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ENUMERATION OF 2-POLYMATROIDS ON UP TO SEVEN ELEMENTS

THOMAS J. SAVITSKY

ABSTRACT. A theory of single-element extensions of integer polywids analogous to that of matroids is devel-
oped. We present an algorithm to generate a catal@gpafymatroids, up to isomorphism. When we implemented
this algorithm on a computer, obtaining alpolymatroids on at most seven elements, we discovereditpeising
fact that the number df-polymatroids on seven elements fails to be unimodal in.rank

1. INTRODUCTION

A k-polymatroid is a generalization of a matroid in which thekaf an element may be greater than
1 but cannot exceefl. Precise definitions are given in the next section. Polyoiddérhave applications in
mathematics and computer science. For example, Chapteir[B] @mploys2-polymatroids in the study of
matching theory. Polymatroids, and more generally, suhrf@dunctions, arise in combinatorial optimization;
see Part IV of[[14]. We take the perspective thaiolymatroids are worth studying in their own right.

Although much work has been done with the use of computerb®@m®humeration of small matroids, to
our knowledge, none has been done on enumeratipglymatroids, wheré > 1. Some landmark results
in matroid enumeration include the following: in 1973, Btharn, Crapo, and Higg§][2] published a catalog
of all simple matroids on at most eight elements; in 2008, May and Royle[[9] produced a catalog of all
matroids on up to nine elements; and in 2012, Matsumoto, Ydara, Imai, and Bremner|[7] enumerated all
rank-<4 matroids on ten elements.

In this paper, we describe our success in adapting the apipusad by Mayhew and Royle2epolymatroids.
Using a desktop computer, we produced a catalog &f-pthlymatroids, up to isomorphism, on at most seven
elements. We were surprised to discover that the numbkzpolymatroids on seven elements is not unimodal
in rank.

2. BACKGROUND

For an introduction to polymatroids, we recommend Chapeofl[13]. We begin our discussion with
definitions.

Definition 1. LetS be a finite set. Suppoge 2° — N satisfies the following three conditions:
() if X, Y C S, thenp(X NY )+ p(XUY) < p(X) + p(Y) (submodular,)
(i) if X CY C S, thenp(X) < p(Y) (monotone)and
(iii) p(@) = 0 (normalized)
Then(p, S) is termed annteger polymatroidr simply apolymatroidwith rank functionp andground sefS.

Definition 2. Letk be a positive integer, and I€p, S) be a polymatroid. Suppose thatr) < k for every
x € S. Then(p, S) is ak-polymatroid A matroidmay be defined as &polymatroid.

Let (p, S) and(r,T) be polymatroids. A functiom: S — T is anisomorphisnof polymatroids ifo is a
bijection and ifp(X) = 7(0(X)) for everyX C S. The closure operator of a polymatroid may be defined
exactly as that of a matroid.

Definition 3. Theclosure operatatl : 2° — 29 of a polymatroid(p, S) is given by
cl,(X) ={z: p(XUz) = p(X)} for X C S. The setl,(X) is called theclosureof X with respect tg.
The subscript is omitted whenis clear from context.
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One can show that(X) = p(cl(X)) by induction on|cl(X) — X |. We will freely make use of this as well
as the following properties of closure operators. They tated here without proof.
Proposition 4. The closure operator of a polymatroig, S) satisfies the following three properties:

(i) X Ccl(X)forall X C S (increasing)
(i) if X CY C S, thencl(X) C cl(Y') (monotone)and
(i) cl(X) = cl(cl(X)) forall X C S (idempotent)

A subset of the ground set that is maximal with respect to iané&lled &lat. Here is the definition in terms
of the closure operator.

Definition 5. Let(p, .S) by a polymatroid. A seX C S is called aflat of p if cI(X) = X. The collection of
flats of(p, S) is symbolized by (p, S).

Intersections of flats of matroids are themselves flats, la@dame is true for polymatroids.
Proposition 6. If F'andG are flats of polymatroidp, S), thenF N G is also a flat.

Proof. Letz € S — (F N G). Eitherx € S — Forxz € S — G. By relabelingF’ and( if necessary, we may
assumer € S — F. By submodularity,

p(F) +p(FNG)Ux) = p(FUz) 4+ p(FNG).

