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Abstract

The question of how to incorporate curvature information in stochastic ap-
proximation methods is challenging. The direct application of classical quasi-
Newton updating techniques for deterministic optimization leads to noisy cur-
vature estimates that have harmful effects on the robustness of the iteration. In
this paper, we propose a stochastic quasi-Newton method that is efficient, ro-
bust and scalable. It employs the classical BFGS update formula in its limited
memory form, and is based on the observation that it is beneficial to collect cur-
vature information pointwise, and at regular intervals, through (sub-sampled)
Hessian-vector products. This technique differs from the classical approach that
would compute differences of gradients at every iteration, and where controlling
the quality of the curvature estimates can be difficult. We present numerical
results on problems arising in machine learning that suggest that the proposed
method shows much promise.
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1 Introduction

In many applications of machine learning, one constructs very large models from mas-
sive amounts of training data. Learning such models imposes high computational and
memory demands on the optimization algorithms employed to learn the models. In
some applications, a full-batch (sample average approximation) approach is feasible
and appropriate. However, in most large scale learning problems, it is imperative to
employ stochastic approximation algorithms that update the prediction model based
on a relatively small subset of the training data. These algorithms are particularly
suited for settings where data is perpetually streamed to the learning process; exam-
ples include computer network traffic, web search, online advertisement, and sensor
networks.

The goal of this paper is to propose a quasi-Newton method that operates in
the stochastic approximation regime. We employ the well known limited memory
BFGS updating formula, and show how to collect second-order information that is
reliable enough to produce stable and productive Hessian approximations. The key
is to compute average curvature estimates at regular intervals using (sub-sampled)
Hessian-vector products. This ensures sample uniformity and avoids the potentially
harmful effects of differencing noisy gradients.

The problem under consideration is the minimization of a convex stochastic func-
tion,

min
w∈Rn

F (w) = E[f(w; ξ)], (1.1)

where ξ is a random variable. Although problem (1.1) arises in other settings, such as
simulation optimization [2], we assume for concreteness that ξ is a random instance
consisting of an input-output pair (x, z). The vector x is typically referred to in
machine learning as the input representation while z as the target output. In this
setting, f typically takes the form

f(w; ξ) = f(w;xi, zi) = `(h(w;xi); zi), (1.2)

where ` is a loss function into R+, and h is a prediction model parametrized by w. The
collection of input-output pairs {(xi, zi)}, i = 1, · · · , N is referred to as the training
set. The objective function (1.1) is defined using the empirical expectation

F (w) =
1

N

N∑
i=1

f(w;xi, zi). (1.3)

In learning applications with very large amounts of training data, it is common to

use a mini-batch stochastic gradient based on b
4
= |S| � N input-output instances,
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yielding the following estimate

∇̂F (w) =
1

b

∑
i∈S

∇f(w;xi, zi) . (1.4)

The subset S ⊂ {1, 2, · · · , N} is randomly chosen, with b sufficiently small so that the
algorithm operates in the stochastic approximation regime. Therefore, the stochastic
estimates of the gradient are substantially faster to compute than a gradient based
on the entire training set.

Our optimization method employs iterations of the form

wk+1 = wk − αkB−1
k ∇̂F (wk) , (1.5)

whereBk is a symmetric positive definite approximation to the Hessian matrix∇2F (w),
and αk > 0. Since the stochastic gradient is not an accurate approximation to the
gradient of (1.3) it is essential (to guarantee convergence) that the steplength param-
eter αk → 0. In our experiments and analysis, αk has the form αk = β/k, where
β > 0 is given, but other choices can be employed.

A critical question is how to construct the Hessian approximation in a stable and
efficient manner. For the algorithm to be scalable, it must update the inverse matrix
Hk = B−1

k directly, so that (1.5) can be implemented as

wk+1 = wk − αkHk∇̂F (wk). (1.6)

Furthermore, this step computation should require only O(n) operations, as in limited
memory quasi-Newton methods for deterministic optimization.

If we set Hk = I and αk = β/k in (1.6), we recover the classical Robbins-Monro
method [21], which is also called the stochastic gradient descent method. Under stan-
dard convexity assumptions, the number of iterations needed by this method to com-
pute an ε-accurate solution is of order nνκ2/ε , where κ is the condition number of
the Hessian at the optimal solution, ∇2F (w∗), and ν is a parameter that depends on
both the Hessian matrix and the gradient covariance matrix; see [14, 5]. Therefore,
the stochastic gradient descent method is adversely affected by ill conditioning in the
Hessian. In contrast, it is shown by Murata [14] that setting Hk = ∇2F (w∗)−1 in (1.6)
completely removes the dependency on κ from the complexity estimate. Although
the choice Hk = ∇2F (w∗)−1 is not viable in practice, it suggests that an appropriate
choice of Hk may result in an algorithm that improves upon the stochastic gradient
descent method.

In the next section, we present a stochastic quasi-Newton method of the form (1.6)
that is designed for large-scale applications. It employs the limited memory BFGS
update, which is defined in terms of correction pairs (s, y) that provide an estimate
of the curvature of the objective function F (w) along the most recently generated

3



directions. We propose an efficient way of defining these correction pairs that yields
curvature estimates that are not corrupted by the effect of differencing the noise in
the gradients. Our numerical experiments using problems arising in machine learning,
suggest that the new method is robust and efficient.

The paper is organized into 6 sections. The new algorithm is presented in section 2,
and its convergence properties are discussed in section 3. Numerical experiments that
illustrate the practical performance of the algorithm are reported in section 4. A
literature survey on related stochastic quasi-Newton methods is given in section 5.
The paper concludes in section 6 with some remarks about the contributions of the
paper.

Notation. The terms Robbins-Monro method, stochastic approximation (SA) method,
and stochastic gradient descent (SGD) method are used in the literature to denote
(essentially) the same algorithm. The first term is common in statistics, the sec-
ond term is popular in the stochastic programming literature, and the acronym SGD
is standard in machine learning. We will use the name stochastic gradient descent
method (SGD) in the discussion that follows.

2 A stochastic quasi-Newton method

The success of quasi-Newton methods for deterministic optimization lies in the fact
that they construct curvature information during the course of the optimization pro-
cess, and this information is good enough to endow the iteration with a superlinear
rate of convergence. In the classical BFGS method [9] for minimizing a deterministic
function F (w), the new inverse approximation Hk+1 is uniquely determined by the
previous approximation Hk and the correction pairs

yk = ∇F (wk+1)−∇F (wk), sk = wk+1 − wk.

