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Abstract. Filtering and parameter estimation under partial information for multiscale diffusion problems is studied in
this paper. The nonlinear filter converges in the mean-square sense to a filter of reduced dimension. Based on this result,
we establish that the conditional (on the observations) log-likelihood process has a correction term given by a type of central
limit theorem. We prove that an appropriate normalization of the log-likelihood minus a log-likelihood of reduced dimension
converges weakly to a normal distribution. In order to achieve this we assume that the operator of the (hidden) fast process has
a discrete spectrum and an orthonormal basis of eigenfunctions. We then propose to estimate the unknown model parameters
using the reduced log-likelihood, which is beneficial because reduced dimension means that there is significantly less runtime
for this optimization program. We also establish consistency and asymptotic normality of the maximum likelihood estimator.
Simulation results illustrate our theoretical findings.
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1. Introduction. In this paper we consider the problem of filtering and parameter estimation for

stochastic differential equations (SDEs) with multiple time scales. The model has parameter 0 < δ � 1 that

separates the slow and fast scales of the system, and it is assumed that δ is known a priori. The filtering

problem involves two SDEs: a hidden ergodic diffusion process Xδ whose solution is known to be a path

from an SDE with a fast time scale of 1/δ, and an observation Y δ that depends on Xδ but evolves in a slow

time scale that is of order 1. The parameter estimation problem arises when the SDE satisfied by (Y δ, Xδ)

has an unknown parameter θ ∈ Θ where Θ ⊂ Rd.

Under the appropriate conditions, the nonlinear filter converges in a mean-square sense to a homogenized

filter of reduced dimension. Based on this result and under the additional assumption that the infinitesimal

generator of the fast process has a discrete spectrum with an orthonormal basis of eigenfunctions, we establish

a central limit theorem (CLT) for the (conditional) log-likelihood. In particular, we prove that the difference

of the log-likelihood (in other words, the log of the solution to the Zakai equation with input test function of

f ≡ 1) minus a log-likelihood of reduced dimension, normalized by
√
δ, converges weakly to a centered normal

distribution with a variance that is a function of the model parameters. To the best of the authors’ knowledge,

the CLT proven in this paper is the first of its kind. We also establish consistency and asymptotic normality

of the maximum likelihood estimator (MLE) of the reduced log-likelihood. Compared to the original log-

likelihood, the computation of the MLE based on the reduced log-likelihood is simpler and faster to compute.

This work is related to other works in filtering, wherein the observed process evolves in a slower scale

than the hidden process. In [Kushner, 1990], it is shown that the difference of the unnormalized actual

filter and its homogenized counterpart goes to zero in distribution for fixed test functions. The authors

in [Bensoussan and Blankenship, 1986, Ichihara, 2004] study homogenization of nonlinear filtering based on

asymptotic analysis of a dual representation of the filtering equation. The authors in [Park et al., 2008,
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Park et al., 2011, Park et al., 2010, Imkeller et al., 2013] prove convergence in probability and in the pth-

norm (in the latter article) of the nonlinear filter to its homogenized version. Notably, in [Imkeller et al., 2013]

the authors use a formulation through backward SDEs and make use of the estimates for the related transition

probability densities of [Pardoux and Veretennikov, 2003]; they also obtain rates of convergence in Lp!. In

[Kleptsina et al., 1997], the authors prove convergence of the filter in mean square sense and in a quite general

setting; they assume convergence of the total variation norm of (Y δ, Xδ) and also assume convergence in

probability of the slow part of the hidden component.

Parameter estimation problems for partially observed processes have been also studied elsewhere in the

literature, e.g., [Kutoyants, 2004, James and Gland, 1995], although the effect of multiple scales was not

studied there. Moreover, in [Papavasiliou et al., 2009] the authors study maximum likelihood estimation for

fully-observed systems (not partially observed as in our case) of multiscale processes where the fast process

takes values on a compact set.

The aforementioned existing literature has focused on proving convergence of the nonlinear filter to a

filter of reduced dimension, namely to understand the dominant limiting behavior. In this paper, we are

interested in parameter estimation for such models. Thus, for statistical inference purposes we need to prove

that the filter will be close to a filter of reduced dimension for any parameter value (and not just for the

true parameter value), with closeness referring to either convergence in probability or mean square under the

measure parameterized by the true parameter value. We establish that this result is true in the L2-sense

and also show that convergence results in the existing literature can be extended to a class of unbounded

test functions that have more than two moments. Then, we obtain a CLT for the difference between the log-

likelihood function and the log-likelihood from the filter of reduced dimension. To obtain the CLT, we further

assume that the infinitesimal generator of the fast process has a discrete spectrum with an orthonormal basis

of eigenfunctions. The difference in the log-likelihood functions is of order
√
δ, a! nd we are able to state

explicitly the variance of the limiting centered normal distribution. We emphasize that the filter of reduced

dimension uses the original observations, which are the only available observations, and hence, the results

justify using the reduced log-likelihood for purposes of statistical inference. For computational purposes, it is

simpler and much faster to implement the filter of reduced dimension than it is for the original log-likelihood.

Filtering is a well established area and some general references for stochastic nonlinear filtering are

[Bain and Crisan, 2009, Kallianpur, 1980, Kushner, 1990, Rozovskii, 1990]. Our motivation for studying pa-

rameter estimation for partially observed multiscale diffusion models comes from financial applications, e.g.,

convenience yield in commodities markets or estimation of latent states in markets with high frequency trad-

ing (HFT). For example, non-predatory HFTs lead to increased liquidity and faster price discovery. Hence, a

change-point detection algorithm on HFT data can be used to determine when price discovery has occurred.

Another application could be the detection of an increased bid-ask spread which may correspond to increased

volatility. We refer the reader to [Brogaard et al., 2012, Zhang, 2010] for related discussions.

The rest of the paper is organized as follows: Section 2 presents the system of equations that we consider,

states our main assumptions, and restates fundamental results from filtering theory. Section 3 presents our

results on the asymptotic properties of the filter and of the log-likelihood. In particular, in Subsection 3.1 we
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discuss the L2-convergence of the nonlinear filter, a result which is used in Subsection 3.2 to establish the CLT

for the log-likelihood; the CLT is the main result. These results are then used in Section 4 to justify the claim

that parameter estimation can be based on the reduced system, where we prove consistency and asymptotic

normality of the MLE of the reduced log-likelihood. A simulation study illustrating the theoretical results

is presented in Section 5. Conclusions are in Section 6. For presentation purposes, ! most of the proofs are

deferred to Appendices A and B.

2. Formulation of Problem and Known Preliminary Results. On a probability space (Ω, (Ft)t≤T ,P)

with T <∞, for positive integers m,n we consider the (m+ n)-dimensional process (Xδ, Y δ) = {(Xδ
t , Y

δ
t ) ∈

Rm×Rn, 0 ≤ t ≤ T} ∈ C([0, T ];Rm×Rn), which satisfies a system of stochastic differential equations (SDE’s)

dY δt = hθ
(
Xδ
t

)
dt+ dWt (observed)

dXδ
t =

1

δ
bθ
(
Xδ
t

)
dt+

1√
δ
σθ
(
Xδ
t

)
dBt (hidden) (2.1)

where (Wt)t≤T and (Bt)t≤T are (unobserved) independent Wiener processes in Rn and Rm, respectively.

Our general assumptions on the functions hθ, bθ and σθ are given in Section 2.1, but some of our theorems

will require a stronger assumption on the spectrum of the infinitesimal generator of the X-process given in

Section 2.2. We assume that the parameter θ is also unknown, but takes values in a set Θ ⊂ Rd with d being

a positive integer. Initially, the process Xδ
0 is distributed according to a given prior distribution, and from

here forward we take Y0 = 0. We denote the probability measure with P, but we work with the parameterized

family (Pθ)θ∈Θ in order to denote probabilities that are conditional on the parameter value,

Pθ((Xδ, Y δ) ∈ B) = P
(

(Xδ, Y δ) ∈ B
∣∣∣ θ is parameter in equation (2.1)

)
∀θ ∈ Θ,

for any Borel set B ⊂ C([0, T ],Rm × Rn), and we let Eθ denote its expectation operator. The parameter

value to be estimated is the true (but unknown) value of θ; we denote the true value by α ∈ Θ.

Our goal for this paper is to develop a theoretical framework allowing statistical inference on the unknown

parameter θ given an observed path (Y δs )s≤t and assuming that 0 < δ � 1. In particular, our goal in this

paper is twofold:

i). Obtain the limiting behavior and a central limit theorem (CLT) type correction for the posterior (on

the observed path (Y δs )s≤t) likelihood function as δ ↓ 0.

ii). Using the asymptotic behavior of the likelihood function, develop a framework for statistical inference

for the unknown parameter θ given an observed path (Y δs )s≤t, assuming that 0 < δ � 1.

In Subsection 2.1 we establish notation and conditions guaranteeing ergodicity and that the filtering

problem is well posed. Then, in Subsection 2.2, we introduce a more specific framework wherein the in-

finitesimal generator of the fast process Xδ with δ = 1 has a discrete spectrum with an orthonormal basis

of eigenfunctions, which allows us to establish the CLT of Theorem 3.3. Then, in Subsection 2.3 we review

some known, useful results from filtering theory.
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2.1. Notation and General Assumptions. Let a, b be two vectors in some Euclidean space, say Rn.

For notational convenience we shall often write a · b or simply ab for their inner product and we will denote

by | · | the standard Euclidean norm.

Moreover, we denote by X = Rm the state space of the fast component X. For any f ∈ C2(X ), we define

the set of operators (Lθ)θ∈Θ such that

Lθf(x) = bθ(x) ·Dxf(x) +
1

2
tr
[
σθ(x)σTθ (x)D2

xf(x)
]
, (2.2)

where Dx is the gradient operator. From (2.1) it follows that 1
δLθ is the infinitesimal generator of Xδ

t .

We will make several assumptions on the growth and smoothness of the coefficients in order to guarantee

that (2.1) has a well-defined strong solution, that the fast component Xδ
t is ergodic, that the slow component

Y δt has a well defined homogenization limit as δ ↓ 0 in the appropriate sense, and that the filtering equations

make sense. A set of assumptions that guarantee these properties are contained in the following condition (see

[Pardoux and Veretennikov, 2003] for ergodic theory where they consider parts i) through iv) given below,

and also Chapter 3 of [Bain and Crisan, 2009] for filtering):

Condition 2.1.

i). In order to guarantee the existence of an invariant measure µθ(dx) for X1 (i.e., for the process Xδ
t

with δ = 1) we assume that

lim
|x|→∞

sup
θ∈Θ

bθ(x) · x = −∞.

ii). To guarantee uniqueness of the invariant measure for X1, we assume that σθ(x)σTθ (x) is uniformly

non-degenerate in θ, i.e., there exist constants c(θ) > 0 such that for all x ∈ X

|ξσθ(x)|2 ≥ c(θ)|ξ|2, for all (θ, ξ) ∈ Θ× Rn and for all x ∈ Rn.

iii). σθ(x)σTθ (x) is bounded in (θ, x) ∈ Θ×X and σθ(x) is globally Lipschitz in x ∈ X uniformly in θ ∈ Θ.

iv). bθ(x) is locally bounded and globally Lipschitz in x ∈ X , uniformly in θ ∈ Θ.

v). hθ ∈ C(X ), is locally bounded and globally Lipschitz in x ∈ X , uniformly in θ ∈ Θ.

vi). Xδ
0 = X0 is a continuous random variable such that E|X0|3 <∞.

vii). The functions hθ, bθ, σθ are Lipschitz continuous in θ ∈ Θ and Θ ⊂ Rd is compact.

Remark 1. A typical example of a process X that satisfies Condition (2.1) is the Ornstein-Uhlenbeck

process of Example 2.1 that we present below. One can verify that our results also hold for certain degenerate

processes, such as the square root process (CIR) of Example 2.2 where σ(x) =
√
x, i.e., it degenerates at

x = 0 but nevertheless it is ergodic; we do not analyze these special cases in this paper.

For any function f ∈ L2(X , µθ), denote its average with respect to the invariant measure µθ(dx) as

f̄θ =

∫
X
f(x)µθ(dx) .

