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DYNAMIC MEAN-LPM AND MEAN-CVAR PORTFOLIO

OPTIMIZATION IN CONTINUOUS-TIME ∗

JIANJUN GAO† , KE ZHOU ‡ , DUAN LI§ , AND XIREN CAO ¶

Abstract. Instead of controlling “symmetric” risks measured by central moments of investment
return or terminal wealth, more and more portfolio models have shifted their focus to manage “asym-
metric” downside risks that the investment return is below certain threshold. Among the existing
downside risk measures, the lower-partial moments (LPM) and conditional value-at-risk (CVaR) are
probably most promising. In this paper we investigate the dynamic mean-LPM and mean-CVaR
portfolio optimization problems in continuous-time, while the current literature has only witnessed
their static versions. Our contributions are two-fold, in both building up tractable formulations and
deriving corresponding analytical solutions. By imposing a limit funding level on the terminal wealth,
we conquer the ill-posedness exhibited in the class of mean-downside risk portfolio models. The limit
funding level not only enables us to solve both dynamic mean-LPM and mean-CVaR portfolio op-
timization problems, but also offers a flexibility to tame the aggressiveness of the portfolio policies
generated from such mean - downside risk models. More specifically, for a general market setting,
we prove the existence and uniqueness of the Lagrangian multiplies, which is a key step in applying
the martingale approach, and establish a theoretical foundation for developing efficient numerical
solution approaches. Moreover, for situations where the opportunity set of the market setting is
deterministic, we derive analytical portfolio policies for both dynamic mean-LPM and mean-CVaR
formulations.

Key words. Dynamic mean - downside risk portfolio optimization, lower-partial moments
(LPM), conditional value-at-risk portfolio (CVaR), stochastic control, martingale approach.

AMS subject classifications. 91G10, 91G80, 91G60

1. Introduction. The mean-variance (MV) formulation pioneered by Markowitz
[26] sixty years ago has laid the foundation of modern portfolio theory. Most impor-
tantly, the mean-variance model captures the essential multiobjective nature between
the two conflicting goals in portfolio selection, i.e., between maximizing the invest-
ment return and minimizing the investment risk. As a natural generalization of the
mean-variance analysis, the framework of mean-risk trade-off analysis has become
a standard in portfolio management. Under the framework of mean-risk trade-off
analysis, a risk measure always serves a purpose to map investment uncertainty to a
quantitative level such that trade-off can be computed explicitly against the expected
investment return. Such a straightforward appealing approach of risk management is
in general more favored by both practitioners in financial industry and researchers in
academic field, when compared to the more abstract, albeit more mathematically rig-
orous, expected utility maximization framework. However, selecting an appropriate
risk measure is essentially not only a science, but also an art.

While the variance term penalizes uncertainties on both sides of the mean, numer-
ous downside risk measures have been proposed in the last half century to quantify
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the risk that the investment return is below certain target. Among these downside
risk measures, the lower-partial moments (LPM) proposed by Fishbburn [14] form
one most important class with prominent features. The LPM enables us to repre-
sent a general form of downside risk measures with two parameters, the benchmark
level γ, which is set by the investor himself, and the order of the moments, q, which
represents the risk attitude of the investor. Due to the freedom offered by different
combinations of the pair q and γ, we can adopt LPM to pursue different investment
goals in portfolio optimization. For example, setting q = 0 in LMP yields the short-
fall probability, which is also equivalent to the safety-first rule proposed by Roy [32];
Setting q = 1 gives rise to the risk measure of the expected regret (ER) (see Dembo
[11]); and setting q = 2 leads to the risk measure of semideviation below the target,
or the semivariance if γ is set as the expected terminal wealth. Bawa and Lindenberg
[6] show that LPMs associated with q = 0, 1, or 2 correspond to the first, second
or third degree stochastic dominance, respectively. Compared with the variance, the
LPM is more consistent with the classical utility theory and the rule of stochastic
dominance (see e.g., [27]). Konno et al. [22] demonstrate the prominence of LPM in
the practice of portfolio management via empirical tests. Zhu et al. further consider
robust portfolio selection under LPM risk measures [38].

The Value-at-Risk (VaR), defined as the threshold point with a specified exceeding
probability of great loss, becomes popular in the financial industry since the mid 90s.
However, the VaR has been widely criticized for some of its undesired properties.
More specifically, VaR fails to satisfy the axiomatic system of coherent risk measures
proposed by Artzner et al. [3]. Most critically, the non-convexity of VaR leads to some
difficulty in solving the corresponding portfolio optimization problem. On the other
hand, the conditional Value-at-Risk (CVaR), also known as the expected shortfall,
is defined as the expected value of the loss exceeding the VaR [30]. CVaR possesses
several good properties, such as convexity, monotonicity and homogeneity. Rockafellar
and Uryasev [30] [31] prove that CVaR can be computed by solving an auxiliary
linear programming problem in which the VaR needs not to be known in advance.
After the fundamental work of Rockafellar and Uryasev ([30] [31]), CVaR has been
widely applied in various applications of portfolio selection and risk management, e.g.,
derivative portfolio [1], credit risk optimization [2], and robust portfolio management
[36].