Specifically,

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k with ρk =

1

yTk sk
.

This BFGS update is well defined as long as the curvature condition yTk sk > 0 is
satisfied, which is always the case when F (w) is strictly convex.

For large scale applications, it is necessary to employ a limited memory variant
that is scalable in the number of variables, but enjoys only a linear rate of convergence.
This so-called L-BFGS method [17] is considered generally superior to the steepest
descent method for deterministic optimization: it produces well scaled and productive
search directions that yield an approximate solution in fewer iterations and function
evaluations.
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When extending the concept of limited memory quasi-Newton updating to the
stochastic approximation regime it is not advisable to mimic the classical approach
for deterministic optimization and update the model based on information from only
one iteration. This is because quasi-Newton updating is inherently an overwriting
process rather than an averaging process, and therefore the vector y must reflect the
action of the Hessian of the entire objective F given in (1.1) — something that is not
achieved by differencing stochastic gradients (1.4) based on small samples.

We propose that an effective approach to achieving stable Hessian approximation
is to decouple the stochastic gradient and curvature estimate calculations. Doing so
provides the opportunity to use a different sample subset for defining y and the flexi-
bility to add new curvature estimates at regular intervals instead of at each iteration.
In order to emphasize that the curvature estimates are updated at a different schedule
than the gradients, we use the subscript t to denote the number of times a new (s, y)
pair has been calculated; this differs from the superscript k which counts the number
of gradient calculations and variables updates.

The displacement s can be computed based on a collection of average iterates.
Assuming that new curvature estimates are calculated every L iterations, we define
st as the difference of disjoint averages between the 2L most recent iterations:

st = w̄t − w̄t−1, where w̄t =
k∑

i=k−L

wi, (2.1)

(and w̄t−1 is defined similarly). In order to avoid the potential harmful effects of
gradient differencing when ‖st‖ is small, we chose to compute yt via a Hessian vector
product,

yt = ∇̂2F (w̄t)st, (2.2)

i.e., by approximating differences in gradients via a first order Taylor expansion,
where ∇̂2F is a sub-sampled Hessian defined as follows. Let SH ⊂ {1, · · · , N} be a
randomly chosen subset of the training examples and let

∇̂2F (w)
4
=

1

bH

∑
i∈SH

∇2f(w;xi, zi), (2.3)

where bH is the cardinality of SH .
We emphasize that the matrix ∇̂2F (w̄t) is never constructed explicitly when com-

puting yt in (2.2), rather, the Hessian-vector product can be coded directly. To
provide useful curvature information, SH should be relatively large (see section 4),
regardless of the size of b.

The pseudocode of the complete method is given in Algorithm 1.

5



Algorithm 1 Stochastic Quasi-Newton Method (SQN)

Input: initial parameters w1, positive integers M,L, and step-length sequence αk> 0

1: Set t = −1 . Records number of correction pairs currently computed
2: w̄t = 0
3: for k = 1, . . . , do
4: Choose a sample S ⊂ {1, 2, · · · , N}
5: Calculate stochastic gradient ∇̂F (wk) as defined in (1.4)
6: w̄t = w̄t + wk

7: if k ≤ 2L then
8: wk+1 = wk − αk∇̂F (wk) . Stochastic gradient iteration
9: else

10: wk+1 = wk − αkHt∇̂F (wk), where Ht is defined by Algorithm 2
11: end if
12: if mod(k, L) = 0 then . Compute correction pairs every L iterations
13: t = t+ 1
14: w̄t = w̄t/L
15: if t > 0 then
16: Choose a sample SH ⊂ {1, · · · , N} to define ∇̂2F (w̄t) by (2.3)

17: Compute st = (w̄t− w̄t−1), yt = ∇̂2F (w̄t)(w̄t− w̄t−1) . correction pairs
18: end if
19: w̄t = 0
20: end if
21: end for

Using the averages (2.1) is not essential. One could also define s to be the difference
between two recent iterates.

The L-BFGS step computation in Step 10 follows standard practice [17]. Having
chosen a memory parameter M , the matrix Ht is defined as the result of apply-
ing M BFGS updates to an initial matrix using the M most recent correction pairs
{sj, yj}tj=t−M+1 computed by the algorithm. This procedure is mathematically de-
scribed as follows.
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Algorithm 2 Hessian Updating

Input: Updating counter t, memory parameter M , and correction pairs (sj, yj),
j = t− m̃+ 1, . . . t, where m̃ = min{t,M}.
Output: new matrix Ht

1: Set H = (sTt yt)/(y
T
t yt)I, where st and yt are computed in Step 17 of Algorithm 1.

2: for j = t− m̃+ 1, ..., t do
3: ρj = 1/yTj sj.
4: Apply BFGS formula:

H ← (I − ρjsjyTj )H(I − ρjyjsTj ) + ρjsjs
T
j (2.4)

5: end for
6: return Ht ← H

In practice, the quasi-Newton matrix Ht is not formed explicitly; to compute the
product Ht∇̂F (wk) in Step 10 of Algorithm 1 one employs a formula based on the
structure of the 2-rank BFGS update. This formula, commonly called the two-loop
recursion, computes the step directly from the correction pairs and stochastic gradient
as described in [17, §7.2].

In summary, the algorithm builds upon the strengths of BFGS updating, but
deviates from the classical method in that the correction pairs (s, y) are based on
sub-sampled Hessian-vector products computed at regularly spaced intervals, which
amortize their cost. Our task in the remainder of the paper is to argue that even
with the extra computational cost of Hessian-vector products (2.2) and the extra cost
of computing the iteration (1.6), the stochastic quasi-Newton method is competitive
with the SGD method in terms of computing time (even in the early stages of the
optimization), and is able to find a lower objective value.