It is a well known result that Y δ· converges in distribution in C([0, T ];Rn) to the process Y · (e.g. [Bensoussan et al., 1978,

Pardoux and Veretennikov, 2003]), where

Y t = h̄θt+Wt. (2.3)
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Actually, due to the fact that the observation process Y δt has constant diffusion, Condition 2.1 and the ergodic

theorem guarantee that a stronger result holds for any θ ∈ Θ, i.e., for every ε > 0

Pθ
(

sup
0≤t≤T

∣∣Y δt − Y t∣∣ ≥ ε)→ 0, as δ ↓ 0 ∀θ ∈ Θ. (2.4)

2.2. Spectral Decomposition. A stronger assumption than Condition 2.1 is that the operator Lθ has

a discrete spectrum with an orthonormal basis of eigenfunctions. Some of the theorems in this paper do not

require such strong assumptions on the operator’s spectrum (e.g. Theorems 3.1, 4.1 and 4.2 do not rely on

discrete spectrum and orthonormal eigenfunctions), but the proof of the CLT in Theorem 3.3 relies on Lθ’s
spectrum having these properties.

The steps taken in proving Theorem 3.3 utilize the spectral expansion of functions f ∈ L2(X , µθ) with

respect to the eigenfunctions of the operator Lθ. We say that the class of operators {Lθ}θ∈Θ has a discrete

spectrum if for each θ ∈ Θ there are eignenvalues (−λθi )i=0,1,2,3,... such that

0 = λθ0 > −λθ1 ≥ −λθ2 ≥ . . . .

For each i ≥ 0 we denote the ith eigenfunction as ψθi (x) such that

Lθψθi = −λθiψθi

and we assume for each θ ∈ Θ that the eigenfunctions form an orthonormal basis of L2(X , µθ) so that∫
ψθi (x)ψθj (x)µθ(dx) = 1[i=j],

and any square-integrable function f ∈ L2(X , µθ) can be written as f(x) =
∑∞
i=0 ψ

θ
i (x)

〈
f, ψθi

〉
θ
, where〈

f, ψθi
〉
θ

=
∫
f(x′)ψθi (x′)µθ(dx

′). Notice that because Lθ is a differential operator and the spectral elements

are assumed to be an orthonormal basis, we get that ψθ0 ≡ 1. This means〈
ψθi , 1

〉
θ

=
〈
ψθi , ψ

θ
0

〉
θ

= 0 for i = 1, 2, 3, . . . . (2.5)

Below we consider some examples of processes whose operators have discrete spectrum with an orthonormal

basis of eigenfunctions:

Example 2.1. A non-degenerate ergodic process with a discrete spectrum is the 1-dimensional Ornstein-

Uhlenbeck (OU) process,

dXt = κ(θ −Xt)dt+ σ
√

2dBt

where θ ∈ Θ ⊂ R and σ, κ > 0. The eigenvalues of Lθ are 0,−1,−2,−3, . . . , and the Hermite polynomi-

als form an orthonormal basis. Moreover, this process is ergodic with invariant measure Gaussian and in

particular µθ(dx) =
√

κ
2πσ2 e

−κ(x−θ)
2

2σ2 dx.

Example 2.2. A degenerate ergodic process with a discrete spectrum is the 1-dimensional Cox-Ingersol-

Ross (CIR) process,

dXt = κ(θ −Xt)dt+
√

2σ2XtdBt
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where θ ∈ Θ ⊂ R+ and κ > 0. The eigenvalues of Lθ are 0,−1,−2,−3, . . . , and the (generalized) Laguerre

polynomials form an orthonormal basis. Moreover, if κθ > σ2 then this process is ergodic with invariant

measure, the measure for a gamma distribution and in particular µθ(dx) = aβ

Γ(β)x
β−1e−axdx, where Γ(·) is

the gamma function, a = κ/σ2 and β = κθ/σ2. Even though this SDE does not satisfy Condition 2.1(ii)-(iii),

the SDE has a unique strong solution which is ergodic and thus one expects the results of this paper to hold.

We conclude with a multidimensional example.

Example 2.3. A non-degenerate ergodic process with a discrete spectrum is the m-dimensional linear

SDE,

dXt = −AXtdt+ ΓdBt

where A is m × m positive definite and Γ is a matrix of appropriate dimensions, such that (A,Γ) is a

controllable pair. This process is ergodic and its infinitesimal generator has discrete spectrum. The orthonor-

mal basis can be constructed by taking products of the modified Hermite functions for each variable, see

[Liberzon and Brockett, 2000, Linetsky, 2007] for more details and analysis.

2.3. Filtering Equations. Our data is contained in the filtration generated by the observed path,

which is the σ-algebra Yδt
.
= FY δt = σ{(Y δs )s≤t}. The filtration Yδt does not reveal the true but unknown

parameter value α ∈ Θ. However, we can compute a posterior distribution conditional on a given parameter

value, and then perform further statistical inference such as maximum likelihood in order to estimate the true

parameter value. For a general introduction to stochastic filtering we refer the reader to classical manuscripts,

such as [Bain and Crisan, 2009, Kallianpur, 1980, Kushner, 1990, Rozovskii, 1990].

For any θ ∈ Θ (and not just the true parameter value, α ∈ Θ, that has generated the data in Yδt ), let’s

define the exponential martingale Zδ,θT which gives a new measure P∗θ on (Ω,F), such that

dPθ
dP∗θ

.
= Zδ,θT = exp

{∫ T

0

hθ(X
δ
s )dY δs −

1

2

∫ T

0

∣∣hθ(Xδ
s )
∣∣2 ds} . (2.6)

By Girsanov’s theorem on the absolutely continuous change of measure in the space of trajectories in

C([0, T ],Rm), the probability measures Pθ and P∗θ are absolutely continuous with respect to each other,

and the distribution of Xδ is the same under both Pθ and P∗θ. Furthermore, the process Y δ is a P∗θ-Brownian

motion independent of Xδ, and Zδ,θ is a P∗θ-martingale.

Next, for f : X → R such that E∗θ|f(Xδ
t )|2 < ∞, we define the measure valued process φδ,θt acting on f

as

φδ,θt [f ]
.
= E∗θ

[
Zδ,θt f(Xδ

t )
∣∣∣Yδt ] , (2.7)

a process which, for f ∈ C2
c (X ), is well known to be the unique solution (see [Rozovsky, 1991]) to the following

equation:

dφδ,θt [f ] =
1

δ
φδ,θt [Lθf ]dt+ φδ,θt [hθf ]dY δt , P∗θ-a.s., φθ0[f ] = Eθf(Xδ

0 ) (2.8)

Equation (2.8) is the Zakai equation for nonlinear filtering. In the literature, the term ‘filter’ refers to a

posterior measure on Xδ
t given Yδt , and so φδ,θt is also a filter. Specifically, the process φδ,θt is an unnormalized
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probability measure with φδ,θt [1] being the likelihood function, and the maximizer of φδ,θt [1] is the maximum

likelihood estimator (MLE). In other words, given the observation (Y δs )s≤t, the MLE is

θδt
.
= arg max

θ∈Θ
φδ,θt [1] . (2.9)

Furthermore, we can apply the Kalianpour-Striebel formula to obtain the normalized filter,

πδ,θt [f ]
.
= Eθ

[
f(Xδ

t )
∣∣∣Yδt ] =

φδ,θt [f ]

φδ,θt [1]
Pθ,P∗θ-a.s. . (2.10)

An important case is f(x) = x because Xδ
t is often tracked with the posterior mean, X̂δ,θ

t
.
= Eθ[Xδ

t |Yδt ]. The

posterior mean can be given by the Kalman filter when σθ does not depend on x and there is linearity in x

for both hθ and bθ. Another important case is f(x) = hθ(x) because of the innovations process,

νδ,θt
.
= Y δt −

∫ t

0

πδ,θs [hθ]ds ∀t ∈ [0, T ] ,

(recall we assumed that Y0 = 0). The process νδ,θt is a Pθ-Brownian motion under the filtration Yδt , but will

only be observable as Brownian motion if θ = α, i.e. when the true parameter value is taken. For suitable

test functions f : X → R, the innovation is used in the nonlinear Kushner-Stratonovich equation to describe

the evolution of πδ,θt [f ],

dπδ,θt [f ] =
1

δ
πδ,θt [Lθf ]dt+

(
πδ,θt [fhθ]− πδ,θt [f ]πδ,θt [hθ]

)
dνδ,θt Pθ-a.s. . (2.11)

The innovations Brownian motion will be used in later sections where we consider asymptotics of the log-

likelihood function.

3. Asymptotic Results of the Filter and of the Likelihood Function. In this section we es-

tablish some results on the filter’s convergence. In Subsection 3.1 we use the convergence results found in

[Imkeller et al., 2013] (see also [Park et al., 2008, Park et al., 2011, Park et al., 2010, Imkeller et al., 2013])

to prove convergence in probability of the filter for a class of unbounded test functions (e.g. for the eigenfunc-

tions of the operator Lθ). Then, subsection 3.2 will use these results to derive a CLT for the log-likelihood

function, which is the main result of the paper.

Consider the ‘averaged’ exponentials

Z̄δ,θt
.
= exp

{
h̄θY

δ
t −

1

2

∣∣h̄θ∣∣2 t} , Z̄θt
.
= exp

{
h̄θY t −

1

2

∣∣h̄θ∣∣2 t} . (3.1)

In fact the solution to the Zakai equation of (2.8) is close in mean square sense to a limiting filter based

on Z̄δ,θT . For f ∈ C2
c (X ), we define new posterior measures φ̄δ,θt [f ] and φ̄θt [f ] which satisfy the stochastic

evolution equations

dφ̄δ,θt [f ] =
1

δ
φ̄δ,θt [Lθf ]dt+ φ̄δ,θt [f ]h̄θdY

δ
t , φ̄δ,θ0 [f ] = Eθ{f(Xδ

0 )} (3.2)

dφ̄θt [f ] = φ̄θt [f ]h̄θdY t φ̄δ,θ0 [f ] = f̄θ. (3.3)

7



It is straightforward to verify with Itô’s lemma that the ‘average’ Zakai equations (3.2) and (3.3) have

solutions

φ̄δ,θt [f ] = E∗θ
[
f(Xδ

t )Z̄δ,θt

∣∣∣Yδt ] = Eθ[f(Xδ
t )]Z̄δ,θt , (3.4)

φ̄θt [f ] = f̄θZ̄
θ
t (3.5)

We also define π̄δ,θt [f ] =
φ̄δ,θt [f ]

φ̄δ,θt [1]
= Eθf(Xδ

t ) and π̄θt [f ] =
φ̄θt [f ]

φ̄θt [1]
= f̄θ.

Remark 2. The results of this section (namely Theorems 3.1 and 3.3 and Corollaries 3.2 and 3.4) will

justify the approximation of φδ,θ[1] by φ̄δ,θ[1] for statistical inference purposes. Notice that φ̄δ,θ[1] is associated

with the actual data, i.e., it is associated with Y δt and not with Y t. Y t is only used as a vehicle to obtain the

necessary convergence results. Issues related with statistical inference are explored in Section 4.

3.1. Convergence of the Filter and of the Likelihood Function. At this point we need to impose

an additional assumption on Zδ,θt . In particular, we assume

Condition 3.1. For any θ ∈ Θ, there is a q ∈ (1,∞) such that

sup
t∈[0,T ]

sup
δ∈(0,1)

E∗θ|Z
δ,θ
t |q + sup

t∈[0,T ]

sup
δ∈(0,1)

Eθ|Zδ,θt |−q <∞.

Let us consider the q ∈ (1,∞) from Condition 3.1 and let p ∈ (1,∞) be such that 1/q + 1/p = 1. Now let

η > 2(p2 − 1) and define the following class of test functions

Aθη
.
=

{
f ∈ C4(X ) ∩ L2(X , µθ) : sup

t∈[0,T ]

sup
δ∈(0,1)

Eθ
∣∣f(Xδ

t )
∣∣2+η

<∞,

}
. (3.6)

Before stating the convergence results, we make some remarks related to Condition 3.1 and the set Aθη.

Remark 3. Notice that because δ is a time scale, we could have written the definition in (3.6) with only

a supremum over t ≥ 0, and it would be an equivalent definition. That is, Xδ
t equals in distribution to X1

t/δ,

so supt∈[0,T ] supδ∈(0,1) Eθ
∣∣f(Xδ

t )
∣∣2+η

= supt∈[0,T ] supδ∈(0,1) Eθ
∣∣∣f(X1

t/δ)
∣∣∣2+η

= supt≥0 Eθ
∣∣f(X1

t )
∣∣2+η

.

