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A TEMPORAL CONSISTENT MONOLITHIC APPROACH TO

FLUID-STRUCTURE INTERACTION ENABLING SINGLE FIELD

PREDICTORS

MATTHIAS MAYR† , THOMAS KLÖPPEL‡ , WOLFGANG A. WALL¶, AND MICHAEL W.

GEE†‖

Abstract. We present a monolithic approach to large-deformation fluid-structure interaction
(FSI) problems that allows for choosing fully implicit, single-step and single-stage time integration
schemes in the structure and fluid field independently, and hence is tailored to the needs of the indi-
vidual field. The independent choice of time integration schemes is achieved by temporal consistent
interpolation of the interface traction. To reduce computational costs, we introduce the possibility
of field specific predictors in both structure and fluid field. These predictors act on the single fields
only. Possible violations of the interface coupling conditions during the predictor step are dealt with
within the monolithic solution procedure.
We present full detail of such a generalized monolithic solution procedure, which is fully consistent
in its non-conforming temporal and spatial discretization. The incorporated mortar approach allows
for non-matching spatial discretizations of the fluid and solid domain at the FSI interface and is
fully integrated in the resulting monolithic system of equations. The method is applied to a variety
of numerical examples. Thereby, temporal convergence rates, the special role of essential boundary
conditions at the fluid-structure interface, and the positive effect of predictors are demonstrated and
discussed. Emphasis is put on the comparison of different time integration schemes in fluid and
structure field, for what the achieved freedom of choice of time integrators is fully exploited.

Key words. fluid-structure interaction, time integration, finite elements, dual mortar method
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1. Introduction. The interaction of fluid flow with deformable structures is of
great interest in science and engineering. Especially in the case of incompressible
fluid flow and finite deformation solid mechanics, it becomes very challenging to solve
such coupled problems computationally. This type of problem occurs frequently in
real-world physics, most notably in biomechanical or biomedical engineering.

One can distinguish between two classes of solution procedures. Solution schemes
that necessitate a sequence of single field solutions and the exchange of coupling
information between the fields are often referred to as partitioned schemes (see e.g.
[9, 25]). Stability issues are discussed in [6, 13, 20, 26]. Various acceleration techniques
have been proposed in [1, 2, 23, 24, 28].

Opposingly, monolithic procedures solve both the fluid and the structural equa-
tions simultaneously within one global system of nonlinear equations. For some chal-
lenging numerical problems like channels with flexible walls [17], thin-walled structures
in the human respiratory or hemodynamic system [22] or for balloon-type problems
like human red blood cells [21], monolithic schemes outperform partitioned proce-
dures by far in terms of computational costs or are even the only feasible schemes
to address such problems. In a monolithic framework, one looses some of the mod-
ularity of partitioned schemes but might gain great improvements in robustness and
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performance. Detailed performance analyses and comparisons have been carried out
in [18, 22]. Preconditioners based on block-triangular approximations of the Jacobian
matrix have been introduced in [17] and extended in [27]. In [14], efficient precon-
ditioners based on algebraic multigrid techniques have been developed successfully.
Further preconditioning strategies can be found in [3, 8]. Various techniques for the
coupling of fluid and structure discretizations, where nodes do not spatially coincide
at the interface, have been introduced in [4, 10, 21, 33, 34].

In opposite to space-time finite element methods, e.g. [36], we discretize in
time with finite difference based time integration schemes, namely with fully im-
plicit, single-step, and single-stage time integration schemes such as the generalized-α
method [7] in the structure field and the generalized-α [19] or the one-step-θ scheme
in the fluid field.

In this contribution, a temporally consistent monolithic solution procedure for
the interaction of incompressible fluid flow with deformable structures undergoing
large deformations is presented. We allow freedom of choice for single-step, single-
stage and fully implicit time integration schemes in the structure and fluid field such
that the respective schemes can be tailored to the needs of the individual fields.
Furthermore, individual single-field predictors are incorporated into the monolithic
system leading to savings in computational costs. The predictor framework within the
monolithic solver naturally enables inhomogeneous Dirichlet boundary conditions at
the fluid-structure interface. For spatial discretization, finite elements for both fields
are employed, whereby the interface discretizations do not need to be conforming.
Exemplarily, we realize the coupling with a mortar approach that allows for complete
condensation of Lagrange multipliers.

A key aspect of this paper is the temporal interpolation of tractions at the fluid-
structure interface in order to consistently allow for free choice of the single field
time integration schemes with non-matching time instances for the evaluation of the
individual field’s momentum equation.

The derivations start with the governing equations of all fields and the coupling
conditions. After discretization, a monolithic FSI residual is formulated and linearized
in order to demonstrate how to build and implement a monolithic solver based on
available single field codes. We discuss the discrete coupling conditions in detail with
respect to meshtying of the non-matching grids at the interface and with respect to
temporal consistent momentum equations of the fluid and structure field.

Selected numerical examples are used to demonstrate and discuss important prop-
erties of the proposed solution scheme. Through comparison to a FSI test case with
analytical solution we report optimal temporal convergence rates. Further examples
address the computational cost savings through predictors and show a thorough com-
parison of various combinations of different time integration schemes in fluid and
structure field and their effect on the overall solution of the FSI problem.

This contribution is organized as follows. In §2, the mechanical problem at hand
is introduced by means of the governing equations of both fluid and structure field as
well as the coupling conditions at the fluid-structure interface. Spatial and temporal
discretization is performed in §3 where special focus is put on the discrete interface
coupling conditions. In §4, the global monolithic system of equations is assembled
from all contributions derived in §3. Furthermore, the condensation of the discrete
Lagrange multipliers as well as the slave interface degrees of freedom is presented for
both possible choices of slave and master side. For these two algorithmic variants, we
report the final set of equations to be implemented in order to obtain a monolithic
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Fig. 1. Problem statement — The domain Ω is subdivided into a fluid domain ΩF and a struc-
tural domain ΩS by the fluid-structure interface ΓFSI. Both subdomains are bounded by Dirichlet
boundaries ΓF

D
and ΓS

D
, Neumann boundaries ΓF

N
and ΓS

N
, and the common fluid-structure inter-

face ΓFSI. At the interface ΓFSI, kinematic continuity as well as equilibrium of the interface traction
fields hF

ΓFSI
and hS

ΓFSI
are required.

FSI solver. In §5, we apply the proposed solution scheme to a variety of numerical
examples. Finally, we close with some concluding remarks.

2. Problem definition. In this section, we briefly present the governing equa-
tions for the fluid field, that is described on a deformable domain ΩF by an Arbitrary
Lagrangian Eulerian (ALE) observer, and the structure field ΩS. Both fields inter-
act with each other at the fluid-structure interface ΓFSI as depicted in figure 1, where
kinematic and dynamic coupling conditions have to be satisfied. In the following, fluid
quantities are denoted by the superscript (•)

F
, quantities of the ALE mesh by (•)

G
,

and, finally, quantities that belong to the structure field by (•)
S
. The subscript (•)ΓFSI

indicates that a quantity is located at the fluid-structure interface ΓFSI. In contrast,
quantities that are located in the interior of individual field domains are marked by
the subscript (•)I. To simplify notation, we often omit to state the time dependence
of quantities in the sequel.

2.1. Fluid field. The fluid field is assumed to be governed by the instationary,
incompressible Navier-Stokes equations for a Newtonian fluid on a deformable do-
main ΩF using an ALE description. Using an underline to indicate continuum vector
or tensor valued quantities, the unknown deformation d

G(x, t) of the deformable fluid
domain ΩF is defined by the unique mapping ϕ given as

dG(x, t) = ϕ
(

dG
Γ ,x, t

)

in ΩF × (0, T ) .(2.1)

The mesh deformation in the interior of the fluid domain is calculated by a mesh
moving algorithm based on the boundary deformation d

G

Γ . Then, the domain veloc-
ity uG (x, t) is given by

uG (x, t) =
∂ϕ
(

dG
Γ ,x, t

)

∂t
in ΩF × (0, T ) .(2.2)

In order to prevent fluid flow across the interface, it has to match the fluid veloc-
ity uF

ΓFSI
at the fluid-structure interface ΓFSI

uF
ΓFSI

= uG

ΓFSI
=

∂dG

ΓFSI

∂t
on ΓFSI × (0, T ) .(2.3)

The velocity of the fluid relative to the moving background mesh is given by the ALE
convective velocity c = uF − uG. Using the ALE time derivative, the incompressible
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Navier-Stokes equations governing the fluid field on a deforming domain then read

ρF
∂uF

∂t
+ ρFc ·∇uF − 2µF

∇ · ε
(

uF
)

+∇pF = ρFbF,(2.4a)

∇ ·uF = 0 ,(2.4b)

both valid in ΩF × (0, T ), where fluid velocity uF and dynamic fluid pressure pF

are unknown. The body force is denoted by b
F, the strain rate tensor by ε

(

uF
)

