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ENUMERATION OF 2-POLYMATROIDS ON UP TO SEVEN ELEMENTS

THOMAS J. SAVITSKY

ABSTRACT. A theory of single-element extensions of integer polymatroids analogous to that of matroids is devel-
oped. We present an algorithm to generate a catalog of2-polymatroids, up to isomorphism. When we implemented
this algorithm on a computer, obtaining all2-polymatroids on at most seven elements, we discovered the surprising
fact that the number of2-polymatroids on seven elements fails to be unimodal in rank.

1. INTRODUCTION

A k-polymatroid is a generalization of a matroid in which the rank of an element may be greater than
1 but cannot exceedk. Precise definitions are given in the next section. Polymatroids have applications in
mathematics and computer science. For example, Chapter 11 of [6] employs2-polymatroids in the study of
matching theory. Polymatroids, and more generally, submodular functions, arise in combinatorial optimization;
see Part IV of [14]. We take the perspective thatk-polymatroids are worth studying in their own right.

Although much work has been done with the use of computers on the enumeration of small matroids, to
our knowledge, none has been done on enumeratingk-polymatroids, wherek > 1. Some landmark results
in matroid enumeration include the following: in 1973, Blackburn, Crapo, and Higgs [2] published a catalog
of all simple matroids on at most eight elements; in 2008, Mayhew and Royle [9] produced a catalog of all
matroids on up to nine elements; and in 2012, Matsumoto, Moriyama, Imai, and Bremner [7] enumerated all
rank-4 matroids on ten elements.

In this paper, we describe our success in adapting the approach used by Mayhew and Royle to2-polymatroids.
Using a desktop computer, we produced a catalog of all2-polymatroids, up to isomorphism, on at most seven
elements. We were surprised to discover that the number of2-polymatroids on seven elements is not unimodal
in rank.

2. BACKGROUND

For an introduction to polymatroids, we recommend Chapter 12 of [13]. We begin our discussion with
definitions.

Definition 1. LetS be a finite set. Supposeρ : 2S → N satisfies the following three conditions:

(i) if X,Y ⊆ S, thenρ(X ∩ Y ) + ρ(X ∪ Y ) ≤ ρ(X) + ρ(Y ) (submodular),
(ii) if X ⊆ Y ⊆ S, thenρ(X) ≤ ρ(Y ) (monotone), and
(iii) ρ(∅) = 0 (normalized).

Then(ρ, S) is termed aninteger polymatroidor simply apolymatroidwith rank functionρ andground setS.

Definition 2. Let k be a positive integer, and let(ρ, S) be a polymatroid. Suppose thatρ(x) ≤ k for every
x ∈ S. Then(ρ, S) is ak-polymatroid. A matroidmay be defined as a1-polymatroid.

Let (ρ, S) and(τ, T ) be polymatroids. A functionσ : S → T is anisomorphismof polymatroids ifσ is a
bijection and ifρ(X) = τ(σ(X)) for everyX ⊆ S. The closure operator of a polymatroid may be defined
exactly as that of a matroid.

Definition 3. Theclosure operatorcl : 2S → 2S of a polymatroid(ρ, S) is given by
clρ(X) = {x : ρ(X ∪ x) = ρ(X)} for X ⊆ S. The setclρ(X) is called theclosureof X with respect toρ.
The subscript is omitted whenρ is clear from context.
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One can show thatρ(X) = ρ(cl(X)) by induction on|cl(X)−X |. We will freely make use of this as well
as the following properties of closure operators. They are stated here without proof.

Proposition 4. The closure operator of a polymatroid(ρ, S) satisfies the following three properties:

(i) X ⊆ cl(X) for all X ⊆ S (increasing),
(ii) if X ⊆ Y ⊆ S, thencl(X) ⊆ cl(Y ) (monotone), and
(iii) cl(X) = cl(cl(X)) for all X ⊆ S (idempotent).