Remark 4. Condition 3.1 holds automatically for any finite q > 1 if hθ(x) is bounded, e.g., Lemma 6.7

in [Imkeller et al., 2013]. Moreover, any f ∈ C4
b (X ) will also satisfy f ∈ Aθη for any η ≥ 0.

Remark 5. Suppose X0 is distributed according to its invariant distribution. Then Aθη consists of all

functions f ∈ C4(X ) such that
∫
|f(x)|2+ηµθ(x)dx < ∞. However, the orthonormal basis of eigenfunctions

(ψθi )∞i=0 associated with the operator Lθ (as described in Section 2.2) are not generally contained in Aθη if

η > 0, but the examples given earlier qualify. Examples 2.1, 2.2, and 2.3 also have ψθi ∈ Aθη for η > 0,

because ψθi are polynomials with moments of all order, and so there are certainly 2 + η moments of ψθi (Xδ
t ).

The first result of this section holds without the assumption of spectral expansions, and is stated in the

following theorem:

Theorem 3.1. Assume Conditions 2.1 and 3.1. For any α, θ ∈ Θ, we have that, uniformly in t ∈ [0, T ],

the following are true:

i). Let f ∈ C4
b (X ). Then, for every ε > 0

lim
δ↓0

Pα
(∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣ ≥ ε) = 0

8



ii). Assume that there is η > 0 such that f ∈ Aθη. Then, we have convergence of the filters in mean

square

lim
δ↓0

Eα
∣∣∣πδ,θt [f ]− π̄δ,θt [f ]

∣∣∣2 = 0 .

and, moreover,

lim
δ↓0

∣∣∣π̄δ,θt [f ]− π̄θt [f ]
∣∣∣ = 0 in Pα probability .

Proof. The proof of this theorem is in Appendix A.

In statistical inference, a useful corollary of Theorem 3.1 is the convergence of likelihood functions:

Corollary 3.2. Assume Conditions 2.1 and 3.1. For any α, θ ∈ Θ and each t ≥ 0, we have

φδ,θt [1]− φ̄δ,θt [1]→ 0 in Pα-probability as δ → 0 .

We note that results similar to Theorem 3.1 appear elsewhere in the literature, e.g., [Kleptsina et al., 1997,

Ichihara, 2004, Park et al., 2008, Park et al., 2011, Park et al., 2010, Imkeller et al., 2013], but with slightly

different assumptions and set up. The main difference is that Theorem 3.1, when compared to the previous

works, states the convergence result under the measure parameterized by the true parameter value (i.e. the

measure under which the observations are made, where θ = α) with the filters converging for any parameter

value. In other words, we will ‘observe’ the filters converging to the reduced filter. Moreover, the convergence

of the filters in Theorem 3.1 is for test functions that belong to the space Aθη, which can include unbounded

functions such as the eigenfunctions of the OU processes in Example 2.1 and 2.3 (see Remark 5). By assuming

that ψθi ∈ Aθη for some η > 0, we are able to prove the results in Subsection 3.2.

3.2. Asymptotic Normality of Likelihood Function. We proceed to the statement and proof of

the CLT for the log-likelihood function. In particular, we find that the difference in the original log-likelihood

minus the log-likelihood of reduced dimension, divided by
√
δ, yields a quantity that is asymptotically normal.

In proving the CLT, we make extensive use of the discrete spectrum and eigenfunction basis. In this section

we shall also assume the following:

Condition 3.2. For any i, j ∈ N and any θ ∈ Θ, we assume that

i). There exists Ch > 0 independent of θ such that ‖hθ‖∞ ≤ Ch,

ii). Lθ has discrete spectrum with orthonormal basis functions (as prescribed in Section 2.2),

iii). There exists η > 0 such that ψθi ∈ Aθη, for all θ ∈ Θ and i ∈ N,

iv). πθ0 [ψθi ] <∞ for all θ ∈ Θ and i ∈ N.

It is worth noting that Condition 3.2 subsumes Condition 3.1 because it places a bound on hθ (see

Remark 4). Moreover, the assumption that Lθ has discrete spectrum with orthonormal basis functions is

useful because the Zakai equation for the eigenfunctions ψθi simplifies to

dφδ,θt [ψθi ] = −λ
θ
i

δ
φδ,θt [ψθi ]dt+ φδ,θt [hθψ

θ
i ]dY δt . (3.7)

9



Applying Itô’s lemma to
φδ,θt [ψθi ]

φδ,θt [1]
we have the Kushner-Stratonovich equation

d

(
φδ,θt [ψθi ]

φδ,θt [1]

)
= −λ

θ
i

δ

φδ,θt [ψθi ]

φδ,θt [1]
dt+

φδ,θt [hθψ
θ
i ]

φδ,θt [1]
− φδ,θt [hθ]φ

δ,θ
t [ψθi ](

φδ,θt [1]
)2


︸ ︷︷ ︸

=covδ,θ(hθ(Xδt ),ψθi (Xδt )|Yδt )

dνδ,θt (3.8)

where dνδ,θt = dY δt −
φδ,θt [hθ]

φδ,θt [1]
dt = dY δt −Eδ,θ[hθ(Xδ

t )|Yδt ]dt is the innovations Brownian motion under Pθ. By

Duhamel’s principle the solution is

φδ,θt [ψθi ]

φδ,θt [1]
= e−

λθi t

δ φθ0[ψθi ] +

∫ t

0

e−
λθi (t−s)

δ covδ,θ
(
hθ(X

δ
s ), ψθi (Xδ

s )
∣∣∣Yδs) dνδ,θs . (3.9)

Equivalently, we can write

πδ,θt [ψθi ] = e−
λθi t

δ πθ0 [ψθi ] +

∫ t

0

e−
λθi (t−s)

δ

(
πδ,θs [hθψ

θ
i ]− πδ,θs [hθ]π

δ,θ
s [ψθi ]

)
dνδ,θs . (3.10)

Equations (3.9) and (3.10) are the key identities used to prove the CLT. However, there are some ergodic

properties of the filter that are required to do the proof. Appendix B has these results; Section 3.2.1 states

and proves the CLT.

3.2.1. Statement of CLT and Proof. In this section, we quantify the estimation error which occurs

if the reduced log-likelihood is used in place of the full version. In particular, we establish that the error in

the log-likelihood function will be normally distributed with standard deviation of order O(
√
δ).

By Lemma 3.9 in [Bain and Crisan, 2009] we have

log
(
φδ,θt [1]

)
=

∫ t

0

πδ,θs [hθ]dY
δ
s −

1

2

∫ t

0

∣∣πδ,θs [hθ]
∣∣2 ds .

Let us write h̃θ(x) = hθ(x)− h̄θ and notice that
〈
h̃θ, 1

〉
θ

= 0. Then we write

1√
δ

(
log
(
φδ,θt [1]

)
− log

(
φ̄δ,θt [1]

))
=

1√
δ

(∫ t

0

(
πδ,θs [hθ]− h̄θ

)
dY δs −

1

2

(∫ t

0

∣∣πδ,θs [hθ]
∣∣2 ds− ∫ t

0

∣∣h̄θ∣∣2 ds))
= Jδ1 + Jδ2 ,

where we have defined Jδ1 and Jδ2 as

Jδ1 =
1√
δ

∫ t

0

(
πδ,θs [hθ]− h̄θ

)
dY δs =

1√
δ

∫ t

0

πδ,θs [h̃θ]dν
δ,θ
s +

1√
δ

∫ t

0

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds+

h̄θ√
δ

∫ t

0

πδ,θs [h̃θ]ds

and

Jδ2 = − 1

2
√
δ

(∫ t

0

∣∣πδ,θs [hθ]
∣∣2 ds− ∫ t

0

∣∣h̄θ∣∣2 ds) = − 1

2
√
δ

∫ t

0

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds− h̄θ√

δ

∫ t

0

πδ,θs [h̃θ]ds .

Hence, we obtain the representation

1√
δ

(
log
(
φδ,θt [1]

)
− log

(
φ̄δ,θt [1]

))
=

∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
dνδ,αs︸ ︷︷ ︸

(∗)

+

∫ t

0

1√
δ

(
πδ,θs [h̃θ]

) (
πδ,θs [hθ]− πδ,αs [hα]

)
ds︸ ︷︷ ︸

(∗∗)

+
1

2
√
δ

∫ t

0

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds︸ ︷︷ ︸

(†)

, (3.11)
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where νδ,αt is a Pα Brownian motion (i.e. it is Brownian motion under the true parameter), but not for Pθ
with θ 6= α. Now recall that by Condition 3.2, for every i ∈ N we have ψθi ∈ Aθη. This implies that there

exists finite constants that may depend on i, T and θ such that

sup
δ∈(0,1),ρ∈[0,T ]

Eθ
[
|ψθi (Xδ

ρ)|2
]
≤ C(ψi, T, θ) , (3.12)

from which we define another constant

Ci,j(T, θ)
.
=

(∣∣πθ0 [ψθi ]πθ0 [ψθj ]
∣∣

λθi + λθj
+ (C(ψi, T, θ) + C(ψj , T, θ))

(
1

λθi
+

1

λθj

))
. (3.13)

If the infinite sum of these constants converges, then we can prove the following CLT for the log-likelihood

function:

Theorem 3.3. (Likelihood CLT). Assume Conditions 2.1 and 3.2. Moreover, assume that there exists

constants C(ψi, T, θ) that satisfy (3.12) such that for all θ ∈ Θ

∞∑
i,j=1

|
〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ
|Ci,j(T, θ) <∞ ,

where Ci,j(T, θ) is given by (3.13). Denote by u2
θ(hθ)

.
=
∑∞
i,j=1

〈hθ,ψθi 〉θ〈hθ,ψθj 〉θπθ0 [ψθi ]πθ0 [ψθj ]

λθi+λθj
<∞ and v2

θ(hθ)
.
=∑∞

i,j=1

|〈hθ,ψθi 〉θ〈hθ,ψθj 〉θ|
2

λθi+λθj
, with v2

θ(hθ) <∞ by Parseval’s identity (see Remark 6). Then, and under Pα, and

for any fixed t ∈ (0, T ] we have

1√
δ

(
log
(
φδ,θt [1]

)
− log

(
φ̄δ,θt [1]

))
⇒W

(
u2
θ(hθ) + tv2

θ(hθ)
)

as δ → 0

in distribution, where W
(
u2
θ(hθ) + tv2

θ(hθ)
)

is a normal random variable with mean zero and variance

u2
θ(hθ) + tv2

θ(hθ).

If X0 starts in its invariant distribution, then C(ψi, T, θ) = 1 and πθ0 [ψθi ] = 0 for all i ≥ 0 and Ci,j(T, θ) =

2
λθi

+ 2
λθj

for all i, j ≥ 0, and we have the following corollary from Theorem 3.3:

Corollary 3.4. (Likelihood CLT for Paths). Assume Conditions 2.1 and 3.2. Moreover, assume

that for all θ ∈ Θ

∞∑
i,j=1

|
〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ
|

(
1

λθi
+

1

λθj

)
<∞ .

If X0 is distributed according to the invariant measure µθ (i.e. πθ0 [f ] = f̄θ for all f ∈ Aθη and any θ ∈ Θ),

then under Pα we have

1√
δ

(
log
(
φδ,θ· [1]

)
− log

(
φ̄δ,θ· [1]

))
⇒
√
v2
θ(hθ)W (·) as δ → 0

in distribution on C([0, T ],R), where W is a Brownian motion, and v2
θ(hθ) is as defined in Theorem 3.3.

Before continuing with the proofs of the Theorem 3.3 and Corollary 3.4, we make some remarks related

to the conditions that appear in the statement of the CLT.

Remark 6. The orthonormal basis of eigenfunctions that was assumed in Condition 3.2 is enough to
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ensure that the variance v2
θ(hθ) <∞. Indeed, by Parseval’s identity we have

v2
θ(hθ) =

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2
λθi + λθj

≤ 1

2λθ1

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2

=
1

2λθ1

( ∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2
)2

=
1

2λθ1

(∫
X
|hθ(x)|2µθ(dx)

)2

=
‖hθ‖4L2(X ,µθ)

2λθ1
<

C4
h

2λθ1
<∞ ,

where Ch is the constant from Condition 3.2. Finiteness of u2
θ(hθ) follows from equation (3.22) in the proof

of Theorem 3.3.