=
1
2

(

∇uF +
(

∇uF
)T
)

, and the constant dynamic viscosity by µF, respectively. The

fluid density ρF is assumed to be constant.
Given velocities ū are prescribed at the Dirichlet boundary ΓF

D. At the Neumann

boundary ΓF
N the fluid domain is loaded with external tractions h̄

F
. Additional trac-

tions hF
ΓFSI

arising from the fluid-structure coupling act onto the interface portion ΓFSI

of the boundary of the fluid subdomain ΩF. These boundary conditions read

uF = ū on ΓF
D × (0, T ) ,(2.5a)

σF ·nF = h̄
F

on ΓF
N × (0, T ) ,(2.5b)

σF ·nF = hF
ΓFSI

on ΓFSI × (0, T ) ,(2.5c)

where the Cauchy stress tensor σF is defined as σF = −pFI + 2µFε
(

uF
)

with the

second order identity tensor I. The role of the interface traction hF
ΓFSI

in (2.5c) will be
detailed in §2.3, when the coupling conditions will be discussed. As initial condition,
a divergence free velocity field uF (x, 0) = uF

0 (x) with ∇ ·uF
0 (x) = 0 for x ∈ ΩF has

to be given.
Testing these equations with test functions δuF for the momentum equation (2.4a)

and δpF for the continuity equation (2.4b) and subsequent integration by parts gives
rise to the weak form

0 =

(

δuF, ρF
∂uF

∂t

)

ΩF

+
(

δuF, ρFc ·∇uF
)

ΩF −
(

∇ · δuF, pF
)

ΩF

+
(

∇δuF, 2µFε(uF)
)

ΩF −
(

δpF,∇ ·uF
)

ΩF −
(

δuF, ρFbF
)

ΩF

−
(

δuF, h̄
F
)

ΓF
N

− δWF
ΓFSI

,

(2.6)

where the term

δWF
ΓFSI

=
(

δu,hF
ΓFSI

)

ΓFSI

(2.7)

accounts for the interface coupling and will be discussed in detail in §2.3.

2.2. Structure field. Without loss of generality, the structure is assumed to
have a nonlinear elastic behavior. The dynamic equilibrium of forces of inertia, in-
ternal forces, and an external body force bS per unit undeformed volume in the
undeformed structural domain ΩS is given by the nonlinear elastodynamics equation

ρS
d2dS

dt2
= ∇ · (FS) + ρSbS in ΩS × (0, T )(2.8)

with the structural displacement field dS as the primary unknown. The structural
density is denoted as ρS. The internal forces are expressed in terms of the deformation
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gradient F and the second Piola-Kirchhoff stress tensor S. For the sake of simplicity
we restrict ourselves to a hyperelastic material behavior. The second Piola-Kirchhoff
stress tensor S is then defined as S = 2 ·∂Ψ/∂C, using the strain energy function Ψ
and the right Cauchy-Green tensor C = FTF.

The traction hS
ΓFSI

acts onto the interface portion ΓFSI of the boundary of the

structural subdomain ΩS as shown in figure 1. Proper Dirichlet and Neumann bound-
ary conditions have to be prescribed on ΓS

D and ΓS
N, respectively, reading

dS = d̄
S

on ΓS
D × (0, T ) ,(2.9a)

(FS) ·N = h̄
S

on ΓS
N × (0, T ) ,(2.9b)

(FS) ·N = hS
ΓFSI

on ΓFSI × (0, T ) .(2.9c)

In addition, initial conditions dS (x, 0) = dS
0 (x) and ddS/dt (x, 0) = ḋ

S

0 (x) have to
be satisfied for x ∈ ΩS for given initial displacement and velocity fields dS

0 (x) and

ḋ
S

0 (x), respectively.
By multiplication of (2.8) with virtual displacements δdS and subsequent inte-

gration by parts one obtains the weak form

(

δdS, ρS
d2dS

dt2

)

ΩS

+
(

∇δdS,FS
)

ΩS
−
(

δdS, ρSbS
)

ΩS

−
(

δdS, h̄
S
)

ΓS
N

− δWS
ΓFSI

= 0

(2.10)

as the starting point for the finite element discretization. The term

δWS
ΓFSI

=
(

δd,hS
ΓFSI

)

ΓFSI

(2.11)

accounts for the influence of the interface coupling and will be discussed in the fol-
lowing subsection.

2.3. Fluid-structure interface. Fluid field and structure field are coupled
through enforcing kinematic and dynamic continuity conditions at the fluid-structure
interface ΓFSI. Physically motivated, the no-slip condition (2.12a) is assumed that
prohibits fluid flow across the fluid-structure interface and relative tangential move-
ment of fluid and structure at the fluid-structure interface. It couples the physi-
cal fields, i.e. fluid velocity field and structural displacement field. From (2.3) one
knows that fluid velocity and grid velocity coincide at the fluid-structure interface,
yielding (2.12b). Integration with respect to time finally leads to the equivalent cou-
pling condition (2.12c). Finally, dynamic equilibrium of interface tractions is stated
in (2.12d). The coupling conditions are expressed as

∂dS
ΓFSI

∂t
= uF

ΓFSI
,(2.12a)

∂dS
ΓFSI

∂t
=

∂dG

ΓFSI

∂t
,(2.12b)

dS
ΓFSI

= dG

ΓFSI
,(2.12c)

hS
ΓFSI

= −hF
ΓFSI

,(2.12d)
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all valid on ΓFSI × (0, T ). Traction vectors hS
ΓFSI

and hF
ΓFSI

denote the traction at the
fluid-structure interface onto structure and fluid field, respectively (see figure 1).

Remark 2.1. We note that all three conditions (2.12a), (2.12b), and (2.12c) are
totally equivalent in the continuous regime. After temporal discretization they might
differ, depending on the choice of time integration schemes in fluid and structure
field.

Kinematic continuity (2.12c) is imposed by a Lagrange multiplier field λ introduc-
ing an additional field of unknowns in the coupled FSI problem. After multiplication
of (2.12c) with the corresponding test function δλ and a subsequent integration over
the fluid-structure interface ΓFSI one obtains the weak form of the kinematic con-
straint

(

δλ,dS
ΓFSI

− dG
ΓFSI

)

ΓFSI

= 0 .(2.13)

By identifying the interface traction hS
ΓFSI

onto the structure field with the Lagrange
multiplier field λ and using the dynamic equilibrium (2.12d), we can specify the
interface coupling contributions δWF

ΓFSI
and δWS

ΓFSI
in (2.6) and (2.10) as

δWF
ΓFSI

= −
(

δuF,λ
)

ΓFSI

, δWS
ΓFSI

=
(

δdS,λ
)

ΓFSI

.(2.14)

2.4. Weak form of coupled FSI system. We define the following solution
spaces:

S
dS :=

{

dS ∈ H1
(

ΩS
)

| dS = d̄
S
on ΓS

D

}

(2.15a)

SuF :=
{

uF ∈ H1
(

ΩF
)

| uF = ūF on ΓF
D

}

(2.15b)

SpF :=
{

pF ∈ L2
(

ΩF
)}

(2.15c)

SdG :=
{

dG ∈ H1
(

ΩG
)

| dG = d̄
G
on ΓG

D

}

(2.15d)

Sλ :=
{

λ ∈ H−
1

2 (ΓFSI)
}

.(2.15e)

The test function spaces TdS , TuF , TpF , TdG and Tλ are defined as the corresponding
spaces with homogeneous Dirichlet boundaries.

We finally state the overall weak problem as a combination of the weak forms (2.6),
(2.10), and (2.13): Find dS ∈ S

dS , uF ∈ SuF , pF ∈ SpF , dG ∈ S
dG and λ ∈ Sλ such

that

0 =

(

δuF, ρF
∂uF

∂t

)

ΩF

+
(

δuF, ρFc ·∇uF
)

ΩF −
(

∇ · δuF, pF
)

ΩF

+
(

∇δuF, 2µFε(uF)
)

ΩF −
(

δpF,∇ ·uF
)

ΩF −
(

δuF, ρFbF
)

ΩF

−
(

δuF, h̄
F
)

ΓF
N

+
(

δuF,λ
)

ΓFSI

,

(2.16a)

0 =

(

δdS, ρS
d2dS

dt2

)

ΩS

+
(

∇δdS,FS
)

ΩS
−
(

δdS, ρSbS
)

ΩS

−
(

δdS, h̄
S
)

ΓS
N

−
(

δdS,λ
)

ΓFSI

,

(2.16b)

0 =
(

δλ,dS
ΓFSI

− dG
ΓFSI

)

ΓFSI

(2.16c)

for all δdS ∈ T
dS , δuF ∈ TuF , δpF ∈ TpF , δdG ∈ T

dG and δλ ∈ Tλ.
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3. Discretization and mortar coupling. The weak form (2.16) has to be
discretized in space and time. For the monolithic approach presented here, the spatial
discretization for fluid, ALE, and structure field is done with finite elements. The
constraints at the interface are enforced using a dual mortar method where the nodes
of the fluid and structure mesh do not have to match at the interface [21]. This results
in a great freedom during mesh generation to tailor the meshes to the needs of the
individual fields.

