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Abstract

A large collection of financial contracts offering guaranteed minimum benefits are often posed as
control problems, in which at any point in the solution domain, a control is able to take any one of an
uncountable number of values from the admissible set. Often, such contracts specify that the holder
exert control at a finite number of deterministic times. The existence of an optimal bang-bang control, an
optimal control taking on only a finite subset of values from the admissible set, is a common assumption
in the literature. In this case, the numerical complexity of searching for an optimal control is considerably
reduced. However, no rigorous treatment as to when an optimal bang-bang control exists is present in the
literature. We provide the reader with a bang-bang principle from which the existence of such a control
can be established for contracts satisfying some simple conditions. The bang-bang principle relies on the
convexity and monotonicity of the solution and is developed using basic results in convex analysis and
parabolic partial differential equations. We show that a guaranteed lifelong withdrawal benefit (GLWB)
contract admits an optimal bang-bang control. In particular, we find that the holder of a GLWB can
maximize a writer’s losses by only ever performing nonwithdrawal, withdrawal at exactly the contract
rate, or full surrender. We demonstrate that the related guaranteed minimum withdrawal benefit contract
is not convexity preserving, and hence does not satisfy the bang-bang principle other than in certain
degenerate cases.

Keywords: bang-bang controls, GMxB guarantees, convex optimization, optimal stochastic control

1 Introduction

1.1 Main results
A large collection of financial contracts offering guaranteed minimum benefits (GMxBs) are often posed as
control problems [3], in which the control is able to take any one of an uncountable number of values from the
admissible set at each point in its domain. For example, a contract featuring regular withdrawals may allow
holders to withdraw any portion of their account. In the following, we consider a control which maximizes
losses for the writer of the contract, hereafter referred to as an optimal control.

A typical example is a guaranteed minimum withdrawal benefit (GMWB). If withdrawals are allowed at
any time (i.e. “continuously”), then the pricing problem can be formulated as a singular control [18, 9, 14, 15]
or an impulse control [7] problem.

In practice, the contract usually specifies that the control can only be exercised at a finite number of
deterministic exercise times t0 < t1 < · · · < tN−1 [3, 8]. The procedure for pricing such a contract using
dynamic programming proceeds backwards from the expiry time tN as follows:
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1. Given the solution as t→ t−n+1, the solution as t→ t+n is acquired by solving an initial value problem.

2. The solution as t→ t−n is then determined by applying an optimal control, which is found by considering
a collection of optimization problems.

If, for example, a finite difference method is used to solve the initial value problem from t−n+1 to t+n , an
optimal control is determined by solving an optimization problem at each grid node, in order to advance the
solution to t−n . Continuing in this way, we determine the solution at the initial time.

If there exists an optimal bang-bang control, an optimal control taking on only a finite subset of values
from the admissible set, the numerical algorithm simplifies considerably. The existence of such a control
is a common assumption in insurance applications [2, 19, 13], although no rigorous treatment is present in
the literature. In this paper, we will also consider a weaker condition, a bang-bang principle. In this case,
although an optimal control is not necessarily a finite subset of values from the admissible set, we will see
that a control having this property can result in a large reduction in computational complexity.

Our main result in this paper is the specification of sufficient conditions which can be used to guarantee
the existence of an optimal bang-bang control. This result relies on the convexity and monotonicity of the
solution and follows from a combination of basic results in convex analysis and parabolic partial differential
equations (PDEs). We demonstrate our results on two common contracts in the GMxB family:

• The guaranteed lifelong withdrawal benefit (GLWB) (a.k.a. guaranteed minimum lifelong withdrawal
benefits (GMLWB)) admits an optimal bang-bang control. In particular, we prove that a holder can
maximize the writer’s losses by only ever performing

– nonwithdrawal,
– withdrawal at the contract rate (i.e. never subject to a penalty), or
– a full surrender (i.e. maximal withdrawal; may be subject to a penalty).

• On the other hand, the guaranteed minimum withdrawal benefit (GMWB) is not necessarily convexity
preserving, and does not satisfy a bang-bang principle other than in certain degenerate cases.

In the event that it is not possible to determine an optimal control analytically, numerical methods are
required. Standard techniques in optimization are not always applicable, since these methods cannot guarantee
convergence to a global extremum. In particular, without a priori knowledge about the objective functions
appearing in the family of optimization problems corresponding to optimal holder behavior at the exercise
times, a numerical method needs to resort to a linear search over a discretization of the admissible set.
Convergence to a desired tolerance is achieved by refining this partition [23]. Only with this approach can
we be assured of a convergent algorithm. However, if an optimal bang-bang control exists, discretizing
the control set becomes unnecessary. Theoretically, this simplifies convergence analysis. More importantly,
in practice, this reduces the amount of work per local optimization problem, often the bottleneck of any
numerical method.

1.2 Insurance applications
The GLWB is a response to a general reduction in the availability of defined benefit pension plans [6], allowing
the buyer to replicate the security of such a plan via a substitute. The GLWB is bootstrapped via a lump sum
payment w0 to an insurer, which is invested in risky assets. We term this the investment account. Associated
with the GLWB contract is the guaranteed withdrawal benefit account, referred to as the withdrawal benefit
for brevity. This account is also initially set to w0. At a finite set of deterministic withdrawal times, the
holder is entitled to withdraw a predetermined fraction of the withdrawal benefit (or any lesser amount),
even if the investment account diminishes to zero. This predetermined fraction is referred to as the contract
withdrawal rate. If holders wish to withdraw in excess of the contract withdrawal rate, they can do so upon
the payment of a penalty. Typical GLWB contracts include penalty rates that are decreasing functions of
time.
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These contracts are often bundled with ratchets (a.k.a. step-ups), a contract feature that periodically
increases the withdrawal benefit to the investment account, provided that the latter has grown larger than
the former. Moreover, bonus (a.k.a. roll-up) provisions are also often present, in which the withdrawal benefit
is increased if the holder does not withdraw at a given withdrawal time. Upon death, the holder’s estate
receives the entirety of the investment account. We show that a holder can maximize the writer’s costs by
only ever performing nonwithdrawal, withdrawal at exactly the contract rate, or surrendering the entirety of
their account. Such a holder will never withdraw a nonzero amount strictly below the contract rate or perform
a partial surrender. However, this result requires a special form for the penalty and lapsation functions, which
is not universal in all contracts. Pricing GLWB contracts has previously been considered in [21, 13, 10, 1].

Much like the GLWB contract, a GMWB is composed of an investment account and withdrawal benefit
initially set to w0, in which w0 is a lump sum payment to an insurer. At a finite set of withdrawal times, the
holder is entitled to withdraw up to a predetermined amount. Note that this amount is not a fraction of the
withdrawal benefit, as in the GLWB, but rather a constant amount irrespective of the withdrawal benefit’s
size. Furthermore, unlike the GLWB, the action of withdrawing decreases both the investment account and
withdrawal benefit on a dollar-for-dollar basis.

The GMWB promises to return at least the entire original investment, regardless of the performance of
the underlying risky investment. The holder may withdraw more than the predetermined amount subject to
a penalty. Upon death, the contract is simply transferred to the holder’s estate, and hence mortality risk
need not be considered. Pricing GMWB contracts has been previously considered in [18, 9, 8, 14, 15].