A subset of the ground set that is maximal with respect to rankis called aflat. Here is the definition in terms
of the closure operator.

Definition 5. Let (ρ, S) by a polymatroid. A setX ⊆ S is called aflat of ρ if cl(X) = X . The collection of
flats of(ρ, S) is symbolized byF(ρ, S).

Intersections of flats of matroids are themselves flats, and the same is true for polymatroids.

Proposition 6. If F andG are flats of polymatroid(ρ, S), thenF ∩G is also a flat.

Proof. Let x ∈ S − (F ∩G). Eitherx ∈ S − F or x ∈ S −G. By relabelingF andG if necessary, we may
assumex ∈ S − F . By submodularity,

ρ(F ) + ρ((F ∩G) ∪ x) ≥ ρ(F ∪ x) + ρ(F ∩G).

This impliesρ((F ∩ G) ∪ x) − ρ(F ∩ G) ≥ ρ(F ∪ x) − ρ(F ). By assumption,ρ(F ∪ x) − ρ(F ) > 0, and
hence, as needed,ρ((F ∩G) ∪ x)− ρ(F ∩G) > 0. �

Since the entire ground set of a polymatroid is a flat, we see that the collection of flats of a polymatroid
forms a lattice under set-inclusion.

The theory of single-element extensions of matroids was developed by Crapo in [3]. We extend this theory
to polymatroids in the next section, but first the matroid case is briefly reviewed here. See Section 7.2 of [13]
for a detailed exposition. We begin with a couple of definitions that apply to polymatroids as well.

Definition 7. Let (ρ, S) be a polymatroid, and lete be an element not inS. If (ρ̄, S ∪ e) is a polymatroid with
ρ̄(X) = ρ(X) for all X ⊆ S, thenρ̄ is a single-element extensionof ρ.

Definition 8. A modular cutof a polymatroid(ρ, S) is a subsetM ofF(ρ, S) for which

(i) if F ∈ M, G ∈ F(ρ, S), andF ⊆ G, thenG ∈M, and
(ii) if F,G ∈ M andρ(F ∩G) + ρ(F ∪G) = ρ(F ) + ρ(G), thenF ∩G ∈M.

The next two results show that single-element extensions ofa matroid can be placed in one-to-one corre-
spondence with its modular cuts. This correspondence underlies the enumeration efforts in [2] and [9].

Theorem 9. Suppose(r, S) is a matroid with single-element extension(r̄, S ∪ e). Define
M = {F ∈ F(r, S) : r(F ) = r̄(F ∪ e)}. ThenM is a modular cut.

Theorem 10. Suppose(r, S) is a matroid,e is an element not inS, andM⊆ F(r, S) is a modular cut. Define
r̄ : 2S∪e → N as follows: forX ⊆ S, setr̄(X) = r(X) and

r̄(X ∪ e) =

{

r(X) if cl(X) ∈M,

r(X) + 1 otherwise.

Then(r̄, S ∪ e) is a matroid and a single-element extension of(r, S).

Our final definition in this section will be used when we describe the flats of single-element extensions.

Definition 11. LetF andG be flats of a polymatroid(ρ, S). Suppose thatF ( G and that for any flatH with
F ⊆ H ⊆ G, eitherH = F or H = G. Then we say thatG coversF .
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3. SINGLE-ELEMENT EXTENSIONS OFPOLYMATROIDS

Given a polymatroid, our aim is to describe all of its single-element extensions. As in the matroid case we
may restrict our attention to flats of the original polymatroid. Suppose(ρ̄, S ∪ e) is a single-element extension
of (ρ, S). The following proposition shows that if the value ofρ̄(F ∪ e) is known for every flatF of (ρ, S),
thenρ̄ is completely determined.

Proposition 12. Suppose(ρ̄, S ∪ e) is a single-element extension of(ρ, S). LetX ⊆ S, and letcl(X) be the
closure ofX with respect toρ (not ρ̄). Thenρ̄(X ∪ e) = ρ̄(cl(X) ∪ e).