For temporal discretization, fully implicit, single-step, and single-stage time in-
tegration schemes are used for all fields. Depending on the actual choices of time
integration schemes and their parameters the dynamic equilibrium is formulated at
an intermediate time instant tm ∈

]

tn, tn+1
]

. In general, the actual time instants for

equilibrium in the fluid and structure field do not coincide, i.e. tF,m 6= tS,m. A main
contribution of this work is the freedom of choosing the time integration schemes for
the fluid and structure field independently and still maintaining temporal consistency
between both fields, which is shown in §3.4.

Another new aspect in time integration is that field specific predictors are allowed
within the monolithic FSI framework. Due to possible predictors in the structure and
fluid field, the solution at the beginning of the nonlinear iteration loop differs from
the converged solution of the previous time step by additional increments

d
S,n+1
0 = dS,n +∆dS

p , u
F,n+1
0 = uF,n +∆uF

p(3.1)

with the subscript (•)p indicating the predictor step. Within the predictors, both fields
can evolve independently, leading to a possible violation of the kinematic continuity
requirement at the fluid-structure interface, i.e. possibly incompatible initial guesses
for structure and fluid field. This violation can be measured and will be accounted
for, when the discrete kinematic coupling conditions are derived in §3.4.2. Without
any predictor, these additional increments vanish, i.e. ∆dS

p = 0 and ∆uF
p = 0.

Discretization of the weak form (2.16) of the coupled FSI problem can be per-
formed in a separated manner. Discretization of the fluid contribution (2.16a) results
in the fluid residual

rF = rF
uF + rF

λ
=









rFI
rFΓFSI

rGI
rGΓFSI









+









0

rF
λ,ΓFSI

0

0









(3.2)

where the first term on the right hand side contains the standard fluid residual and
only the second term accounts for the coupling of the fluid and structure field. Ac-
cordingly, the discretization of the structural contribution (2.16b) is written as

rS = rS
dS + rSλ =

[

rSI
rSΓFSI

]

+

[

0

rS
λ,ΓFSI

]

(3.3)

with the first term accounting for the pure structural problem and the second term
again being responsible for the fluid-structure coupling. Finally, the weak coupling
condition (2.16c) is discretized yielding a residual contribution rcoupl. Using these
single field residuals, one obtains the solution of the nonlinear coupled FSI problem
by solving for

rFSI =





rS

rF

rcoupl



 = 0 ,(3.4)
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where the residual rFSI depends on the structural unknowns, the fluid unknowns, and
the unknown Lagrange multipliers. To solve (3.4), a Newton-type method is applied
requiring the full linearization of rFSI and, thus, of all single field residuals. After
summarizing all unknowns of the structure field in xS and those of the fluid field
in xF, respectively, the resulting linear system in Newton iteration step i ≥ 0 reads









∂rS
dS

∂xS 0
∂rS

λ

∂λ

0
∂rF

uF

∂xF

∂rF
λ

∂λ
∂rcoupl

∂dS
Γ

∂rcoupl

∂uF
Γ

0









n+1

i





∆xS

∆xF

∆λ





n+1

i+1

= −





rS

rF

rcoupl





n+1

i

,(3.5)

where the subscript (•)ΓFSI
denoting the fluid-structure interface has been replaced

by (•)Γ to shorten the notation. In (3.5), the splitting into degrees of freedom that be-
long to the interior of ΩS or ΩF and those located at the fluid-structure interface ΓFSI

is omitted for clarity of presentation. It will be re-introduced when the single field
contributions to (3.5) will be derived in the following subsections. The matrix con-
tribution ∂rS

dS/∂x
S will be discussed in detail in §3.2. Subsection §3.1 deals with the

fluid discretization and will specify the matrix contribution ∂rF
uF/∂x

F. The remain-
ing matrix contributions that are related to the interface coupling will be addressed
in §3.4.

After solving the linear system (3.5), the update procedure is





xS

xF

λ





n+1

i+1

=





xS

xF

λ





n+1

i

+





∆xS

∆xF

∆λ





n+1

i+1

.(3.6)

We stress that due to possible predictors in the single fields xn+1
0 6= xn.

In order to obtain the full linearization of the coupled FSI problem, we first briefly
present the time discretization and linearization of the fluid, ALE, and structure
field equations. A brief introduction to the mortar method will be given in §3.3.
Afterwards, the coupling at the interface via the dual mortar method is illustrated.
Furthermore, temporal consistent coupling of fluid and structure field is introduced.
The assembly of the global monolithic system will then be shown in §4.

3.1. Fluid field. Without loss of generality, stabilized equal-order interpolated
finite elements are used for spatial discretization of the fluid field [16]. Spatial dis-
cretization of ALE displacement, fluid velocity and fluid pressure field read

dG ≈

nF

∑

k=1

NG

k d
G

k , uF ≈

nF

∑

k=1

NF
k uF

k , pF ≈

nF

∑

k=1

NF
k pFk(3.7)

with nF denoting the number of fluid nodes and NG

k and NF
k being the finite element

ansatz functions.
Temporal discretization of the fluid field is done by one-step-θ or generalized-α

schemes, cf. [19].
In order to apply a Newton-type nonlinear solver, a linearization of the fluid resid-

ual rF
uF(u

F,pF,dG) has to be evaluated in every nonlinear iteration step i. In order
to prepare the coupling at the interface the nodal fluid velocities are separated: ve-
locities of nodes on the interface are denoted by the vector uF

Γ ; the remaining velocity
degrees of freedom are collected in a vector ûF

I . We merge the vector pF of nodal
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pressure values into the vector of inner velocities uF
I =

[

ûF
I , pF

]T
to simplify the

notation without loosing any insight into further derivations. The introduced split
into quantities belonging either to the interior or the fluid-structure interface of the
fluid domain yields the matrix representation of the fluid tangent matrix contribu-
tions Fαβ = ∂rFα/∂u

F
β and F

G

αβ = ∂rFα/∂d
G

β with α, β ∈ {I,Γ}. In order to compute

the solution increment ∆x
F,n+1
i+1 , the linear system

[

FII FIΓ F
G
II F

G
IΓ

FΓI FΓΓ F
G
ΓI F

G
ΓΓ

]n+1

i









∆uF
I

∆uF
Γ

∆dG

I

∆dG
Γ









n+1

i+1

= −

[

rFI
rFΓ

]n+1

i

(3.8)

has to be solved in every nonlinear iteration step i ≥ 0. Considering the mesh motion
of the ALE mesh, we assume that discretization and linearization of (2.1) result in
an ALE system matrix A. The linearized version of (2.1) reads

[

AII AIΓ

]n+1

i

[

∆dG
I

∆dG

Γ

]n+1

i+1

= −rGΓ .(3.9)

Note that the vectors of unknowns in (3.8) and (3.9) both contain the mesh displace-
ments and, thus, both systems can be combined to





FII FIΓ F
G
II F

G
IΓ

FΓI FΓΓ F
G

ΓI F
G

ΓΓ

0 0 AII AIΓ





n+1

i









∆uF
I

∆uF
Γ

∆dG

I

∆dG
Γ









n+1

i+1

= −





rFI
rFΓ
rGΓ





n+1

i

.(3.10)

Let us remember that the interface deformation dG
Γ cannot evolve freely, but has

to follow the fluid field or structure field interface motion. To close the fluid linear
system (3.10) a discrete coupling condition that relates fluid interface velocities uF

Γ

to ALE interface displacements dG
Γ is necessary. It will be discussed in detail in §3.4

where the discrete coupling conditions at the fluid-structure interface will be shown.

3.2. Structure field. For spatial discretization of the structure field, finite ele-
ments are used. The spatial discretization of the displacement field reads

dS ≈

nS

∑

k=1

NS
k d

S
k(3.11)

with nS denoting the number of structural nodes and NS
k being the finite element

ansatz functions. The actual choice of shape functions, element shape, and possible
element technology is not of importance for the presented method. Regarding the
application of additional element technology, we refer to the numerical examples in §5.

Due to its efficiency and robustness, the generalized-α time integration scheme [7]
is applied. Additionally, it offers second-order accuracy as well as the possibility of
user-controlled numerical damping.

Linearization of the structural residual rS
dS(d

S) leads to the structural stiffness
matrix S. Similar to the fluid discretization, the structural degrees of freedom are
split into inner and interface degrees of freedom, yielding a block representation of
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the structural stiffness matrix Sαβ = ∂rSα/∂d
S
β, given α, β ∈ {I,Γ}. Putting these

blocks together, the linear system

[

SII SIΓ

SΓI SΓΓ

]n+1

i

[

∆dS
I

∆dS
Γ

]n+1

i+1

= −

[

rSI
rSΓ

]n+1

i

(3.12)

has to be solved in every Newton iteration i ≥ 0 in time step n+ 1.