This impliesp((FNG) Ux) — p(FNG) > p(F Ux) — p(F). By assumptionp(F U z) — p(F) > 0, and
hence, as needeg((F NG)Uz) — p(FNG) > 0. O

Since the entire ground set of a polymatroid is a flat, we saettie collection of flats of a polymatroid
forms a lattice under set-inclusion.

The theory of single-element extensions of matroids wasldged by Crapo irf [3]. We extend this theory
to polymatroids in the next section, but first the matroideciasbriefly reviewed here. See Section 7.270f [13]
for a detailed exposition. We begin with a couple of defimsidchat apply to polymatroids as well.

Definition 7. Let(p, S) be a polymatroid, and let be an element not if. If (7, S Ue) is a polymatroid with
p(X) = p(X)forall X C S, thenpis asingle-element extensiaf p.

Definition 8. A modular cubf a polymatroid(p, S) is a subseiM of F(p, S) for which

() if Fe M,G € F(p,S),andF C G, thenG € M, and
(i) if /,G e Mandp(FNG)+p(FUG) =p(F)+ p(G), thenF NG € M.

The next two results show that single-element extensior@srétroid can be placed in one-to-one corre-
spondence with its modular cuts. This correspondence liesléne enumeration efforts inl[2] and [9].

Theorem 9. Supposér, S) is a matroid with single-element extensign S U e). Define
M={F e F(r,S):r(F)=7FUe)}. ThenM is a modular cut.

Theorem 10. Supposér, .S) is a matroid e is an element not is, andM C F(r, S) is a modular cut. Define
7:29Y¢ 5 N as follows: forX C S, setr(X) = r(X) and

X if cl(X
FX Ue) = r(X) if cl( ?GM,
r(X)+1 otherwise.
Then(7, S U e) is a matroid and a single-element extensior0f5).
Our final definition in this section will be used when we ddsetthe flats of single-element extensions.

Definition 11. Let /' and G be flats of a polymatroidp, S). Suppose that' C G and that for any flat? with
F C H C G, eitherH = For H= G. Then we say thal’ coversF'.
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3. SNGLE-ELEMENT EXTENSIONS OFPOLYMATROIDS

Given a polymatroid, our aim is to describe all of its singlement extensions. As in the matroid case we
may restrict our attention to flats of the original polymadrcSupposép, S U e) is a single-element extension
of (p,S). The following proposition shows that if the value @fF’ U e) is known for every flatF" of (p, S),
thenp is completely determined.

Proposition 12. Supposép, S U e) is a single-element extension(@f S). Let X C S, and letcl(X) be the
closure ofX with respect tg (notp). Thenp(X Ue) = p(cl(X) Ue).

Proof. SinceX Ue C cl(X) Ue = cl;(X) Ue C cl5(X U e) andp has the same value on the first and last of
these sets, the result follows. O

For a single-element extension, S U e) of (p, S), letc bep(e) and letX C S. It follows thatp(X Ue) <
p(X) + ¢ by the submodularity and normalization @f Therefore, we may partition the flats ¢4, S) into
classesM, My, ..., M. bytheruleF € M, ifandonlyif p(FUe) = p(F)+i. (Note that someé; may be
empty.) By Proposition 12, knowledge @f, S) and the partitior{ M, M1, ..., M) completely determines
(p, SUe). Our goal is to develop properties that characterize suditipas. The following definition will be
useful.

Definition 13. Let(p, S) be a polymatroid, and leX, Y C S. Define themodular defecdf X andY’, denoted
I(X,Y), tobep(X)+p(Y) —p(XUY)—p(XNY). If§(X,Y) =0, thenX andY are amodular pairof
sets.

Now suppos& Mg, My,..., M,.) is a partition of F(p,S). Let e be an element not iy and define
p: 2°Y¢ — N as follows: forX C S, setp(X) = p(X) and, ifcl(X) € M,, thensep(X Ue) = p(X) +i.
Furthermore, define a functign: 2° — N by u(X) = i if cl(X) € M.

Theorem 14. As defined abovép, S U e) is a polymatroid, and hence a single-element extensidp, ), if
and only if the following three conditions hold for all flats G of (p, S):

() w(F N G)+u(FUG) —6(F,G) < u(F) + u(G),

() if F C G, thenp(F) + u(F) < p(G) + u(G), and
(my if F C G, thenu(G) < p(F).

Proof. Assume(p, S U ¢) is a polymatroid, and leF, G be flats of(p, S). Applying the submodularity of to
the pair of setd’ U e andG U e gives

p(FUe)N(GUe)) +p((FUe)U(GUe)) < p(FUe)+ p(GUe).