Almost all the mean-downside risk portfolio optimization models studied in the
above literature have been confined to static settings, from which the derived port-
folio policy is of a buy-and-hold nature. Without a doubt, such a class of static
models is not suitable for investment problems with a long investment horizon. The
past decade has witnessed some research works that investigate mean-CVaR portfo-
lio optimization using stochastic programming approach [12] [13] [17]. As stochastic
programming formulations adopt both discrete time and discrete state in their model
settings, this kind of models with discrete states suffers from a heavy computational
burden, and can only deal with two - or three - stage problems. Within dynamic
mean-risk portfolio optimization models, the most matured development seems to lie
in the subject of dynamic mean-variance (MV) portfolio optimization. Although the
mean-variance analysis starts the area of portfolio selection, its extension to a dynamic
MV version has been blocked for almost four decades, due to the nonseparability of
the variance term in the sense of dynamic programming. After Li and Ng [23] and
Zhou and Li [35] derive the explicit portfolio policies, respectively, for discrete-time
and continuous-time MV portfolio selection formulations, by using the embedding
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scheme, the dynamic MV models has been developed by leaps and bounds, see, for
examples, [24] [25] [37] [19]. Recently, the subject of time consistency in dynamic MV
portfolio optimization has been attracting increasing attention (see, e.g., [4] [9] [8]).
Although the mean-downside risk models seem to be a natural extension of dynamic
MV models, Jin et al. [18] show that a general class of mean-downside risk portfolio
optimization models under a continuous-time setting is ill-posed in the sense that the
optimal value cannot be achieved. Besides such a negative result, there do exist some
research works related to the continuous-time portfolio selection problems in which
the downside-risk measure plays a role. For example, Basak and Shapiro [5] consider
the continuous-time utility maximization model with a VaR constraint. By using the
stochastic control approach, Yiu [34] study a problem similar to [5]. However, the
VaR risk constraint in Yiu [34] is defined over the entire investment process. Gundel
and Weber [16] extend the VaR risk constraint to a shortfall risk constraint. Re-
cently, Chiu et al. [10] solve the dynamic asset-liability management problem under
the safety-first criteria, which can be regarded as the shortfall probability measure.

We consider in this paper the mean-downside risk portfolio optimization prob-
lem in a continuous-time setting. More specifically, we investigate both the dynamic
mean-LPM and mean-CVaR portfolio optimization problems. In recognizing the ill-
posedness of such problems (see, e.g., Jin et al. [18]), we adopt a similar solution
idea as in [10] to attach to this class of problems an upper limit on the funding level
of the terminal wealth. In the continuous-time mean-LPM and mean-CVaR port-
folio optimization models, if the terminal wealth is unlimited, the investor will act
extremely aggressively to push his terminal wealth to the infinity. Adding a limit on
the funding level will tame such an irregular portfolio policy to a reasonable level.
Thus, such an upper bound can be also regarded as a designing variable to control
the aggressiveness level of the investor. We further prove that the probability that the
terminal wealth reaches such an upper bound is decreasing with respect to the mag-
nitude of the upper level. For general market opportunity set, we prove the exitance
and uniqueness of Lagrangian multipliers, which is the key step to apply the mar-
tingale approach. These theoretical results pave a foundation to develop numerical
solution schemes to solve dynamic mean-LPM and mean-CVaR portfolio optimiza-
tion problems. When the market opportunity set is deterministic, we further derive
semi-analytical portfolio policies for both the mean-LMP and mean-CVaR portfolio
optimization problems. The dynamic mean-LPM portfolio policy demonstrates very
distinct features when compared with the dynamic MV portfolio policy. When the
market condition is good, the mean-LPM investor tends to invest more aggressively
in the risky assets when compared to an MV investor. When the market condition is
in the medium state, the mean-LPM investor prefers to allocate more wealth in the
risk-free asset. However, when the market condition is in a bad state, the mean-LPM
investor allocates again more wealth in the risky assets than the MV investor. This
phenomena can be regarded as the gambling effect of dynamic mean-LPM investors.
In summary, the mean-LPM investment policies show a feature of a two-side thresh-
old type, i.e., at any time t, when the current wealth is, respectively, below or above
certain levels, the investor increases his allocations in the risky assets. As for the
dynamic mean-CVaR portfolio policy, our experiment result with real market data
shows that the CVaR measure can be improved significantly when compared with the
buy-and-hold mean-CVaR portfolio policy of a static type.