3.3. Lagrange multiplier field. The Lagrange multiplier field that enforces
the interface coupling conditions (2.12c) and (2.12d) is discretized using the dual
mortar method. A very brief introduction to some basics of the dual mortar method
is given. For detailed derivations and theoretical background and analysis we refer to
literature, e.g. [11, 37, 38] and references therein.

In a mortar setup, one distinguishes between master and slave side Γma and Γsl of
the interface. The Lagrange multiplier field is discretized on the slave side. Numerical
integration takes also place on the slave side of the interface and results in the mortar
coupling matrices D, belonging to the slave side, and M, belonging to the master
side, that will be introduced later.

In opposite to classical Lagrange multiplier choices the discretization of the La-
grange multiplier field λ with the dual mortar method is based on so-called dual shape
functions Φj leading to the discretization

λ ≈

nsl

∑

j=1

Φjλj ,(3.13)

with discrete nodal Lagrangemultipliers λj and nsl slave nodes. A careful construction
of the dual shape functions Φj ensures that the biorthogonality condition

∫

Γsl

ΦjN
sl
k dΓ = δjk

∫

Γsl

N sl
k dΓ,(3.14)

with the Kronecker delta δjk is satisfied [37]. This condition plays a major role in
the evaluation of the mortar coupling matrices D and M since it leads to a purely
diagonal form ofD. Hence, the inversion of D will be computationally cheap enabling
the condensation of the Lagrange multiplier field from the global system of equations
as will be shown in §4.1 and §4.2. For further details on the application of dual mortar
methods to fluid-structure interaction problems with non-conforming meshes at the
fluid-structure interface the reader is referred to [21].

3.4. Fluid-structure interface. When discretizing the kinematic coupling con-
ditions, one has to deal with the kinematic coupling of structure, fluid, and ALE
degrees of freedom resulting in two separate discrete kinematic coupling conditions
(see figure 2). On the one hand, the evolution of the fluid interface motion, described
by dG

Γ, has to be related to the fluid velocity uF
Γ at the interface as already mentioned

in §3.1. This coupling between fluid and ALE degrees of freedom takes place purely
in the fluid domain and does not involve any structural degrees of freedom. On the
other hand, a discrete version of the kinematic continuity constraint (2.12c) has to be
provided for the ’meshtying’ problem at the interface in order to associate the ALE
deformation dG

Γ with the structural deformation dS
Γ at the interface. Therefore, two

sets of degrees of freedom which are separated by the interface are coupled and, thus,
the mortar coupling will play an important role. Both discrete kinematic coupling
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ΓFSI

d
G
ΓFSI

d
S
ΓFSI

ΩF

ΩS

u
F
ΓFSI

Fig. 2. Illustration of kinematic interface coupling conditions — The conversion of interface
fluid velocity degrees of freedom uF

ΓFSI
into ALE displacement degrees of freedom dG

ΓFSI
happens

inside the fluid field only and does not include the mortar coupling across the fluid-structure inter-
face. The mortar coupling itself involves structure and ALE displacement degrees of freedom dS

ΓFSI

and dG

ΓFSI
, respectively. By combination of these two couplings that are illustrated by solid arrows

we obtain the FSI coupling of interface fluid velocity degrees of freedom uF
ΓFSI

and interface structure

displacement degrees of freedom dS
ΓFSI

that is indicated by the dashed arrow.

conditions can finally be combined to relate fluid interface velocities uF
Γ with struc-

tural interface displacements dS
Γ leading to the discrete representation of the no-slip

condition (2.12a). The connections and dependencies of these kinematic coupling
conditions are illustrated in figure 2 and will be discussed in §3.4.1, §3.4.2 and §3.4.3.
Discretization of the dynamic constraint (2.12d) will be detailed in §3.4.4.

3.4.1. Conversion of fluid velocity and ALE displacement. In order to
guarantee exact conservation of the volume of the fluid domain ΩF, the conversion
of interface fluid velocities and interface ALE displacements has to be consistent
with the fluid time integration scheme [12]. Doing so, one can extend the geometric
conservation law towards the interface. As a result of [12], the trapezoidal rule

d
G,n+1
Γ − d

G,n
Γ =

∆t

2

(

u
F,n+1
Γ + u

F,n
Γ

)

(3.15)

is used for the conversion of interface fluid velocities and interface ALE displacements.
It is sometimes replaced by the dissipative backward Euler scheme [12]

d
G,n+1
Γ − d

G,n
Γ = ∆tuF,n+1

Γ .(3.16)

To enable the inclusion of (3.15) or (3.16) into the global monolithic system, they
have to be expressed in incremental form. Both can be cast into the form

∆d
G,n+1
Γ,i+1 = τ∆u

F,n+1
Γ,i+1 + δi0 ∆tuF,n

Γ ,(3.17)

where the parameter τ switches between trapezoidal rule and backward Euler scheme:

τ =

{

∆t
2 for trapezoidal rule (3.15)

∆t for backward Euler scheme (3.16)
(3.18)

3.4.2. Discrete coupling condition for structural and ALE displace-

ments. Inserting the spatial discretizations (3.7), (3.11), and (3.13) for ALE displace-
ment, structural displacement, and Lagrange multiplier field into the weak coupling
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condition (2.16c) yields





nsl

∑

j=1

Φjδλj,

nγ

∑

k=1

Nγ
kd

S,γ
k −

nε

∑

l=1

Nε
l d

G,ε
l





Γ

=

nsl

∑

j=1

δλj ·

[

nγ

∑

k=1

∫

Γ

ΦjN
γ
k dΓd

S,γ
k −

nε

∑

l=1

∫

Γ

ΦjN
ε
l dΓd

G,ε
l

]

=
nsl

∑

j=1

δλj ·
[

CSF [j, k]d
S,γ
k − CFS [j, l]d

G,ε
l

]

= 0 ∀ δλj 6= 0

(3.19)

with γ, ε ∈ {ma, sl}, γ 6= ε and nsl being the number of slave nodes. Furthermore,
the nodal coupling matrices

CSF [j, k] = C
jk
SFIndim =

∫

Γ

ΦjN
γ
k dΓ Indim ,(3.20a)

CFS [j, l] = C
jl
FSIndim =

∫

Γ

ΦjN
ε
l dΓ Indim .(3.20b)

have been introduced using an identity matrix Indim ∈ R
ndim

×ndim

with ndim being
the spatial dimension, i.e. ndim ∈ {2, 3}. For example, if the structure field is chosen
as the slave field, i.e. γ = sl, the biorthogonality condition (3.14) can be employed to
write:

CSF =

nγ

∑

k=1

∫

Γ

ΦjN
sl
k dΓ =

nγ

∑

k=1

δjk

∫

Γ

N sl
k dΓ(3.21)

When choosing the fluid field as the slave field, the coupling matrix CFS takes a
diagonal form in an analogous way. Full details on the numerical evaluation of the
mortar integrals are given in [29, 31, 32].

Assembling the nodal coupling matrices leads to global coupling matrices CSF

and CFS , which are used to formulate the kinematic coupling residual

rcoupl = CSFd
S
Γ − CFSd

G
Γ = 0.(3.22)

Its linearization yields the kinematic coupling constraint

CSF∆d
S,n+1
Γ,i+1 − CFS∆d

G,n+1
Γ,i+1 = −δi0 CSF∆dS

Γ,p(3.23)

formulated in incremental form. The violation of the interface continuity requirement
due to possible non-constant predictors is measured by ∆dS

Γ,p and accounted for by
the right hand side term, which is necessary only in the first nonlinear iteration
step i = 0. Due to the linearity of the kinematic coupling condition, the kinematic
interface continuity requirement is guaranteed to be satisfied for all nonlinear iteration
steps i > 0. In the case of conforming interface discretizations, all mortar projection
operators reduce to diagonal matrices with area weights on the main diagonal as
well as the interface constraints collapse to the trivial case of condensable point-wise
constraints. Furthermore, note that (3.23) guarantees exact kinematic continuity in
the discrete setting, even if different time integrations schemes are employed.
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3.4.3. Discrete coupling condition for structural displacements and fluid

velocities. With the discrete coupling conditions (3.17) and (3.23), all necessary
conditions are at hand to assemble the global monolithic system. However, a direct
conversion of fluid velocities and structural displacements at the fluid-structure inter-
face can be derived by replacing the interface ALE displacements. On the one hand,
this emphasizes the fact that the ALE field is not a physical field but rather an aux-
iliary field to describe the fluid motion. On the other hand, this eases the notation of
the global monolithic system when it comes to choosing master and slave side in the
context of the dual mortar method.

Combining (3.17) and (3.23) results in

CSF∆d
S,n+1
Γ,i+1 + δi0 CSF∆dS

Γ,p = τ CFS∆u
F,n+1
Γ,i+1 + δi0 ∆tCFSu

F,n
Γ(3.24)

Note that (3.24) does not take the role of an additional coupling condition. It is just
a redundant reformulation of (3.17) and (3.23).