By our definition ofp, the right side of the above inequality equal$’) + 1(F) + p(G) + p(G). The left side
equals

F(FNG)Ue)+p((FUG)Ue)=p(FNG)+u(FNG)+p(FUG) + u(FUG)
=pu(FNG)+w(FUG)+ p(F)+ p(G) —6(F,G).

We conclude that(F N G) + u(FUG) — §(F,G) < p(F) + 1(G) and see that condition (1) is satisfied.
Statement (II) is the monotone propertyof
Finally, to show condition (IIl), apply the submodularitfy @to the pair of set¢’ U e andG. This gives the
first of the following equivalent inequalities:
(1) A(FUe)UG) +p((FUe)NG) < p(FUe) + p(G)
(2) A(GUe)+ p(F) < p(F Ue) + p(G)
(3) A(GUe) - p(G) < p(F Ue) — p(F)
(4) w(G) < p(F).
Now assume that conditions (1), (Il), and (lll) are satisfi#de must verify thap satisfies the three axioms
for a polymatroid. It follows immediately from our definitichatp(2) = 0.
Next, we check monotonicity. Assume thdt C Y C S. The definition ofp and the monotonicity op
imply thatp(X) = p(X) < p(Y) = p(Y). Thus we also gei(X) < p(Y) < p(Y Ue). It remains to check
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thatp(X Ue) < p(Y Ue). Observe
AX Ue) =

7]
w(cl(Y)) (by condition (11))

Thereforep is monotone on all subsets 8fU e.
Sincep(X) = p(X) for X C S, to check submodularity it suffices to verify it for the pafeg X U e and
Y,and (b)X UeandY Ue, with X, Y C S. For case (a), we have

P(XUe)NY)+p(XUe)UY)=p(XNY)+p(XUY)Ue)
XNY)+p(XUY)+ p(c(XUY))

X)+pY) + p(c(XUY)) (by the submodularity of)
X)+p(Y) + p(cl(X)) (by condition (I11))

For case (b), we have

PX U )+ (Y Ue) = plel(X)) + u(cl(X)) + plel(Y)) + p(cl(¥))
2 p(el(X) Nel(Y)) + p(cl(X) Ucl(Y)) = 6(cl(X), cl(Y)) + p(cl(X)) + p(cl(Y))
= p(cl(X)Ncl(Y)) + p(cl(X) Ucl(Y)) + p(cl(X) Ucl(Y)) + p(cl(X) Necl(Y))
=p((cl(X)Ucl(Y))Ue) + p((cl(X) Necl(Y)) Ue)

>p(XUYUe)+p((XNY)Ue).

The first inequality follows by condition (1), and the lastmuality holds because the monotonicityzofias
already been established. O

Note that Theoref 14 generalizes TheorBins $ahd 10 for saigieent extensions of matroids. Also note
that if the conditions of the theorem are satisfied, thelp is a modular cut. Lastly, we point out that the
theorem remains true if the word “flats” is replaced by “sétsits statement.

Definition 15. A partition (Mo, My, ..., M.) of flats of a polymatroidp, S) that satisfies the conditions in
Theoreni I# is called aextensible partition.

For the remainder of this section, assume that) is a polymatroid( Mg, M, ..., M,) is an extensible
partition, and(p, S U e) is the single-element extension defined right before Thafé. Our next goal is to
describe the flats dfp, S U e).

Clearly if F C S'is aflat of(p, S U e), thenF is also a flat of p, S). We also have the following helpful
fact.

Proposition 16. For F' C S, if F U eis aflat of(p, S Ue), thenF is a flat of(p, S).
Proof. Observe thatl,(F') C cl5(F) C clz(FUe) = FUe. O

Therefore, to find the flats df, S U e) we need only consider sets of the foffmand F' U e, whereF is a
flat of (p, S). The next proposition explicitly describes the flat§fS U e).

Proposition 17. Let(p, S U e) be the single-element extensior(pfS) corresponding to the extensible parti-
tion (Mo, My,..., M.). The flats of p, S U e) are the sets

(1) FinM;, fori >0,

(2) FUe, for F € My,

(3) FuUe,for F € M; withi > 0, whereF' has no coverd with p(F) + u(F) = p(G) + p(G).
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Proof. To reiterate, we need only look at sets of the fafnand ' U e, whereF' is a flat of(p, S).
It follows from the definition ofp that a flatF’ of (p, S) is aflat of(p, S U e) ifand only if ' ¢ M.
If F'e My, thenF Uceisaflat of(p, S Ue) since, fory € S — F, we have

p(F U{e,y}) = p(FUy) > p(F) = p(F Ue).