1.3 Overview
In §2, we introduce the GLWB and GMWB contracts. In §3, we generalize this to model a contract that can
be controlled at finitely many times, a typical case in insurance practice (e.g. yearly or quarterly exercise).
In §4, we develop sufficient conditions for the existence of an optimal bang-bang control and show that the
GLWB satisfies these conditions. §5 discusses a numerical method for finding the cost of funding GLWB and
GMWB contracts, demonstrating the bang-bang principle for the former and providing an example of where
it fails for the latter.

2 Guaranteed minimum benefits (GMxBs)
We introduce mathematical models for the GLWB and GMWB contracts in this section. Since most GMxB
contracts offer withdrawals on anniversary dates, to simplify notation, we restrict our attention to annual
withdrawals occurring at

T ≡ {0, 1, . . . , N − 1} .

0 and N are referred to as the initial and expiry times, respectively (no withdrawal occurs at N).
In order to ensure that the writer can, at least in theory, hedge a short position in a GMxB with no

risk, we assume that the holder will employ a loss-maximizing strategy. That is, the holder will act so as to
maximize the cost of funding the GMxB. This represents the worst-case hedging cost for the writer. This
worst-case cost is a function of the holder’s investment account and withdrawal benefit. As such, we write
x ≡ (x1, x2), where x1 is the value of the investment account and x2 is the value of the withdrawal benefit.
Both of these quantities are nonnegative.

Let α denote the hedging fee, the rate continuously deducted from the investment account X1 (while x1
is used to denote a particular value of the investment account, the capital symbol X1 is reserved for the
corresponding stochastic process) to provide the premium for the contract. We assume that between exercise
times, the investment account of the GMxBs follows geometric Brownian motion (GBM) as per

dX1

X1
= (µ− α) dt+ σdZ
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tracking the index X̂1 satisfying
dX̂1

X̂1
= µdt+ σdZ

where Z is a Wiener process under the real-world measure. We assume that it is not possible to short the
investment account X1 for fiduciary reasons [8], so that the obvious arbitrage opportunity is prohibited.

The worst-case cost of a GMxB is posed as the solution to an initial value problem (IVP) specified by
three conditions:

1. the worst-case cost of funding the contract at the expiry time (posed as a Cauchy boundary condition;
see, for example, (2.1) and (2.11));

2. the evolution of the worst-case cost across withdrawals (posed as a supremum over the holder’s actions,
corresponding to the holder acting so as to maximize the writer’s losses; see, for example, (2.2) and
(2.12));

3. the evolution of the worst-case cost between withdrawals (posed as a conditional expectation; see, for
example, (2.3) and (2.13)).

We begin by introducing the IVP for the GMWB before moving to the GLWB for ease of exposition. To
distinguish the two contracts, we use the superscripts L and M to denote quantities that pertain to the
GLWB and GMWB, respectively. In the following, we denote by Ẽ the expectation and by Z̃ a Wiener
process under the risk-neutral measure, that which renders the discounted index X̂1 into a martingale. For a
function g whose domain is a subset of R, we use the notations g (t−) ≡ lims↑t g (s) and g (t+) ≡ lims↓t g (s)
to denote the one-sided limits at t.

2.1 Guaranteed minimum withdrawal benefit (GMWB)
Since the GMWB is transferred to the holder’s estate upon death, mortality risk is not considered. The
worst-case cost of funding a GMWB at time N (the expiry) is [9]

ϕM (x) ≡ max (x1, (1− κN )x2) ,

corresponding to the greater of the entirety of the investment account or a full surrender at the penalty rate
at the Nth anniversary, κN ∈ [0, 1]. The worst-case cost of funding a GMWB at previous times is derived
by a hedging argument in which the writer takes a position in the index X̂1 [8]. Equivalently, it is given by
finding V (within the relevant space of functions; see Appendix A) such that (s.t.)

V (x, N) = ϕM (x) on [0,∞)2 (2.1)
V
(
x, n−

)
= sup
λ∈[0,1]

[
V
(
fM
x,n (λ) , n+)+ fM

x,n (λ)
]

on [0,∞)2 ×T (2.2)

V (x, t) = Ẽ
[
e
−
∫ n+1

t
r(τ)dτ

V
(
X1

(
(n+ 1)−

)
, x2, (n+ 1)−

)
| X1

(
n+) = x1

]
on [0,∞)2 × (n, n+ 1) ∀n (2.3)

where between exercise times
dX1

X1
= (r − α) dt+ σdZ̃. (2.4)

r is the risk-free rate, fM : [0, 1]→ R represents the cash flow from the writer to the holder, and fM : [0, 1]→
[0,∞)2 represents the state of the contract postwithdrawal. The construction of fM and fM is outlined below.
The holder is able to withdraw a fraction λ ∈ [0, 1] of the withdrawal benefit at each exercise time.

Intuitively, V (x, n−) and V (x, n+) can be thought of as the value of the contract “immediately before”
and “immediately after” the exercise time n.
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Let G > 0 denote the predetermined contract withdrawal amount associated with the GMWB so that
G ∧ x2 (a ∧ b ≡ min (a, b), a ∨ b ≡ max (a, b)) is the maximum the holder can withdraw without incurring a
penalty (both ∧ and ∨ are understood to have lower operator precedence than the arithmetic operations).
Consider the point (x1, x2, n) with n ∈ T .

• The maximum a holder can withdraw without incurring a penalty is G ∧ x2. If the holder withdraws
the amount λx2 with λx2 ∈ [0, G ∧ x2],

V
(
x, n−

)
= V (x1 − λx2 ∨ 0, x2 − λx2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f M

, n+) + λx2°
fM

. (2.5)

• Let κn ∈ [0, 1] denote the penalty rate at the nth anniversary. If the holder withdraws the amount λx2
with λx2 ∈ (G ∧ x2, x2],

V
(
x, n−

)
= V (x1 − λx2 ∨ 0, x2 − λx2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f M

, n+) + λx2 − κn (λx2 −G)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fM

. (2.6)

Here, λx2 ∈ (G ∧ x2, x2) corresponds to a partial surrender and λx2 = x2 (i.e. λ = 1) corresponds to a
full surrender.

We can summarize (2.5) and (2.6) by taking

fM
x,n (λ) ≡

{
λx2 if λx2 ∈ [0, G ∧ x2]
G+ (1− κn) (λx2 −G) if λx2 ∈ (G ∧ x2, x2]

(2.7)

and
fM
x,n (λ) ≡ (x1 − λx2 ∨ 0, (1− λ)x2) .

It can be shown from (2.3) that the cost to fund the GMWB (between exercise times) satisfies1 [8]

∂tV + LV = 0 on (0,∞)2 × (n, n+ 1) ∀n (2.8)

where
L ≡ 1

2σ
2x2

1∂x1x1 + (r − α)x1∂x1 − r. (2.9)

2.2 Guaranteed lifelong withdrawal benefit (GLWB)

LetM (t) be the mortality rate at time t (i.e.
∫ t2
t1
M (t) dt is the fraction of the original holders who pass

away in the interval [t1, t2]), so that the survival probability at time t is

R (t) = 1−
∫ t

0
M (s) ds.

We assumeM is continuous and nonnegative, along with R (t) > 0 for all times t. We assume that mortality
risk is diversifiable. Furthermore, we assume the existence of a time t? > 0 s.t. R (t?) = 0. That is, survival
beyond t? is impossible (i.e. no holder lives forever). N is chosen s.t. N > t? to ensure that all holders have
passed away at the expiry of the contract. As is often the case in practice, we assume ratchets are prescribed
to occur on a subset of the anniversary dates (e.g. triennially).