3.4.4. Contributions to the balances of linear momentum. Discretization
of the fluid contribution δWF

ΓFSI
in (2.14) yields:





nε

∑

l=1

Nε
l δu

F,ε
l ,

nsl

∑

j=1

Φjλj





Γ

=

nε

∑

l=1

δuF,ε
l ·





nsl

∑

j=1

∫

Γ

Nε
l Φj dΓλj





=

nε

∑

l=1

δuF,ε
l ·CT

FS [j, l]λj .

(3.25)

Discretizing the structural contribution δWS
ΓFSI

in (2.14) results in

−





nγ

∑

k=1

Nγ
k δd

S,γ
k ,

nsl

∑

j=1

Φjλj





Γ

= −
nγ

∑

k=1

δdS,γ
k ·





nsl

∑

j=1

∫

Γ

Nγ
kΦj dΓλj





= −
nγ

∑

k=1

δdS,γ
k ·CT

SF [j, k]λj .

(3.26)

In both expressions (3.25) and (3.26) one can identify the transposes of the coupling
matrices CFS and CSF which have been already introduced in §3.4.2. Note that the
coupling matrices depend on the initial mesh configuration, only.

In the following, we assume that time integration schemes in both fluid and
structure field evaluate the single field dynamic equilibrium at intermediate time
instances tF,m and tS,m, respectively. The intermediate time instances will be in-
dicated by the superscript (•)m. In general, these time instances do not coincide, i.e.
tF,m 6= tS,m. Based on the discretized weak forms (3.25) and (3.26) and using lin-
ear interpolations as usual for fully implicit, single-step, single-stage time integration
schemes, one can write the residual contributions rF,m

λ
and r

S,m
λ

as

r
F,m
λ,i = C

T
FS

(

bλn + (1− b)λn+1
i

)

, r
S,m
λ,i = −C

T
SF

(

aλn + (1− a)λn+1
i

)

(3.27)

with time interpolation factors a and b chosen depending on the specific field time
integrators.

Remark 3.1. Factors a and b are always chosen equal to the weighting of the
previous solution in (3.27). For example, when using generalized-α time integration [7]
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for the structure field and generalized-α time integration [19] for the fluid field, time
interpolation factors have to be chosen as a = αS

f and b = 1− αF
f .

Since the weak forms (2.14) are linear in the displacement field dS and the velocity
field uF, the linearizations of the residual terms (3.27) are just the coupling matrices
themselves wherein the temporal interpolation factors occur, too:

∂rF,m
λ,i

∂λn+1
i

= (1− b)CT
FS ,

∂rS,m
λ,i

∂λn+1
i

= − (1− a)CT
SF .(3.28)

With these linearizations, we have finally specified all contributions to the linear
system (3.5).

Remark 3.2. We can calculate the amount of energy production per time step
at the fluid-structure interface due to differences in temporal discretization of the
individual fields as

∆En→n+1
Γ = ES,n→n+1

Γ + EF,n→n+1
Γ

=
(

aλn + (1− a)λn+1
)

(

d
S,n+1
Γ − d

S,n
Γ

)

−
(

bλn + (1− b)λn+1
)

(

d
G,n+1
Γ − d

G,n
Γ

)

=
(

(a− b)λn + (b− a)λn+1
)

(

d
S,n+1
Γ − d

S,n
Γ

)

where the discrete kinematic coupling constraint (3.23) has been exploited. We make
the following observations:

• The energy production per step vanishes for a− b → 0, i.e. as time instances
of evaluating structure and fluid coupling tractions coincide: tS,m−tF,m → 0.

• Since d
S,n+1
Γ −d

S,n
Γ ∝ ∆t , the energy production per step reduces as ∆t → 0.

Thus, we call the scheme temporal consistent.

These observations can be reproduced in numerical studies (see §5.2).

4. Monolithic FSI system. We can now put all linearized single field systems
together to the global monolithic linear system

J
n+1
i ∆xn+1

i+1 = −r
FSI,n+1
i(4.1)

that has to be solved in the ith iteration step of the Newton-type nonlinear solution
algorithm in time step n+ 1. The Jacobian matrix of the coupled FSI system reads

J
n+1
i =

















SII SIΓ

SΓI SΓΓ −(1− a)CT
SF

FII FIΓ F
G

II F
G

IΓ

FΓI FΓΓ F
G
ΓI F

G
ΓΓ (1− b)CT

FS

AII AIΓ

−CSF τCFS

















n+1

i

,(4.2a)

where 0-blocks are omitted for the sake of clarity. The global solution increment
vector

∆xn+1
i+1

T
=
[

∆dS
I

T
∆dS

Γ

T
∆uF

I

T
∆uF

Γ

T
∆dG

I

T
∆dG

Γ

T
λT

]n+1

i+1
(4.2b)
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contains the primary unknowns of each field as well as the Lagrange multiplier field.
Using the Kronecker delta δi0, the corresponding residual vector is given by

r
FSI,n+1
i =

















rSI
rSΓ
rFI
rFΓ
rGΓ
0

















n+1

i

+

















0

−aCT
SFλ

n

0

bCT
FSλ

n

0

0

















+ δi0

















0

0

0

0

0

∆tCFSu
F,n
Γ − CSF∆dS

Γ,p.

















.

(4.2c)

To close system (4.2) still a coupling of interface ALE degrees of freedom to the
motion of the fluid-structure interface ΓFSI is required. The missing equation will be
added after master and slave side have been chosen. Doing so, one can formulate
the description of the interface motion in terms of master degrees of freedom, which
will be a good starting point for condensation of Lagrange multipliers and interface
slave degrees of freedom. The missing coupling equation as well as the process of
condensation will be detailed in §4.1 and §4.2.

Due to the 0-block on the main diagonal, the global monolithic linear system (4.2)
is of saddle-point type. In order to circumvent the saddle-point like system to be able
to use efficient FSI specific linear solvers [14] designed for the case of conforming
discretizations, the unknown Lagrange multipliers λn+1 will be condensed, yielding
a problem with structural displacement, fluid velocity and pressure as well as ALE
grid displacement degrees of freedom as the only unknowns. Employing the kinematic
coupling conditions that were derived in §3.4 one can condense the interface degrees of
freedom of the slave side from the global system of equations. Depending on the choice
of master and slave side, the balance of linear momentum either of the structure or of
the fluid field is used to condense the discrete Lagrange multipliers. For the process
of condensation we exploit the biorthogonality property (3.14) of the dual mortar
method since it allows a computationally cheap inversion of the slave side’s mortar
matrix D.

After complete condensation, the interface motion is purely described and han-
dled in terms of unknowns of the master field. Thus, we distinguish two algorithmic
variants, namely fluid-handled interface motion and structure-handled interface mo-
tion. In the following, the two possible choices of master and slave side are discussed
and the condensation process as well as the final linear systems of equations will be
shown.

Remark 4.1. In case, one wants to use standard shape functions for the Lagrange
multipliers, the condensation is numerically very costly or even unfeasable. Then, the
saddle-point type system (4.2) can be solved with appropriate saddle-point solvers.

4.1. Fluid-handled interface motion. Let us first consider the variant where
the interface motion is expressed in terms of fluid velocity degrees of freedom, i.e.
the fluid field is chosen as the master field and the structure field as the slave field,
respectively. Since the fluid field has been chosen as master, we can identify the mortar
matrices as D = CSF and M = CFS . The coupling of the interface ALE displacement
to the interface motion is expressed in terms of the master’s side interface degrees
of freedom, i.e. in terms of interface fluid velocities. This coupling has already been
stated in (3.17) and will be used to close the monolithic system of equations yielding
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the Jacobian matrix

J
n+1
i =





















SII SIΓ

SΓI SΓΓ −(1− a)DT

FII FIΓ F
G

II F
G

IΓ

FΓI FΓΓ F
G
ΓI F

G
ΓΓ (1− b)MT

AII AIΓ

−D τM
τI −I





















n+1

i

(4.3a)

and the residual vector

rn+1
i =





















rSI
rSΓ
rFI
rFΓ
rGΓ
0

0





















n+1

i

+





















0

−aDT
λ
n

0

bMT
λ
n

0

0

0





















+ δi0





















0

0

0

0

0

∆tMu
F,n
Γ −D∆dS

Γ,p

∆tuF,n
Γ





















.(4.3b)

The sixth row that brings the discrete kinematic constraint (3.24) into the system
can be resolved for the structural interface displacement increment

∆d
S,n+1
Γ = τP∆u

F,n+1
Γ + δi0 ∆tPu

F,n
Γ − δi0 ∆dS

Γ,p(4.4)

with the mortar projection matrix

P = D
−1

M(4.5)

that can be efficiently computed due to the diagonal form of D (cf. [37]). The
coupling of fluid velocities and ALE displacements at the fluid-structure interface is
given by the last row in (4.3) and reads

∆d
G,n+1
Γ,i+1 = τ∆u

F,n+1
Γ,i+1 + δi0 ∆tuF,n

Γ .(4.6)

From the balance of linear momentum of the structural interface degrees of freedom
together with (4.4), the unknown Lagrange multipliers are expressed by

λ
n+1 = −

a

1− a
λ
n +

1

1− a
D

−T
(

r
S,n+1
Γ + SΓI∆d

S,n+1
I,i+1 + τSΓΓP∆u

F,n+1
Γ,i+1

)

+ δi0
1

1− a
D

−T
(

∆tSΓΓPu
F,n
Γ − SΓΓ∆dS

Γ,p

)

.