The remaining of the paper is organized as follows. We present the market setting
and the dynamic mean-LMP and dynamic mean-CVaR portfolio optimization prob-
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lem formulations in Section 2. We derive the optimal portfolio policies for the dynamic
mean-LPM and dynamic mean-CVaR optimization problems in Section 3 and 4, re-
spectively. We then present illustrative examples to compare the dynamic mean-LPM
portfolio policy with the dynamic mean-variance portfolio policy and the dynamic
mean-CVaR portfolio policy with the static portfolio policy in Section 5. Finally, we
conclude our paper in Section 6. Throughout the entire paper, notation 1B denotes
the indicator function, i.e., 1B = 1 if the condition B holds true and 1B = 0, other-
wise; A′ denotes the transpose of matrix A, and (a)+ denotes the nonnegative part of
a, i.e., (a)+ = a1a≥0. To simplify our notations, we use (a)q+ for ((a)+)

q which means
the q-th power function of (a)+. Finally, the cumulative distribution of the standard

normal random variable X is denoted by Φ(y) := P(X ≤ y) = 1√
2π

∫ y

−∞ exp(− s2

2 )ds.

2. Market Setting and Problem Formulations. We consider a market with
n risky assets and one risk free asset which can be traded continuously within time
horizon [0, T ]. All the randomness are modeled by a complete filtrated probability
space (Ω,F ,P, {Ft}t≥0), on which an Ft adapted n-dimensional Brownian motion
W (t) = (W1(t), · · · ,Wn(t))

′
is defined, where Wi(t) and Wj(t) are mutually indepen-

dent for all i 6= j. Let L2F (0, T ;Rn) be the set of Rn-valued, Ft-adapted and square
integrable stochastic processes, and L2FT

(Ω;Rn) the set of Rn valued FT -measurable
random variables.

The price process S0(t) of the risk-free asset is governed by the following ordinary
differential equation,

{

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ],

S0(0) = s0 > 0,
(2.1)

where r(t) is the risk free return rate, which is Ft measurable scalar-valued stochastic
process. The price process of the n risky assets satisfies the following system of
stochastic differential equations (SDE):















dSi(t) = Si(t)
(

µi(t)dt+

n
∑

j=1

σij(t)dWj(t)
)

, t ∈ [0, T ], i = 1, . . . , n,

Si(0) = si > 0, i = 1, . . . , n,

(2.2)

where µi(·) and σij(·) are the appreciation rate and volatility, respectively. We assume
that all µi(·) and σij(·) are uniformly bounded, scalar-valuedFt-measurable stochastic
processes. Furthermore, we assume that the volatility matrix σ(t) := {σij(t)} |n,ni,j=1

satisfies the following nondegeneracy condition,

σ(t)σ′(t) ≻ ǫI, for all 0 ≤ t ≤ T, a.s.,(2.3)

for some ǫ > 01. Under the above setting, we have a complete market model for the
securities.

An investor with initial wealth x0 enters the market at time 0 and continuously
allocates his wealth in the n risky assets and the risk-free asset within time horizon
[0, T ]. Let x(t) be the total wealth of the investor at time t. Denote the portfolio

1‘a.s.’ stands for ‘almost surely’, which excludes events with zero occurrence probability. In
the following discussion, we simply ignore such a term for the random variables that satisfy certain
condition.
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process by π(t) =
(

π1(t), · · · , πn(t)
)′

with π(·) ∈ L2F (0, T ;Rn), where πi(t) is the
dollar amount allocated to risky asset i at time t. As we do not consider in this
research the transaction cost during the investment process, the wealth process of the
investor, x(t), then satisfies the following stochastic differential equation (SDE),







dx(t) =
(

r(t)x(t) + b(t)′π(t)
)

dt+ π(t)′σ(t)dW (t),

x(0) = x0,
(2.4)

where b(t) is the excess return defined by

b(t) :=
(

µ1(t)− r(t) µ2(t)− r(t) · · · µn(t)− r(t)
)′
.

In this research, we focus our investigation on mean-downside risk portfolio optimiza-
tion. In particularly, we are interested in studying the following mean-LPM model,

(Pq
lpm) min

π(·)∈L2
F
(0,T ;Rn)

E[(γ − x(T ))q+]