As usual, we assume that the holder of a GLWB will employ a loss-maximizing strategy. Since N was
picked sufficiently large, the insurer has no obligations at the Nth anniversary and the worst-case cost of
funding a GLWB at time N is

ϕL (x) ≡ 0. (2.10)
1We discuss what it means for a function to satisfy this PDE in Appendix A.
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As with the GMWB, the worst-case cost of funding a GLWB is derived by a hedging argument in which the
writer takes a position in the index X̂1 [10]. Equivalently, it is given by finding V (within the relevant space
of functions; see Appendix A) s.t.

V (x, N) = ϕL (x) on [0,∞)2 (2.11)
V
(
x, n−

)
= sup
λ∈[0,2]

[
V
(
fL
x,n (λ) , n+)+ fL

x,n (λ)
]

on [0,∞)2 ×T (2.12)

V (x, t) = Ẽ
[
e
−
∫ n+1

t
r(τ)dτ

V
(
X1

(
(n+ 1)−

)
, x2, (n+ 1)−

)
+
∫ n+1

t

e
−
∫ s

t
r(τ)dτM (s)X1 (s) ds | X1

(
n+) = x1

]
on [0,∞)2 × (n, n+ 1) ∀n (2.13)

where between exercise times, X1 is specified by (2.4).
fL : [0, 2] → R represents the (mortality-adjusted [10]) cash flow from the writer to the holder and

fL : [0, 2]→ [0,∞)2 represents the state of the contract postwithdrawal. In particular, λ = 0 corresponds to
nonwithdrawal, λ ∈ (0, 1] corresponds to withdrawal at or below the contract rate, and λ ∈ (1, 2] corresponds
to a partial or full surrender.

Remark 2.1. We remark that the admissible set of actions [0, 2] is undesirably large (i.e. a continuum). We
will apply the results established in §4 to show that an optimal strategy taking on values only from {0, 1, 2}
exists. In other words, an equivalent problem can be constructed by substituting the set {0, 1, 2} for the original
[0, 2] in the optimization problem (2.12). The resulting problem has smaller computational complexity than
the original one (i.e. successive refinements of [0, 2] need not be considered to attain convergence).

The construction of fL and fL is guided by the specification of the contract:

• Let β denote the bonus rate: if the holder does not withdraw, the withdrawal account is amplified by
1 + β.

• Let δ denote the contract withdrawal rate; that is, δx2 is the maximum a holder can withdraw without
incurring a penalty.

• Let κn ∈ [0, 1] denote the penalty rate at the nth anniversary, incurred if the holder withdraws above
the contract withdrawal rate.

• Let

In =
{

1 if a ratchet is prescribed to occur on the nth anniversary
0 otherwise

.

Then,

fL
x,n (λ) ≡ R (n) ·


0 if λ = 0
λδx2 if λ ∈ (0, 1]
δx2 + (λ− 1) (1− κn) (x1 − δx2 ∨ 0) if λ ∈ (1, 2]

(2.14)

and

fL
x,n (λ) ≡


(x1, x2 (1 + β) ∨ Inx1) if λ = 0
(x1 − λδx2 ∨ 0, x2 ∨ In [x1 − λδx2]) if λ ∈ (0, 1]
(2− λ) fx,n (1) if λ ∈ (1, 2]

. (2.15)

It can be shown that the cost to fund the GLWB (between exercise times) satisfies [10]

∂tV + LV +Mx1 = 0 on (0,∞)2 × (n, n+ 1) ∀n (2.16)

where L is defined in (2.9).
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3 General formulation
We generalize now the above IVPs. Let T ≡ {t0, . . . , tN−1} along with the order 0 ≡ t0 < · · · < tN ≡ T , in
which T is referred to as the expiry time. Let Ω be a convex subset of Rm. The set of all actions a holder
can perform at an exercise time tn is denoted by Λn ⊂ Rm′ , assumed to be nonempty, and referred to as an
admissible set. For brevity, let

vx,n (λ) ≡ V
(
fx,n (λ) , t+n

)
+ fx,n (λ) (3.1)

where fx,n : Λn → R and fx,n : Λn → Ω. We write vx,n (λ) to stress that for each fixed (x, n), we consider an
optimization problem in the variable λ. The general problem is to find V satisfying the conditions

V (x, T ) = ϕ (x) on Ω (3.2)
V
(
x, t−n

)
= sup vx,n (Λn) on Ω×T (3.3)

along with a condition specifying the evolution of V from t+n to t−n+1 (see, for example, (2.3) and (2.13)).

Remark 3.1. Convexity preservation, a property that helps establish the bang-bang principle, depends on
each admissible set Λn being independent of the state of the contract, x. This is discussed in Remark 4.18.

4 Control reduction
Definition 4.1 (Optimal bang-bang control). V , a solution to the general IVP introduced in §3, is said to
admit an optimal bang-bang control at time tn ∈ T whenever

V
(
x, t−n

)
= max vx,n

(
Λ̂n
)
on Ω,

where Λ̂n denotes a finite set independent of x.

The above condition is inherently simpler than (3.3), in which there are no guarantees on the cardinality
of Λn.
§4.2 develops Corollary 4.13, establishing sufficient conditions for the existence of an optimal bang-bang

control. This result requires that the relevant solution V be convex and monotone (CM). Given a CM initial
condition (3.2), we seek to ensure that V preserves the CM property at all previous times. §4.3 develops
conditions on the functions f and f to ensure that the supremum (3.3) preserves the CM property. Similarly,
§4.4 develops conditions on the dynamics of V (and hence the underlying stochastic process(es)) to ensure
that the CM property is preserved between exercise times.

For the remainder of this work, we use the shorthand V +
n (x) ≡ V (x, t+n ) and V −n (x) ≡ V (x, t−n ).

4.1 Preliminaries
In an effort to remain self-contained, we provide the reader with several elementary (but useful) definitions.
In practice, we consider only vector spaces over R and hence restrict our definitions to this case.

Definition 4.2 (convex set). Let W be a vector space over R. X ⊂ W is a convex set if for all x, x′ ∈ X
and θ ∈ (0, 1), θx+ (1− θ)x′ ∈ X.

Definition 4.3 (convex function). Let X be a convex set and Y be a vector space over R equipped with a
partial order 6Y . h : X → Y is a convex function if for all x, x′ ∈ X and θ ∈ (0, 1),

h (θx+ (1− θ)x′) 6Y θh (x) + (1− θ)h (x′) .

Definition 4.4 (extreme point). An extreme point of a convex set X is a point x ∈ X which cannot be
written x = θx′ + (1− θ)x′′ for any θ ∈ (0, 1) and x′, x′′ ∈ X with x′ 6= x′′.
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Definition 4.5 (convex polytope). Let Y be a topological vector space over R. P ⊂ Y is a convex polytope if
it is a compact convex set with finitely many extreme points. The extreme points of a convex polytope are
referred to as its vertices.

Definition 4.6 (monotone function). Let X and Y be sets equipped with partial orders 6X and 6Y ,
respectively. h : X → Y is monotone if for all x, x′ ∈ X, x 6X x′ implies h (x) 6Y h (x′).