2.1 Computational Cost

Let us compare the cost of the stochastic gradient descent method

wk+1 = wk − β

k
∇̂F (wk) (SGD) (2.5)

and the stochastic quasi-Newton method

wk+1 = wk − β

k
Ht∇̂F (wk) (SQN) (2.6)

given by Algorithm 1.
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The quasi-Newton matrix-vector product in (2.6) requires approximately 4Mn
operations [17]. To measure the cost of the gradient and Hessian-vector computa-
tions, let us consider one particular but representative example, namely the binary
classification test problem tested in section 4; see (4.1). In this case, the component
function f in (1.2) is given by

f(w;xi, zi) = zi log(c(w;xi)) + (1− zi) log (1− c(w;xi))

where

c(w;xi) =
1

1 + exp(−xTi w)
, xi ∈ Rn, w ∈ Rn, zi ∈ {0, 1} . (2.7)

The gradient and Hessian-vector product of f are given by,

∇f(w;xi, zi) = (c(w;xi)− zi)xi (2.8)

∇2f(w;xi, zi)s = c(w;xi)(1− (c(w;xi))(x
T
i s)xi. (2.9)

The evaluation of the function c(w;xi) requires approximately n operations (where we
follow the convention of counting a multiplication and an addition as an operation).
Therefore, by (2.8) the cost of evaluating one batch gradient is approximately 2bn,

and the cost of computing the Hessian-vector product ∇̂2F (w̄t)st is about 3bHn. This
assumes these two vectors are computed independently. If the Hessian is computed at
the same point where we compute a gradient and b ≥ bH then c(w;xi) can be reused
for a savings of bHn.

Therefore, for binary logistic problems the total number of floating point opera-
tions of the stochastic quasi-Newton iteration (2.6) is approximately

2bn+ 4Mn+ 3bHn/L. (2.10)

On the other hand, the cost associated with the computation of the SGD step is only
bn. At first glance it may appear that the SQN method is prohibitively expensive,
but this is not the case when using the values for b, bH , L and M suggested in this
paper. To see this, note that

cost of SQN iteration

cost of SGD iteration
= 1 +

2M

b
+

2bH
3bL

. (2.11)

In the experiments reported below, we use M = 5, b = 50, 100, . . . , L = 10 or 20,
and choose bH ≥ 300. For such parameter settings, the additional cost of the SQN
iteration is small relative to the cost of the SGD method.

For the multi-class logistic regression problem described in section 4.3, the costs of
gradient and Hessian-vector products are slightly different. Nevertheless, the relative
cost of the SQN and SGD iterations is similar to that given in (2.11).
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The quasi-Newton method can take advantage of parallelism. Instead of employing
the two-loop recursion mentioned above to implement the limited memory BFGS
step computation in step 10 of Algorithm 1, we can employ the compact form of
limited memory BFGS updating [17, §7.2] in which Ht is represented as the outer
product of two matrices. This computation can be parallelized and its effective cost is
around 3n operations, which is smaller than the 4Mn operations assumed above. The
precise cost of parallelizing the compact form computation depends on the computer
architecture, but is in any case independent of M .

Additionally, the Hessian-vector products can be computed in parallel with the
main iteration (2.6) if we allow freedom in the choice of the point w̄t where (2.2) is
computed. The choice of this point is not delicate since it suffices to estimate the
average curvature of the problem around the current iterate, and hence the com-
putation of (2.2) can lag behind the main iteration. In such a parallel setting, the
computational overhead of Hessian-vector products may be negligible.

The SQN method contains several parameters, and we provide the following guide-
lines on how to select them. First, the minibatch size b is often dictated by the
experimental set-up or the computing environment, and we view it as an exogenous
parameter. A key requirement in the design of our algorithm is that it should work
well with any value of b. Given b, our experiments show that it is most efficient if the
per-iteration cost of updating, namely bH/L, is less than the cost of the stochastic
gradient b, with the ratio Lb/bH in the range [2,20]. The choice of the parameter
M in L-BFGS updating is similar as in deterministic optimization; the best value is
problem dependent but values in the range [4,20] are commonly used.

3 Convergence Analysis

In this section, we analyze the convergence properties of the stochastic quasi-Newton
method. We assume that the objective function F is strongly convex and twice contin-
uously differentiable. The first assumption may appear to be unduly strong because
in certain settings (such as logistic regression) the component functions f(w;xi, zi)
in (1.3) are convex, but not strongly convex. However, since the lack of strong con-
vexity can lead to very slow convergence, it is common in practice to either add an
`2 regularization term, or choose the initial point (or employ some other mechanism)
to ensure that the iterates remain in a region where the F is strongly convex. If
regularization is used, the objective function takes the form

1
2
σ‖w‖2 + 1

N

N∑
i=1

f(w;xi, zi), with σ > 0, (3.1)
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and the sampled Hessian (2.3) is

σI +
1

bH

∑
i∈SH

∇2f(w;xi, zi). (3.2)

In this paper, we do not specify the precise mechanism by which the strong convexity
is ensured. The assumptions made in our analysis are summarized as follows.

Assumptions 1
(1) The objective function F is twice continuously differentiable.

(2) There exist positive constants λ and Λ such that

λI ≺ ∇̂2F (w) ≺ ΛI, (3.3)

for all w ∈ Rn, and all SH ⊆ {1, · · · , N}. (Recall that SH appears in the definition

(2.3) of ∇̂2F (w).)

These assumptions imply that the entire Hessian∇2F (w) satisfies (3.3) for all w ∈ Rn,
and that F has a unique minimizer w∗. If the matrices∇2f(w; , xi, zi) are nonnegative
definite and uniformly bounded and we implement `2 regularization as in (3.1)–(3.2)
then part (2) of Assumptions 1 is satisfied.

We first show that the Hessian approximations generated by the SQN method
have eigenvalues that are uniformly bounded above and away from zero.

Lemma 3.1 If Assumptions 1 hold, there exist constants 0 < µ1 ≤ µ2 such that the
Hessian approximations {Ht} generated by Algorithm 1 satisfy

µ1I ≺ Ht ≺ µ2I, for t = 1, 2, . . . (3.4)

Proof: Instead of analyzing the inverse Hessian approximation Hk, we will study the
direct Hessian approximation Bk (see (1.5)) because this allows us to easily quote a
result from the literature. In this case, the limited memory quasi-Newton updating
formula is given as follows:

i) Set B
(0)
t =

yTt yt
sTt yt

I, and m̃ = min{t,M};
ii) for i = 0, .., m̃− 1 set j = t− m̃+ 1 + i and compute

B
(i+1)
t = B

(i)
t −

B
(i)
t sjs

T
j B

(i)
t

sTj B
(i)
t sj

+
yjy

T
j

yTj sj
. (3.5)

(iii) Set Bt+1 = B
(m̃)
t .
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By (2.2)

sj = w̄j − w̄j−1, yj = ∇̂2F (w̄j)sj. (3.6)

and thus by (3.3)
λ‖sj‖2 ≤ yTj sj ≤ Λ‖sj‖2. (3.7)