(4.7)

Equation (4.7) is used to recover the Lagrange multiplier solution at the end of each
time step as a postprocessing step.

Using (4.4), (4.6), and (4.7), we are able to condense the system of equations. The
condensed linear system with fluid-handled interface motion consists of the Jacobian
matrix

J
n+1
i =









SII τSIΓP

FII FIΓ + τFG

IΓ F
G

II
1−b
1−a

P
T
SΓI FΓI FΓΓ + τFG

ΓΓ + 1−b
1−a

τPT
SΓΓP F

G
ΓI

τAIΓ AII









n+1

i

,(4.8a)
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the solution increment vector

∆xn+1
i+1

T
=
[

∆dS
I

T
∆uF

I

T
∆uF

Γ

T
∆dG

I

T
]n+1

i+1
,(4.8b)

and the residual vector

rn+1
i =









rSI
rFI

rFΓ + 1−b
1−a

P
T
rSΓ

rGΓ









n+1

i

+











0

0
(

b− a(1−b)
1−a

)

M
T
λn

0











+ δi0











∆tSIΓPu
F,n
Γ − SIΓ∆dS

Γ,p

∆tFG
IΓu

F,n
Γ

∆tFG

ΓΓu
F,n
Γ + 1−b

1−a
∆tPT

SΓΓPu
F,n
Γ − 1−b

1−a
P

T
SΓΓ∆dS

Γ,p

∆tAIΓu
F,n
Γ











.

(4.8c)

Remark 4.2. When parts of the mortar interface are subject to essential bound-
ary conditions, [30] suggests to apply them only on the master side of the interface in
order to avoid stability problems. For the fluid-handled interface motion, this means
that at the interface only the fluid field is allowed to carry Dirichlet boundary condi-
tions. They will be imposed on the structure field weakly via the mortar coupling.

4.2. Structure-handled interface motion. The other possibility is to de-
scribe the interface motion in terms of structural displacements, i.e. the structure
field is the master field and the fluid field the slave field, respectively. It is obtained
by choosing the mortar matrices asD = CFS and M = CSF . The coupling of interface
ALE degrees of freedom is still governed by (3.17). However, the fluid interface veloc-
ities will be condensed from the global system of equations and, thus, this coupling is
expressed in terms of structural displacements:

∆d
G,n+1
Γ,i+1 = P∆d

S,n+1
Γ,i+1 + δi0 P∆dS

Γ,p .(4.9)

In this case, the global monolithic linear system consists of the Jacobian matrix

J
n+1
i =





















SII SIΓ

SΓI SΓΓ −(1− a)MT

FII FIΓ F
G
II F

G
IΓ

FΓI FΓΓ F
G
ΓI F

G
ΓΓ (1− b)DT

AII AIΓ

−M τD
M −D





















n+1

i

(4.10a)

and the residual vector

rn+1
i =





















rSI
rSΓ
rFI
rFΓ
rGΓ
0

0





















n+1

i

+





















0

−aMT
λ
n

0

bDT
λ
n

0

0

0





















+ δi0





















0

0

0

0

0

∆tDu
F,n
Γ −M∆dS

Γ,p

M∆dS
Γ,p





















.(4.10b)
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The sixth row that brings the discrete kinematic constraint (3.24) into the system
can be resolved for the fluid interface velocity increment

∆u
F,n+1
Γ =

1

τ
P∆d

S,n+1
Γ + δi0

1

τ
P∆dS

Γ,p − δi0
∆t

τ
u
F,n
Γ(4.11)

with the mortar projection matrix P defined in (4.5). The coupling of structure
displacements and ALE displacements at the fluid-structure interface is given by the
last row in (4.10) and reads

∆d
G,n+1
Γ,i+1 = P∆d

S,n+1
Γ,i+1 + δi0 P∆dS

Γ,p.(4.12)

From the balance of linear momentum of the fluid interface degrees of freedom together
with (4.11) and (4.12), the unknown Lagrange multipliers are expressed by

λ
n+1 = −

b

1− b
λ
n −

1

1− b
D

−T

(

r
F,n+1
Γ +

(

1

τ
FΓΓ +F

G
ΓΓ

)

P∆d
S,n+1
Γ,i+1

)

−
1

1− b
D

−T
(

FΓI∆u
F,n+1
I,i+1 +F

G
ΓI∆d

G,n+1
I,i+1

)

− δi0
1

1− b
D

−T

((

1

τ
FΓΓ +F

G
ΓΓ

)

P∆dS
Γ,p −

∆t

τ
FΓΓu

F,n
Γ

)

.

(4.13)

Equation (4.13) is used to recover the Lagrange multiplier solution at the end of each
time step as a postprocessing step.

Using (4.11), (4.12), and (4.13), we are able to condense the saddle-point type
system of equations. Finally, the condensed linear system for the structure-handled
interface motion consists of the Jacobian matrix

J
n+1
i =









SII SIΓ

SΓI SΓΓ + 1−a
1−b

1
τ
P

T
FΓΓP+ 1−a

1−b
P

T
F

G
ΓΓP

1−a
1−b

P
T
FΓI

1−a
1−b

P
T
F

G
ΓI

1
τ
FIΓP+F

G
IΓP FII F

G
II

AIΓP AII









n+1

i

,

(4.14a)

the solution increment vector

∆xn+1
i+1

T
=
[

∆dS
I

T
∆dS

Γ

T
∆uF

I

T
∆dG

I

T
]n+1

i+1
,(4.14b)

and the residual vector

rn+1
i =









rSI
rSΓ + 1−a

1−b
P

TrFΓ
rFI
rGΓ









n+1

i

+











0
(

−a+ b(1−a)
1−b

)

M
T
λn

0

0











+ δi0









0
1−a
1−b

1
τ
P

T
FΓΓP∆dS

Γ,p +
1−a
1−b

P
T
F

G
ΓΓP∆dS

Γ,p −
1−a
1−b

∆t
τ
P

T
FΓΓu

F,n
Γ

1
τ
FIΓP∆dS

Γ,p +F
G
IΓP∆dS

Γ,p −
∆t
τ
FIΓu

F,n
Γ

AIΓP∆dS
Γ,p









.

(4.14c)
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(a) problem setup
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(b) solution of pF and λ

Fig. 3. Geometry an solution of pseudo 1D FSI example with analytical solution — Left:
The structural block ΩS moves in x-direction due to a time dependent Dirichlet boundary condition
at x = ℓF + ℓS. Thus, fluid is pushed out or sucked in across the Neumann boundary at x = 0. All
movement in y- and z-direction is suppressed, leaving a pseudo 1D problem. Right: Pressure field
in fluid domain ΩF and Lagrange multiplier field λ: The Lagrange multiplier field represents the
interface traction onto the structure. The x-components represent the fluid pressure exerted onto
the structure. The lateral components in y- and z-direction constrain the y- and z-components of
the fluid velocity.

Remark 4.3. As already indicated in remark 4.2, one has to be careful with
essential boundary conditions at the fluid-structure interface ΓFSI. Following the same
arguments as before, now, only the structure side of the interface is allowed to carry
Dirichlet boundary conditions. They will be imposed on the fluid side weakly via the
mortar coupling.

5. Numerical examples. Three numerical examples are used to demonstrate
and discuss some properties of the presented solution schemes. First, a very simple test
case is proposed, where an analytical solution is known, and used to study temporal
convergence as well as some aspects of Dirichlet boundary conditions at the fluid-
structure interface in §5.1. In §5.2, the well-known 2D driven cavity with flexible
bottom is utilized to demonstrate the effect of predictors on the overall computational
costs. Finally, different combinations of time integration schemes are compared to
each other using the 3D pressure wave example mimicking hemodynamic conditions
in §5.3.

In all three examples, equal-order interpolated linear finite elements with residual-
based stabilization are used for spatial discretization of the fluid field. The structure
field is discretized with mixed/hybrid finite elements. Enhanced assumed strains
(EAS) are utilized to deal with locking phenomena.

5.1. Pseudo 1D FSI. As a very simple example, we first consider a pseudo
one-dimensional FSI problem as sketched in figure 3(a). It is used to demonstrate
temporal convergence properties of the proposed monolithic solution scheme employ-
ing the comparison to an analytical solution. Additionally, the special role of Dirichlet
boundary conditions at the fluid-structure interface as discussed in remarks 4.2 and 4.3
is illustrated by a visualization of the Lagrange multiplier field.