Lemma 4.7. Let A be a convex set, and let B and C be vector spaces over R equipped with partial orders
6B and 6C , respectively. If h1 : A→ B and h2 : B → C are convex functions with h2 monotone, then h2 ◦ h1
is a convex function.

Remark 4.8. For the remainder of this work, we equip Rm with the order 6 defined as follows: if x,y ∈ Rm,
x 6 y whenever xi 6 yi for all i.

4.2 Bang-bang principle
Consider a particular exercise time tn. Suppose the following:

(A1) x 7→ V +
n (x) is CM.

(A2) For each fixed x ∈ Ω, vx,n (Λn) is bounded above.

Throughout this section, we consider a particular point y ∈ Ω in order to establish our result pointwise. For
the results below, we require the following propositions:

(B1) There exists a collection Pn (y) ⊂ 2Λn s.t.
⋃
P∈Pn(y) P = Λn and each P ∈ Pn (y) is compact convex.

(B2) For each P ∈ Pn (y), the restrictions λ 7→ fy,n|P (λ) and λ 7→ fy,n|P (λ) are convex.

(B3) Pn (y) is a finite collection of convex polytopes.

Remark 4.9. (B1) simply states that we can “cut up” the admissible set Λn into (possibly overlapping)
compact convex sets. (B2) states that the restrictions of fy,n and fy,n on each of these sets are convex
functions of λ.

Lemma 4.10. Suppose (A1), (B1), and (B2). For each P ∈ Pn (y), the restriction λ 7→ vy,n|P (λ) is convex.

Proof. The proof is by (3.1), (A1), (B2), and Lemma 4.7.

Lemma 4.11. Suppose (A1), (A2), (B1), and (B2). Let P ∈ Pn (y). Then,

sup vy,n (P ) = sup vy,n (E (P ))

where E (P ) denotes the set of extreme points of P .

Proof. Let w ≡ vy,n|P . Note that w (P ) = vy,n (P ), and hence no generality is lost in considering w. Lemma
4.10 establishes the convexity of w. Naturally, supw (P ) exists (and hence supw (E (P )) exists too) due to
(A2). Finally, it is well known from elementary convex analysis that the supremum of a convex function on a
compact convex set P lies on the extreme points of P , E (P ). See [22, Chap. 32].

Theorem 4.12 (bang-bang principle). Suppose (A1), (A2), (B1), and (B2). Then,

sup vy,n (Λn) = sup vy,n

 ⋃
P∈Pn(y)

E (P )


where E (P ) denotes the set of extreme points of P .
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Proof. By (B1), we have that Λn =
⋃
P∈Pn(y) P . We can, w.l.o.g., assume that all members of Pn (y) are

nonempty (otherwise, remove all empty sets). sup vy,n (Λn) exists due to (A2). Since for each P ∈ Pn (y),
sup vy,n (P ) = sup vy,n (E (P )) (Lemma 4.11), two applications of Lemma B.1 allow us to “commute” the
supremum with the union to get

sup vy,n (Λn) = sup vy,n

 ⋃
P∈Pn(y)

P


= sup vy,n

 ⋃
P∈Pn(y)

E (P )

 .

Theorem 4.12 reduces the region over which to search for an optimal control. When Pn (y) is a finite
collection of convex polytopes, the situation is even nicer, as

⋃
P∈Pn(y)E (P ) is a finite set (a finite union of

finite sets). If, in addition, Pn is chosen independent of y, we arrive at an optimal bang-bang control:
Corollary 4.13 (optimal bang-bang control). Suppose (A1) and (A2). Furthermore, suppose (B1), (B2),
and (B3) for all y ∈ Ω. Finally, suppose that there exists Pn s.t. Pn = Pn (y) for all y ∈ Ω. Then, the
general IVP introduced in §3 admits an optimal bang-bang control at time tn (Definition 4.1) with

V
(
x, t−n

)
= sup vx,n (Λn) = max vx,n

(
Λ̂n
)

on Ω

and
Λ̂n ≡

⋃
P∈Pn

E (P ) .

Example 4.14. Let y ∈ [0,∞)2. We now find PL
n (y) s.t. (B1), (B2), and (B3) are satisfied for the GLWB.

Take P1 ≡ [0, 1], P2 ≡ [1, 2], and PL
n (y) ≡ {P1, P2}, satisfying (B3). Note that

⋃
P∈PL

n(y) P = [0, 2], satisfying
(B1). It is trivial to show that the functions fL

y,n|Pj and fL
y,n|Pj defined in (2.14) and (2.15) are convex as

functions of λ (the maximum of convex functions is a convex function), thereby satisfying (B2). Since y was
arbitrary and PL

n was chosen independent of y, we conclude (whenever (A1) and (A2) hold), by Corollary
4.13, that the supremum of vL

y,n occurs at

Λ̂L
n = E (P1) ∪ E (P2) = E ([0, 1]) ∪ E ([1, 2]) = {0, 1} ∪ {1, 2} = {0, 1, 2}

(corresponding to nonwithdrawal, withdrawal at exactly the contract rate, and a full surrender).
Remark 4.15. When all the conditions required for Corollary 4.13 hold, with the exception that Pn (y)
depends on y, then an optimal control is not necessarily bang-bang, but does satisfy the bang-bang principle,
Theorem 4.12. In many cases, this still results in considerable computational simplification (see Remark 5.3).

4.3 Preservation of convexity and monotonicity across exercise times
Since the convexity and monotonicity of V are desirable properties upon which the bang-bang principle
depends (i.e. (A1)), we would like to ensure that they are preserved “across” exercise times (i.e. from t+n to
t−n ).

Consider the nth exercise time, tn. Suppose the following:

(C1) For each fixed λ ∈ Λn, x 7→ fx,n (λ) and x 7→ fx,n (λ) are convex.2.
2Note that this is not the same as (B2) Here, we mean that for each fixed λ ∈ Λn and for all x,x′ ∈ Ω and θ ∈ (0, 1),

fθx+(1−θ)x′,n (λ) 6 θfx,n (λ) + (1− θ) fx′,n (λ)
and

fθx+(1−θ)x′,n (λ) 6 θfx,n (λ) + (1− θ) fx′,n (λ) . (4.1)
The order 6 used in (4.1) is that on Ω ⊂ Rm, inherited from the order on Rm established in Remark 4.8.
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(C2) For each x,x′ ∈ Ω s.t. x 6 x′, there exist sequences {λk} , {λ′k} ∈ ΛN
n s.t. vx,n (λk)→ V −n (x), and for

all k, fx,n (λk) 6 fx′,n (λ′k) and fx,n (λk) 6 fx′,n (λ′k).

Remark 4.16. (C2) simplifies greatly if for all x, vx,n (Λn) contains its supremum.3 Denote this supremum
vx,n (λx), where λx ∈ Λn is an optimal action at x. In this case, the following simpler assumption yields
(C2): for each x,x′ ∈ Ω s.t. x 6 x′, there exists λ′ ∈ Λn s.t. fx,n (λx) 6 fx′,n (λ′) and fx,n (λx) 6 fx′,n (λ′)
(take λk = λx and λ′k = λ′ for all k to arrive at (C2)).