Now,

‖yj‖2

yTj sj
=
sTj ∇̂2F (w̄t)

2sj

sTj ∇̂2F (w̄t)sj
,

and since ∇̂2F (w̄t) is symmetric and positive definite, it has a square root so that

λ ≤ ‖yj‖
2

yTj sj
≤ Λ. (3.8)

This proves that the eigenvalues of the matrices B
(0)
t =

yTt yt
sTt yt

I at the start of the

L-BFGS update cycles are bounded above and away from zero, for all t.
Let Tr(·) denote the trace of a matrix. Then from (3.5), (3.8) and the boundedness

of {‖B(0)
t ‖}, and setting ji = t− m̃+ i,

Tr(Bt+1) ≤ Tr(B
(0)
t ) +

m̃∑
i=1

‖yji‖2

yTjisji

≤ Tr(B
(0)
t ) + m̃Λ

≤ M3, (3.9)

for some positive constant M3. This implies that the largest eigenvalue of all matrices
Bt is bounded uniformly.

We now derive an expression for the determinant of Bt. It is shown by Powell [20]
that

det(Bt+1) = det(B
(0)
t )

m̃∏
i=1

yTjisji

sTjiB
(i−1)
t sji

= det(B
(0)
t )

m̃∏
i=1

yTjisji
sTjisji

sTjisji

sTjiB
(i−1)
t sji

. (3.10)

Since by (3.9) the largest eigenvalue of B
(i)
t is less than M3, we have, using (3.7) and

the fact that the smallest eigenvalue of B
(0)
t is bounded away from zero,

det(Bt+1) ≥ det(B
(0)
t )

(
λ

M3

)m̃
≥ M4, (3.11)

11



for some positive constant M4. This shows that the smallest eigenvalue of the matrices
Bt is bounded away from zero, uniformly. Therefore, condition (3.4) is satisfied. �

Our next task is to establish global convergence. Rather than proving this result
just for our SQN method, we analyze a more general iteration that covers it as a
special case. We do so because the more general result is of interest beyond this
paper and we are unaware of a self-contained proof of this result in the literature (c.f.
[25]).

We consider the Newton-like iteration

wk+1 = wk − αkHk∇f(wk, ξk), (3.12)

when applied to a strongly convex objective function F (w). (As in (1.2), we used the
notation ξ = (x, z).) We assume that the eigenvalues of {Hk} are uniformly bounded
above and away from zero, and that Eξk [∇f(wk, ξk)] = F (wk). Clearly Algorithm 1
is a special case of (3.12) in which Hk is constant for L iterations.

We make the following assumptions about the functions f and F .

Assumptions 2
(1) F (w) is twice continuously differentiable.

(2) There exist positive constants λ and Λ such that, for all w ∈ Rn,

λI ≺ ∇2F (w) ≺ ΛI. (3.13)

(3) There is a constant γ such that, for all w ∈ Rn,

Eξ[‖∇f(wk, ξ)‖)]2 ≤ γ2. (3.14)

For convenience, we define αk = β/k, for an appropriate choice of β, rather than
assuming well known and more general conditions

∑
αk = ∞,

∑
(αk)2 < ∞. This

allows us to provide a short proof similar to the analysis of Nemirovski et al. [16].

Theorem 3.2 Suppose that Assumptions 2 hold. Let wk be the iterates generated by
the Newton-like method (3.12), where for k = 1, 2, . . .

µ1I ≺ Hk ≺ µ2I, 0 < µ1 ≤ µ2, (3.15)

and
αk = β/k with β > 1/(2µ1λ).

Then for all k ≥ 1,
E[F (wk)− F (w∗)] ≤ Q(β)/k, (3.16)

where

Q(β) = max

{
Λµ2

2β
2γ2

2(2µ1λβ − 1)
, F (w1)− F (w∗)

}
. (3.17)
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Proof. We have that

F (wk+1) = F (wk − αkHk∇f(wk, ξk))

≤ F (wk) +∇F (wk)T (−αkHk∇f(wk, ξk)) + Λ
2
‖αkHk∇f(wk, ξk)‖2

≤ F (wk)− αk∇F (wk)THk∇f(wk, ξk)) + Λ
2
(αkµ2‖∇f(wk, ξk)‖)2.

Taking the expectation over all possible values of ξk and recalling (3.14) gives

Eξk [F (wk+1)] ≤ F (wk)− αk∇F (wk)THk∇F (wk) + Λ
2
(αkµ2)2Eξk [‖∇f(wk, ξk)‖]2

≤ F (wk)− αkµ1‖∇F (wk)‖2 + Λ
2
(αkµ2)2γ2. (3.18)

Now, to relate F (wk)− F (w∗) and ‖∇F (wk)‖2, we use the lower bound in (3.13) to
construct a minorizing quadratic for F at wk. For any vector v ∈ Rn, we have

F (v) ≥ F (wk) +∇F (wk)T (v − wk) + λ
2
||v − wk||2

≥ F (wk) +∇F (wk)T (− 1
λ
∇F (wk)) + λ

2
|| 1
λ
∇F (wk)||2

≥ F (wk)− 1
2λ
||∇F (wk)||2, (3.19)

where the second inequality follows from the fact that v̂ = wk − 1
λ
∇F (wk) minimizes

the quadratic qk(v) = F (wk) + ∇F (wk)T (v − wk) + λ
2
||v − wk||2. Setting v = w∗ in

(3.19) yields
2λ[F (wk)− F (w∗)] ≤ ‖∇F (wk)‖2,

which together with (3.18) yields

Eξk [F (wk+1)−F (w∗)] ≤ F (wk)−F (w∗)−2αkµ1λ[F (wk−F (w∗)]+Λ
2
(αkµ2)2γ2. (3.20)

Let us define φk to be the expectation of F (wk)−F (w∗) over all choices {ξ1, ξ2, . . . , ξk−1}
starting at w1, which we write as

φk = E[F (wk)− F (w∗)]. (3.21)

Then equation (3.20) yields

φk+1 ≤ (1− 2αkµ1λ)φk + Λ
2
(αkµ2)2γ2. (3.22)

We prove the desired result (3.16) by induction. The result clearly holds for k = 1.
Assuming it holds for some value of k, inequality (3.22), definition (3.17), and the
choice of αk imply

φk+1 ≤
(

1− 2βµ1λ

k

)
Q(β)

k
+

Λµ2
2β

2γ2

2k2

=
(k − 2βµ1λ)Q(β)

k2
+

Λµ2
2β

2γ2

2k2

=
(k − 1)Q(β)

k2
− 2βµ1λ− 1

k2
Q(β) +

Λµ2
2β

2γ2

2k2

≤ Q(β)

k + 1
.
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We can now establish the convergence result.