The example is set up as a real 3D problem, but is constrained to one dimension
via Dirichlet boundary conditions, i.e. all displacement and velocity degrees of freedom
are forced to zero in y- and z-direction. Hence, movement is possible only in x-
direction. The problem is driven by a time dependent Dirichlet boundary condition
on the dry side of the solid domain ΩS, i.e. at x = ℓF + ℓS. When moving the
structural block ΩS, the size of the fluid volume ΩF changes and fluid is pushed
out or sucked in across the fluid Neumann boundary at x = 0. Assuming a time
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dependent Dirichlet boundary condition d̄
S

D(t) for the displacement of the dry side of
the structure at x = ℓF + ℓS as well as incompressible solid and fluid domains, the
analytical solution for velocity field u(x, t), acceleration field a(x, t) and fluid pressure
field pF(x, t) reads:

u(x, t) =
∂d̄

S

D

∂t
, a(x, t) =

∂2d̄
S

D

∂t2
, pF(x, t) = −ρFaF

x ·x+ pF
∞

∣

∣

x=0
(5.1)

In this example, the structure field is chosen as master field (cf. §4.2). Hence, at
the interface, only the structural degrees of freedom are subject to Dirichlet boundary
conditions. According to remark 4.3, the fluid side is not allowed to carry Dirichlet
boundary conditions.

Due to the spatially constant velocity field and the spatially linear pressure field,
the finite element solution can capture the spatial distribution of the analytical solu-
tion exactly.

When choosing the imposed time dependent Dirichlet boundary condition d̄
S

D(t)
such that the analytical solution is also contained in the discrete temporal solution

space, for example d̄
S

D(t) = −t2, the analytical solution is fully recovered by the
numerical scheme up to machine precision.

For this reason, in order to study temporal convergence, a Dirichlet boundary

condition d̄
S

D(t) = −t5 is prescribed on the structure. The spatial solution can still
be fully recovered, but the involved time integration schemes are not able to capture
the temporal evolution exactly. Hence, temporal refinement should lead to error re-
duction. For this study, we calculate the L2-error of the velocity and pressure field in
the fluid volume ΩF compared to the analytical solution (5.1). The actual material
parameters are of no importance. For temporal discretization of the structure field,
generalized-α time integration with spectral radius ρS

∞
= 1.0, i.e. without numerical

dissipation, is used. The fluid time integrator is either the generalized-α scheme with
various spectral radii ρF

∞
or the one-step-θ scheme with various choices for θF. The

conversion between ALE displacements and fluid velocities is varied between trape-
zoidal rule and backward Euler as indicated in (3.17) and (3.18). When structure and
fluid time integration scheme as well as the conversion between ALE displacements
and fluid velocities are chosen to be second order accurate, the overall FSI scheme is
expected to be second order accurate in time as well. As soon as one of them is only
first order accurate in time, the order of temporal accuracy of the overall algorithm
is expected to reduce to first order. Figure 4 shows the temporal convergence plots
for velocity field and pressure field in the fluid volume ΩF. Time step sizes and fluid
time integration schemes with particular parameters are detailed in figure 4. Only
the cases where the conversion of ALE displacements and fluid velocities is done with
the backward Euler formula (3.16) the temporal convergence order deteriorates to
first order. In all other cases, where the overall algorithm is expected to be second
order accurate, the temporal convergence is of second order. Altogether, the theoret-
ically expected convergence rates are fully recovered by the proposed monolithic FSI
scheme.

Looking at the Dirichlet boundary conditions at the fluid-structure interface, that
have to preclude lateral motions, one has to consider that interface degrees of freedom
on the slave side, i.e. in the fluid field, are not allowed to carry Dirichlet boundary
conditions (cf. remark 4.3). Thus, the fluid interface degrees of freedom are not
constrained by Dirichlet boundary conditions at all. As such, the Dirichlet boundary
conditions of the structural interface degrees of freedom are assigned to the fluid
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Fig. 4. Temporal convergence study for pseudo 1D FSI example — Comparison of temporal
convergence for different fluid time integration schemes and different conversions of ALE interface
displacements into fluid interface velocities. Temporal convergence is measured using L2-errors of
velocity field and pressure field in the fluid volume ΩF. The computed convergence rates match
theoretical expectations perfectly.
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(
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)

with Tf = 5

ΩF
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ΓFSI

ΩS

(a) geometry and boundary conditions (b) solution at time t = 19.0

Fig. 5. Geometry, boundary conditions, and solution for leaky driven cavity with flexible bottom
— Left: The square fluid domain ΩF is split into a cavity portion ΩF

cav, covering the bottom part
of ΩF, and a top portion ΩF

top. On left and right walls of the cavity, no-slip boundary conditions are

imposed. On the top of ΩF
top, the velocity in x-direction is prescribed by ūF

x
(t), whereas the velocity

in y-direction is set to zero. The left side of the top region is subject to a linearily varying prescribed
inflow velocity. The pressure level is determined by a do-nothing Neumann boundary condition on
the right side of the top region. The structural domain ΩS is clamped on its left and right edges.
Right: The fluid domain is shown via a contour plot of the pressure field. Additionally, the fluid
velocity field is visualized using a vector plot. At the interface, the Lagrange multiplier field, i.e. the
coupling traction, is shown as traction vectors.

interface degrees of freedom weakly via the mortar coupling. The traction that forces
the y- and z-components of the fluid velocity to zero is represented by the y- and
z-components of the Lagrange multiplier field. Figure 3(b) shows a visualization of
the fluid domain and the Lagrange multiplier field. The weak enforcement of Dirichlet
boundary conditions across the fluid-structure interface is clearly observed, since the
traction field exhibits components in lateral y- and z-direction.

5.2. Driven cavity with flexible bottom. To demonstrate the effect of the
predictors, a two-dimensional leaky driven cavity with flexible bottom as sketched
in figure 5(a) is used (see also [26]). The structure is modelled with a St.-Venant-
Kirchhoff material with Young’s modulus ES = 250, Poisson’s ratio νS = 0, and
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density ρS = 500. The incompressible Newtonian fluid has a dynamic viscosity
of µF = 0.01 and a density ρF = 1. Geometry, dimensions, and boundary condi-
tions are detailed in figure 5(a).

Spatial discretization is performed with two different grids. For the coarser grid,
the cavity volume ΩF

cav is meshed with 64×64 bilinear quadrilateral elements, whereas
the top volume ΩF

top is meshed with 64 × 8 bilinear quadrilateral elements. In order
to realize non-matching grids at the fluid-structure interface ΓFSI, the structure is
discretized with 72 × 2 bilinear quadrilateral elements. For the finer grid, the num-
ber of elements in each direction is doubled. For temporal discretization both fields
employ generalized-α time integration without numerical dissipation and a time step
size ∆t = 0.01. Figure 5(b) depicts the solution at time t = 19.0.

This example was ran using different types of predictors in the structure field
only to demonstrate their effect on computational costs. The fluid field is always
treated without any predictor. The reference solution is computed without any pre-
dictors, i.e. assuming constant displacements, velocities, and accelerations (referred to
as ConstDis). In the structure field, two types of predictors are used: First, a constant
structural velocity is assumed, yielding a linear displacement prediction (referred to
as ConstVel). Secondly, the accelerations are assumed to be constant, resulting in a
linear extrapolated velocity field and a quadratically extrapolated displacement field
(referred to as ConstAcc). All predictors require only simple and extremely cheap
vector operations like multiplication with a scalar and addition of vectors. Hence,
they are of negligible costs compared to the remaining operations, especially to the
costs of the linear solver.

The costs are quantified by the number of linear solver iterations per time step,
since in general these costs dominate, especially when it comes to large problem sizes.
Hence, a reduction of the number of linear solver iterations has huge impact on the
overall computational costs and, thus, is very desirable.

For comparison, the simulation parameters except for the mesh size have been
held constant. The linear solver utilizes an ILU(0) preconditioner for each field and is
solved using a GMRES procedure [35] where the Krylov space dimension is set to 50.
The iterative linear solver stops, when the relative residual ||r||2/||r0||2 is below 10−5.
The nonlinear iteration is stopped, as soon as the residuals as well as the nonlinear
solution increments of the displacement field, the velocity field, and the pressure field
measured in L2- and L∞-norm are below 10−8. In addition, the L2- and L∞-norm of
the interface residual and increment were required to be smaller than 10−9.

The number of linear iterations per time step for different choices of predictors
is shown in figure 6. Just by employing the ConstVel or the ConstAcc predictor in
the structure field, the average number of linear iterations per time step is reduced
by 9.7% on the coarser grid. On the fine grid, the reduction is 3.1%.