Proof. SinceX ∪ e ⊆ cl(X) ∪ e = clρ̄(X) ∪ e ⊆ clρ̄(X ∪ e) andρ̄ has the same value on the first and last of
these sets, the result follows. �

For a single-element extension(ρ̄, S ∪ e) of (ρ, S), let c beρ̄(e) and letX ⊆ S. It follows thatρ̄(X ∪ e) ≤
ρ(X) + c by the submodularity and normalization ofρ̄. Therefore, we may partition the flats of(ρ, S) into
classesM0,M1, . . . ,Mc by the ruleF ∈Mi if and only if ρ̄(F ∪e) = ρ(F )+i. (Note that someMi may be
empty.) By Proposition 12, knowledge of(ρ, S) and the partition(M0,M1, . . . ,Mc) completely determines
(ρ̄, S ∪ e). Our goal is to develop properties that characterize such partitions. The following definition will be
useful.

Definition 13. Let (ρ, S) be a polymatroid, and letX,Y ⊆ S. Define themodular defectofX andY , denoted
δ(X,Y ), to beρ(X) + ρ(Y )− ρ(X ∪ Y )− ρ(X ∩ Y ). If δ(X,Y ) = 0, thenX andY are amodular pairof
sets.

Now suppose(M0,M1, . . . ,Mc) is a partition ofF(ρ, S). Let e be an element not inS and define
ρ̄ : 2S∪e → N as follows: forX ⊆ S, setρ̄(X) = ρ(X) and, ifcl(X) ∈ Mi, then set̄ρ(X ∪ e) = ρ(X) + i.
Furthermore, define a functionµ : 2S → N by µ(X) = i if cl(X) ∈ Mi.

Theorem 14. As defined above,(ρ̄, S ∪ e) is a polymatroid, and hence a single-element extension of(ρ, S), if
and only if the following three conditions hold for all flatsF,G of (ρ, S):

(I) µ(F ∩G) + µ(F ∪G)− δ(F,G) ≤ µ(F ) + µ(G),
(II) if F ⊆ G, thenρ(F ) + µ(F ) ≤ ρ(G) + µ(G), and

(III) if F ⊆ G, thenµ(G) ≤ µ(F ).

Proof. Assume(ρ̄, S ∪ e) is a polymatroid, and letF,G be flats of(ρ, S). Applying the submodularity of̄ρ to
the pair of setsF ∪ e andG ∪ e gives

ρ̄((F ∪ e) ∩ (G ∪ e)) + ρ̄((F ∪ e) ∪ (G ∪ e)) ≤ ρ̄(F ∪ e) + ρ̄(G ∪ e).

By our definition ofρ̄, the right side of the above inequality equalsρ(F )+µ(F )+ ρ(G)+µ(G). The left side
equals

ρ̄((F ∩G) ∪ e) + ρ̄((F ∪G) ∪ e) = ρ(F ∩G) + µ(F ∩G) + ρ(F ∪G) + µ(F ∪G)

= µ(F ∩G) + µ(F ∪G) + ρ(F ) + ρ(G)− δ(F,G).

We conclude thatµ(F ∩G) + µ(F ∪G)− δ(F,G) ≤ µ(F ) + µ(G) and see that condition (I) is satisfied.
Statement (II) is the monotone property ofρ̄.
Finally, to show condition (III), apply the submodularity of ρ̄ to the pair of setsF ∪ e andG. This gives the

first of the following equivalent inequalities:

(1) ρ̄((F ∪ e) ∪G) + ρ̄((F ∪ e) ∩G) ≤ ρ̄(F ∪ e) + ρ̄(G)
(2) ρ̄(G ∪ e) + ρ̄(F ) ≤ ρ̄(F ∪ e) + ρ̄(G)
(3) ρ̄(G ∪ e)− ρ̄(G) ≤ ρ̄(F ∪ e)− ρ̄(F )
(4) µ(G) ≤ µ(F ).