Remark 7. (Absolutely Summable hθ). The function hθ(x) is said to be an absolutely summable

function if

∞∑
i=0

|
〈
hθ, ψ

θ
i

〉
θ
| <∞ .

Absolute summability is sufficient for Corollary 3.4 to hold. Indeed, notice that

∞∑
i,j=1

|
〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ
|

(
1

λθi
+

1

λθj

)
≤ 2

λθ1

( ∞∑
i=1

|
〈
hθ, ψ

θ
i

〉
θ
|

)2

.

A similar treatment applies to the more general summability constraint that appears in Theorem 3.3. For

more on functions whose eigen-coefficients decay fast enough to ensure absolute convergence, see the condi-

tions/examples given in [Boyd, 2000, Boyd, 1984].

Remark 8. (Converging Initial Distributions). Corollary 3.4 could be generalized to the case where

the initial distribution depends on δ and converges to the invariant distribution. That is, assuming a priori

the limit

πδ,θ0 [f ]→ f̄θ as δ → 0, ∀θ ∈ Θ ,∀f ∈ Aθη ,

then one expects that the same path-wise limit remains as stated in the corollary. However, generalization of

the proofs in this paper will require verification that the initial filters πδ,θ0 satisfy equation (3.12) and allow

for the limit to pass into the sum in equation (3.22).

Remark 9. We could also combine Theorem 3.3 and Corollary 3.4 by writing

1√
δ

(
log
(
φδ,θ· [1]

)
− log

(
φ̄δ,θ· [1]

)
−
√
δR1,δ
·

)
⇒
√
v2
θ(hθ)W (·) as δ → 0

in C([0, T ],R), where R1,δ
t is given by equation (3.16) in the proof of Theorem 3.3.

Proof. [Proof of Theorem 3.3] The proof of this theorem involves showing that (†) and (∗∗) from equation

(3.11) converge to zero in probability uniformly in t ∈ [0, T ], and then showing that (∗) converges weakly to

the appropriate normal distribution. Then, the result follows by Slutzky’s theorem (see [Billingsley, 1968]).

First we consider the term (†). By Lemma B.3 we have that there exists a constant C <∞ such that

sup
δ∈(0,1)

Eα sup
t∈[0,T ]

∫ t

0

[
1

δ

∣∣∣πδ,θs [h̃θ]
∣∣∣2] ds ≤ sup

δ∈(0,1)

Eα
∫ T

0

[
1

δ

∣∣∣πδ,θs [h̃θ]
∣∣∣2] ds < C
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Therefore, the conclusion

lim
δ↓0

Eα
1

2
√
δ

sup
t∈[0,T ]

∫ t

0

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds = 0

follows, implying the claimed convergence of the term (†) in Pα-probability, uniformly in t ∈ [0, T ]. Conver-

gence to zero in Pα-probability of the (∗∗) term follows by Lemma B.5.

Now we turn our attention toward (∗), and define the integrated process,

Iδt
.
=

∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
dνδ,αs ,

which is a Pα martingale. Since hθ is bounded, we clearly have that h̃θ ∈ L2(X , µθ) and hence, we have the

representation

h̃θ(x) =

∞∑
i=0

〈
h̃θ, ψ

θ
i

〉
θ
ψθi (x) =

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ
ψθi (x).

Thus, we get

1√
δ
πδ,θs [h̃θ] =

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ
πδ,θs [ψθi ] (3.14)

From this and equation (3.10), it follows that

1√
δ
πδ,θs [h̃θ] =

1√
δ

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ
e−

λθi s

δ πθ0 [ψθi ]

+
1√
δ

∫ s

0

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ
e−

λθi (s−ρ)
δ

(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)
dνδ,θρ

+

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
i

〉
θ√

δ

∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [hθ]− πδ,αρ [hα]

)
dρ

+
∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
i

〉
θ√

δ

∫ s

0

e−
λθi (s−ρ)

δ dνδ,αρ (3.15)

Hence, we have

Iδt =

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ
πθ0 [ψθi ]

1√
δ

∫ t

0

e−
λθi s

δ dνδ,αs

+

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)
dνδ,θρ

]
dνδ,αs

+

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
i

〉
θ√

δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [hθ]− πδ,αρ [hα]

)
dρ

]
dνδ,αs

+

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
i

〉
θ√

δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ dνδ,αρ

]
dνδ,αs

= R1,δ
t +R2,δ

t +R3,δ
t +R4,δ

t (3.16)
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where Rj,δt for j = 1, 2, 3, 4 are defined by the four lines in (3.16). We treat each of the Rj,δt terms separately.

By Lemmas B.6 and B.7, we have that

lim
δ↓0

{
Eα sup

t∈[0,T ]

∣∣∣R2,δ
t

∣∣∣2 + Eα sup
t∈[0,T ]

∣∣∣R3,δ
t

∣∣∣2} = 0.

Thus, we have established that uniformly in t ∈ [0, T ]

Iδt − (R1,δ
t +R4,δ

t )→ 0, in Pα probability as δ ↓ 0 (3.17)

It remains to treat the first and the last term, i.e., the term R1,δ
t and the term R4,δ

t . Recall that

R1,δ
t +R4,δ

t =

∫ t

0

( ∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ
e−

λθi s

δ πθ0 [ψθi ] +

∞∑
i=1

〈
hθ, ψ

θ
i

〉2
θ

1√
δ

∫ s

0

e−
λθi (s−ρ)

δ dνδ,αρ

)
dνδ,αs . (3.18)

The solution to the linear SDE

Ξδ,it = −λ
θ
i

δ

∫ t

0

Ξδ,is ds+
1√
δ
νδ,αt (3.19)

is simply

Ξδ,it =
1√
δ

∫ t

0

e−
λθi (t−s)

δ dνδ,αs (3.20)

So, by the martingale representation theorem, there is an appropriate Wiener process W such that we have

in distribution (see Theorem 4.6 on page 174 [Karatzas and Shreve, 1991])

R1,δ
t +R4,δ

t =

∫ t

0

( ∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ
e−

λθi s

δ πθ0 [ψθi ] +

∞∑
i=1

〈
hθ, ψ

θ
i

〉2
θ

Ξδ,is

)
dνδ,αs

=W

∫ t

0

( ∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ
e−

λθi s

δ πθ0 [ψθi ] +

∞∑
i=1

〈
hθ, ψ

θ
i

〉2
θ

Ξδ,is

)2

ds


=W

∫ t

0

 ∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

1

δ
e−

(λθi+λθj)s
δ πθ0 [ψθi ]πθ0 [ψθj ] +

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2 Ξδ,is Ξδ,js

+2

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

∣∣∣〈hθ, ψθj 〉θ∣∣∣2 1√
δ
e−

λθi s

δ πθ0 [ψθi ]Ξδ,js

 ds


=W

 ∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

λθi + λθj
πθ0 [ψθi ]πθ0 [ψθj ]

(
1− e−

(λθi+λθj)t
δ

)
+

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2 ∫ t

0

Ξδ,is Ξδ,js ds

+2

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

∣∣∣〈hθ, ψθj 〉θ∣∣∣2 πθ0 [ψθi ]
1√
δ

∫ t

0

e−
λθi s

δ Ξδ,js ds


=W

(
J1,δ
t + J2,δ

t + J3,δ
t

)
, (3.21)

where J`,δt is the `th term in the variance of W(·). So in order to find where R1,δ
t + R4,δ

t converges to in
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distribution, we need to find the limit in probability of J1,δ
t + J2,δ

t + J3,δ
t . For each fixed t ∈ (0, T ] we have

lim
δ↓0

J1,δ
t = lim

δ↓0

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

λθi + λθj
πθ0 [ψθi ]πθ0 [ψθj ]

(
1− e−

(λθi+λθj)t
δ

)

=

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

λθi + λθj
πθ0 [ψθi ]πθ0 [ψθj ] = u2

θ(hθ) . (3.22)

For J2,δ
t we use ergodicity of the pair (Ξδ,it ,Ξ

δ,j
t ). Clearly, for any i ≥ 1, Ξδ,it is ergodic (it is a one-

dimensional Ornstein-Uhlenbeck process). Also, one can check the Fokker-Planck equation for the pair

(Ξδ,it ,Ξ
δ,j
t ) to see that for λθi 6= λθj , (Ξδ,it ,Ξ

δ,j
t ) =d (Ξ1,i

t/δ,Ξ
1,j
t/δ) is jointly Gaussian and ergodic, and for every

t ∈ [0, T ] converges as δ ↓ 0 in distribution to a pair of jointly Gaussian random variables (Zi, Zj) with mean

zero and invertible covariance matrix. Thus, by the ergodic theorem we have for every t ≥ 0

lim
δ↓0

E
∣∣∣∣∫ t

0

Ξδ,is Ξδ,js ds− tβi,j
∣∣∣∣ = lim

δ↓0
E

∣∣∣∣∣δ
∫ t/δ

0

Ξi,1s Ξj,1s ds− tβi,j
∣∣∣∣∣ = 0 (3.23)

where βi,j = E[ZiZj ] = limδ↓0 E
[
Ξδ,it Ξδ,jt

]
= 1

λθi+λθj
. Since by assumption we have v2

θ(hθ) < ∞, we have for

every t ≥ 0

lim
δ↓0

J2,δ
t = t v2

θ(hθ), in probability as δ ↓ 0 . (3.24)

For similar reasons, we also obtain that for every t ≥ 0

lim
δ↓0

J3,δ
t = 0, in probability as δ ↓ 0 . (3.25)

Hence, we get that for every fixed t ∈ (0, T ]

R1,δ
t +R4,δ

t ⇒W
(
u2
θ(hθ)1[t>0] + tv2

θ(hθ)
)

(3.26)

as δ → 0, which then implies that for every fixed t ∈ (0, T ]

Iδt ⇒W
(
u2
θ(hθ) + tv2

θ(hθ)
)

(3.27)

as δ → 0.

Proof. [Proof of Corollary 3.4] The proof of the CLT for paths requires identification of the weak limit

of Iδ· , which we do using the martingale central limit theorem that is stated in Theorem 1.4 on page 339

of [Ethier and Kurtz, 1986]. In particular, the process Iδt is a martingale and takes values in the space

C([0, T ];R) with probability one, so it follows that

lim
δ↓0

Eα

[
sup
t∈[0,T ]

∣∣Iδt − Iδt−∣∣
]

= 0 . (3.28)

Given (3.28), if the quadratic variation of Iδt converges to a constant multiple of t for each t ∈ [0, T ], then the

martingale CLT says that Iδ· converges weakly to a Brownian motion multiplied by the limiting quadratic

variation.
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Convergence of the quadratic variation was shown in the proof of Theorem 3.3 by showing that terms

J1,δ
t , J2,δ

t , and J3,δ
t converge in probability as δ → 0. Indeed, if X0 follows the invariant distribution, then

πθ0 [ψθi ] = 0 and C(ψi, T, θ) = 1 for all i ∈ N,. This means that

Ci,j(T, θ) =
2

λθi
+

2

λθj

and that the terms J1,δ
t = J3,δ

t = 0 in the proof of Theorem 3.3. Hence, the quadratic variation of Iδt

converges to tvθ(hθ) in Pα-probability for all t ∈ [0, T ], and so we get that in distribution

Iδ· ⇒
√
v2
θ(hθ)W(·) under Pα . (3.29)

The remaining terms (∗∗) and (†) from equation (3.11) were shown in the proof of Theorem 3.3 to go to

zero in Pα-probability uniformly for all t ∈ [0, T ], and therefore they also (both) converge pathwise to zero

in probability. Hence, all three terms in equation (3.11) converge pathwise, two of which in probability to

zero, and the other weakly to a
√
v2
θ(hθ)W(·). Therefore, by Slutzky’s theorem the sum of all three terms

converges weakly to
√
v2
θ(hθ)W(·).

4. On Statistical Inference. In Subsection 3.1, and in particular in Corollary 3.2, we proved that the

likelihood function φδ,θT [1] is close in probability to the reduced likelihood φ̄δ,θT [1] when δ is small. In this

section, we use these results to do statistical inference for the unknown true parameter α ∈ Θ based on the

MLE of the log-likelihood function.

