and gamma
distribution, we find the moment generating function M of logX to be

M(r) = ermT (1− ν(Θr + σ2r2/2))−T/ν .

Therefore, we must set

m =
1

ν
log(1− ν(Θ + σ2/2)).

Note that we must assume the parameters are such that

Θ + σ2/2 < 1/ν

to ensure that m is real. Recall that the random variable X has the interpretation of the
ratio X = ST/F0,T of the time-T price ST of some asset to its initial time-T forward price.
The expected value is computed under a fixed time-T forward measure. Hence c(k) models
initial normalised price of a call option with log-moneyness k and maturity T . We use the
parameters σ = 0.1213, ν = 0.1686 and Θ = −0.1436 as suggested by the calibration of
Madan, Carr and Chang [20] and set T = 5.

As before, we plotted four functions:

(1) Yupper(k) = Φ−1(2c(k))− Φ−1(e−kc(k)) is the upper bound from Proposition 4.9;
(2) Y∗(k) = YBS(k, c(k)) is the true function of our interest;

(3) Ylower(k) = Φ−1(c(k)) +
√

[Φ−1(c(k))]2 + 2k is the lower bound from Proposition 4.9;

(4) Yasym(k) =
√
−2 log(e−kc(k))−

√
−2 log c(k) is the asymptotic shape from Theorem

4.8.

As always, note that Yupper ≥ Y∗ ≥ Ylower as predicted. Finally, note that Yasym ≤ Ylower

for this example. It is worth remarking that for the points on the extreme right side of the
graph of Y∗ the moneyness K/F0,T ≈ 10 and normalised call price C0,T,K/(F0,TB0,T ) ≈ 10−15

are outside the range of typical liquid market prices.
The recent paper [9] of De Marco, Hillairet & Jacquier studies a similar asymptotic regime

as the k ↓ −∞ case of Theorem 4.8, except now the assumption is that e−kp(k) → u > 0.
16



See also the paper of Gulisashvili [15] for further refinements. The motivation is to study
the left-wing behaviour of the implied volatility smile in the case where the price of the
underlying stock may hit zero. The first two terms in the following expansion have been
known for a few years; see for instance [27].

Even more recently, Jacquier & Keller-Ressel [16] have interpreted the corresponding (via
Proposition 2.1) right-wing formula in terms of a market model with a price bubble. We will
comment on this interpretation below.

Theorem 4.11 (De Marco, Hillairet & Jacquier). Suppose e−kp(k) → u as k ↓ −∞ where
0 < u < 1. Then letting c(k) = p(k) + 1− ek we have

YBS(k, c(k)) =
√
−2k + Φ−1(u) +O

(
1√
−k

+ ε(k)

)
as k ↓ −∞, where

ε(k) = e−kp(k)− u.
(Jacquier & Keller-Ressel). Furthermore, suppose c(k)→ u as k ↑ +∞ where 0 < u < 1.

Then

YBS(k, c(k)) =
√

2k + Φ−1(u) +O

(
1√
k

+ ε(k)

)
where

ε(k) = c(k)− u
Our proof of Theorem 4.11 reuses the uniform lower bound from Proposition 4.9. However,

another upper bound is needed in this situation:

Proposition 4.12. Fix k ∈ R and (1− ek)+ ≤ c < 1. If k ≥ 0, we have

YBS(k, c) ≤ Φ−1(c+ ekΦ(−
√

2k)) +
√

2k

and if k < 0 we have

YBS(k, c) ≤ Φ−1(e−kp+ e−kΦ(−
√
−2k)) +

√
−2k

where p = c+ ek − 1.

Proof. In the statement of Theorem 3.1, let d2 = −
√

2k if k ≥ 0, or let d1 =
√
−2k if

k < 0. �

Proof of Theorem 4.11. It is sufficient to prove only the k < 0 case. Recall the standard
bound on the normal Mills ratio

exΦ(−
√

2x) ≤ 1√
4πx

→ 0 as x ↑ ∞.

Hence by Proposition 4.12 we have

YBS(k, c)−
√
−2k ≤ Φ−1(u+ ε(k) + (−4πk)−1/2)

= Φ−1(u) +O(ε(k) + (−k)−1/2).