Now assume that conditions (I), (II), and (III) are satisfied. We must verify that̄ρ satisfies the three axioms
for a polymatroid. It follows immediately from our definition thatρ̄(∅) = 0.

Next, we check monotonicity. Assume thatX ⊆ Y ⊆ S. The definition ofρ̄ and the monotonicity ofρ
imply that ρ̄(X) = ρ(X) ≤ ρ(Y ) = ρ̄(Y ). Thus we also get̄ρ(X) ≤ ρ̄(Y ) ≤ ρ̄(Y ∪ e). It remains to check
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thatρ̄(X ∪ e) ≤ ρ̄(Y ∪ e). Observe

ρ̄(X ∪ e) = ρ(X) + µ(X)

= ρ(cl(X)) + µ(cl(X))

≤ ρ(cl(Y )) + µ(cl(Y )) (by condition (II))

= ρ(Y ) + µ(Y )

= ρ̄(Y ∪ e).

Therefore,̄ρ is monotone on all subsets ofS ∪ e.
Sinceρ̄(X) = ρ(X) for X ⊆ S, to check submodularity it suffices to verify it for the pairs(a)X ∪ e and

Y , and (b)X ∪ e andY ∪ e, with X,Y ⊆ S. For case (a), we have

ρ̄((X ∪ e) ∩ Y ) + ρ̄((X ∪ e) ∪ Y ) = ρ̄(X ∩ Y ) + ρ̄((X ∪ Y ) ∪ e)

= ρ(X ∩ Y ) + ρ(X ∪ Y ) + µ(cl(X ∪ Y ))

≤ ρ(X) + ρ(Y ) + µ(cl(X ∪ Y )) (by the submodularity ofρ)

≤ ρ(X) + ρ(Y ) + µ(cl(X)) (by condition (III))

= ρ̄(X ∪ e) + ρ̄(Y ).

For case (b), we have

ρ̄(X ∪ e) + ρ̄(Y ∪ e) = ρ(cl(X)) + µ(cl(X)) + ρ(cl(Y )) + µ(cl(Y ))

≥ µ(cl(X) ∩ cl(Y )) + µ(cl(X) ∪ cl(Y ))− δ(cl(X), cl(Y )) + ρ(cl(X)) + ρ(cl(Y ))

= µ(cl(X) ∩ cl(Y )) + µ(cl(X) ∪ cl(Y )) + ρ(cl(X) ∪ cl(Y )) + ρ(cl(X) ∩ cl(Y ))

= ρ̄((cl(X) ∪ cl(Y )) ∪ e) + ρ̄((cl(X) ∩ cl(Y )) ∪ e)

≥ ρ̄(X ∪ Y ∪ e) + ρ̄((X ∩ Y ) ∪ e).

The first inequality follows by condition (I), and the last inequality holds because the monotonicity ofρ̄ has
already been established. �

Note that Theorem 14 generalizes Theorems 9 and 10 for single-element extensions of matroids. Also note
that if the conditions of the theorem are satisfied, thenM0 is a modular cut. Lastly, we point out that the
theorem remains true if the word “flats” is replaced by “sets”in its statement.

Definition 15. A partition (M0,M1, . . . ,Mc) of flats of a polymatroid(ρ, S) that satisfies the conditions in
Theorem 14 is called anextensible partition.

For the remainder of this section, assume that(ρ, S) is a polymatroid,(M0,M1, . . . ,Mc) is an extensible
partition, and(ρ̄, S ∪ e) is the single-element extension defined right before Theorem 14. Our next goal is to
describe the flats of(ρ̄, S ∪ e).

Clearly if F ⊆ S is a flat of(ρ̄, S ∪ e), thenF is also a flat of(ρ, S). We also have the following helpful
fact.