This simpler condition states that for each pair of positions x 6 x′, there is an action λ′ s.t. the position
and cash flow after the event at x′ under action λ′ are greater than (or equal to) the position and cash flow
after the event at x under an optimal action λx. Intuitively, this guarantees us that the position x′ is more
desirable than x (from the holder’s perspective). This is not a particularly restrictive assumption, and it
should hold true for any model of a contract in which a larger position is more desirable than a smaller one.

Lemma 4.17. Suppose (A1), (A2), and (C1). Then, x 7→ V −n (x) is convex.

Proof. Fix x,x′ ∈ Ω and θ ∈ (0, 1), and let z ≡ θx + (1− θ) x′. Then, by (A1) and (C1),

V −n (z) = sup vz,n (Λn)
= sup
λ∈Λn

[
V +
n (fz,n (λ)) + fz,n (λ)

]
6 sup
λ∈Λn

[
V +
n (θfx,n (λ) + (1− θ) fx′,n (λ)) + θfx,n (λ) + (1− θ) fx′,n (λ)

]
6 θ sup

λ∈Λn

[
V +
n (fx,n (λ)) + fx,n (λ)

]
+ (1− θ) sup

λ∈Λn

[
V +
n (fx′,n (λ)) + fx′,n (λ)

]
= θ sup vx,n (Λn) + (1− θ) sup vx′,n (Λn)
= θV −n (x) + (1− θ)V −n (x′) .

Remark 4.18. Note that the proof of Lemma 4.17 involves using V −n (y) = sup vy,n (Λn) for y = x,x′. If
Λn is instead a function of the contract state (i.e. Λn ≡ Λn (x)), then the above proof methodology does not
work since it is not necessarily true that V −n (y) = sup vy,n (Λn (z)) for y = x,x′.

Lemma 4.19. Suppose (A1), (A2), and (C2). Then, x 7→ V −n (x) is monotone.

Proof. Let x,x′ ∈ Ω s.t. x 6 x′. By (A1) (specifically, since V +
n is monotone) and (C2), for each k,

vx,n (λk) = V +
n (fx ,n (λk)) + fx ,n (λk)

6 V +
n (fx′,n (λ′k)) + fx′,n (λ′k)

= vx′,n (λ′k)

Then,
V −n (x) = lim

k→∞
vx,n (λk) 6 lim sup

k→∞
vx′,n (λ′k) 6 sup vx′,n (Λn) = V −n (x′) ,

as desired.

Example 4.20. We now show that the GLWB satisfies (C1) and (C2) given (A1) and (A2). It is trivial
to show that the functions fL

x,n (λ) and fL
x,n (λ) defined in (2.14) and (2.15) are convex in x (the maximum

of convex functions is a convex function), thereby satisfying (C1). (C2) is slightly more tedious to verify.
Let x,x′ ∈ Ω s.t. x 6 x′. By (A1), (A2) and the argument in Example 4.14, we can, w.l.o.g., assume
λx ∈ {0, 1, 2}, where λx denotes an optimal action at x. Hence, we need only consider three cases:

3It is worthwhile to note that in practice, this is often the case; for fixed n, consider Λn compact and λ 7→ vx,n (λ) continuous
for all x.
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1. Suppose λx = 0. Take λ′ = 0 to get fL
x,n (0) = fL

x′,n (λ′) and fL
x,n (0) 6 fL

x′,n (λ′).

2. Suppose λx = 1. W.l.o.g., we can assume x′2 > x2 > 0. Take λ′ = x2/x
′
2 to get fL

x,n (1) = fL
x′,n (λ′) and

fL
x,n (1) 6 fL

x′,n (λ′).

3. Suppose λx = 2. If x1 6 δx2, then fL
x,n (2) = fL

x,n (1) and fL
x,n (2) = (0, 0) 6 fL

x,n (1), and we
can w.l.o.g. assume x′2 > x2 > 0 and once again take λ′ = x2/x

′
2 to get fL

x,n (2) = fL
x′,n (λ′) and

fL
x,n (2) = (0, 0) 6 fL

x′,n (λ′). Therefore, we can safely assume that x1 > δx2 so that

fL
x,n (2) = R (n) [(1− κ)x1 + κδx2] 6 R (n)x1. (4.2)

(a) Suppose x′1 6 δx′2. Take λ′ = 1 to get fL
x,n (2) = (0, 0) 6 fL

x′,n (1) and

fL
x,n (2) 6 R (n)x1 6 R (n) δx′2 = fL

x′,n (1)

by (4.2).
(b) Suppose x′1 > δx′2. Take λ′ = 2 to get fL

x,n (2) = (0, 0) = fL
x′,n (2) and

fL
x,n (2) 6 R (n) [(1− κn)x′1 + κδx′2] = fL

x′,n (2) .

4.4 Preservation of convexity and monotonicity between exercise times
As previously mentioned, to apply Theorem 4.12, we need to check the validity of (A1) (i.e. that the solution
is CM at t+n ). In light of this, we would like to identify scenarios in which V +

n is CM provided that V −n+1 is
CM (i.e. convexity and monotonicity are preserved between exercise times).

Example 4.21. If we assume that both GLWB and GMWB are written on an asset that follows GBM, then
Appendix A establishes the convexity and monotonicity (under sufficient regularity) of V +

n given the convexity
and monotonicity of V −n+1. The general argument is applicable to contracts written on assets whose returns
follow multidimensional drift-diffusions with parameters independent of the level of the asset (a local volatility
model, for example, is not included in this class). Convexity and monotonicity preservation are retrieved
directly from a property of the corresponding Green’s function.

Although the methodology in Appendix A relates convexity and monotonicity to a general property of the
Green’s function (including the class of contracts driven by GBM), in the interest of intuition, we provide the
reader with an alternate proof below using the linearity of the expectation operator along with the linearity of
the stochastic process w.r.t. its initial value. Consider, in particular, the GLWB. Equation (2.13) stipulates

V +
n (x) = Ẽ

[
e
−
∫ n+1

n
r(τ)dτ

V −n+1

(
X1

(
(n+ 1)−

)
, x2

)
+
∫ n+1

n

e
−
∫ s

n
r(τ)dτM (s)X1 (s) ds | X1

(
n+) = x1

]
on [0,∞)2 ×T .

Linearity allows us to consider the two terms appearing in the sum inside the conditional expectation separately.
If each is convex in x, so too is the entire expression. If X1 (n+) = x1,

X1 (s) = x1Y (s)

between n and n+ 1, where

Y (s) ≡ exp
(∫ s

n

[
r (τ)− α (τ)− 1

2σ
2 (τ)

]
dτ +

∫ s

n

σ (τ) dZ̃ (τ)
)
,

from which it is evident that X1 (s) is convex in x1 since Y depends only on time (note that the parameters
appearing in Y are independent of the level of the asset, precluding a local volatility model). It remains to
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show that the first term is also convex. Fix y,y′ ∈ [0,∞)2, θ ∈ (0, 1), and let x ≡ θy + (1− θ) y′. Then, by
assuming that V −n+1 (x) is convex in x,

V −n+1

(
x1Y

(
(n+ 1)−

)
, x2

)
= V −n+1

(
(θy1 + (1− θ) y′1)Y

(
(n+ 1)−

)
, θy2 + (1− θ) y′2

)
6 θV −n+1

(
y1Y

(
(n+ 1)−

)
, y2

)
+ (1− θ)V −n+1

(
y′1Y

(
(n+ 1)−

)
, y′2

)
.