Subject to











E[x(T )] ≥ d,
{x(·),π(·)} statisfies (2.4) ,
0 ≤ x(T ) ≤ B,

where d is the minimum expected wealth which the investor would like to attain, B
is an upper bound of the attainable final wealth imposed by the investor, γ ∈ R is
a given benchmark level, and q is a given nonnegative integer, which represents the
order of the moment. Adopting model (Pq

lpm) implies that the investor only cares
about the scenarios where x(T ) is less than the benchmark level γ, which the investor
sets as a threshold for “disastrous” terminal wealth. When q = 0, from our notations,
we have (γ − x(T ))0+ = 1x(T )≤γ and thus E[(γ − x(T ))0+] = P(x(T ) ≤ γ), which
is the disaster probability considered by Roy in his pioneering safety-first principle
[32], while γ can be viewed as the disaster level. When q = 1 and γ = E[x(T )], the
downside risk measure E[(E[x(T )]− x(T ))1+] becomes the semi-absolute deviation (or
the target semi-absolute-deviation). When q = 2 and γ = E[x(T )], the downside risk
measure E[(E[x(T )]− x(T ))2+] yields the semi-variance (or the target semi-variance).
Let x̄T be a given safe-level of the terminal wealth. One possible candidate of x̄T
could be

x̄T = E[e
∫

T

0
r(s)ds]x0,(2.5)

which is the expected terminal wealth when investing all initial wealth in the risk free
account. For the upper bound B, we reasonably assume B > max{d, x̄T , γ}.

In our work, we also study dynamic mean-CVaR portfolio optimization. We define
first the loss of investment as follows,

f(x(T )) := x̄T − x(T ).(2.6)

We adopt the definition of CVaR by Rockafellar and Uryasev [31] for investment loss
and use the notation CVaR[f(x(T ))] to denote the CVaR of the investment loss. The
mean-CVaR portfolio optimization model is now formally posted as follows,

(Pcvar) min
π(·)∈L2

F
(0,T ;Rn)

CVaR[f(x(T ))],

Subject to











E[x(T )] ≥ d,
{x(·),π(·)} statisfies (2.4),
0 ≤ x(T ) ≤ B,



6 J.J. Gao, K. Zhou, D. Li, X.R. Cao

where all the other notations are defined the same as in (Pq
lpm).

As we will demonstrate later in this paper, the upper bound, B, imposed on the
terminal wealth essentially controls the aggressiveness of the portfolio policy. The
larger the value of B, the more aggressive the portfolio policy becomes. If we let
B go to infinite, both problems (Pq

lpm) and (Pcvar) will become ill-posed (see, e.g.,
[18]), i.e., the investor would take an infinite position. From the view point of real
applications, any portfolio that generates extremely high level of terminal wealth is
not realistic. Thus, imposing an upper bound on the terminal wealth, as proposed
in [10], is reasonable and justifiable. Furthermore, such an upper bound can be also
regarded as a designing variable to control the aggressiveness level of the investor.
We also prove that the probability that the terminal wealth reaches its upper bound
is monotonically decreasing with respect to the level of the upper bound. Thus, a
formulation with a very large upper bound can be regarded as an approximation to
the formulation without an upper bound. Note also that the no-bankruptcy constraint
at the terminal time, x(T ) ≥ 0, actually ensures no-bankruptcy for the entire wealth
process, i.e., x(t) ≥ 0, for t ∈ [0, T ] (see Proposition 2.1 in [7]).

3. Optimal Portfolio Policy For Dynamic Mean-LPM Formulation. We
develop in this section a solution scheme for problem (Pq

lpm) using the martingale
approach (see, for examples, [28] and [20]). The main idea of the martingale approach
is to find first the optimal terminal wealth x∗(T ) by solving a static optimization
problem and to identify then the optimal portfolio policy π∗(·) process to replicate
(generate) such an optimal wealth distribution of x∗(T ).

3.1. Optimal terminal wealth. From our complete market setting in (2.2), we
can find a unique equivalent martingale measure (EMM) such that the discounted
price processes of the risk assets are martingale. Let the Radon-Nikodým derivative
of the EMM, P̃, with respect to the original measure P be ξ, i.e., ξ := dP̃/dP, where ξ
is an FT -measurable random variable. From the Girsanov Theorem [20], the Radon-
Nikodým derivative process ξ(t) = E[ξ|Ft] can be expressed as the exponential martin-
gale, dξ(t) = ξ(t)θ(t)′dW (t), where θ(t) is m× 1 vector-valued Ft-adapted stochastic
process vector such that the choice of θ(t) makes the process dW̃ (t) = θ(t)dt+ dW (t)
to be the Brownian motion under probability P̃. To eliminate the drift term of the
discount price process of the securities, we let θ(t) be

θ(t) = σ(t)−1b(t), a.s., for t ∈ [0, T ].(3.1)

Then, we define the state price density as z(t) := ξ(t)/S0(t) which satisfies the fol-
lowing SDE,

{

dz(t) = −z(t)
(

r(t)dt + θ(t)′dW (t)
)

,

z(0) = 1,
(3.2)

or, equivalently, we can express z(t) as

z(t) = exp

{

−
∫ t

0

(

r(s) +
1

2
‖θ(s)‖2

)

ds−
∫ t

0

θ(s)′dW (s)

}

.