Proposition 16. For F ⊆ S, if F ∪ e is a flat of(ρ̄, S ∪ e), thenF is a flat of(ρ, S).

Proof. Observe thatclρ(F ) ⊆ clρ̄(F ) ⊆ clρ̄(F ∪ e) = F ∪ e. �

Therefore, to find the flats of(ρ̄, S ∪ e) we need only consider sets of the formF andF ∪ e, whereF is a
flat of (ρ, S). The next proposition explicitly describes the flats of(ρ̄, S ∪ e).

Proposition 17. Let (ρ̄, S ∪ e) be the single-element extension of(ρ, S) corresponding to the extensible parti-
tion (M0,M1, . . . ,Mc). The flats of(ρ̄, S ∪ e) are the sets

(1) F inMi, for i > 0,
(2) F ∪ e, for F ∈M0,
(3) F ∪ e, for F ∈Mi with i > 0, whereF has no coverG with ρ(F ) + µ(F ) = ρ(G) + µ(G).
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Proof. To reiterate, we need only look at sets of the formF andF ∪ e, whereF is a flat of(ρ, S).
It follows from the definition of̄ρ that a flatF of (ρ, S) is a flat of(ρ̄, S ∪ e) if and only if F 6∈ M0.
If F ∈ M0, thenF ∪ e is a flat of(ρ̄, S ∪ e) since, fory ∈ S − F , we have

ρ̄(F ∪ {e, y}) ≥ ρ(F ∪ y) > ρ(F ) = ρ̄(F ∪ e).

We claim that forF ∈ Mi with i > 0, the setF ∪ e is a flat of(ρ̄, S ∪ e) if and only if the inequality
in property (II) of Theorem 14 is strict for all coversG of F . Indeed, ifG coversF andρ(F ) + µ(F ) =
ρ(G) + µ(G), thenF ∪ e is not a flat since

ρ̄(F ∪ e) = ρ(F ) + µ(F ) = ρ(G) + µ(G) = ρ̄(G ∪ e).

Now assume strict inequality holds in property (II) for all covers ofF . If x ∈ S − F , then there is a coverG
of F with F ( G ⊆ clρ(F ∪ x), so

ρ̄(F ∪ e) = ρ(F ) + µ(F ) < ρ(G) + µ(G) = ρ̄(G ∪ e) ≤ ρ̄(F ∪ {e, x}). �

Note that ifµ(G) = µ(F ), then equality cannot hold in property (II) of Theorem 14, sinceρ(G) > ρ(F ).
These results generalize those for matroid extension. We define thecollar ofMi to consist of everyF ∈

Mi that is covered by someG ∈ Mj with j < i. In a matroid(r, S), if a flat G covers a flatF , then
r(G)− r(F ) = 1. If (r̄, S ∪ e) is a single-element extension andF ∈M1, thenF ∪ e is a flat ofr̄ if and only
if F is not in the collar ofM1.

4. GENERATING A CATALOG OF SMALL 2-POLYMATROIDS

Now we will specialize the results of the previous section to2-polymatroids.
Suppose(ρ, S) is a2-polymatroid with collection of flatsF(S). Suppose thatF(S) is the union of three

disjoint sets,M0,M1, andM2, some of which may be empty. Lete be an element not inS. We define a
functionρ̄ : 2S∪e → N as follows. ForX ⊆ S, defineρ̄(X) = ρ(X) and

ρ̄(X ∪ e) = ρ(X) + i wherecl(X) ∈Mi.

When computing the extensible partitions of a2-polymatroid, we found it convenient to work with the
following verbose specialization of Theorem 14.

Theorem 18. As defined,(ρ̄, S ∪ e) is a 2-polymatroid extension of(ρ, S) if and only if the following seven
conditions are met.