Corollary 3.3 Suppose that Assumptions 1 and the bound (3.14) hold. Let {wk}
be the iterates generated by Algorithm 1. Then there is a constant µ1 such that
‖H−1

k ‖ ≤ 1/µ1 , and if the steplength is chosen by

αk = β/k where β > 1/(2µ1λ), ∀k,

it follows that
E[F (wk)− F (w∗)] ≤ Q(β)/k, (3.23)

for all k, where

Q(β) = max

{
Λµ2

2β
2γ2

2(2µ1λβ − 1)
, F (w1)− F (w∗)

}
. (3.24)

Proof: Lemma 3.1 ensures that the Hessian approximation satisfies (3.4). Now, the
iteration in Step 10 of Algorithm 1 is a special case of iteration (3.12). Therefore, the
result follows from Theorem 3.2. �

4 Numerical Experiments

In this section, we compare the performance of the stochastic gradient descent (SGD)
method (2.5) and the stochastic quasi-Newton (SQN) method (2.6) on three test
problems of the form (1.2)-(1.3) arising in supervised machine learning. The param-
eter β > 0 is fixed at the beginning of each run, as discussed below, and the SQN
method is implemented as described in Algorithm 1.

It is well known amongst the optimization and machine learning communities that
the SGD method can be improved by choosing the parameter β via a set of problem
dependent heuristics [19, 27]. In some cases, βk (rather than β) is made to vary
during the course of the iteration, and could even be chosen so that βk/k is constant,
in which case only convergence to a neighborhood of the solution is guaranteed [15].
There is, however, no generally accepted rule for choosing βk, so our testing approach
is to consider the simple strategy of selecting the (constant) β so as to give good
performance for each problem.

Specifically, in the experiments reported below, we tried several values for β in
(2.5) and (2.6) and chose a value for which increasing or decreasing it by a fixed
increment results in inferior performance. This allows us to observe the effect of the
quasi-Newton Hessian approximation Hk in a controlled setting, without the clutter
introduced by elaborate step length strategies for βk.

In the figures provided below, we use the following notation.
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1. n: the number of variables in the optimization problem; i.e., w ∈ Rn.

2. N : the number of training points in the dataset.

3. b: size of the batch used in the computation of the stochastic gradient ∇̂F (w)
defined in (1.4); i.e., b = |S|.

4. bH : size of the batch used in the computation of Hessian-vector products (2.2)
and (2.3); i.e., bH = |SH |.

5. L: controls the frequency of limited memory BFGS updating. Every L iterations
a new curvature pair (2.2) is formed and the oldest pair is removed.

6. M : memory used in limited memory BFGS updating.

7. adp: Accessed data points. At each iteration the SGD method evaluates the
stochastic gradient ∇̂F (wk) using b randomly chosen training points (xi, zi), so
we say that the iteration accessed b data points. On the other hand, an iteration
of the stochastic BFGS method accesses b+ bH/L points.

8. iteration: In some graphs we compare SGD and SQN iteration by iteration (in
addition to comparing them in terms of accessed data points).

9. epoch: One complete pass through the dataset.

In our experiments, the stochastic gradient (1.4) is formed by randomly choosing b
training points from the dataset without replacement. This process is repeated every
epoch, which guarantees that all training points are equally used when forming the
stochastic gradient. Independent of the stochastic gradients, the Hessian-vector prod-
ucts are formed by randomly choosing bH training points from the dataset without
replacement.

4.1 Experiments with Synthetic Datasets

We first test our algorithm on a binary classification problem. The objective function
is given by

F (w) = − 1

N

N∑
i=1

zi log(c(w;xi)) + (1− zi) log (1− c(w;xi)) , (4.1)

where c(w;xi) is defined in (2.7).
The training points were generated randomly as described in [13], with N = 7000

and n = 50. To establish a reference benchmark with a well known algorithm, we used
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the particular implementation [13] of one of the coordinate descent (CD) methods of
Tseng and Yun [26].

Figure 1 reports the performance of SGD (with β = 7) and SQN (with β = 2),
as measured by accessed data points. Both methods use a gradient batch size of
b = 50; for SQN we display results for two values of the Hessian batch size bH , and
set M = 10 and L = 10. The vertical axis, labeled fx, measures the value of the
objective (4.1); the dotted black line marks the best function value obtained by the
coordinate descent (CD) method mentioned above. We observe that the SQN method
with bH = 300 and 600 outperforms SGD, and obtains the same or better objective
value than the coordinate descent method.
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SGD: b = 50, β = 7

SQN: b = 50, β = 2, bH = 300

SQN: b = 50, β = 2, bH = 600

CD approx min

SQN vs SGD on Synthetic Binary Logistic Regression
with n = 50 and N = 7000

Figure 1: Illustration of SQN and SGD on the synthetic dataset. The dotted black
line marks the best function value obtained by the coordinate descent (CD) method.
For SQN we set M = 10, L = 10 and bH = 300 or 600.
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Figure 2: Effect of the memory size M in the SQN method. The figure on the left
reports the first 4 epochs, while the figure on the right lets the algorithm run for
more than 70 epochs to observe if the beneficial effect of increasing M is sustained.
Parameters settings are b = 50, bH = 600, and L = 10.

In Figure 2 we explore the effect of the memory size M . Increasing M beyond 1
and 2 steadily improves the performance of the SQN algorithm, both during the first
few epochs (left figure), and after letting the algorithm run for many epochs (right
figure). For this problem, a large memory size is helpful in the later stages of the run.

4.2 RCV1 Data Set

The RCV1 dataset [10] is a composition of newswire articles produced by Reuters
from 1996-1997. Each article was manually labeled into 4 different classes: Corpo-
rate/Industrial, Economics, Government/Social, and Markets. For the purpose of
classification, each article was then converted into a boolean feature vector with a 1
representing the appearance of a given word. Post word stemming, this gives each
feature vector a dimension of n = 112919.