Corollary 3.2 suggests that for parameter estimation, we can approximate the log-likelihood

ρδT (θ) = log φδ,θT [1] = logE∗θ
[
Zδ,θT

∣∣∣YδT ] (4.1)

by the ‘reduced’ log-likelihood

ρ̄δT (θ) = log φ̄δ,θT [1] = logE∗θ
[
Z̄δ,θT

∣∣∣YδT ] = h̄θY
δ
T −

1

2
|h̄θ|2T. (4.2)

Clearly, ρ̄δT (θ) is of reduced dimension and easier to work with, as long as one can compute or approximate the

invariant measure of the fast dynamics and thus compute or approximate h̄θ. Based on the full log-likelihood

(4.1), one would need to compute ρδT (θ) and thus rely on methods such as particle filters or sequential Monte

Carlo (e.g., Chapter 9 of [Bain and Crisan, 2009]). However, such methods can be computational expensive

due to high-dimensionality issues.

With this mind, we prove that the MLE based on (4.2) is in fact, under the appropriate identifiability

condition, asymptotically consistent when the time horizon is large enough.

Condition 4.1.

i). The mapping h̄θ from Θ 7→ Rm is a one-to-one function of θ.

ii). There are constants C > 0, p ≥ 1 and q > 1, such that for any θ1, θ2 ∈ Θ,

|h̄θ1 − h̄θ2 |2p ≤ C|θ1 − θ2|q.
16



Recall the definition of MLE from equation (2.9), and let us equivalently define the reduced estimator as

θ̄δT
.
= arg max

θ∈Θ
ρ̄δT (θ). (4.3)

Continuity of ρ̄δT (·) that is ensured by Condition 4.1, together with compactness of Θ, imply that the corre-

sponding maximizer exists almost surely.

Next, we prove consistency of the reduced log-likelihood.

Theorem 4.1. Assume Conditions 2.1 and 4.1. Let α be the true parameter value. Let us denote by

Θ̄δ
T the equivalence class of maximizers of ρ̄δT (θ). The maximum likelihood estimator based on (4.2), i.e., any

θ̄δT ∈ Θ̄δ
T , is strongly consistent as first δ ↓ 0 and then T →∞, i.e., for any ε > 0

lim
T→∞

lim
δ↓0

Pα
(∣∣θ̄δT − α∣∣ > ε

)
= 0.

Proof. Let us denote

ρ̄δT (θ, α) = h̄θ

∫ T

0

hα(Xδ
s )ds+ h̄θWT −

1

2
|h̄θ|2T.

Then, we have

Eα
∣∣ρ̄δT (θ1, α)− ρ̄δT (θ2, α)

∣∣2p ≤ C|h̄θ1 − h̄θ2 |2p
(

1 + Eα
∫ T

0

|hα(Xδ
s )|2pds

)
,

≤ C|θ1 − θ2|q

where we used Condition 4.1. The constant C might change from line to line, but we do not indicate this

in the notation. Next, the ergodic theorem guarantees that the finite dimensional distributions of ρ̄δT (·, α)

converge with probability 1, as δ ↓ 0, to those of

ρ̄T (θ, α) = h̄θh̄αT + h̄θWT −
1

2
|h̄θ|2T = −1

2
|h̄θ − h̄α|2T +

1

2
|h̄α|2T + h̄θWT .

Therefore, by Theorem 12.3 in [Billingsley, 1968], we have weak convergence of the measure ρ̄δT (·, α) to that

of ρ̄T (·, α). Hence, we have obtained (in a similar manner to Theorem 2.25 on page 161 of [Kutoyants, 2004])

lim
δ↓0

Pα
(∣∣θ̄δT − α∣∣ > ε

)
= lim

δ↓0
Pα

(
sup
|θ−α|>ε

1

T
ρ̄δT (θ, α) > sup

|θ−α|≤ε

1

T
ρ̄δT (θ, α)

)

= Pα

(
sup
|θ−α|>ε

1

T
ρ̄T (θ, α) > sup

|θ−α|≤ε

1

T
ρ̄T (θ, α)

)

Hence, if we now define ¯̄ρ(θ, α) = − 1
2 |h̄θ − h̄α|

2 + 1
2 |h̄α|

2, we then get

lim
T→∞

lim
δ↓0

Pα
(∣∣θ̄δT − α∣∣ > ε

)
= 1[sup|θ−α|>ε ¯̄ρ(θ,α)>sup|θ−α|≤ε ¯̄ρ(θ,α)] = 0 ,

where the last computation used the fact that ¯̄ρ(θ, α) has a unique maximum at θ = α, which follows from

part i) of Condition 4.1. With this, we conclude the proof of the theorem.

17



Solving the equation ∂
∂θ ρ̄

δ
T (θ) = 0 for θ ∈ Θ, we define θ̃δT to be the solution (if it exists) to

h̄θ =
1

T
Y δT . (4.4)

It is clear that (4.3) and (4.4) are not equivalent; (4.3) contains all local minima and local maxima of ρ̄δT (θ)

which may be more than one. Also equation (4.4) may not even have a solution in Θ with positive probability.

For example, letting θ̃δT be a solution to (4.4) and assuming θ ∈ (θ`, θu), then

θ̄δT = θ̃δT1[{θ̃δT∈(θ`,θu)}] + θ`1[θ̃δT≤θ`}]
+ θu1[{θ̃δT≥θu].

By Theorem 4.1, and based on smoothness of h̄θ as a function of θ, asymptotic normality of the MLE

corresponding to the reduced log-likelihood holds.

Theorem 4.2. Assume Conditions 2.1, 4.1 and that ˙̄hθ
.
= ∂h̄θ

∂θ is continuous and for every θ ∈ Rd the

matrix ˙̄h∗θ
˙̄hθ is positive definite. The maximum likelihood estimator based on (4.2) is asymptotically normal

under Pα, i.e.

√
T
(
θ̄δT − α

)
⇒ N

(
0,
(

˙̄h∗α
˙̄hα

)−1
)

first as δ ↓ 0 and then T →∞. (4.5)

Proof. The proof is similar to that of Proposition 1.34 of [Kutoyants, 2004], even though there are no

multiscale effects there. Below, we present the proof, emphasizing the differences due to the multiscale aspect

of the present problem. Based on (4.4) for θ = θ̄δT we write

h̄α +
(
θ̄δT − α

) ˙̄hα∗ =
1

T
Y δT

where |α∗ − α| ≤ |θ̄δT − α|. Rearranging the latter expression we get

√
T
(
θ̄δT − α

)
=
√
T

[
1

T
Y δT − h̄α

](
˙̄hα∗
)−1

.

Now under the measure Pα, we have that Y δT =
∫ T

0
hα(Xδ

s )ds + WT . Hence, we can continue the latter

expression as

√
T
(
θ̄δT − α

)
=
√
T

[
1

T

∫ T

0

hα(Xδ
s )ds− h̄α

](
˙̄hα∗
)−1

+

[
1√
T
WT

](
˙̄hα∗
)−1

=
√
T

[
1

T/δ

∫ T/δ

0

hα(X1
s )ds− h̄α

](
˙̄hα∗
)−1

+

[
1√
T
WT

](
˙̄hα∗
)−1

. (4.6)

where we also used that Xδ
· = X1

·/δ in distribution. By taking δ ↓ 0 we have by the L1 ergodic theorem that

lim
δ↓0

E

∣∣∣∣∣ 1

T/δ

∫ T/δ

0

hα(X1
s )ds− h̄α

∣∣∣∣∣ = 0 for any T ∈ (0,∞).

Since |α∗ − α| ≤ |θ̄δT − α| we can apply the consistency of Theorem 4.1 to get

lim
T→∞

lim
δ↓0

Pα (|α∗ − α| > ε) ≤ lim
T→∞

lim
δ↓0

Pα
(∣∣θ̄δT − α∣∣ > ε

)
= 0 for any ε > 0,
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and hence by continuity we have ˙̄hα∗ → ˙̄hα in probability as δ ↓ 0 and then T → ∞. Therefore, by the

positive definiteness of ˙̄hα we have the limit

√
T

[
1

T/δ

∫ T/δ

0

hα(X1
s )ds− h̄α

](
˙̄hα∗
)−1

→ 0 in probability as δ ↓ 0 and then T →∞.

For similar reasons, Slutsky’s theorem implies[
1√
T
WT

](
˙̄hα∗
)−1

⇒ N

(
0,
(

˙̄h∗α
˙̄hα

)−1
)

first as δ ↓ 0 and then T →∞.

Finally, using Slutsky’s theorem on the combined expression in (4.6) yields the statement of the theorem.

5. Simulation Example. In this section, we present a simulation example, illustrating the theoretical

findings. As an example, we consider the parameter space Θ ⊂ R, and take the true parameter value to be

α = 1. We consider the model

dXδ
t =

1

δ

(
θ −Xδ

t

)
dt+

√
2

δ
dBt

dY δt = max(Xδ
t , θ)dt+ dWt , (5.1)

for t ≤ T = 5 and δ = .01. By Theorem 2.9 of [Karatzas and Shreve, 1991], there exists a unique strong

solutions to the SDE for (Xδ, Y δ). For the purposes of the numerical example, we assume that the initial

distribution of X is its invariant law. If we run the system 2,000 times and each time compute θ̄δt , we get

the histogram shown in Figure 5.1. For these trials, the MLE has empirical error of .3180, which is close

to the 1√
T

= .3162 that is the standard error predicted by equation (4.5) in the CLT of Theorem 4.2 with

h̄θ = θ + 1
2
√
π

and ˙̄hθ = 1.

To show the effect of Theorem 3.3, we compare the full log-likelihood to the reduced log-likelihood. The

generator of the Ornstein-Uhlenbeck process in (5.1) has a discrete set of eigenvalues such that λθi = −i for

i = 0, 1, 2, 3, . . . for any θ ∈ R, and admits an orthonormal basis that is given (up to a normalizing constant)

by the Hermite polynomials:

ψθi (x) =
1

Ci
Hi(x− θ) =

(−1)i

Ci
e

(x−θ)2
2

di

dxi
e−

(x−θ)2
2

where ψ is an eigenfunction as defined in Section 2.2, and Hi is the ith (probabilist) Hermite polynomial

(see [Abramowitz and Stegun, 1965]) and Ci
.
=
√
i! is a normalizing constant. The eigen-coefficients of the

function hθ(x) = max(x, θ) are computed as follows:

〈
hθ, ψ

θ
i

〉
θ

=
1√

2πCi

∫ ∞
−∞

max(x, θ)Hi(x− θ)e−
(x−θ)2

2 dx

=
1√

2πCi

∫ ∞
−∞

(θ + max(x− θ, 0))Hi(x− θ)e−
(x−θ)2

2 dx

=
1√

2πCi

∫ ∞
−∞

(θ + max(u, 0))Hi(u)e−
u2

2 dx

= θ · 1[i=0] +
1√

2πCi

∫ ∞
0

uHi(u)e−
u2

2 dx ,
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Eigen-Coefficients for hθ(x) = max(x, θ).
θ i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 v2(hθ)
.5 0.8989 0.5000 0.2821 0 -0.0814 0 0.0446 .04723
1 1.3989 0.5000 0.2821 0 -0.0814 0 0.0446 .04723

1.5 1.8989 0.5000 0.2821 0 -0.0814 0 0.0446 .04723

Table 5.1
The eigen-coefficients for hθ(x) = max(x, θ) using the (normalized) Hermite polynomials. The limiting variance as pre-

dicted by Theorem 3.3 is given the last column, and is well-approximated by the first 15 to 20 basis elements. For this example,
changes in θ only affect the first eigenmode.

and so only the zero order term depends on θ (the last computation used (2.5)). The eigen-coefficients are

given in Table 5.1. There is relatively fast decay among these coefficients, and hence, the limiting variance

function v2(θ) from Theorem 3.3 can be well-approximated by the first 15 to 20 basis elements.

The simulations and the analysis that follow demonstrate two things:

• On one hand, ρδt (θ) needs to be approximated based on methods such as Monte Carlo. As δ gets

smaller one needs more samples in order to compute ρδt (θ) accurately .

• On the other hand, the computation of ρ̄δt (θ) is straightforward with no Monte Carlo errors. Theorem

3.3 quantifies the deviation of ρ̄δt (θ) from ρδt (θ).

To compute ρδt (θ) we use Sequential Monte Carlo (SMC). Namely, we take independent samples (Xδ,`)N`=1

for some N <∞ where each Xδ,` =d X
δ, and our full log-likelihood is approximated as

ρδt (θ) ≈ log

(
1

N

N∑
`=1

e−
1
2

∫ t
0
h2
θ(Xδ,`s )ds+

∫ t
0
hθ(Xδ,`s )dY δs

)
.