One can use the same technique to show that monotonicity is preserved. An identical argument can be carried
out for the GMWB.

Convexity and monotonicity preservation are established for a stochastic volatility model in [4]. For
the case of general parabolic equations, convexity preservation is established in [16]. This result is further
generalized to parabolic integro-differential equations, arising from problems involving assets whose returns
follow jump-diffusion processes [5].

4.5 Existence of an optimal bang-bang control
Once we have established that convexity and monotonicity are preserved across and between exercise times
(i.e. §4.3 and §4.4, respectively), we need only apply our argument inductively to establish the existence of an
optimal bang-bang control. Instead of providing a proof for the general case, we simply focus on the GLWB
contract here. For the case of a general contract, assuming the dynamics followed by the assets preserve the
convexity and monotonicity of the cost of funding the contract between exercise times (e.g. GBM, as in
Appendix A), the reader can apply the same techniques to establish the existence of a bang-bang control.

Example 4.22. Consider the GLWB. Suppose that for some n s.t. 0 6 n < N , V −n+1 is CM. By Example 4.21,
V +
n is also CM. Under sufficient regularity (see Appendix A), for fixed x, vx,n is bounded above (satisfying

(A2)). Since (A1) and (A2) are satisfied, we can use Example 4.14 to conclude that the supremum of vx,n,
for each x ∈ Ω, occurs on {0, 1, 2}. By Example 4.20, V −n is convex and monotone.

By (2.10) and (2.11), V (x, N) = 0. Since V (x, N) is trivially CM as a function of x, we can apply the
above argument inductively to establish the existence of an optimal bang-bang control.

5 Numerical Examples
To demonstrate the bang-bang principle in practice, we implement a numerical method to solve the GLWB
and GMWB problems and examine loss-maximizing withdrawal strategies.

5.1 Contract pricing algorithm
Algorithm 1 highlights the usual dynamic programming approach to pricing contracts with finitely many
exercise times. Note that line 2 is purposely non-specific; the algorithm does not presume anything about the
underlying dynamics of the stochastic process(es) that V is a function of, and as such does not make mention
of a particular numerical method used to solve V +

n given V −n+1. Establishing that the control is bang-bang
for a particular contract allows us to replace Λn appearing on line 4 with a finite subset of itself.

5.2 Numerical method
The numerical method discussed here applies to both GLWB and GMWB contracts. Each contract is
originally posed on Ω = [0,∞)2. We employ Algorithm 1 but instead approximate the solution using a finite
difference method on the truncated domain [0, xmax

1 ]× [0, xmax
2 ]. As such, since fx,n (λ) will not necessarily

land on a mesh node, linear interpolation is used to approximate V +
n (fx,n (λ)) on line 4. A local optimization

problem is solved for each point on the finite difference grid. Details of the numerical scheme can be found in
[1, 10].
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Data: payoff at the expiry, VN = ϕ
Result: price of the contract at time zero, V0 ≡ V −0

1 for n← N − 1 to 0 do
2 use V −n+1 to determine V +

n

3 for x ∈ Ω do
4 V −n (x) ≡ supλ∈Λn

V +
n (fx,n (λ)) + fx,n (λ)

5 end
6 end

Algorithm 1: Dynamic programming for pricing contracts with finitely many exercise times.

Between exercise times, the cost of funding each contract satisfies one of (2.8) or (2.16). Corresponding
to line 2 of Algorithm 1, we determine V +

n from V −n+1 using an implicit finite difference discretization. No
additional boundary condition is needed at x1 = 0 or x2 = 0 ((2.8) and (2.16) hold along ∂Ω× [tn, tn+1)).
The same is true of x2 = xmax

2 � 0. At x1 = xmax
1 � 0, we impose

V (xmax
1 , x2, t) = g (t)xmax

1 (5.1)

for some function g differentiable everywhere but possibly at the exercise times n. Substituting the above
into (2.8) or (2.16) yields an ordinary differential equation which is solved numerically alongside the rest of
the domain. Errors introduced by the above approximations are small in the region of interest, as verified by
numerical experiments.

Remark 5.1. Since we advance the numerical solution from n− to (n− 1)+ using a convergent method,
the numerical solution converges pointwise to a solution V that is convexity and monotonicity preserving.
Although it is possible to show—for special cases—that convexity and monotonicity are preserved for finite
mesh sizes, this is not necessarily true unconditionally.

Remark 5.2. Although we have shown that an optimal bang-bang control exists for the GLWB problem, we
do not replace Λn with {0, 1, 2} on line 4 of Algorithm 1 when computing the cost to fund a GLWB in §5.3.1
so as to demonstrate that our numerical method, having preserved convexity and monotonicity, selects an
optimal bang-bang control. For both GLWB and GMWB, We assume that nothing is known about vx,n and
hence form a partition

λ1 < λ2 < · · · < λp

of the admissible set and perform a linear search

5.3 Results
5.3.1 Guaranteed Lifelong Withdrawal Benefits. Figure 5.1 shows withdrawal strategies for the holder
under the parameters in Table 5.1 on the first four contract anniversaries. We can clearly see that the
optimal control is bang-bang from the figures. At any point (x, n), we see that the holder performs one
of nonwithdrawal, withdrawal at exactly the contract rate, or a full surrender (despite being afforded the
opportunity to withdraw any amount between nonwithdrawal and a full surrender).

When the withdrawal benefit is much larger than the investment account, the optimal strategy is
withdrawal at the contract rate (the guarantee is in the money). Conversely, when the investment account
is much larger than the withdrawal benefit, the optimal strategy is surrender (the guarantee is out of the
money), save for when the holder is anticipating the triennial ratchet (times n = 2 and n = 3). Otherwise,
the optimal strategy includes nonwithdrawal (to receive a bonus) or withdrawal at the contract rate. Note
that the strategy is constant along any straight line through the origin since the solution is homogeneous of
order one in x, as discussed in [10].
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Figure 5.1: Optimal control for the GLWB for data in Table 5.1. As predicted, there exists an optimal
control consisting only of nonwithdrawal, withdrawal at the contract rate, and a full surrender.
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Table 5.1: GLWB parameters.

Parameter Value

Volatility σ 0.20

Risk-free rate r 0.04

Hedging fee α 0.015

Contract rate δ 0.05

Bonus rate β 0.06

Expiry N 57

Initial investment w0 100

Initial age at time zero 65

Mortality data [20]

Ratchets Triennial

Withdrawals Annual

Anniversary n Penalty κn

1 0.03

2 0.02

3 0.01

> 4 0.00

5.3.2 Guaranteed minimum withdrawal benefit. For the GMWB, (C1) is violated. In particular, for
κn > 0, the function fM

x,n (λ) is concave as a function of x. However, when κn = 0 or G = 0 (G = 0 is
considered in [15]), the function fM

x,n (λ) (see (2.7)) is linear in x, and hence the convexity of V −n can be
guaranteed given V +

n CM. In this case, it is possible to use the same machinery as was used in the GLWB
case to arrive at a bang-bang principle (see Theorem 4.12). The case of κn = 0 corresponds to zero surrender
charges at the nth anniversary, while G = 0 corresponds to enforcing that all withdrawals (regardless of size)
be charged at the penalty rate.