Each data point xi ∈ [0, 1]n is extremely sparse, with an average of 91 (.013%)
nonzero elements. There are N = 688329 training points. We consider the binary
classification problem of predicting whether or not an article is in the fourth class,
Markets, and accordingly we have labels zi ∈ {0, 1}. We use logistic regression to
model the problem, and define the objective function by equation (4.1).

In our numerical experiments with this problem, we used gradient batch sizes
of b = 50, 300 or 1000, which respectively comprise .0073%, .044% and .145% of
the dataset. The frequency of quasi-Newton updates was set to L = 20, a value
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that balances the aims of quickly retrieving curvature information and minimizing
computational costs. For the SGD method we chose β = 5 when b = 50, and β = 10
when b = 300 or 1000; for the SQN method (2.6) we chose β = 1 when b = 50, and
β = 5 when b = 300 or 1000, and we set bH = 1000.

Figure 3 reports the performance of the two methods as measured by either itera-
tion count or accessed data points. As before, the vertical axis, labeled fx, measures
the value of the objective (4.1). Figure 3 shows that for each batch size, the SQN
method outperforms SGD, and both methods improve as batch size increases. We
observe that using b = 300 or 1000 yields different relative outcomes for the SQN
method when measured in terms of iterations or adp: a batch size of 300 provides
the fastest initial decrease in the objective, but that method is eventually overtaken
by the variant with the larger batch size of 1000.
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SGD: b = 300,   β = 10

SGD: b = 1000, β = 10

SQN: b = 50,     β = 1

SQN: b = 300,   β = 5

SQN: b = 1000, β = 5

SQN vs. SGD on RCV1

Figure 3: Illustration on RCV1 problem. For SGD and SQN, b is set to either 50,
300 or 1000, and for SQN we use bH = 1000, M = 5, and L = 20. The figures
report training error as a function of iteration count or accessed data points. In
the rightmost graph the tick marks on the x-axis (at 0.6882, 1.3767, . . .) denote the
epochs of SGD.

Figure 4 illustrates the effect of varying the Hessian batch size bH from 10 to 10000,
while keeping the gradient batch size b fixed at 300 or 1000. For b = 300 (Figure 4a)
increasing bH improves the performance of SQN, in terms of adp, up until bH = 1000,
where the benefits of the additional accuracy in the Hessian approximation do not
outweigh the additional computational cost. In contrast, Figure 4b shows that for
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b = 1000, a high value for bH , such as 10000, can be effectively used since the cost of
the Hessian-vector product relative to the gradient is lower. One of the conclusions
drawn from this experiment is that there is much freedom in the choice of bH , and
that only a small sub-sample of the data (e.g. bH = 100) is needed for the stochastic
quasi-Newton approach to yield benefits.
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(a) Varying bH for b = 300
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(b) Varying bH for b = 1000

Figure 4: Varying Hessian batch size parameter bH on the RCV1 dataset for gradient
batch values b of 300 and 1000. All other parameters in the SQN method are held
constant at L = 20, M = 10, and β = 5.

One should guard, however, against the use of very small values for bH , as seen
in the large blue spike in Figure 4a corresponding to bH = 10. To understand this
behavior, we monitored the angle between the vectors s and y and observed that it
approached 90◦ between iteration 3100 and 3200, which is where the spike occurred.
Since the term sTy enters in the denominator of the BFGS update formula (2.4),
this led to a very large and poor step. Monitoring sTy (relative to, say, sTBs) can
a useful indicator of a potentially harmful update; one can increase bH or skip the
update when this number is smaller than a given threshold.

The impact of the memory size parameter M is shown in Figure 5. The results
improve consistently as M increases, but beyond M = 2 these improvements are
rather small, especially in comparison to the results in Figure 2 for the synthetic data.
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The reasons for this difference are not clear, but for the deterministic L-BFGS method
the effect of M on performance is known to be problem dependent. We observe that
performance with a value of M = 0, which results in a Hessian approximation of the

form Ht =
sTt yt
yTt yt

I, is poor and also unstable in early iterations, as shown by the spikes

in Figure 5.
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Figure 5: Impact of the memory size parameter on the RCV1 dataset. M is varied
between 0 and 50 while all other parameters are held constant at b = 300, L = 20,
and bH = 10000.

To gain a better understanding of the behavior of the SQN method, we also
monitored the following two errors:

GradError =

∥∥∥∇F (w)− ∇̂F (w)
∥∥∥

2

‖∇F (w)‖2

, (4.2)

and

HvError =

∥∥∥∇2F (w̄I)(w̄I − w̄J)− ∇̂2F (w̄I)(w̄I − w̄J)
∥∥∥

2

‖∇2F (w̄I)(w̄I − w̄J)‖2

. (4.3)

The quantities ∇F (w) and ∇2F (w̄I)(w̄I − w̄J) are computed with the entire data
set, as indicated by (4.1). Therefore, the ratios above report the relative error in
the stochastic gradient used in (2.6) and the relative error in the computation of the
Hessian-vector product (2.2).

Figure 6 displays these relative errors for various batch sizes b and bH , along with
the norms of the stochastic gradients. These errors were calculated every 20 iterations
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during a single run of SQN with the following parameter settings: b = 300, L = 20,
M = 5, and bH = 688329. Batch sizes larger than b = 10000 exhibit non-stochastic
behavior in the sense that all relative errors are less than one, and the norm of these
approximate gradients decreases during the course of the iteration. Gradients with
a batch size less than 10000 have relative errors greater than 1, and their norm does
not exhibit decrease over the course of the run.

The leftmost figure also shows that the `2 norms of the stochastic gradients de-
crease as the batch size b increases, i.e., there is a tendency for inaccurate gradients
to have a larger norm, as expected from the geometry of the error.

Figure 6 indicates that the Hessian-vector errors stay relatively constant through-
out the run and have smaller relative error than the gradient. As discussed above,
some accuracy here is important while it is not needed for the batch gradient.
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Error Analysis for Various Batch Sizes b and bH on RCV1 Dataset (N = 688329)

Figure 6: Error plots for RCV1 dataset. The figure on the left plots ‖∇̂F (w)‖2 for
various values of b. The figures on the right display the errors (4.2) and (4.3). The
errors were calculated every 20 iterations during a single run of SQN with parameters
b = 300, L = 20, M = 5, and bH = 688329.
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4.3 A Speech Recognition Problem

The speech dataset, provided by Google, is a collection of feature vectors representing
10 millisecond frames of speech with a corresponding label representing the phonetic
state assigned to that frame. Each feature xi has a dimension of NF = 235 and
has corresponding label zi ∈ C = {1, 2, . . . , 129}. There are a total of N = 191607
samples; the number of variables is n = NF ×|C| = 30315.