We claim that forF € M, with i > 0, the setF" U ¢ is a flat of (p, S U ¢) if and only if the inequality
in property (1) of Theoreni 14 is strict for all cove(s of F'. Indeed, ifG coversF andp(F) + u(F) =
p(G) + u(G), thenF U e is not a flat since

p(FUe)=p(F)+ u(F) = p(G) + (G) = p(G Ue).
Now assume strict inequality holds in property (Il) for atvers of F'. If x € S — F, then there is a cover
of Fwith ' C G Ccl,(FUxz),so
PF Ue) = p(F) + ul(F) < p(G) + (@) = p(G Ue) < p(F U {e,z}). 0

Note that ifu(G) = p(F), then equality cannot hold in property (11) of TheorEm 14cgip(G) > p(F).

These results generalize those for matroid extension. Weediecollar of M; to consist of every’ €
M, that is covered by som& € M; with j < 4. In a matroid(r, S), if a flat G covers a flatF', then
r(G)—r(F) = 1. If (7, S Ue) is a single-element extension aAde M, thenF U is a flat of7 if and only
if Fis notin the collar ofM .

4. GENERATING A CATALOG OF SMALL 2-POLYMATROIDS

Now we will specialize the results of the previous sectiof-olymatroids.

Suppos€p, S) is a2-polymatroid with collection of flats¥(.S). Suppose thaF(S) is the union of three
disjoint sets,Mg, M7, and M5, some of which may be empty. Letbe an element not i¥. We define a
functionp: 25V — N as follows. ForX C S, definep(X) = p(X) and

p(X Ue) = p(X) + i wherecl(X) € M;.

When computing the extensible partitions oR-golymatroid, we found it convenient to work with the
following verbose specialization of Theorém 14.

Theorem 18. As defined(p, S U e) is a 2-polymatroid extension dfp, S) if and only if the following seven

conditions are met.

(1) FF e My, Ge F(S), FCG,andp(G) — p(F) =1, thenG € M; U M. In other words, ifF' € M,
is covered by a flaf¥ of (p, S) of one rank higher, thet cannot be inM,.

(2) If F,G € My and(F,G) is a modular pair, therf" N G € M, as well.

(3) IfF,G e Mpandp(F) + p(G) = p(FUG) + p(FNG) + 1,thenFNG € My U M;.

4) If F,G € M; and (F,G) is a modular pair, then eithet’ N G € M; as well, orF NG € M, and
CI(F U G) € Mo.

(5) If F € My, G € My, and(F,G) is a modular pair, therf’ N G cannot be inMs.

(6) The setM, is down-closed in the lattic& (p, S).

(7) The setM, is up-closed in the lattic& (p, S).

Sketch of ProofCondition (I1) of Theorenh 14 specializes to condition (1jévecondition (1) to conditions (2)
through (5), and condition (1) to conditions (6) and (7). O

The flats of(p, S U ) are the sets
(1) Fin My U Mao,
(2) FuUe,for F € My,
(3) FuUe,for F € M;, withi > 0, where,
(a) F has no cove6 in M;_; with p(G) = p(F) + 1, and
(b) if i =2, F has no cove@ in Mg with p(G) = p(F) + 2.
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For example, letp, {a, b}) be the2-polymatroid consisting of two lines placed freely in a @aio be spe-
cific, definep(@) = 0, p({a}) = p({b}) = 2, andp({a, b}) = 3. The single-element extension corresponding
to the extensible partition

(Mo, My, M3) = ({{a,b}}, {{a}, {b}}, {2})
is the2-polymatroid consisting of three lines placed freely in aryd.

Using the results of this section, we endeavored to catdlsgiall 2-polymatroids on a computer by means
of a canonical deletion algorithm.

Definition 19. SupposeY is a collection of combinatorial objects with ground gét ..., n} and a notion of
isomorphism. A functiot': X — X is acanonical labelindunction if the following hold for allX, Y € X
(i) X isisomorphictoC(X ), and
(i) C(X)=C(Y)ifand only if X is isomorphic toy".
In this case(’'(X) is called thecanonical representativé X .