(1) If F ∈M2, G ∈ F(S), F ⊆ G, andρ(G)− ρ(F ) = 1, thenG ∈M1 ∪M2. In other words, ifF ∈ M2

is covered by a flatG of (ρ, S) of one rank higher, thenG cannot be inM0.

(2) If F,G ∈ M0 and(F,G) is a modular pair, thenF ∩G ∈ M0 as well.

(3) If F,G ∈ M0 andρ(F ) + ρ(G) = ρ(F ∪G) + ρ(F ∩G) + 1, thenF ∩G ∈M0 ∪M1.

(4) If F,G ∈ M1 and (F,G) is a modular pair, then eitherF ∩ G ∈ M1 as well, orF ∩ G ∈ M2 and
cl(F ∪G) ∈M0.

(5) If F ∈ M0, G ∈ M1, and(F,G) is a modular pair, thenF ∩G cannot be inM2.

(6) The setM2 is down-closed in the latticeF(ρ, S).

(7) The setM0 is up-closed in the latticeF(ρ, S).

Sketch of Proof.Condition (II) of Theorem 14 specializes to condition (1) here, condition (I) to conditions (2)
through (5), and condition (III) to conditions (6) and (7). �

The flats of(ρ̄, S ∪ e) are the sets

(1) F inM1 ∪M2,
(2) F ∪ e, for F ∈M0,
(3) F ∪ e, for F ∈Mi, with i > 0, where,

(a) F has no coverG inMi−1 with ρ(G) = ρ(F ) + 1, and
(b) if i = 2, F has no coverG inM0 with ρ(G) = ρ(F ) + 2.
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For example, let(ρ, {a, b}) be the2-polymatroid consisting of two lines placed freely in a plane. To be spe-
cific, defineρ(∅) = 0, ρ({a}) = ρ({b}) = 2, andρ({a, b}) = 3. The single-element extension corresponding
to the extensible partition

(M0,M1,M2) = ({{a, b}}, {{a}, {b}}, {∅})

is the2-polymatroid consisting of three lines placed freely in a plane.
Using the results of this section, we endeavored to catalog all small 2-polymatroids on a computer by means

of a canonical deletion algorithm.

Definition 19. SupposeX is a collection of combinatorial objects with ground set{1, . . . , n} and a notion of
isomorphism. A functionC : X → X is a canonical labelingfunction if the following hold for allX,Y ∈ X :

(i) X is isomorphic toC(X), and
(ii) C(X) = C(Y ) if and only ifX is isomorphic toY .

In this case,C(X) is called thecanonical representativeof X .

Brendan McKay’snauty program efficiently computes canonically labelings of colored graphs. In order
to make use of it, we convert polymatroids into graphs using the following construction.

Definition 20. Given an integer polymatroid(ρ, S), define a colored, bipartite graph with bipartitionS and
F(ρ, S). An edge betweene ∈ S andF ∈ F(ρ, S) exists if and only ife ∈ F . Color F ∈ F(ρ, S) with its
rank,ρ(F ). Color eache ∈ S with−1. Call the resulting graph theflat graph1 of the integer polymatroid.

Note that ifX ⊆ S and ifF is the smallest flat containingX , thenρ(X) = ρ(F ). In terms of the flat graph,
the rank of a setX ⊆ S equals the least color amongst those vertices adjacent to every element ofX . Using
this observation, it is easy to prove the next proposition.

Proposition 21. Two integer polymatroids are isomorphic if and only if theirflat graphs are isomorphic as
colored graphs. (By an isomorphism of a colored graph, we mean a graph isomorphism that maps each vertex
to another of the same color.)

Therefore, in order to canonically label a2-polymatroid, it suffices to consider its flat graph. Thennauty

is used to compute a canonical labeling of the flat graph. Whenrestricted to the ground set of the polymatroid,
this gives a canonical labeling of the polymatroid. For a description of the algorithms used bynauty see [10]
and [11]. One may also find the exposition in [5] helpful.