Similarly by Proposition 4.8 we have

YBS(k, c(k))−
√
−2k ≥ Φ−1(u+ ε(k)) +

√
[Φ−1(u+ ε(k))]2 − 2k −

√
−2k

= Φ−1(u) +O(ε(k) + (−k)−1/2)

17



completing the proof. �

Figure 5 illustrates the behaviour of YBS(k, c(k)) when e−kp(k)→ u > 0 as k ↓ −∞, where
p(k)− c(k) = ek − 1, compared with the uniform upper of Proposition 4.12, lower bounds of
Proposition 4.9 and the asymptotic formula in Theorem 4.11. We have chosen the function
c(·) according to the Black–Scholes model with a jump to default. That is, we fix a horizon
T > 0 and let

c(k) = E[(X − ek)+]

where
X = 1{T<τ}e

σWT +(λ−σ2/2)T

and σ and λ are positive constants, the process W is a Brownian motion and the random
variable τ is independent of W and exponentially distributed with rate λ, so that

E[X] = 1.

Note that

e−kp(k) = E[(1− e−kX)+]

→ P(X = 0)

= P(τ ≤ T )

= 1− e−λT .
On the other hand, it is straightforward to calculate

c(k) = CBS(k − λT, σ
√
T ).

We use the parameters σ = 0.60 and λ = 0.05 with time horizon T = 4.
As before, we plotted four functions:

(1) Yupper(k) = Φ−1[e−kp(k)+e−kΦ(−
√
−2k)]+

√
−2k the upper bound from Proposition

4.12;
(2) Y∗(k) = YBS(k, c(k)) is the true function of our interest;

(3) Ylower(k) = Φ−1(e−kp(k))+
√

Φ−1(e−kp(k))2 − 2k is the lower bound from Proposition
4.9;

(4) Yasym(c) =
√
−2k + Φ−1(u) is the asymptotic shape from Theorem 4.11.

As always, note that Yupper ≥ Y∗ ≥ Ylower as predicted, that Yupper is a surprisingly good
approximation for Y∗, and that Yasym ≤ Ylower for this example. For the left-hand points of
the graph, the moneyness K/F0,T ≈ 0.04 is somewhat outside the range of typical liquid
market prices.

Remark 4.13. To compute the implied volatility for a given model, one generally needs three
ingredients: the bond price B0,T , the forward price F0,T and the call price C0,T,K . Consider
the case where the interest rate is zero and the underlying stock pays no dividends. In
particular, for this discussion B0,T = 1.

In the discrete time case, one typically models the stock price (St)t≥0 as a martingale so
that there is no arbitrage. The call price is then calculated as

C0,T,K = E[(ST −K)+],

with the justification that the above price is consistent with no-arbitrage in general, and in
the case of a complete market, the expected payout under the unique risk-neutral measure
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Figure 5. Bounds and asymptotics of YBS(·, c(·)) as e−kp(k) ↓ u > 0 as k ↓ −∞.

is the replication cost of the option and hence the unique no-arbitrage price. Similarly, we
have for the forward price the following formula

F0,T = E[ST ] = S0.

In the continuous time setting, things are more subtle because of the existence of doubling
strategies. If one assumes the NFLVR notion of no-arbitrage, then by Delbaen & Schacher-
mayer’s fundamental theorem of asset pricing [10] the asset prices are sigma-martingales,
but not necessarily true martingales. In particular, given a dynamic model of the underly-
ing process (St)t≥0, this no-arbitrage condition alone does not uniquely specify the call and
forward prices, even in a complete market. See, for instance, the paper of Ruf [24] for a
discussion of this issue. When the market is complete, a candidate call price is the minimal
replication cost

Crepl = E[(ST −K)+].

Another sensible way to price the call is to assume that the put price is its minimal replication
cost and the call is priced by put-call parity:

Cparity = S0 −K + E[(K − ST )+]

= S0 − E[K ∧ ST ]

Similarly, the forward price can be either given by static replication

F static = S0

or by dynamic replication

F dyn = E[ST ].