In the literature, z(t) is also referred as the deflator process, which transfers the
discounted wealth process x(t) to a martingale, i.e., we have

z(t)x(t) = E[z(s)x(s) | Ft],
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for any t < s ≤ T . By using such a property, the optimal terminal wealth x(T ) of the
problem (Pq

lpm) can be found by solving the following static optimization problem,

(Aq) min
x(T )∈L2

FT
(Ω,R)

E
[

(γ − x(T ))q+
]

,

Subject to E[x(T )] ≥ d,(3.3)

E[z(T )x(T )] = x0,(3.4)

0 ≤ x(T ) ≤ B.
Before we solve problem (Aq) we need the following lemma.

Lemma 1. Given the following two problems (B) and (L),
(B) min

Y ∈C
E[f(Y )],

Subject to: E[Y ]− b ≥ 0,

E[ZY ]− a = 0,

and

(L(λ1, λ2)) min
Y ∈C

E[f(Y )− λ1(Y − b) + λ2(ZY − a)],

where C ⊂ L2FT
(Ω;R) is a convex set, f(·) is a scalar-valued convex function, Z ∈

L2FT
(Ω;R) is a random variable, a ∈ R, b ∈ R, λ1 ∈ R+ and λ2 ∈ R. If Y ∗ solves

problem (L(λ∗1 , λ∗2)) for some λ∗1 and λ∗2 and satisfies E[Y ∗] ≥ b and E[ZY ∗] = a, then
Y ∗ solves problem (B) with λ∗1(E[Y ∗]− b) = 0 and λ∗2(E[ZY

∗]− a) = 0. On the other
hand, if problem (B) has a solution Y ∗, then there exist λ∗1 and λ∗2 such that Y ∗ also
solves problem (L(λ∗1 , λ∗2)).

We place the proof of Lemma 1 in the Appendix. Lemma 1 basically shows that
problem (B) can be solved by investigating its corresponding Lagrange relaxation
problem (L(λ1, λ2)). Before we give the main results, we define the following set,

X :=
{

Y ∈ L2FT
(Ω;R) | γ ≤ Y ≤ B,E[Y ] ≥ d,E[z(T )Y ] = x0

}

.(3.5)

Considering the convexity issue of function E
[

(γ − x(T ))q+
]

, we separate the cases
with q ≥ 1 from the ones with 0 ≤ q < 1 in problem (Aq). The optimal terminal
wealth of problem (Aq) is given by the following two theorems separately for these
two situations.

Theorem 1. When q > 1, the optimal solution of problem (Aq) takes one of the
following two forms. (i) If X = ∅, the optimal solution can be expressed as

x∗(T ) = B1ηz(T )≤λ +

(

γ −
(

ηz(T )− λ
q

)
1

q−1

)

1λ<ηz(T )≤λ+qγq−1 ,(3.6)

where the Lagrange multipliers η > 0 and λ ≥ 0 satisfy the following conditions,

BE
[

1ηz(T )≤λ

]

+ E

[(

γ −
(

ηz(T )− λ
q

)
1

q−1

)

1λ<ηz(T )≤λ+qγq−1

]

≥ d,

(3.7)

BE
[

z(T )1ηz(T )≤λ

]

+ E

[

z(T )

(

γ −
(

ηz(T )− λ
q

)
1

q−1

)

1λ<ηz(T )≤λ+qγq−1

]

= x0,

(3.8)
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and if inequality (3.7) holds strictly, λ = 0. (ii) If X 6= ∅, then any random variable
x∗(T ) ∈ X is optimal for problem (Aq).

Proof. To simplify the notation, we use z and X for z(T ) and x(T ), respectively,
in the following discussion. Introducing Lagrange multipliers λ ≥ 0 and η ∈ R, respec-
tively, for constraints (3.3) and (3.4) in problem (Aq) yields the following Lagrange
relaxation of problem (Aq),

min
0≤X≤B

ĝ(X) = E
[

(γ −X)q+ − λ(X − d) + η(zX − x0)
]

.(3.9)

Ignoring the constant terms, we solve first the inner point-wise optimization problem,

min
0≤X≤B

g(X) = (γ −X)q+ − λX + ηzX.(3.10)

We first assume that η > 0. Since z is a random variable, the optimal solution of
problem (3.10) depends on different values of z. If γ−X ≥ 0, problem (3.10) reduces
to

min
0≤X≤γ

g(X) = (γ −X)q − λX + ηzX.(3.11)

It can be verified that g(X) is convex with respect to X in the range 0 ≤ X ≤ γ. The
stationary point of function g(X) satisfies

∇g(X) = −q(γ −X)q−1 + ηz − λ = 0, ⇒ X̂ = γ − (
ηz − λ
q

)
1

q−1 .