Estimation using SMC samples will have error that is of order 1/
√
N , and with an asymptotically normal

distribution (see [Del Moral et al., 2001, Cappé et al., 2005])

√
N

(
log

(
1

N

N∑
`=1

e−
1
2

∫ t
0
h2
θ(Xδ,`s )ds+

∫ t
0
hθ(Xδ,`s )dY δs

)
− ρδt (θ)

)
⇒ Z(Y δ)

as N →∞, where Z(Y δ) is a normal random variable whose variance depends on the data Y δ.

In Figure 5.2 we see the histograms and fitted normal distributions obtained by looking at 1√
t

(
ρδt (θ)− ρ̄δt (θ)

)
.

The solid red line is the density suggested by the CLT of Theorem 3.3, namely a normal density with mean

zero and variance δv2(θ), and the dashed green line is a Gaussian density with mean zero and the empirical

standard deviation. The Kolmogorov-Smirnoff test does not reject any of the empirical histogram fits to the

green line (at the 99.9% confidence level), and the test rejects the histogram fits to the red lines for low

confidence values and for different parameters. Heuristically, the difference in these standard errors should
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Statistics for Simulations of 1√
t

(
ρδt (θ)− ρ̄δt (θ)

)
with δ = .01.

θ
√
δv2(θ) empirical std-err. empirical std-err.−

√
δv2(θ)

.5 .02174 .0346 .0128
1 .02174 .0322 .0105

1.5 .02174 .0354 .0137

Table 5.2
For the model in (5.1), 300 simulations of the quantity 1√

t

(
ρδt (θ) − ρ̄δt (θ)

)
computed with N = 2, 000, this table shows the

standard error predicted by Theorem 3.3, the empirical standard error, and the difference between the two. It turns out that
1√
N

= 1√
2,000

= .0224 which is of the same order as the entries in the 4th column, and so we conclude that the green line in

Figure 5.2 has extra variance that is due to the SMC sampling error.

be O(1/
√
N),

empirical standard error =

√√√√var

(
log

(
1

N

N∑
`=1

e−
1
2

∫ t
0
h2
θ(Xδ,`s )ds+

∫ t
0
hθ(Xδ,`s )dY δs

)
− ρ̄δt (θ)

)

≤

√√√√var

(
log

(
1

N

N∑
`=1

e−
1
2

∫ t
0
h2
θ(Xδ,`s )ds+

∫ t
0
hθ(Xδ,`s )dY δs

)
− ρδt (θ)

)

+
√
var

(
ρδt (θ)− ρ̄δt (θ)

)
' O

(
1√
N

)
+
√
δv2(θ) .

Indeed, from Table 5.2 we see that the difference between the standard error of the CLT of Theorem 3.3 and

the empirical standard error is of order 1/
√
N , which indicates the strong possibility that the aforementioned

error due to approximation via SMC is significant when estimating the log-likelihood.

Figure 5.2 indicates the following: not only is the reduced estimate of the log-likelihood close to the full

likelihood, but it might be a better estimate than a Monte Carlo approximation of the full log-likelihood.

The enlarged Monte Carlo error in the computation of ρδt (θ) can be seen in Figure 5.3, which is the same

experiment, except with δ = .001 (i.e. the same number of particles at N = 2, 000). In Figure 5.3 it is

important to notice how the Monte Carlo error is a significantly greater proportion of the total empirical

error. If we want Figure 5.3 to look similar to Figure 5.2, then we would need to increase N by a factor of

10. Such an increase in the number of particles would significantly increase the computation time. Hence,

the reduced filter outperforms the direct Monte Carlo filter for δ � 1, which is a motivation for this paper.

6. Conclusions & Future Work. This paper studies parameter estimation with partially observed

diffusions of models with multiple time scales. This problem is primarily an application of ergodic theory

to nonlinear filtering. We prove convergence in probability of the nonlinear filter and of the conditional (on

the observations) log-likelihood. Furthermore, we prove a central limit theorem for the log-likelihood. These

results justify the use of a log-likelihood of reduced dimension for the purposes of parameter estimation, which

is simpler to implement and has faster runtime in computations. Consistency and asymptotic normality for

the MLE of the reduced log-likelihood is also obtained, and simulation studies are presented to show how the

reduced log-likelihood can outperform a direct Monte Carlo filter when δ � 1.
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Fig. 5.1. The empirical distribution of the reduced estimator θ̄δt , for which the asymptotic distribution is close to Gaussian.
We run the system 2,000 times and each time compute θ̄δt . For these trials, the MLE has empirical error of .3180, which is
close to the 1√

T
= .3162 that is the standard error predicted by equation (4.5) in the CLT of Theorem 4.2 with h̄θ = θ + 1

2
√
π

and ˙̄hθ = 1

It is plausible that some of the results presented in this paper can be generalized. For instance, it is

possible that the CLT can be proven with the removal of the assumption of hθ being bounded, which is also

supported by the simulation example of Section 5. Regarding the generalization of Theorem 3.3, it may be

possible to prove a version of the theorem using generalized spectral theory rather than assuming a discrete

spectrum with orthonormal eigenfunctions, but modifications to the techniques developed in this paper will

be needed.

Appendix A. Proof of Theorem 3.1.

The proof of Theorem 3.1 follows by the results of [Imkeller et al., 2013], see also [Park et al., 2008,

Park et al., 2011, Park et al., 2010, Imkeller et al., 2013] after we adjust for the parameter mismatch. In

particular, the main difference that Theorem 3.1 has when compared to the previous works is that under

the measure parameterized by the true parameter value (i.e. the measure under which the observations are

made) the filters will converge for any parameter value. Moreover, we also need to prove that the convergence

of the filters is for test functions in the space the space Aθη, whereas the results in [Imkeller et al., 2013] use

bounded and smooth test functions.

Lemma A.1. Let us consider f ∈ C4
b (X ) and assume Conditions 2.1 and 3.1. For any θ, α ∈ Θ, we have

uniformly in t ∈ [0, T ]

Eα
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣→ 0 as δ → 0 .
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Fig. 5.2. Histograms of the quantity 1√
t

(
ρδt (θ) − ρ̄δt (θ)

)
for θ = .5, 1, 1.5 with the true parameter being α = 1. The solid

red line is the limiting Gaussian distribution of Theorem 3.3, and the dashed green line is a Gaussian fit to the histogram. The
green line has a slightly greater standard deviation because ρδt (θ) needs to be approximated with Monte Carlo sampling and a
discrete time scheme, and hence, the empirical distribution has some additional variance. However, the Kolmogorov-Smirnoff
test does not reject the hypothesis that the histogram is a Gaussian distribution.

Proof. By Hölder inequality, for p, q < 0 with 1
p + 1

q = 1 we have

Eα
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣ = E∗α
[
Zδ,αt

∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]
∣∣∣]

≤
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q (

E∗α
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣p)1/p

=
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q (

E∗θ
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣p)1/p

≤
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/p

(
Eθ
∣∣∣Zδ,θt ∣∣∣−q)1/(pq)(

Eθ
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣p2)1/p2

which goes to zero as δ ↓ 0 by Condition 3.1 and Lemma 6.6 in [Imkeller et al., 2013]. The third line, i.e.,

E∗α
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣p = E∗θ
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣p, follows because both φδ,θt and φ̄δ,θt are functionals of Y δ· (and

no other random variable), and Y δ is a Brownian motion under both measures P∗α and P∗θ. This concludes

the proof of the lemma.

We conclude with the proof of Theorem 3.1.

Proof. [Proof of Theorem 3.1] Lemma A.1 implies convergence in probability:

Pα
(∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣ > ε
)
≤ 1

ε
Eα
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣→ 0 ∀ε > 0

for bounded f . Let us now prove the second part of the theorem. We prove it first for f ∈ C4
b (X ). Then, we

prove it under the assumption that there exists η > 0 such that f ∈ Aθη. So, let us assume that f ∈ C4
b (X ).

It is clear that by ergodicity we have

lim
δ↓0

∣∣∣π̄δ,θt [f ]− π̄θt [f ]
∣∣∣ = 0 in Pα probability ,

23



Fig. 5.3. The same histograms as those in Figure 5.2, except for the experiment run with δ = .001. Notice how the Monte
Carlo error is a greater proportion of the total variance. This illustrates how for δ small, the reduced likelihood can be more
accurate than a Monte Carlo approximation.

so it remains to prove that

lim
δ↓0

Eα
(
πδ,θt [f ]− π̄δ,θt [f ]

)2

= 0 .

For this purpose, Hölder inequality gives

Eα
∣∣∣πδ,θt [f ]− π̄δ,θt [f ]

∣∣∣2 = E∗α
[
Zδ,αt

∣∣∣πδ,θt [f ]− π̄δ,θt [f ]
∣∣∣2]

≤
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q

(
E∗α
∣∣∣πδ,θt [f ]− π̄δ,θt [f ]

∣∣∣2p)1/p

≤
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q

(
E∗θ
∣∣∣πδ,θt [f ]− π̄δ,θt [f ]

∣∣∣2p)1/p

≤
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q

(
Eθ
∣∣∣Zδ,θt ∣∣∣−q)1/(pq)(

Eθ
∣∣∣πδ,θt [f ]− π̄δ,θt [f ]

∣∣∣2p2)1/p2

which goes to zero as δ ↓ 0 by Condition 3.1 and Corollary 6.9 in [Imkeller et al., 2013]. The third line, i.e.,

E∗α
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣2p = E∗θ
∣∣∣φδ,θt [f ]− φ̄δ,θt [f ]

∣∣∣2p, follows because both φδ,θt and φ̄δ,θt are functionals of Y δ· (and

no other random variable), and Y δ is a Brownian motion under both measures P∗α and P∗θ. This completes

the proof for f ∈ C4
b (X ).

Let us complete the proof of the theorem by assuming that there exists an η > 0 such that f ∈ Aθη. For

n ∈ N, define

un(x) =

{
x , |x| ≤ n
n sign(x) , |x| > n

24



and set fn(x) = un(f(x)). Analogously define

πδ,θt [fn]
.
= Eθ

[
fn(Xδ

t )
∣∣∣Yδt ] , f̄n,θ =

∫
X
fn(x)µθ(dx).

Since fn is bounded, we already know that limδ↓0 Eα
∣∣∣πδ,θt [fn]− π̄θt [fn]

∣∣∣2 = 0. So, it is enough to prove that

lim
n→∞

lim sup
δ↓0

Eα
∣∣∣πδ,θt [f ]− πδ,θt [fn]

∣∣∣2 = 0

and

lim
n→∞

∣∣π̄θt [f ]− π̄θt [fn]
∣∣2 = 0 .

Both of these statements follow from the observation

|f(x)− fn(x)|2p
2

≤ |f(x)|2p
2

1[|f(x)|>n] ≤ |f(x)|2+η
1[|f(x)|>n] ≤ n−η|f(x)|2+η

In particular, we have

lim
n→∞

lim sup
δ↓0

Eα
(
πδ,θt [f ]− πδ,θt [fn]

)2

= lim
n→∞

lim sup
δ↓0

Eα
(
Eθ
[
f(Xδ

t )− fn(Xδ
t )
∣∣∣Yδt ])2

≤ lim
n→∞

lim sup
δ↓0

EαEθ
[∣∣f(Xδ

t )− fn(Xδ
t )
∣∣2 ∣∣∣Yδt ]

≤ lim
n→∞

lim sup
δ↓0

(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q

(
Eθ
∣∣∣Zδ,θt ∣∣∣−q)1/(pq)(

Eθ
∣∣f(Xδ

t )− fn(Xδ
t )
∣∣2p2)1/p2

≤ 2 lim
n→∞

lim sup
δ↓0

n−η/p
2
(
E∗α
∣∣∣Zδ,αt ∣∣∣q)1/q

(
Eθ
∣∣∣Zδ,θt ∣∣∣−q)1/(pq) (

Eθ
∣∣f(Xδ

t )
∣∣2+η

)1/p2

= 0 (A.1)

and clearly limn→∞
(
π̄θt [f ]− π̄θt [fn]

)2
= limn→∞

(
f̄θ − f̄n,θ

)2
= 0. This concludes the proof of the theorem.

Appendix B. Some Convergence Results for the Posterior Expectation of the Eigenfunc-

tions. In this subsection, we collect a number of results associated with the asymtpotic behavior of the

posterior for the eigenfunctions and their correlation as δ ↓ 0. Recall that α denotes the true parameter

value.