Of course, if (St)t≥0 is a true martingale the corresponding candidate prices agree; however,
there has been recent interest in models where, for instance, the process (St)t≥0 is a non-
negative strict local martingale, and hence a strict supermartingale. (Such price processes
are often described as bubbles; see, for instance, the paper of Cox & Hobson [8].)
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The result of Jacquier & Keller-Ressel quoted here as the second half of Theorem 4.11
corresponds to choosing C0,T,K = Cparity and F0,T = F static so that the implied volatility is

σimplied =
1√
T
Y (log(K/S0), 1− E[K ∧ ST ]/S0).

We note here that this convention for defining implied volatility was also adopted in [26]. On
the other hand, note that the convention C0,T,K = Crepl and F0,T = F dyn is used in equation
(2) of the introduction.

We conclude with some remarks on the bounds and asymptotic formulae in this section.
The numerical results suggest that for at least some situations, one of the upper or lower
bounds is a better approximation to the implied total standard deviation than the corre-
sponding lowest order asymptotic formula. One could argue that with more terms in the
asymptotic series, better accuracy could be attained with the asymptotics. Although such a
claim is indeed plausible, there are a few reasons why it is beside the point.

First, the numerical results presented here should only be considered a proof of concept,
rather than a head-to-head competition between state-of-the-art approximations. Never-
theless, it is worth noting both the given bounds and the asymptotic formulae are only
approximations, and therefore have an error term. But unlike the error terms of an asymp-
totic formula, the error term for our bounds have a known sign.

Second, given one bound, the theorems of Section 3 give a systematic way of finding a
better bound. Indeed, fix (k, c) with k > 0, and let y∗ = YBS(k, c). Suppose it known that

y∗ < y1

where y1 is some given approximation. Define F : (ymin,∞)→ (0,∞) by

F (y) = H1(−k/y + y/2; k, c)

where

ymin = Φ−1(c) +
√

[Φ−1(c)]2 + 2k

and H1 is the functions defined by equation (3) of Section 3. Letting

y2 = F (y1)

we have by Theorem 3.1 that

y∗ < y2.

However, more is true. Note that the map F has a unique fixed point y∗. Since

lim
y↓ymin

F (y) =∞

we conclude by the continuity of F that F (y) > y for ymin < y < y∗, and more importantly,
that F (y) < y for y > y∗. In particular,

y2 = F (y1) < y1.

That is, y2 is a better approximation of y∗ and the error term has the same sign as the
original approximation. Of course, this process can iterated. Letting yn = F (yn−1) we see
that the sequence (yn)n≥1 is decreasing and infn yn = y∗.
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Figure 6. The cobweb diagram illustrating the convergence of y0, y1, y2, . . .
to the fixed point y∗ = F (y∗).

Notice that this sequence converges very rapidly. Indeed, by Taylor’s theorem

yn = F (yn−1)

= F (y∗) + F ′(y∗)(yn−1 − y∗) +
1

2
F ′′(ŷ)(yn−1 − y∗)2

for some y∗ < ŷ < yn−1. Since y∗ minimises F we have

F ′(y∗) = 0

and hence, by the continuity of F ′′, we have

yn − y∗
(yn−1 − y∗)2

→ 1

2
F ′′(y∗) =

1

2y∗

(
k

y∗
+
y∗
2

)2

as n→∞.
Furthermore, we can find our initial upper bound y1 by choosing any y0 > ymin and letting

y1 = F (y0). This procedure is illustrated by the cobweb diagram of Figure 6. Of course, the
convergence can be helped along by an inspired choice of y0 as discussed at the beginning of
this section.

The above discussion of a rapidly converging sequence should be contrasted with the
approach taken, for instance, in the paper of Gao & Lee [12]. There a systematic method of
computing terms in the asymptotic series for implied volatility is obtained. However, unlike
the procedure discussed above, an asymptotic series may diverge as more terms are added.

A third and final point is that the approximations for the implied total standard deviation
are not particularly interesting on their own. Indeed, to use the formulae in Proposition 4.9
one must already know the normalised bond price c(k). If this quantity is to be calculated
numerically from a certain model, one might as well compute the YBS(k, c(k)) numerically
also. The point of these bounds is to be used in conjunction with other, model dependent
bounds on c(k) to obtain useful bounds on the quantities of interest.
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