If 0 ≤ ηz − λ ≤ qγq−1, then we have 0 ≤ X̂ ≤ γ. Thus, the optimal solution of
problem (3.11) is X∗ = X̂ with g(X∗) = (1− q)(ηz−λ

q )
q

q−1 +(ηz−λ)γ. If ηz−λ ≤ 0,

then g(X) is a monotonically decreasing function with respect to X , which implies
that the optimal solution of problem (3.11) is X∗ = γ with ĝ(X∗) = γ(ηz − λ). If
ηz − λ ≥ qγq−1, the optimal solution is X∗ = 0 with g(X∗) = γq. If γ − X ≤ 0,
problem (3.10) becomes

min
γ≤X≤B

g(X) = −λX + ηzX.(3.12)

The optimal solution is X∗ = B with g(X∗) = (ηz − λ)B if ηz − λ < 0 and X∗ = γ
with g(X∗) = (ηz − λ)γ if ηz − λ ≥ 0. As a summary, we can conclude that, when
η > 0, the optimal solution of problem (3.9) is

X∗ =























B, if ηz ≤ λ;

γ −
(

ηz − λ
q

)
1

q−1

, if λ < ηz ≤ λ+ qγq−1;

0, if λ+ qγq−1 < ηz.

(3.13)

Due to Lemma 1, we know that the Lagrange method provides the necessary and
sufficient condition of problem (Aq). Thus, X∗ solves problem (Aq) when it satisfies
the conditions given in (3.7) and (3.8) for case (i).

If η < 0 or η = 0 and λ > 0, we know that g(X) is a strictly decreasing function
with respect X . Thus, the optimal solution of problem (3.9) is X∗ = B, which never
satisfies the constraint (3.4). The only remaining case is η = 0 and λ = 0. Under this
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situation, the relaxation problem (3.10) degenerates to min0≤X≤B g(x) = (γ −X)q+.
That is to say, any X∗ that satisfies γ ≤ X∗ ≤ B is the optimal solution of problem
(3.9). Thus, X∗ is the solution of problem (Aq) when X∗ also satisfies (3.3) and (3.4).
Equivalently, we can use the set X as in (3.5) to characterize such a solution. We
thus complete the proof for case (ii).

Theorem 2. When 0 ≤ q ≤ 1, the following holds true for problem (Aq): (i) If
X = ∅, the following solution solves problem problem (Aq),

x∗(T ) = (B − γ)1ηz(T )≤λ + γ1ηz(T )≤λ+γq−1 ,(3.14)

where η > 0 and λ ≥ 0 satisfy the following conditions,

BE[1ηz(T )≤λ] + γE[1λ<ηz(T )≤λ+γq−1 ] ≥ d,(3.15)

BE[z(T )1ηz(T )≤λ] + γE[z(T )1λ<ηz(T )≤λ+γq−1 ] = x0.(3.16)

In addition, if inequality (3.15) holds strictly, then λ = 0. (ii) If X 6= ∅ where X is
defined in (3.5), then any random variable x∗(T ) ∈ X is optimal to problem (Aq) .
(iii) When q = 1, if problem (Aq) has optimal solution, the solution can only take one
of the forms in case (i) or (ii).

Proof. We use the notations similar to the ones in the proof of Theorem 1. Fisrt
we assume η > 0. When 0 ≤ X ≤ γ, problem (3.11) is to minimize a concave function
with respect to X . Thus, the minimizer of (3.11) can only be at the boundary points,
either X∗ = 0 with g(X) = γq or X∗ = γ with g(X) = −λγ + ηzγ, respectively.
Comparing the function values of the two boundary points yields X∗ = 0 if ηz >
γq−1 + λ and X∗ = γ if ηz ≤ γq−1 + λ. Combined with the case where γ −X ≤ 0
in problem (3.10), we have the solution of the Lagrange relaxation problem (3.9) as
follows,

X∗ =











B, if ηz ≤ λ;
γ, if λ < ηz ≤ λ+ γq−1;

0, if λ+ γq−1 < ηz.

From Lemma 1, we know that X∗ is the optimal solution of problem (Aq) if X∗

satisfies (3.15) and (3.16) given in case (i). The proof of case (ii) is the same as the
proof of case (ii) in Theorem 1, which is correspondent to the situation η = 0 and
λ = 0. When q = 1, the objective function of problem (Aq) is convex. From Lemma
1, the Lagrange method characterizes all the solutions of (Aq).

From Theorems 1 and 2, we know that the optimal terminal wealth x∗(T ) of
problem (Pq

lpm) depends on different values of Lagrange multipliers λ and η, which in

turn depend on the parameters of problem (Pq
lpm), e.g., the target d and benchmark γ.

We will discuss in details the relationship between these parameters and the Lagrange
multipliers in Section 3.2.