The problem is modeled using multi-class logistic regression. The unknown pa-
rameters are assembled in a matrix W ∈ R|C|×NF, and the objective is given by

F (W ) = − 1

N

N∑
i=1

log

(
exp(Wzixi)∑
j∈C exp(Wjxi)

)
, (4.4)

where xi ∈ RNF×1, zi is the index of the correct class label, and Wzi ∈ R1×NF is the
row vector corresponding to the weights associated with class zi.

Figure 7 displays the performance of SGD and SQN for b = 100 and 500 (which
represent approximately 0.05%, and 0.25% of the dataset). For the SGD method, we
chose the step length β = 10 for both values of b; for the SQN method we set β = 2,
L = 10, M = 5, bH = 1000.
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Figure 7: Illustration of SQN and SGD on the SPEECH dataset. The gradient batch
size b is 100 or 500, and for SQN we use bH = 1000, M = 5 and L = 10. In the
rightmost graph, the tick marks on the x-axis denote the epochs of the SGD method.

We observe from Figure 7 that SQN improves upon SGD in terms of adp, both
initially and in finding a lower objective value. Although the number of SQN iterations
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Figure 8: Varying Hessian batch size parameter bH on SPEECH dataset. All other
parameters are held constant at b = 100, L = 20, M = 20.

decreases when b is increased from 100 to 500, in terms of computational cost the two
versions of the SQN method yield almost identical performance.

The effect of varying the Hessian batch size bH is illustrated in Figure 8. The
figure on the left shows that increasing bH improves the performance of SQN, as
measured by iterations, but only marginally from bH = 1000 to 10, 000. Once the
additional computation cost of Hessian-vector products is accounted for, we observe
from the figure on the right that bH = 100 is as effective as bH = 1000. Once more,
we conclude that only a small subset of data points SH is needed to obtain useful
curvature information in the SQN method.

Figure 9 illustrates the impact of increasing the memory sizeM from 0 to 20 for the
SQN method. A memory size of zero leads to a marked degradation of performance.
Increasing M from 0 to 5 improves SQN, but values greater than 5 yield no measurable
benefit.

4.4 Generalization Error

The primary focus of this paper is on the minimization of training error (1.3), but
it is also interesting to explore the performance of the SQN method in terms of
generalization (testing) error. For this purpose we consider the RCV1 dataset, and
in Figure 10 we report the performance of algorithms SQN and SGD with respect to
unseen data (dotted lines). Both algorithms were trained using 75% of the data and
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Figure 9: Performance on the SPEECH
dataset with varying memory size M .
All other parameters are held constant
at b = 100, L = 20, bH = 1000.

then tested on the remaining 25% (the test set). In Figure 10a, the generalization
error is measured in terms of decrease of the objective (4.1) over the test set, and
in Figure 10b, in terms of the percent of correctly classified data points from the
test set. The first measure complements the latter in the sense that it takes into
account the confidence of the correct predictions and the inaccuracies wrought by
the misclassifications. Recall that there are 2 classes in our RCV1 experiments, so
random guessing would yield a percentage of correct classification of 0.5.

As expected, the objective on the training set is lower than the objective on the
test set, but not by much. These graphs suggests that over-fitting is not occurring
since the objective on the test set decreases monotonically. The performance of the
stochastic quasi-Newton method is clearly very good on this problem.
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Figure 10: Illustration of the generalization error on the RCV1 dataset. For both
SGD and SQN, b is set to 300 or 1000; for SQN we set bH = 1000, M = 5 and
L = 20.

4.5 Small Mini-Batches

In the experiments reported in the sections 4.2 and 4.3, we used fairly large gradient
batch sizes, such as b = 50, 100, 1000, because they gave good performance for both
the SGD and SQN methods on our test problems. Since we set M = 5, the cost of
the multiplication Ht∇̂F (wk) (namely, 4Mn = 20n) is small compared to the cost of
bn for a batch gradient evaluation. We now explore the efficiency of the stochastic
quasi-Newton method for smaller values of the batch size b.

In Figure 11 we report results for the SGD and SQN methods for problem RCV1,
for b = 10 and 20. We use two measures of performance: total computational work
and adp. For the SQN method, the work measure is given by (2.10), which includes
the evaluation of the gradient (1.4), the computation of the quasi-Newton step (2.6),
and the Hessian-vector products (2.2).

In order to compare total work and adp on the same figure, we scale the work by
1/n. The solid lines in Figure 11 plot the objective value vs adp, while the dotted
lines plot function value vs total work. We observe from Figure 11 that, even for
small b, the SQN method outperforms SGD by a significant margin in spite of the
additional Hessian-vector product cost. Note that in this experiment the 4Mn cost
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of computing the steps is still less than half the total computational cost (2.10) of the
SQN iteration.
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Figure 11: Comparison using b = 10, 20 on RCV1. The solid lines measure perfor-
mance in terms of adp and the dotted lines measure performance in terms of total
computational work (2.10) (scaled by a factor of 1/n). For SQN we set M = 5,
bH = 1000, L = 200, β = 1, and for SGD we set β = 5.

In this experiment, it was crucial to update the quasi-Newton matrix infrequently
(L = 200), as this allowed us to employ a large value of bH at an acceptable cost. In
general, the parameters L, M and bH provide much freedom in adapting the SQN
method to a specific application.

4.6 Comparison to the oLBFGS method

We also compared our algorithm to the oLBFGS method [24], which is the best
known stochastic quasi-Newton method in the literature. It is of the form (1.6) but
differs from our approach in three crucial respects: the L-BFGS update is performed
at every iteration, the curvature estimate is calculated using gradient differencing,
and the sample size for gradient differencing is the same as the sample size for the
stochastic gradient. This approach requires two gradient evaluations per iteration; it
computes

wk+1 = wk − αkHk∇̂FSk(wk), sk = wk − wk−1, yk = ∇̂FSk−1
(wk)− ∇̂FSk−1

(wk−1),
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where we have used subscripts to indicate the sample used in the computation of the
gradient ∇̂F . The extra gradient evaluation is similar in cost to our Hessian-vector
product, but we compute that product only every L iterations. Thus, the oLBFGS
method is analogous to our algorithm with L = 1 and b = bH , which as the numerical
results below show, is not an efficient allocation of effort. In addition, the oLBFGS
method is limited in the choice of samples S because, when these are small, the
Hessian approximations may be of poor quality.