Now we have all the tools needed to adapt Algorithm 1 of [9] to2-polymatroids. Suppose we are given a
setXn that consists of precisely one representative of each isomorphism class of2-polymatroids on the ground
set{1, . . . , n}. The following algorithm produces its counterpart,Xn+1, for the set{1, . . . , n+ 1}.

Algorithm 1 Isomorph-free generation of2-polymatroids

for eachρ ∈ Xn do
SetYρ ← ∅, the collection of extensions ofρ that should appear inXn+1.
for eachextensible partition(M0,M1,M2) of ρ do

Let ρ̄ be the extension ofρ associated with this partition.
Canonically label̄ρ.
Setρ′ ← ρ̄ \(n+ 1), the canonical deletion.
Canonically labelρ′.
if ρ = ρ′ and ρ̄ 6∈ Yρ then

SetYρ ← Yρ ∪ ρ̄.
end if

end for
SetXn+1 ← Xn+1 ∪ Yρ.

end for
return Xn+1

1In our implementation, we found it prudent to insert an isolated vertex of rankr if no flats of rankr existed, forr < ρ(S). This made
it easier to work with the labelings used bynauty.
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A few comments are in order. Note that the testρ = ρ′ is for equality, not isomorphism. In our implemen-
tation, the collectionsYρ are binary trees, rather than merely sets, in order to speed up the searchρ ∈ Yρ.

The task of finding all extensible partitions for a polymatroid ρ is relatively straightforward, but tedious.
First, a candidate for a modular cutM0 is found. SinceM0 is an up-closed set, it suffices to keep track of the
minimal flats inM0. These are found as independent sets of a graph with vertex set equal to the flats ofρ. If
one flat is contained in another, an edge is placed between thetwo. Condition (2) of Theorem 18 is then used
to narrow the search. An edge is also placed between any two flats that form a modular pair. The independent
sets in this graph are the minimal members of our candidates forM0. Given an acceptable candidate forM0, a
more complicated procedure is used to find all possible candidates forM1. The remaining flats are obviously
assigned toM2. Unfortunately, the resulting partition must be checked tosee if it satisfies conditions (1)
through (5), since some of these may fail for non-minimal members ofM0 orM1.

Finally, note that each iteration of the outermost for loop may be run in parallel since extensions of two
different members ofXn are never directly compared to each other.

5. IMPLEMENTATION AND RESULTS

We implemented this algorithm in the C programming language. In order to determine the cover relations for
flats, we employed theATLAS library [16] to multiply the adjacency matrices of graphs. We used theigraph
library [4] to find independent sets in graphs. A computer with a single 6-core Intel i7-3930K processor
clocked at 3.20GHz running 64-bit Ubuntu Linux executed theresulting program. After approximately four
days, a catalog of all2-polymatroids on seven or fewer elements was generated.

The following table lists the number of2-polymatroids, up to isomorphism, on the ground set{1, . . . , n},
by rank.

The number of unlabeled2-polymatroids
rank\ n 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7
2 1 4 10 21 39 68 112
3 2 12 49 172 573 1890
4 1 10 78 584 5236 72205
5 3 49 778 18033 971573
6 1 21 584 46661 149636721
7 4 172 18033 19498369
8 1 39 5236 149636721
9 5 573 971573

10 1 68 72205
11 6 1890
12 1 112
13 7
14 1

total 1 3 10 40 228 2380 94495 320863387

The following proposition is the key to producing the analogous table for labeled2-polymatroids.

Proposition 22. The automorphisms of an integer polymatroid(ρ, S) are in one-to-one correspondence with
the automorphisms of its flat graph.