Remark 5.1. In principle, the solution schemes proposed in §4.1 and §4.2 are
able to handle fluid predictors as well. However, if only the velocity field is predicted in
a comparably simple way as in the structure field, the pressure field does not match the
velocity field after the prediction. Hence, we recommend to just predict the structural
solution unless sophisticated fluid predictors that include a pressure projection step
are available. In our implementation, however, we only consider explicit predictors
that come with only negligible additional cost and therefore refrain from using a non-
constant fluid predictor step here.

When looking at the interface energy production per step as discussed in re-
mark 3.2, the amount of energy per step ∆En→n+1

Γ in the worst case scenario is at
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Fig. 6. Driven cavity with flexible bottom — Comparison of number of linear iterations per
time step for different choices of predictors. Using simple predictors like ConstVel or ConstAcc
in the structure field reduces the number of linear iterations per time step and, thus, the actual
computational costs compared to the case without predictor, i.e. ConstDis.
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Fig. 7. Geometry of pressure wave example — A solid tube (Young’s modu-
lus E = 3 · 106 g/(cm · s2)), Poisson’s ratio νS = 0.3, density ρS = 1.2 g/cm3, outer radius Ro =
0.6 cm, inner radius Ri = 0.5 cm, length ℓ = 5.0 cm) is filled with an incompressible Newtonian fluid
(dynamic viscosity µF = 0.03 g/(cm · s), density ρF = 1.0 g/cm3) that is initially at rest.

the order of 10−6 whereas the kinetic energy of the system is at the order of 10−1.
Furthermore we keep in mind the physical dissipation due to fluid viscosity and further
numerical dissipation stemming from time integration or fluid stabilization. Hence,
the energy production per step can be considered as negligible. For a = b, ∆En→n+1

Γ

vanishes up to machine precision. For this reason, the observations in remark 3.2 are
confirmed numerically.

5.3. Pressure wave through collapsible tube. Finally, a pressure wave trav-
elling through a collapsible tube (see e.g. [14, 15]) is examined mimicking hemody-
namic conditions. The outstanding efficiency of a monolithic solution scheme com-
pared to partitioned schemes has already been demonstrated in [22]. A more detailed
analysis of the performance of the linear solvers has been performed in [14] for this
example.

The geometry is depicted in figure 7. The solid tube is clamped at both ends.
The fluid is initially at rest. For the duration of 3 · 10−3 s, it is loaded with a surface
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Table 1

Pressure wave trough collapsible tube — number of unknowns for five different meshes pw1-pw5

Mesh # of structure DOFs # of fluid DOFs # of ALE DOFs Total # of DOFs
pw1 2016 7476 5607 15099
pw2 11808 55268 41451 108527
pw3 23424 181780 136335 341539
pw4 77760 425412 319059 822231
pw5 556416 3339140 2504355 6399911
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Fig. 8. Mesh refinement for pressure wave example — It can be seen that the influence of the
mesh on the overall behavior of the solution is small for the meshes pw2-pw5. Only the solution
obtained on the coarsest grid pw1 differs significantly.

traction h̄
F
= 1.3332 ·104 g · cm/s2 in z-direction at z = 0. At z = ℓ, fluid velocities

are prescribed to zero, meaning that the tube is closed at that end. As a result, a
pressure wave travels along the tube’s longitudinal axis and is reflected at the closed
end of the tube. The constitutive behavior of the structure is modeled by a St.-
Venant-Kirchhoff material, the fluid is assumed to be an incompressible Newtonian
fluid. The actual material parameters are given in figure 7.

The solid is discretized with trilinear hexahedral elements and utilizes enhanced
assumed strains (EAS) in order to circumvent possible locking phenomena. For the
fluid discretization, trilinear stabilized equal-order hexahedral elements are used. The
problem is solved on five different grids pw1 -pw5 with different levels of mesh re-
finement. Table 1 provides the number of unknowns per field for each of the five
meshes. Temporal discretization is performed with generalized-α time integration in
the structure field and generalized-α or one-step-θ time integration in the fluid field.
In all cases, the displacement-velocity conversion at the fluid-structure interface is
done with the second order accurate trapezoidal rule (3.15).

Mesh independence is examined. In addition, the effect of different combinations
of time integration schemes and time integration parameters ρS

∞
, ρF

∞
, and θF in both

structure and fluid field is studied in detail. Furthermore, solutions obtained with
different time step sizes ∆t are compared to each other. For comparison, we monitor
the temporal evolution of the radial displacement dSx at point A(0.6 cm, 0, 2.5 cm) on
the one hand. On the other hand, the temporal evolution of the fluid pressure pF at
the center point B(0, 0, 2.5 cm) is observed.

In figure 8, the solutions for the different meshes pw1 -pw5 are reported. Therefore,
all computations have been carried out with a time step size ∆t = 1.0 · 10−4 s as it
is usual in literature [14, 21, 22] and generalized-α time integration in both fields.
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Fig. 9. Different time step sizes for pressure wave example — Using ∆t = 1.0 · 10−4 s as
reference solution, a larger time step size does not resolve the solution properly.

The spectral radii have been chosen to ρS
∞

= 0.8 and ρF
∞

= 0.5 for the structure
and fluid time integrator, respectively. The first peak occurs, when the pressure wave
passes points A and B for the first time. After the reflection at the closed end of the
tube, the pressure wave travels in negative z-direction and causes the second peaks
in figure 8. Only the solution on the coarsest grid pw1 differs significantly from the
other fine grid solutions. Thus, for all further comparisons, we use the medium-sized
discretization pw3.

A comparison of different time step sizes has been performed and is reported in
figure 9. Again, both fields have been integrated with generalized-α time integration
with spectral radii ρS

∞
= 0.8 and ρF

∞
= 0.5 for the structure and fluid time integrator,

respectively. The larger time step ∆t = 5.0 · 10−4 s is not able to resolve the problem
properly, leading to a shift of the displacement and pressure maxima to larger time
values. The better solution is obtained with ∆t = 1.0 · 10−4 s. Due to the small time
step limit of the fluid stabilization [5], a further refinement of the time step size is not
possible without loosing the stabilizing effects of the fluid stabilization. In accordance
with the literature [14, 21, 22], all further computations are done with a time step
size of ∆t = 1.0 ·10−4 s.

The effect of different combinations of time integration schemes with various time
integration parameters in both fluid and structure field is depicted in figure 10. When
both fields are discretized with generalized-α schemes, the influence of the actual pa-
rameter choice is rather small. The pressure field shows some fluctuations, when no
or only little numerical dissipation is imposed. These fluctuations vanish the better,
the more numerical dissipation is introduced into the system. However, the overall
behavior of the solution is not affected by numerical dissipation. This changes dra-
matically, when one-step-θ time integration is utilized in the fluid field. Then, only
the choice θF = 0.5 is free of numerical dissipation. The larger the value of θF, the
more numerical dissipation is involved. Again, numerical dissipation reduces the fluc-
tuations in the pressure field. Simultaneously, the amplitudes in the displacements
as well as in the pressure are reduced significantly by a larger amount of numerical
dissipation, i.e. the solution changes a lot. To conclude the comparison of time inte-
gration schemes, we stress that numerical dissipation in the fluid field does not only
affect the fluid solution, but the solution in the structure field is also highly affected
due to the interface coupling.
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Fig. 10. Various combinations of time integration schemes for pressure wave example — For
the structure field, generalized-α time integration with its spectral radius ρS∞ has been utilized. In
the fluid field, either generalized-α time integration or a one-step-θ scheme have been employed,
denoted by their parameters ρF∞ and θF, respectively. Close-ups for the first peak are shown.

6. Concluding remarks. A temporal consistent, mortar-based monolithic ap-
proach to large-deformation fluid-structure interaction has been proposed. It allows
for both independent spatial and independent temporal discretization for both fluid
and structure field. Regarding the spatial discretization, potentially non-matching
grids at the fluid-structure interface are dealt with utilizing a dual mortar method.
Of course, the presented framework also includes the case of conforming interface
discretizations, where all mortar projection operators reduce to diagonal matrices as
well as the interface constraints collapse to the trivial case of condensable point-wise
constraints. For temporal discretization, both fields can be discretized using fully
implicit, single-step, and single-stage time integration schemes. Thereby, the individ-
ual time integration schemes can be chosen depending on the needs of the individual
fields since temporal consistency is guaranteed by the proposed method. Due to this
generality, the proposed method does not impose any restrictions on the particular
finite element formulations neither on fluid, ALE, nor structure field. Regarding the
temporal discretization, the limitation to fully implicit, single-step, and single-stage
time integration schemes does not seem harsh since they are pretty common to use.
In addition, the incorporation of single-field predictors and inhomogeneous Dirichlet
boundary conditions at the fluid-structure interface has been discussed.

Optimal temporal convergence rates have been shown in a simple test case with
analytical solution. Furthermore, the positive effect of simple single-field predictors
on the reduction of computational costs has been demonstrated. The freedom of
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consistently choosing different time integration schemes in fluid and structure field
has been used to discuss different damping properties of the resulting algorithms.
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