Theoretically speaking, once the optimal terminal wealth X∗ is known, the opti-
mal portfolio policy can be characterized by solving the following backward stochastic
differential equation(BSDE),

{

dx(t) =
(

r(t)x(t) + θ(t)′u(t)
)

dt+ u(t)′dW (t),

x(T ) = X∗.
(3.17)

Let x∗(t) and u∗(t) be the solution of the linear BSDE in (3.17). Then the optimal
portfolio policy π∗(t) satisfies u∗(t) = σ(t)′π∗(t). In a general setting, there could be
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no explicit solution for the BSDE in (3.17). However, when the market parameters
are deterministic, the optimal wealth process and portfolio policy can be expressed
explicitly, as will be shown in Section 3.3. From the BSDE in (3.17) we can get the
upper and lower bounds of the whole wealth process. Recall that a no-bankruptcy
constraint at the terminal time, x(T ) ≥ 0, actually ensures no-bankruptcy for the
entire wealth process, i.e., x(t) ≥ 0, for t ∈ [0, T ] (see [7]). Similarly, we will show
now that the upper bound B imposed on the terminal wealth also induces an upper
bound on the entire wealth process.

Proposistion 1. In problem (Pq
lpm), if we have U ≤ x(T ) ≤ B, where 0 ≤ U <

B, then the wealth process is bounded by

UE

[

z(T )

z(t)
| Ft

]

≤ x∗(t) ≤ BE

[

z(T )

z(t)
| Ft

]

, a.s.,(3.18)

where process z(t) is defined in (3.2).
Proof. Let us consider the following BSDE with boundary condition of x(T ) = B,

{

dx(t) =
(

r(t)x(t) + θ(t)′u(t)
)

dt+ u(t)′dW (t),

x(T ) = B.
(3.19)

According to [21], the solution of (3.19) can be expressed as

x̄(t) = BE[
z(T )

z(t)
|Ft].(3.20)

By using the comparison theorem (Theorem 2.2 in [21]), we can conclude that x∗(t) ≤
x̄(t) for t ∈ [0, T ], a.s.. We can use the similar argument for the lower bound of x∗(t).

3.2. The existence of Lagrange multipliers. From Theorems 1 and 2, we
know that the Lagrange multipliers λ and η for problem (Aq) can be determined by
checking the conditions in (3.7) and (3.8) for q > 1; or the conditions in (3.15) and
(3.16) for 0 ≤ q ≤ 1, respectively. However, at this point, we cannot guarantee the
existence and uniqueness of these Lagrange multiplies. Furthermore, it is unclear
at this stage under which condition the optimal solution of problem (Aq) takes the
form (i) or (ii) in both Theorems 1 and 2. As pointed out in [19], the existence of
the Lagrange multipliers is related to the well-poseness of the problem itself. On
the other hand, from the application viewpoint, investors often adjust the investment
target d to generate different efficient portfolios for comparison. Thus, it is important
to investigate the impact of the parameters d and γ on problem (Aq). Before we state
the main result, we need the following assumption.

Assumption 1. The probability density function of z(T ), ψ(·), is a continuous
function.

We first define, for some positive number p > 0, some functions of p-th order
partial moments with respect to random variable z(T ),

Hp(y) := E[(z(T ))p1z(T )≤y],

Kp(y) := H1(y)−Hp+1(y)/y
p,

Jp(y) := H0(y)−Hp(y)/y
p.

Obviously, when p = 0, H0(y) reduces to the distribution function of z(T ). From
the definition of z(T ), it is evident that Hp(y) is a monotonically increasing function
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with respect to y, for y > 0. Under Assumption 1, we can also show that Kp(y) and
Jp(y) are also monotonically increasing functions for y > 0. Essentially, taking the
derivative of Kp(y) and Jp(y) with respect to y gives rise to

dKp(y)

dy
=
dH1(y)

dy
−
(dHp+1(y)/dy

yp
− pHp+1(y)

yp+1

)

=
pHp+1(y)

yp+1
> 0,

dJp(y)

dy
=
dH0(y)

dy
−
(dHp(y)/dy

yp
− pHp(y)

yp+1

)

=
pHp(y)

yp+1
> 0,

which imply the monotonicity of Kp(y) and Jp(y) for y > 0.
For a given problem (Pq

lpm), we define the following parameters d and d̄, which

play key roles in solving problem (Pq
lpm),

d :=



































γJp

(

K−1
p

(

x0
γ

))

with p =
1

q − 1
, if x0 < γE[z(T )], q > 1,

γH0

(

H−1
1

(

x0
γ

))

, if x0 < γE[z(T )], 0 ≤ q ≤ 1,

(B − γ)H0

(

H−1
1

(

x0 − γE[z(T )]
B − γ

))

+ γ, if x0 ≥ γE[z(T )],

(3.21)

d̄ := BH0

(

H−1
1 (x0/B)

)

.(3.22)

Note that K−1
p (x0/γ) and H−1

1 (x0/B) are well defined. Due to the monotonicity
of Kp(·), letting y → 0 and y → +∞ yields infy>0Kp(y) = 0 and supy>0Kp(y) =
E[z(T )], respectively. The condition x0 < γE[z(T )] implies the existence ofK−1

p (x0/γ).