Sketch of Proof.This is not hard to show. It follows, for example, from the remarks in Section 1 of [12], which
employs the language of hypergraphs. �

Sincenauty can easily compute the automorphism groups of the flat graphsof these polymatroids, apply-
ing the Orbit-Stabilizer Theorem gives a count of the numberof labeled2-polymatroids on7 elements. The
following table lists the number of labeled2-polymatroids, on the ground set{1, . . . , n}, by rank.
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The number of labeled2-polymatroids
rank\ n 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
1 1 3 7 15 31 63 127
2 1 6 29 135 642 3199 16879
3 3 41 477 5957 87477 1604768
4 1 29 784 27375 1554077 189213842
5 7 477 41695 7109189 3559635761
6 1 135 27375 21937982 733133160992
7 15 5957 7109189 86322358307
8 1 642 1554077 733133160992
9 31 87477 3559635761

10 1 3199 189213842
11 63 1604768
12 1 16879
13 127
14 1

total 1 3 14 115 2040 109707 39445994 1560089623047

The symmetry of the columns in the above tables is explained by the following notion of duality fork-
polymatroids.

Definition 23. Given a polymatroid(ρ, S), define thek-dualρ∗ : 2S → N by

ρ∗(X) = k|X |+ ρ(S −X)− ρ(S).

It is easily seen thatρ∗ is itself ak-polymatroid and that the operation ofk-duality is an involution on the
set ofk-polymatroids on a fixed ground set which respects isomorphism. (In fact, it is shown in [17] to be the
the unique such involution that interchanges deletion and contraction.)

Welsh conjectured that the number of matroids on a fixed set isunimodal in rank in [15]. The counterpart of
this conjecture fork-polymatroids is false. The table above shows that it fails for2-polymatroids on7 elements.

Since the number of labeled2-polymatroids on seven elements is nearly a factor of7! more than the num-
ber of unlabeled ones, it seems reasonable to conjecture that, asymptotically, almost all2-polymatroids are
asymmetric.

The proof in [8] that almost all matroids are loopless carries over without change to2-polymatroids. Our
catalog suggests that a stronger property holds for2-polymatroids. We conjecture that, asymptotically, almost
all 2-polymatroids contain no elements of rank less than2. Here is the evidence from our catalog: the number
of unlabeled2-polymatroids on{1, . . . ,n} with no elements of rank less than2.

n 1 2 3 4 5 6 7
count 1 2 8 51 696 49121 304541846

This table should be compared to the first table in this section.

6. A CONFIRMATION

Consider that thelabeledsingle-element extensions of ak-polymatroid are in fact solutions to a certain inte-
ger programming problem. When all subsets of the ground set are taken as variables, inequalities guaranteeing
the axioms of ak-polymatroid are easily written. To be concrete, letρ : S → N be ak-polymatroid and lete
be an element not inS. Regardρ̄(X) as a variable for eachX ⊆ S ∪ e. Fix ρ̄(A) = ρ(A) for A ⊆ S. Also
fix ρ̄(S ∪ e) = ρ(S) + c, wherec is a natural number no greater thank. Now nonnegative integer solutions to
the system of inequalities below are in one-to-one correspondence with labeled single-element extensions ofρ

which increase the rank ofρ by c.
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ρ̄(A) + ρ̄(A ∪ f ∪ g) ≤ ρ̄(A ∪ f) + ρ̄(A ∪ g) for A ⊆ S ∪ e andf, g ∈ (S ∪ e)−A;

0 ≤ ρ̄(A ∪ f)− ρ̄(A) ≤ k for A ⊆ S ∪ e andf ∈ (S ∪ e)−A; and

ρ̄(A) ≤ k|A| for A ⊆ S ∪ e.

Here, we are using a condition equivalent to submodularity;see Theorem 44.2 of [14] for a proof of equiv-
alence. The open-source optimization software SCIP [1] is able to count the number of integer solutions to
such inequalities. Using SCIP we verified the numbers of labeled 2-polymatroids given earlier. Note that, in
the version of SCIP we used in April 2013, it was necessary to turn off all pre-solving options in order to ob-
tain accurate results. This process took approximately 13 weeks using the computer described in the previous
section.
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