Lemma B.1. Suppose hθ is uniformly bounded over θ by a constant Ch <∞ such that supθ∈Θ ‖hθ‖∞ ≤
Ch. Then there exists another constant Cµ <∞ such that

sup
α,θ∈Θ

E∗θ

(φδ,αt [1]

φδ,θt [1]

)2
 ≤ Cµ ,

and for any f ∈ Aηθ with f ≥ 0 we have

Eαπδ,θt [f ] ≤
Eθ
[
f(Xδ

t )
]

2

(
etC

2
h + Cµ

)
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for any θ, α ∈ Θ and for any t ∈ [0, T ].

Proof. From the Cauchy inequality (i.e. ab ≤ a2/2 + b2/2 for all a, b ∈ R), we have the following uniform

bound:

E∗θ

(φδ,αt [1]

φδ,θt [1]

)2
 ≤ 1

2
E∗θ
[(
φδ,αt [1]

)4
]

+
1

2
E∗θ

( 1

φδ,θt [1]

)4


≤ 1

2
E∗θ
[(
Zδ,αt

)4
]

+
1

2
E∗θ
[(
Zδ,θt

)−4
]

=
1

2
E∗θE∗θ

[(
Zδ,αt

)4 ∣∣∣(Xδ
s )s≤t

]
+

1

2
E∗θE∗θ

[(
Zδ,θt

)−4 ∣∣∣(Xδ
s )s≤t

]
=

1

2
E∗θ
[
e6

∫ t
0
|hα(Xδs )|2ds

]
+

1

2
E∗θ
[
e12

∫ t
0
|hθ(Xδs )|2ds

]
≤ e6TC2

h + e12TC2
h

2

<∞ .

This proves the first statement of the lemma with the constant being Cµ
.
= 1

2

(
e6TC2

h + e12TC2
h

)
. To prove

the lemma’s second statement, we take any f ∈ Aηθ with f ≥ 0, and proceed as follows:

Eαπδ,θt [f ] =
E∗α
[
Zδ,αt πδ,θt [f ]

]
E∗α
[
Zδ,αt

]
= E∗α

[
Zδ,αt πδ,θt [f ]

]
= E∗α

[
E∗α
[
Zδ,αt πδ,θt [f ]

∣∣∣Yδt ]]
= E∗α

[
E∗α
[
Zδ,αt

∣∣∣Yδt ]πδ,θt [f ]
]

= E∗α
[
φδ,αt [1]πδ,θt [f ]

]
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and because (Y δt )t≤T is Brownian motion under both P∗α and P∗θ, we have that the last display continues as

= E∗θ
[
φδ,αt [1]πδ,θt [f ]

]
= E∗θ

[
φδ,αt [1]

φδ,θt [1]
φδ,θt [f ]

]

= E∗θ

[
φδ,αt [1]

φδ,θt [1]
E∗θ
[
Zδ,θt f(Xδ

t )
∣∣∣Yδt ]

]

= E∗θ

[
E∗θ

[
φδ,αt [1]

φδ,θt [1]
Zδ,θt f(Xδ

t )
∣∣∣Yδt
]]

= E∗θ

[
φδ,αt [1]

φδ,θt [1]
Zδ,θt f(Xδ

t )

]

= E∗θ

[
f(Xδ

t )E∗θ

[
φδ,αt [1]

φδ,θt [1]
Zδ,θt

∣∣∣(Xδ
s )s≤t

]]

≤ 1

2
E∗θ

f(Xδ
t )E∗θ

(Zδ,θt )2

+

(
φδ,αt [1]

φδ,θt [1]

)2 ∣∣∣(Xδ
s )s≤t


=

1

2
E∗θ
[
f(Xδ

t ) exp

(∫ t

0

|hδθ(Xδ
s )|2ds

)]
+

1

2
E∗θ

f(Xδ
t )

(
φδ,αt [1]

φδ,θt [1]

)2


=
1

2
E∗θ
[
f(Xδ

t ) exp

(∫ t

0

|hδθ(Xδ
s )|2ds

)]
+

1

2
E∗θ
[
f(Xδ

t )
]
E∗θ

(φδ,αt [1]

φδ,θt [1]

)2


︸ ︷︷ ︸
≤Cµ

≤
E∗θ
[
f(Xδ

t )
]

2

(
etC

2
h + Cµ

)
.

This concludes the proof of the lemma.

Lemma B.2. Assume Conditions 2.1 and 3.2. For any s ∈ (0, T ], for any α, θ ∈ Θ, we have that there

exists a constant Ci,j(T, θ) <∞ that may depend on i, j, T, θ but does not depend on δ such that for δ small

enough

sup
i,j≥1

1

δ

∣∣Eαπδ,θs [ψθi ]πδ,θs [ψθj ]
∣∣ ≤ Ci,j(T, θ)

In addition, we also have that

lim
δ↓0

1

δ
Eα
[
πδ,θs [ψθi ]πδ,θs [ψθj ]

]
=

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

λθi + λθj
.
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Proof. Based on (3.10), we can write

1

δ
Eα
[
πδ,θs [ψθi ]πδ,θs [ψθj ]

]
=

1

δ
e−

λθi+λ
θ
j

δ sπθ0 [ψθi ]πθ0 [ψθj ]

+
1

δ

∫ s

0

Eα
{[
e−

λθi
δ (s−ρ)πδ,θρ [ψθj ]

(
πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

)
+

+e−
λθj
δ (s−ρ)πδ,θρ [ψθi ]

(
πδ,θρ [hθψ

θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

)] (
πδ,θρ [hθ]− πδ,αρ [hα]

)}
dρ

+
1

δ

∫ s

0

e−
λθi+λ

θ
j

δ (s−ρ)Eα
[(
πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

) (
πδ,θρ [hθψ

θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

)]
dρ , (B.1)

and then taking absolute values inside the integrals, applying the Cauchy inequality (ab ≤ a2/2 + b2/2 for

all a, b ∈ R) and applying Lemma B.1, we have the following bound:

1

δ
Eα
∣∣πδ,θs [ψθi ]πδ,θs [ψθj ]

∣∣
≤ 1

δ
e−

λθi+λ
θ
j

δ s
∣∣πθ0 [ψθi ]πθ0 [ψθj ]

∣∣
+

1

δ

∫ s

0

Eα
[(
e−

λθi
δ (s−ρ) ∣∣πδ,θρ [ψθj ]

∣∣ ∣∣πδ,θρ [hθψ
θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

∣∣+
+e−

λθj
δ (s−ρ) ∣∣πδ,θρ [ψθi ]

∣∣ ∣∣πδ,θρ [hθψ
θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

∣∣) ∣∣πδ,θρ [hθ]− πδ,αρ [hα]
∣∣] dρ

+
1

δ

∫ s

0

e−
λθi+λ

θ
j

δ (s−ρ)Eα
[∣∣πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

∣∣ ∣∣πδ,θρ [hθψ
θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

∣∣] dρ
≤ 1

δ
e−

λθi+λ
θ
j

δ s
∣∣πθ0 [ψθi ]πθ0 [ψθj ]

∣∣
+

1

2δ

∫ s

0

Eα
[
e−

λθi
δ (s−ρ)

[∣∣πδ,θρ [ψθj ]
∣∣2 +

∣∣πδ,θρ [hθψ
θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

∣∣2 +

+e−
λθj
δ (s−ρ) ∣∣πδ,θρ [ψθi ]

∣∣2 +
∣∣πδ,θρ [hθψ

θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

∣∣2] 2Ch

]
dρ

+
1

2δ

∫ s

0

e−
λθi+λ

θ
j

δ (s−ρ)Eα
[∣∣πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

∣∣2 +
∣∣πδ,θρ [hθψ

θ
j ]− πδ,θρ [ψθj ]πδ,θρ [hθ]

∣∣2] dρ
≤ C0

(
1

λθi + λθj

λθi + λθj
δ

e−
λθi+λ

θ
j

δ s
∣∣πθ0 [ψθi ]πθ0 [ψθj ]

∣∣ (B.2)

+
1

δ

∫ s

0

[
e−

λθi
δ (s−ρ) + e−

λθj
δ (s−ρ)

]
Eθ
[
|ψθi (Xδ

ρ)|2 + |ψθj (Xδ
ρ)|2

]
dρ

)
where C0 is a constant not dependent on δ. Recall now that by assuming Condition 3.2, for every i ∈ N we

have ψθi ∈ Aθη. This implies that there exists finite constants that may depend on i, T and θ such that

sup
δ∈(0,1),ρ∈[0,T ]

Eθ
[
|ψθi (Xδ

ρ)|2
]
≤ C(ψi, T, θ)

Noticing that

1

δ

∫ s

0

e−
λθi
δ (s−ρ)dρ =

1

λθi

(
1− e−

λθi
δ s

)
≤ 1

λθi
,
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that for δ sufficiently small
λθi+λθj
δ e−

λθi+λ
θ
j

δ s ≤ 1, and recalling Condition 3.2, it follows that the required

bound for the first statement follows with the constant

Ci,j(T, θ) = C0

(∣∣πθ0 [ψθi ]πθ0 [ψθj ]
∣∣

λθi + λθj
+ (C(ψi, T, θ) + C(ψj , T, θ))

(
1

λθi
+

1

λθj

))
(B.3)

The second statement is obtained by adding and subtracting the terms
〈
hθ, ψ

θ
i

〉
θ

and
〈
hθ, ψ

θ
j

〉
θ

in the products

of the last integral of (B.1) and then using Theorem 3.1.

Lemma B.3. Assume Conditions 2.1 and 3.2 and that
∑∞
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣Ci,j(T, θ) <∞, where

Ci,j(T, θ) is given by (B.3) in Lemma B.2. For any 0 < T <∞ and for any θ ∈ Θ, we have that there exists

a constant C <∞ that does not depend on δ and δ0 <∞ such that

sup
δ∈(0,δ0)

Eα

[
1

δ

∫ T

0

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds] < C

Proof. Recalling that

πδ,θs [h̃θ] =

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ
πδ,θs [ψθi ],

we obtain

sup
δ∈(0,δ0)

1

δ

∫ T

0

Eα
∣∣∣πδ,θs [h̃θ]

∣∣∣2 ds = sup
δ∈(0,δ0)

∫ T

0

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

1

δ
Eα
[
πδ,θs [ψθi ]πδ,θs [ψθj ]

]
ds

≤
∞∑

i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ sup
δ∈(0,δ0)

∫ T

0

1

δ

∣∣Eαπδ,θs [ψθi ]πδ,θs [ψθj ]
∣∣ ds

≤ T
∞∑

i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣Ci,j(T, θ)
<∞ ,

and so the constant is C = T
∑∞
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣Ci,j(T, θ).
Lemma B.4. Assume Conditions 2.1 and 3.2 . For any 0 < T <∞ and θ ∈ Θ we have

sup
t∈[0,T ]

Eα
∣∣∣∣ 1√
δ

∫ t

0

e−
λθi (t−s)

δ

(
πδ,θs [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θs [hθ]π

δ,θ
s [ψθi ]

)
dνδ,αs

∣∣∣∣2 → 0, as δ ↓ 0

Proof. Due to Itô isometry we have

Eα
∣∣∣∣ 1√
δ

∫ t

0

e−
λθi (t−s)

δ

(
πδ,θs [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θs [hθ]π

δ,θ
s [ψθi ]

)
dνδ,αs

∣∣∣∣2
= Eα

∣∣∣∣ 1√
δ

∫ t

0

e−
λθi (t−s)

δ

(
πδ,θs [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
−
(
πδ,θs [hθ]− h̄θ

)
πδ,θs [ψθi ]− h̄θπδ,θs [ψθi ]

)
dνδ,αs

∣∣∣∣2
≤ 3

[
1

δ

∫ t

0

e−2
λθi (t−s)

δ Eα
∣∣πδ,θs [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ

∣∣2 ds+
C2
h

δ

∫ t

0

e−2
λθi (t−s)

δ Eα
∣∣πδ,θs [ψθi ]

∣∣2 ds
+

1

δ

∫ t

0

e−2
λθi (t−s)

δ Eα
∣∣πδ,θs [hθ]− h̄θ

∣∣2 ds] . (B.4)
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Noticing that

sup
t∈[0,T ]

1

δ

∫ t

0

e−2
λθi (t−s)

δ ds = sup
t∈[0,T ]

1

λθi

(
1− e−2

λθi
δ t

)
≤ 1

λθi
.

the statement of the lemma follows by Theorem 3.1 and dominated convergence theorem to equation (B.4).