Brendan McKay'shauty program efficiently computes canonically labelings of cetbgraphs. In order
to make use of it, we convert polymatroids into graphs udiegfollowing construction.

Definition 20. Given an integer polymatroitp, S), define a colored, bipartite graph with bipartitiosi and
F(p,S). An edge betweenc S andF' € F(p,S) exists if and only it € F. Color F' € F(p,S) with its
rank, p(F"). Color eache € S with —1. Call the resulting graph théat graptﬂ of the integer polymatroid.

Note thatif X C S and if ' is the smallest flat containing, thenp(X) = p(F). In terms of the flat graph,
the rank of a seX’ C S equals the least color amongst those vertices adjacenety element ofX. Using
this observation, it is easy to prove the next proposition.

Proposition 21. Two integer polymatroids are isomorphic if and only if thiat graphs are isomorphic as
colored graphs. (By an isomorphism of a colored graph, wemaegraph isomorphism that maps each vertex
to another of the same color.)

Therefore, in order to canonically labeRgpolymatroid, it suffices to consider its flat graph. Thenuty
is used to compute a canonical labeling of the flat graph. Westnicted to the ground set of the polymatroid,
this gives a canonical labeling of the polymatroid. For acdpsion of the algorithms used hyauty see[10]
and [11]. One may also find the exposition[in [5] helpful.

Now we have all the tools needed to adapt Algorithm 1 6f [94eolymatroids. Suppose we are given a
setX,, that consists of precisely one representative of each igoim®m class o2-polymatroids on the ground
set{1,...,n}. The following algorithm produces its counterpatt, 1, for the set{1,...,n + 1}.

Algorithm 1 Isomorph-free generation @fpolymatroids

foreachp € X,, do
SetY, < @, the collection of extensions efthat should appear iX,, ;.
for each extensible partitiofi M, M7, Ms) of p do
Let p be the extension gf associated with this partition.
Canonically labep.
Setp’ < p\(n + 1), the canonical deletion.
Canonically labep’.
if p=p andp €Y, then
SetY, <Y, Up.
end if
end for
SetXn+1 — X+ U Yp.
end for
return X,

Ln our implementation, we found it prudent to insert an iadavertex of rank: if no flats of rankr existed, forr < p(S). This made
it easier to work with the labelings used hguty.
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A few comments are in order. Note that the test o’ is for equality, not isomorphism. In our implemen-
tation, the collection¥’, are binary trees, rather than merely sets, in order to spediteusearch € Y.

The task of finding all extensible partitions for a polymadrp is relatively straightforward, but tedious.
First, a candidate for a modular e is found. SinceM, is an up-closed set, it suffices to keep track of the
minimal flats inM,. These are found as independent sets of a graph with vettexjsal to the flats of. If
one flat is contained in another, an edge is placed betwedwtheCondition (2) of Theorefn 18 is then used
to narrow the search. An edge is also placed between any ttgdtia form a modular pair. The independent
sets in this graph are the minimal members of our candidatestf). Given an acceptable candidate fot, a
more complicated procedure is used to find all possible citels forM ;. The remaining flats are obviously
assigned taM-. Unfortunately, the resulting partition must be checkedée if it satisfies conditions (1)
through (5), since some of these may fail for non-minimal roera of M, or M.

Finally, note that each iteration of the outermost for loogynbbe run in parallel since extensions of two
different members oKX, are never directly compared to each other.

5. IMPLEMENTATION AND RESULTS

We implemented this algorithmin the C programming langu&gerder to determine the cover relations for
flats, we employed theTLAS library [16] to multiply the adjacency matrices of graphse Wsed the. graph
library [4] to find independent sets in graphs. A computehwétsingle 6-core Intel i7-3930K processor
clocked at 3.20GHz running 64-bit Ubuntu Linux executedrisulting program. After approximately four
days, a catalog of all-polymatroids on seven or fewer elements was generated.

The following table lists the number @fpolymatroids, up to isomorphism, on the groundfkt .., n},
by rank.