We implemented the oLBFGS method as described in [24], with the following
parameter settings: i) we found it to be unnecessary to add a damping parameter to
the computation yk, and thus set λ = 0 in the reset yk ← yk + λsk; ii) the parameter

ε used to rescaled the first iteration, w1 = w0 − εαk∇̂F (w0), was set to ε = 10−6; iii)
the initial choice of scaling parameter in Hessian updating (see Step 1 of Algorithm 2)
was the average of the quotients sTi yi/y

T
i yi averaged over the last M iterations, as

recommended in [24].
Figure 12 compares our SQN method to the aforementioned oLBFGS on our two

realistic test problems, in terms of accessed data points. We observe that SQN has
overall better performance, which is more pronounced for smaller batch sizes.
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Figure 12: Comparison of oLBFGS (dashed lines) and SQN (solid lines) in terms of
accessed data points. For RCV1 dataset gradient batches are set to b = 50 or 300,
for both methods; additional parameter settings for SQN are L = 20, bH = 1000,
M = 10. For Speech dataset we set to b = 100 or 500; and for SQN we set L = 10,
bH = 1000, M = 10.

5 Related Work

Various stochastic quasi-Newton algorithms have been proposed in the literature [24,
12, 4, 22], but have not been entirely successful. The methods in [24] and [12] use
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the BFGS framework; the first employs an L-BFGS implementation, as mentioned in
the previous section, and the latter uses a regularized BFGS matrix. Both methods
enforce uniformity in gradient differencing by resampling data points so that two
consecutive gradients are evaluated with the same sample S; this strategy requires
an extra gradient evaluation at each iteration. The algorithm presented in [4] uses
SGD with a diagonal rescaling matrix based on the secant condition associated with
quasi-Newton methods. Similar to our approach, [4] updates the rescaling matrix at
fixed intervals in order to reduce computational costs. A common feature of [24, 12, 4]
is that the Hessian approximation might be updated with a high level of noise.

A two-stage online Newton strategy is proposed in [3]. The first stage runs av-
eraged SGD with a step size of order O(1/

√
k), and the second stage minimizes a

quadratic model of the objective function using SGD with a constant step size. The
second stage effectively takes one Newton step, and employs Hessian-vector products
in order to compute stochastic derivatives of the quadratic model. This method is
significantly different from our quasi-Newton approach.

A stochastic approximation method that has shown to be effective in practice is
AdaGrad [8]. The iteration is of the form (1.5), where Bk is a diagonal matrix that
estimates the diagonal of the squared root of the uncentered covariance matrix of
the gradients; it is shown in [8] that such a matrix minimizes a regret bound. The
algorithm presented in this paper is different in nature from AdaGrad, in that it
employs a full (non-diagonal) approximation to the Hessian ∇2F (w).

Amari [1] popularized the idea of incorporating information from the geometric
space of the inputs into online learning with his presentation of the natural gradient
method. This method seeks to find the steepest descent direction in the feature space
x by using the Fisher information matrix, and is shown to achieve asymptotically
optimal bounds. The method does, however, require knowledge of the underlying
distribution of the training points (x, z), and the Fisher information matrix must be
inverted. These concerns are addressed in [18], which presents an adaptive method
for computing the inverse Fisher Information matrix in the context of multi-layer
neural networks.

The authors of TONGA [23] interpret natural gradient descent as the direction
that maximizes the probability of reducing the generalization error. They outline
an online implementation using the uncentered covariance matrix of the empirical
gradients that is updated in a weighted manner at each iteration. Additionally, they
show how to maintain a low rank approximation of the covariance matrix so that the
cost of the natural gradient step is O(n). In [22] it is argued that an algorithm should
contain information about both the Hessian and covariance matrix, maintaining that
that covariance information is needed to cope with the variance due to the space of
inputs, and Hessian information is useful to improve the optimization.

Our algorithm may appear at first sight to be similar to the method proposed
by Byrd et al. [7, 6], which also employs Hessian-vector products to gain curvature
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information. We note, however, that the algorithms are different in nature, as the
algorithm presented here operates in the stochastic approximation regime, whereas
[7, 6] is a batch (or SAA) method.

6 Final Remarks

In this paper, we presented a quasi-Newton method that operates in the stochastic
approximation regime. It is designed for the minimization of convex stochastic func-
tions, and was tested on problems arising in machine learning. In contrast to previous
attempts at designing stochastic quasi-Newton methods, our approach does not com-
pute gradient differences at every iteration to gather curvature information; instead
it computes (sub-sampled) Hessian-vector products at regular intervals to obtain this
information in a stable manner.

Our numerical results suggest that the method does more than rescale the gradi-
ent, i.e., that its improved performance over the stochastic gradient descent method
of Robbins-Monro is the result of incorporating curvature information in the form of
a full matrix.

The practical success of the algorithm relies on the fact that the batch size bH
for Hessian-vector products can be chosen large enough to provide useful curvature
estimates, while the update spacing L can be chosen large enough (say L = 20) to
amortize the cost of Hessian-vector products, and make them affordable. Similarly,
there is a wide range of values for the gradient batch size b that makes the overall
quasi-Newton approach (1.6) viable.

The use of the Hessian-vector products (2.2) may not be essential; one might be
able to achieve the same goals using differences in gradients, i.e.,

ȳ = ∇̂F (w̄t)− ∇̂F (w̄t−1).

This would require, however, that the evaluation of these gradients employ the same
sample S so as to obtain sample uniformity, as well as the development of a strategy
to prevent close gradient differences from magnifying round off noise. In comparison,
the use of Hessian-vector products takes care of these issues automatically, but it
requires code for Hessian-vector computations (a task that is not often not onerous).

We established global convergence of the algorithm on strongly convex objective
functions. Our numerical results indicate that the algorithm is more effective than
the best known stochastic quasi-Newton method (oLBFGS [24]) and suggest that
it holds much promise for the solution of large-scale problems arising in stochastic
optimization. Although we presented and analyzed the algorithm in the convex case,
our approach is applicable to non-convex problems provided it employs a mechanism
for ensuring that the condition sTt yt > 0 is satisfied.
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