Now, consider the data in Table 5.2. Since κn = 0 for all n > 7, the convexity of V in x is preserved
for all t ∈ (6, N ]. However, since κ6 > 0, the convexity is violated as t→ 6−. Figure 5.2 demonstrates this
preservation and violation of convexity. As a consequence, V will not necessarily be convex in x as t→ 5+,
and the contract fails to satisfy the bang-bang principle at each anniversary date n ≤ 5.

Note that for x2 > 0, the conditions λx2 ∈ [0, G ∧ x2] and λx2 ∈ (G ∧ x2, x2] appearing in (2.7) are
equivalent to λ ∈ [0, G/x2 ∧ 1] and λ ∈ (G/x2 ∧ 1, 1], respectively. Assuming that V +

n is CM and taking
PM
n (x) ≡ {P1, P2} with P1 ≡ [0, G/x2 ∧ 1] and P2 ≡ [G/x2 ∧ 1, 1] yields that there exists an optimal control

taking on one of the values in {0, G/x2, 1} at any point (x, n) with x2 > 0. These three actions correspond
to nonwithdrawal, withdrawing the predetermined amount G, or performing a full surrender. This is verified
by Figure 5.3, which shows withdrawal strategies under the parameters in Table 5.2 at times n = 6 and
n = 7. As predicted, along any line x2 = const., the optimal control takes on one of a finite number of values.
Since at n = 6, κn > 0, we see that the holder is more hesitant to surrender the contract whenever x1 � x2
(compare with the same region at n = 7). Control figures for GMWBs not satisfying the bang-bang principle
can be seen in the numerical results in [9, 7].

Remark 5.3. Consider a GMWB with κn = 0 for all withdrawal times n. As suggested by the above, this
contract satisfies the bang-bang principle (in particular, Theorem 4.12 is satisfied) everywhere. However, the
GMWB does not necessarily yield an optimal bang-bang control since PM

n (x) depends on x2 (Corollary 4.13
is not satisfied). For example, consider an optimal control for the GMWB taking on the value G/x2 at each
x with x2 > 0. Such a control’s range is a superset of (0,∞)2 (not a finite set). However, in this case, the
bang-bang principle guarantees that for fixed x2, a finite subset of the admissible set need only be considered in
the corresponding optimization problem. Computationally, this is just as desirable as the case of an optimal
bang-bang control.
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Figure 5.2: V (x, t) for fixed x1 = 100 under the data in Table 5.2. Points where V
(
x, n−

)
= V

(
x, n+)

correspond to nonwithdrawal. To the left of these points, the holder performs withdrawal (see Figure 5.3).

0 20 40 60 80 100
Withdrawal benefit

96

97

98

99

100

101

102

103

104

C
os
t o

f f
un

di
ng

 c
on

tr
ac
t

V(x,6− ) V
(
x,6+

)

(a) Convexity is not preserved from t → 6+

to t→ 6−.

0 20 40 60 80 100
Withdrawal benefit

97

98

99

100

101

102

103

104

C
os
t o

f f
un

di
ng

 c
on

tr
ac
t V(x,7− ) V

(
x,7+

)

(b) Convexity is preserved from t → 7+ to
t→ 7−.

Table 5.2: GMWB parameters [8].

Parameter Value

Volatility σ 0.15

Risk-free rate r 0.05

Hedging fee α 0.01

Contract rate G 10

Expiry N 10

Initial investment w0 100

Withdrawals Annual

Anniversary n Penalty κn

1 0.08

2 0.07

3 0.06

4 0.05

5 0.04

6 0.03

> 7 0.00

Figure 5.3: Optimal control λx scaled by x2 for the data in Table 5.2.

No withdrawal Withdrawal of min (x2, G) Full surrender

0 50 100 150 200
0

50

100

Investment account (x1)

W
it
h
d
ra
w
al

ac
co
u
nt

(x
2)

(a) n = 6

0 50 100 150 200
0

50

100

Investment account (x1)

W
it
h
d
ra
w
al

ac
co
u
nt

(x
2)

(b) n = 7

16



6 Conclusion
Although it is commonplace in the insurance literature to assume the existence of optimal bang-bang controls,
there does not appear to be a rigorous statement of this result. We have rigorously derived sufficient conditions
which guarantee the existence of optimal bang-bang controls for GMxB guarantees.

These conditions require that the contract features be such that the solution to the optimal control can be
formulated as maximizing a convex objective function, and that the underlying stochastic process assumed
for the risky assets preserves convexity and monotonicity.

These conditions are non-trivial, in that the conditions are satisfied for the GLWB contract but not for the
GMWB contract with typical contract parameters. From a practical point of view, the existence of optimal
bang-bang controls allows for the use of very efficient numerical methods.

Although we have focused specifically on the application of our results to GMxB guarantees, the reader
will have no difficulty in applying the sufficient conditions to other optimal control problems in finance. We
believe that we can also use an approach similar to that used here to establish the existence of optimal
bang-bang controls for general impulse control problems. In the impulse control case, these conditions
will require that the intervention operator have a particular form and that the stochastic process (without
intervention) preserve convexity and monotonicity. We leave this generalization for future work.

A Preservation of convexity and monotonicity
In this appendix, we establish the convexity and monotonicity of a contract whose payoff is CM and written on
assets whose returns follow (multidimensional, possibly correlated) GBM. We do so by considering the PDE
satisfied by V and the fundamental solution corresponding to the operator appearing in the log-transformed
version of this PDE. Considering the log-transformed PDE allows us to eliminate the parabolic degeneracy at
the boundaries and to argue that the resulting fundamental solution for the log-transformed operator should
be of the form Γ (y,y′, τ, τ ′) ≡ Γ (y− y′, τ, τ ′).

We begin by describing some of the notation used in this appendix:

• Let Ω ≡ Ω1 × Ω2 where Ω1 ≡ (0,∞)m and Ω2 is a convex subset of a partially ordered vector space A
over R with order 6A. Ω can thus be considered as a convex subset of the vector space A ≡ Rm ×A
over R.

• We write an element of Ω in the form (x, xm+1) ≡ (x1, . . . , xm, xm+1) with x ∈ Ω1 and xm+1 ∈ Ω2 in
order to distinguish between elements of Ω1 and Ω2.

• The partial order we consider on A is simply inherited from the orders 6 on Rm (Remark 4.8) and 6A.
Specifically, (x, xm+1) 6A

(
x′, x′m+1

)
if and only if x 6Rm x′ and xm+1 6A x′m+1.

Suppose V satisfies

∂tV + LV + ω = 0 on Ω× (tn, tn+1) (A.1)

and
V
(
x, xm+1, t

−
n+1
)

= ϕ (x, xm+1) on Ω (A.2)

where

L ≡ 1
2

m∑
i,j=1

ai,jxixj∂xi∂xj +
m∑
i=1

bixi∂xi + c. (A.3)

In the above, ω ≡ ω (x, t). We will, for the remainder of this appendix, assume the following:

(D1) ai,j ≡ ai,j (t), bi ≡ bi (t), and c ≡ c (t) (i.e. the functions ai,j , bi and c are independent of (x, xm+1)).

(D2)
∑m
i,j=1 ai,j∂xi

∂xj
is uniformly elliptic.
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Example A.1. For the GLWB guarantee, L is given in (2.9) and ω =M (t)x1.