Notice that dominated convergence theorem is applicable since we can apply Lemma B.1 to the integrands

and notice that the integrands are expectations of functions in Aθη.

Lemma B.5. Assume the Conditions of Lemma B.3. For any 0 < T < ∞, and for any θ ∈ Θ we have

in Pα probability and uniformly in t ∈ [0, T ] that

∫ t

0

1√
δ

(
πδ,θs [h̃θ]

) (
πδ,θs [hθ]− πδ,αs [hα]

)
ds→ 0, as δ ↓ 0

Proof. First we notice that

πδ,θs [hθ]− πδ,αs [hα] =
(
h̄θ − h̄α

)
+
(
πδ,θs [h̃θ]− πδ,αs [h̃α]

)

Using the Cauchy inequality (ab ≤ a2/2 + b2/2 for all a, b ∈ R), this implies that

Eα sup
t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

) (
πδ,θs [hθ]− πδ,αs [hα]

)
ds

∣∣∣∣ ≤
≤
∣∣h̄θ − h̄α∣∣Eα sup

t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
ds

∣∣∣∣+ Eα sup
t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)(
πδ,θs [h̃θ]− πδ,αs [h̃α]

)
ds

∣∣∣∣
≤
∣∣h̄θ − h̄α∣∣Eα sup

t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
ds

∣∣∣∣+ Eα sup
t∈[0,T ]

∫ t

0

2√
δ

∣∣∣πδ,θs [h̃θ]
∣∣∣2 ds+ Eα sup

t∈[0,T ]

∫ t

0

1√
δ

∣∣∣πδ,αs [h̃α]
∣∣∣2 ds

≤
∣∣h̄θ − h̄α∣∣Eα sup

t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
ds

∣∣∣∣+ 3C
√
δ (B.5)

where in the last step we used the bound from Lemma B.3. Since 3C
√
δ clearly goes to zero as δ ↓ 0, it

remains to show that the first term will also go to zero as δ ↓ 0. Namely, it remains to show that

lim
δ↓0

Eα sup
t∈[0,T ]

∣∣∣∣∫ t

0

1√
δ

(
πδ,θs [h̃θ]

)
ds

∣∣∣∣ = 0.

Using similar computations as in the proof of Lemma B.3, we notice that
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Eα sup
t∈[0,T ]

∣∣∣∣ 1√
δ

∫ t

0

πδ,θs [h̃θ]ds

∣∣∣∣ ≤
∣∣∣∣∣ 1√
δ
δ

∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

λθi
πθ0 [ψθi ] sup

t∈[0,T ]

λθi
δ

∫ t

0

e−
λθi
δ sds

∣∣∣∣∣
+ Eα sup

t∈[0,T ]

∣∣∣∣∣
∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ

∫ t

0

∫ s

0

e−
λθi
δ (s−ρ) (πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

)
dνδ,αρ ds

∣∣∣∣∣
+ Eα sup

t∈[0,T ]

∣∣∣∣∣
∞∑
i=1

〈
hθ, ψ

θ
i

〉
θ

1√
δ

∫ t

0

∫ s

0

e−
λθi
δ (s−ρ) (πδ,θρ [hθψ

θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

) (
πδ,θρ [hθ]− πδ,αρ [hα]

)
dρds

∣∣∣∣∣
≤ 2
√
δ

∞∑
i=1

∣∣∣∣∣
〈
hθ, ψ

θ
i

〉
θ

λθi
πθ0 [ψθi ]

∣∣∣∣∣
+

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣ ∫ T

0

Eα
1√
δ

∣∣∣∣∫ s

0

e−
λθi
δ (s−ρ) (πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [ψθi ]πδ,θρ [hθ]

)
dνδ,αρ

∣∣∣∣ ds
+

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ
Eα sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫ s

0

e−
λθi
δ (s−ρ)dνδ,αρ ds

∣∣∣∣
+
√
δ

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣
λθi

λθi
δ

∫ T

0

∫ s

0

e−
λθi
δ (s−ρ)Eα

∣∣(πδ,θρ [hθψ
θ
i ]− πδ,θρ [ψθi ]πδ,θρ [hθ]

) (
πδ,θρ [hθ]− πδ,αρ [hα]

)∣∣ dρds
Clearly, the first term goes to zero as δ ↓ 0. Similarly, the fourth term also goes to zero as δ ↓ 0 and this

follows by Condition 3.2(i)-(iii). By Lemma B.4, the second term can also be shown to go to zero. So, it

essentially remains to treat the third term. For this purpose, we rcall that the solution to the equation (3.19),

Ξδ,it , is given by (3.20), which is normally distributed with mean zero and variance 1
2λθi

(
1− e−

λθi t

δ

)
. Hence,

the third term in question can be written as

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ
Eα sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫ s

0

e−
λθi
δ (s−ρ)dνδ,αρ ds

∣∣∣∣ =

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 Eα sup
t∈[0,T ]

∣∣∣∣∫ t

0

Ξδ,is ds

∣∣∣∣
≤
√
δ

{ ∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2
λθi

[
√
δEα sup

t∈[0,T ]

∣∣∣Ξδ,it ∣∣∣+ Eα sup
t∈[0,T ]

∣∣∣νδ,αt ∣∣∣]} ,
(B.6)

and it is easy to see that this term goes to zero as δ ↓ 0. This completes the proof of the lemma.

Lemma B.6. Assume Conditions 2.1 and 3.2 and that

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ (C(ψi, T, θ) + C(ψj , T, θ))

λθi + λθj
<∞

where C(ψi, T, θ) is a constant such that

sup
δ∈(0,1),ρ∈[0,T ]

Eθ
[
|ψθi (Xδ

ρ)|2
]
≤ C(ψi, T, θ) ,

which is statement of equation (3.12). Then, the term R2,δ
t from equation (3.16) converges to zero in mean-

square sense uniformly in t ∈ [0, T ],

lim
δ↓0

Eα sup
t∈[0,T ]

∣∣∣R2,δ
t

∣∣∣2 = 0.
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Proof. Since R2,δ
t is a martingale, by Doob’s inequality we have

Eα sup
t∈[0,T ]

∣∣∣R2,δ
t

∣∣∣2 ≤ 4Eα
[
R2,δ
T

]2
,

and it follows by the Cauchy inequality (i.e. ab ≤ a2/2 + b2/2 for any a, b ∈ R) and then Itô isometry, that

Eα
[
R2,δ
T

]2
=

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

1

δ
Eα

[∫ T

0

(∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)
dνδ,θρ

)
×

×
(∫ s

0

e−
λθj (s−ρ)

δ

(
πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

)
dνδ,θρ

)
ds

]
≤

∞∑
i,j=1

〈
hθ, ψ

θ
i

〉
θ

〈
hθ, ψ

θ
j

〉
θ

1

δ

[∫ T

0

(∫ s

0

e−
(λθi+λθj)(s−ρ)

δ Eα
(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)
×

×
(
πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

)
dρ

)
ds

]

+ |2Ch|2
∞∑

i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ 1

δ

[∫ T

0

(∫ s

0

e−
(λθi+λθj)(s−ρ)

δ Eα
∣∣πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

∣∣×
×
∣∣∣πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

∣∣∣ dρ)ds]

≤ 1 + |Ch|2

2

∞∑
i,j=1

∫ T

0

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ 1

δ

[∫ s

0

e−
(λθi+λθj)(s−ρ)

δ

(
Eα
(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)2
+

+Eα
(
πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

)2

dρ

)
ds

]
(B.7)

Now we want to apply dominated convergence theorem equation (B.7) in order to argue that the upper bound

of the last inequality goes to zero as δ ↓ 0. First of all, we notice that by Lemma B.1, we have the following

bound for the integrand∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ 1

δ

(∫ s

0

e−
(λθi+λθj)(s−ρ)

δ Eα
(
πδ,θρ [hθψ

θ
i ]−

〈
hθ, ψ

θ
i

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθi ]

)2
+

+Eα
(
πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

)2

dρ

)
≤ C0

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ 1

δ

∫ s

0

e−
(λθi+λθj)(s−ρ)

δ

[
Eθ
(∣∣ψθi (Xδ

ρ

)∣∣2 +
∣∣ψθj (Xδ

ρ

)∣∣2)] dρ (B.8)

Recall now that by assuming Condition 3.2, for every i ∈ N we have ψθi ∈ Aθη. This implies that there exists

finite constants that may depend on i, T and θ such that

sup
δ∈(0,1),ρ∈[0,T ]

Eθ
[
|ψθi (Xδ

ρ)|2
]
≤ C(ψi, T, θ) ,

Noticing that

1

δ

∫ s

0

e−
λθi+λ

θ
j

δ (s−ρ)dρ =
1

λθi + λθj

(
1− e−

λθi+λ
θ
j

δ s

)
≤ 1

λθi + λθj
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we can then continue bounding (B.8) by the term

≤ C0

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣ 1

δ

∫ s

0

e−
(λθi+λθj)(s−ρ)

δ [C(ψi, T, θ) + C(ψj , T, θ)] dρ

≤ C0


∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣

λθi + λθj
(C(ψi, T, θ) + C(ψj , T, θ))

 (B.9)

Hence, the summands in (B.7) are dominated by terms that are summable and is finite irrespective of

δ ∈ (0, 1). Secondly, by Theorem 3.1 we know that for each i ≥ 1 there is the limit

lim
δ↓0

Eα
(
πδ,θρ [hθψ

θ
j ]−

〈
hθ, ψ

θ
j

〉
θ
− πδ,θρ [hθ]π

δ,θ
ρ [ψθj ]

)2

= 0 .

Hence, by dominated convergence we have established that (B.7) goes to zero in probability, and then it

follows that

lim
δ↓0

Eα sup
t∈[0,T ]

∣∣∣R2,δ
t

∣∣∣2 = 0.

Lemma B.7. Assume the Conditions of Lemma B.3. Then, the term R3,δ
t from equation (3.16) converges

to zero in mean-square sense uniformly in t ∈ [0, T ],

lim
δ↓0

Eα sup
t∈[0,T ]

∣∣∣R3,δ
t

∣∣∣2 = 0.

Proof. We have

R3,δ
t =

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [hθ]− πδ,αρ [hα]

)
dρ

]
dνδ,αs

= (h̄θ − h̄α)

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ dρ

]
dνδ,αs

+

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [h̃θ]− πδ,αρ [h̃α]

)
dρ

]
dνδ,αs

=
√
δ(h̄θ − h̄α)

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2
λθi

∫ t

0

(
1− e−

λθi s

δ

)
dνδ,αs

+

∞∑
i=1

∣∣〈hθ, ψθi 〉θ∣∣2 1√
δ

∫ t

0

[∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [h̃θ]− πδ,αρ [h̃α]

)
dρ

]
dνδ,αs (B.10)
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By applying Doob’s inequality followed by the Cauchy inequality and then Jensen’s inequality, we have

Eα sup
t∈[0,T ]

∣∣∣R3,δ
t

∣∣∣2 ≤ δ2(h̄θ − h̄α)2
∞∑

i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2
λθi + λθj

∫ T

0

(
1− e−

λθi s

δ

)(
1− e−

λθj s

δ

)
ds

+ 2

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2 1

δ
Eα
∫ T

0

(∫ s

0

e−
λθi (s−ρ)

δ

(
πδ,θρ [h̃θ]− πδ,αρ [h̃α]

)
dρ

)
×

×
(∫ s

0

e−
λθj (s−ρ)

δ

(
πδ,θρ [h̃θ]− πδ,αρ [h̃α]

)
dρ

)
ds

≤ δ2T (h̄θ − h̄α)2
∞∑

i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2
λθi + λθj

+ 2

∞∑
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2 ∫ T

0

(∫ s

0

e−
2λθ1(s−ρ)

δ
1

δ
Eα
(
πδ,θρ [h̃θ]− πδ,αρ [h̃α]

)2

dρ

)
ds

Then, by the fact that v2
θ(hθ) <∞ and

∑∞
i,j=1

∣∣∣〈hθ, ψθi 〉θ 〈hθ, ψθj 〉θ∣∣∣2 <∞ (see Remark 6), and the uniform

bound from Lemma B.3, we obtain that

lim
δ↓0

Eα sup
t∈[0,T ]

∣∣∣R3,δ
t

∣∣∣2 = 0.

concluding the proof of the lemma.
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