The number of unlabele2ipolymatroids

rank\n [0 1 2 3 4 5 6 7
o1 11 1 1 1 1 1
1 1 2 3 4 5 6 7
2 1 4 10 21 39 68 112
3 2 12 49 172 573 1890
4 1 10 78 584 5236 72205
5 3 49 778 18033 971573
6 1 21 584 46661 149636721
7 4 172 18033 19498369
8 1 39 5236 149636721
9 5 573 971573
10 1 68 72205
11 6 1890
12 1 112
13 7
14 1
total |1 3 10 40 228 2380 94495 320863387

The following proposition is the key to producing the analogtable for labeled-polymatroids.

Proposition 22. The automorphisms of an integer polymatréidS) are in one-to-one correspondence with
the automorphisms of its flat graph.

Sketch of ProofThis is not hard to show. It follows, for example, from the @ks in Section 1 of[12], which
employs the language of hypergraphs. O

Sincenauty can easily compute the automorphism groups of the flat grafthese polymatroids, apply-
ing the Orbit-Stabilizer Theorem gives a count of the nundidabeled2-polymatroids ori7 elements. The
following table lists the number of label@dpolymatroids, on the ground sft, . . ., n}, by rank.
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The number of labele@-polymatroids

rank\n][[0 1 2 3 4 5 6 7
offt 1 ¢ 1 1 1 1 1
1| 13 7 15 31 63 127
2| 1 6 29 135 642 3199 16879
3 3 41 477 5957 87477 1604768
4 1 29 784 27375 1554077 189213842
5 7 477 41695 7109189 3559635761
6 1 135 27375 21937982 733133160992
7 15 5957 7109189 86322358307
8 1 642 1554077 733133160992
9 31 87477 3559635761
10 1 3199 189213842
11 63 1604768
12 1 16879
13 127
14 1
total |1 3 14 115 2040 109707 39445994 1560089623047

The symmetry of the columns in the above tables is explainethé following notion of duality fork-
polymatroids.

Definition 23. Given a polymatroidp, S), define thek-dualp*: 2° — N by
p*(X) = k|X| + p(S — X) — p(S).

It is easily seen that* is itself ak-polymatroid and that the operation kfduality is an involution on the
set ofk-polymatroids on a fixed ground set which respects isomerph(In fact, it is shown il [17] to be the
the unique such involution that interchanges deletion amdraction.)

Welsh conjectured that the number of matroids on a fixed setilmodal in rank in[[15]. The counterpart of
this conjecture fok-polymatroids is false. The table above shows that it fail2fpolymatroids ory elements.

Since the number of labeleédpolymatroids on seven elements is nearly a factof! ahore than the num-
ber of unlabeled ones, it seems reasonable to conjectureathanptotically, almost alt-polymatroids are
asymmetric.

The proof in [8] that almost all matroids are loopless cardger without change td-polymatroids. Our
catalog suggests that a stronger property holdg@-foolymatroids. We conjecture that, asymptotically, altnos
all 2-polymatroids contain no elements of rank less thaHere is the evidence from our catalog: the number
of unlabeled®-polymatroids on{1, ...,n} with no elements of rank less than

n|l 2 3 4 5 6 7
count| 1 2 8 51 696 49121 304541846

This table should be compared to the first table in this sectio

6. A CONFIRMATION

Consider that thiabeledsingle-element extensions ofgpolymatroid are in fact solutions to a certain inte-
ger programming problem. When all subsets of the groundred¢blien as variables, inequalities guaranteeing
the axioms of &-polymatroid are easily written. To be concrete,detS — N be ak-polymatroid and let
be an element not i§. Regards(X) as a variable for each C S Ue. Fix p(A4) = p(A) for A C S. Also
fix p(S Ue) = p(S) + ¢, wherec is a natural number no greater thanNow nonnegative integer solutions to
the system of inequalities below are in one-to-one cormedpnce with labeled single-element extensions of
which increase the rank gfby c.
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p(A)+p(AU fUg) <p(AUf)+p(AUg) forAC SUeandf,ge (SUe)— A;
0<p(AUf)—p(A) <k forAC SUeandf e (SUe)— A; and
p(A) <Ek|A] forAC SUe.

Here, we are using a condition equivalent to submodulaség; Theorem 44.2 df [14] for a proof of equiv-
alence. The open-source optimization software SCIP [1bis & count the number of integer solutions to
such inequalities. Using SCIP we verified the numbers oflé&ab2 polymatroids given earlier. Note that, in
the version of SCIP we used in April 2013, it was necessarurto off all pre-solving options in order to ob-
tain accurate results. This process took approximatelyd&ka using the computer described in the previous
section.
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