Remark A.2. We say V satisfies (A.1) if V is twice differentiable in (the components of) x and once
differentiable in t on Ω× (tn, tn+1),4 continuous on Ω× (tn, tn+1],5 and satisfies (A.1) pointwise.

We now describe the log-transformed problem. For ease of notation, let

ey ≡ (ey1 , . . . , eym) a′i,j (τ) ≡ ai,j (tn+1 − τ)
ϕ′ (y, ym+1) ≡ ϕ (ey, ym+1) b′i (τ) ≡ bi (tn+1 − τ)

ω′ (y, ym+1, τ) ≡ ω (ey, ym+1, tn+1 − τ) c′ (τ) ≡ c (tn+1 − τ)

and Ω′ ≡ Rm × Ω2. Let V be a solution of the Cauchy problem (A.1) and (A.2). Let

u (y, ym+1, τ) ≡ V (ey, ym+1, tn+1 − τ)

and ∆ ≡ tn+1 − tn. Then, u satisfies

L′u− ∂τu+ ω′ = 0 on Ω′ × (0,∆) (A.4)

and
u (y, ym+1, 0) = ϕ′ (y, ym+1) (A.5)

where

L′ ≡ 1
2

m∑
i,j=1

a′i,j∂yi∂yj +
m∑
i=1

b′i∂yi + c′.

Note that (D2) implies that L′ is uniformly elliptic.
In order to guarantee that a solution u to the log-transformed Cauchy problem (A.4) and (A.5) exists,

and is unique, sufficient regularity must be imposed on ϕ′, L′, and ω′. We summarize below.

(E1) For each ym+1, y 7→ ϕ′ (y, ym+1) is continuous on Rm.

(E2) The coefficients of L′ are sufficiently regular.

(E3) For each ym+1 ∈ Ω2, (y, τ) 7→ ω′ (y, ym+1, τ) is sufficiently regular.

(E4) u satisfies a growth condition as |x| → ∞.

For an accurate detailing of the required regularity, see [11, Chap. 1: Thms. 12 and 16].
When (D2) and (E1)—(E4) are satisfied, the solution u can be written as

u (y, ym+1, τ) =
∫
Rm

Γ (y,y′, τ, 0)ϕ′ (y′, ym+1) dy′

+
∫ ∆

0

∫
Rm

Γ (y,y′, τ, τ ′)ω′ (y′, ym+1, τ
′) dy′dτ ′ on Rm × (0,∆) (A.6)

where Γ is the fundamental solution for L′ (whose construction was first detailed by [17]). We first note that
(E1) follows immediately if ϕ is convex, as shown below.

Lemma A.3. If ϕ is convex w.r.t. the order 6A (see Definition 4.3), then for all xm+1, y 7→ φ′ (y;xm+1)
is continuous on Rm.

4i.e. V |Ω×(tn,tn+1) ∈ C
2,1 (Ω× (tn, tn+1)).

5i.e. V |Ω×(tn,tn+1] ∈ C (Ω× (tn, tn+1]).
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Proof. We have assumed that ϕ ≡ ϕ (x, xm+1) is convex w.r.t. 6A on Ω. From this it follows that for all
xm+1 ∈ Ω2, ϕ is convex in x on Ω1 ≡ [0,∞)m w.r.t. to the order 6 on Rm. This in turn yields that for all
xm+1 ∈ Ω2, ϕ is continuous in x on Ω1. Therefore, ϕ′ ≡ ϕ′ (y;xm+1) is continuous in y on Rm.

Theorem A.4. Suppose (D1), (D2) and (E2)—(E4). Suppose that ϕ is CM w.r.t. the order 6A (see
Definition 4.3 and Lemma 4.7). Suppose further that for all t ∈ (tn, tn+1], ω is CM in (x, xm+1) on Ω w.r.t.
the order 6A. Then, for all t ∈ (tn, tn+1], V is CM in (x, xm+1) on Ω w.r.t. the order 6A. In particular,
V +
n is CM.

Proof. Γ appearing in (A.6) depends on y′ and y through y′ − y alone since by (D1), a′i,j , b′i and c′ are
independent of the spatial variables [11, Chap. 9: Thm. 1]. Therefore

u (y, ym+1, τ) =
∫
Rm

Γ (y′ − y, τ, 0)ϕ′ (y′, ym+1) dy′

+
∫ ∆

0

∫
Rm

Γ (y′ − y, τ, τ ′)ω′ (y′, ym+1, τ
′) dy′dτ ′ on Rm × (0,∆) .

Let log x ≡ (log x1, . . . , log xm). From the above, whenever xi > 0 for all i 6 m,

V (x, xm+1, t) =
∫
Rm

Γ (y′ − log x, tn+1 − t, 0)ϕ
(
ey′ , xm+1

)
dy′

+
∫ ∆

0

∫
Rm

Γ (y′ − log x, tn+1 − t, τ ′)ω
(
ey′ , xm+1, tn+1 − τ ′

)
dy′dτ ′ on Ω× (tn, tn+1) .

Denote by x ◦ x′ ≡ (x1x
′
1, . . . , xmx

′
m) the elementwise product of x and x′. The substitution y′ = log (x ◦ x′)

into the above yields

V (x, xm+1, t) =
∫ ∞

0
. . .

∫ ∞
0

Γ (log x′, tn+1 − t, 0)ϕ (x ◦ x′, xm+1) 1∏
i x
′
i

dx′

+
∫ ∆

0

∫ ∞
0

. . .

∫ ∞
0

Γ (log x′, tn+1 − t, τ ′)ω (x ◦ x′, xm+1, tn+1 − τ ′)
1∏
i x
′
i

dx′dτ ′ on Ω× (tn, tn+1) .

Since Γ is > 0 [11, Chap. 2: Thm. 11] (a related, arguably more general result is given in [12, Chap. IV:
Prop. 1.11]), from the convexity and monotonicity of V −n+1 and ω, it follows immediately that Vn (x, xm+1, t)
is CM on Ω for any t ∈ (tn, tn+1).

Remark A.5. We can extend our construction to Ω1 × Ω2 by taking limits of V up to the boundary. Since
the codomain of V is Hausdorff, this extension is unique.

B Commutativity of union and supremum
Let T be a poset with order 6 satisfying the least-upper-bound property. All supremums are taken w.r.t. T .

Lemma B.1. Let S ≡ {Sα}α∈A be an indexed family of nonempty subsets of T . Let S ≡
⋃
α∈A Sα and

U ≡ {supSα}α∈A .

Then, supS = supU whenever S is bounded above.
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Proof. Suppose A is empty. Then both S and U are empty, and hence the expressions agree.
Suppose A is nonempty and that S is bounded above. Since S is bounded above, its supremum u must

occur in T . For each α, u is an upper bound of Sα, and since Sα is a nonempty subset of T , supSα = uα
for some uα ∈ T . Thus, U = {uα}α∈A ⊂ T . Since uα 6 u for each α, u is an upper bound of U . Since A is
nonempty, U is nonempty and hence U has a least upper bound u′ ∈ T with u′ 6 u. Let x ∈ S. Then x ∈ Sβ
for some β, and hence x 6 uβ 6 u′ so that u′ is an upper bound of S. Since supS = u, u 6 u′ and hence
u′ = u.
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