The similar argument also applies to H−1
1 (x0/B) and H−1

1 (x0/γ).

The following propositions ensure the existence and uniqueness of the Lagrange
multipliers λ and η in Theorems 1 and 2.

Proposistion 2. For problem (Aq) with q > 1, under Assumption 1, the follow-
ing results hold.

(i) If d < d < d̄, the solution of problem (Aq) is given by (3.6) and there is a
unique pair of λ > 0 and η > 0 satisfying the conditions in (3.7) and (3.8)
with equality holding for (3.7).

(ii) If d ≤ d and x0 < γE[z(T )], the solution of problem (Aq) is given by (3.6)
with λ = 0 and η = qγq−1/K−1

1
q−1

(x0/γ) satisfying the conditions in (3.7) and

(3.8).
(iii) If d ≤ d and x0 ≥ γE[z(T )], then problem (A) has multiple solutions which

are characterized by set X defined in (3.5) and one of such solutions is

x∗(T ) = (B − γ)1
z(T )≤H−1

1 (
x0−γE[z(T)]

B−γ
)
+ γ.(3.23)

Proof. (i) We prove this result by identifying the range of d under which the
equality holds for both (3.7) and (3.8). To simplify our notation, we change the
variables λ and η in conditions (3.7) and (3.8) to

δ := λ/η, ρ := qγq−1/η,(3.24)

respectively. Note that 0 ≤ δ and 0 < ρ. In the following part, we let p = 1/(q − 1).
When both equalities hold, the conditions in (3.7) and (3.8) become a system of two
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equations,

I1(δ, ρ) = d,(3.25)

I2(δ, ρ) = x0,(3.26)

where

I1(δ, ρ) := BH0(δ) + γ
(

H0(δ + ρ)−H0(δ)
)

− γ

ρp

∫ δ+ρ

δ

(s− δ)pψ(s)ds,

I2(δ, ρ) := BH1(δ) + γ
(

H1(δ + ρ)−H1(δ)
)

− γ

ρp

∫ δ+ρ

δ

s(s− δ)pψ(s)ds.

We show that I1(δ, ρ) and I2(δ, ρ) are monotonically increasing functions with respect
to both δ and ρ. To simplify the notations, we do not write out the arguments in
I1(δ, ρ) and I2(δ, ρ) explicitly, unless necessary. Assumption 1 implies the differen-
tiability of I1 and I2. Taking the derivatives of I1 and I2 with respect to δ and ρ,
respectively, yields the following results for δ > 0 and ρ > 0,























































∂I1
∂δ

= (B − γ)ψ(δ) + pγ

ρp

∫ δ+ρ

δ

(s− δ)p−1ψ(s)ds > 0,

∂I1
∂ρ

=
pγ

ρp+1

∫ δ+ρ

δ

(s− δ)pψ(s)ds > 0,

∂I2
∂δ

= (B − γ)δψ(δ) + pγ

ρp

∫ δ+ρ

δ

s(s− δ)p−1ψ(s)ds > 0,

∂I2
∂ρ

=
pγ

ρp+1

∫ δ+ρ

δ

s(s− δ)pψ(s)ds > 0,

(3.27)

which imply the monotonicities of the I1 and I2 with respect to both δ and ρ. Thus,
we can determine the ranges of I1 and I2 as 0 < I1(δ, ρ) < I1(∞,∞) = B and
0 < I2(δ, ρ) < I2(∞,∞) = BE[z(T )], respectively. To solve the system of equations
(3.25) and (3.26), we define the following function I3(ρ) : R+ → R as follows,

I3(ρ) := I1(δ̂, ρ) with δ̂ satisfying I2(δ̂, ρ) = x0.

For a given ρ > 0, due to the monotonicity of I2, 0 ≤ I2(η, ρ) ≤ I2(∞, ρ) = BE[z(T )]

holds true. Thus, there exists a unique δ̂ that satisfies I2(δ̂, ρ) = x0. Thus, I3(ρ)
is well defined. We will show that I3(ρ) is a monotonically decreasing function with
respect to ρ. Since I2(δ, ρ) = x0 holds, we have

0 =
∂I2
∂δ

dδ +
∂I2
∂ρ

dρ, ⇒ dδ

dρ
= −

(

∂I2
∂ρ

)

/

(

∂I2
∂δ

)

.(3.28)

Checking the derivative of I3(ρ) with respect to ρ gives rise to

dI3(ρ)

dρ
=
∂I1
∂δ

dδ

dρ
+
∂I1
∂ρ

,

=

(

−∂I1
∂δ

∂I2
∂ρ

+
∂I1
∂ρ

∂I2
∂δ

)

/(
∂I2
∂δ

),(3.29)
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where the last equality is based on (3.28). Since ∂I2/∂δ > 0, the sign of dI3(ρ)/dρ
depends on the numerator of (3.29). Combining (3.27) with (3.29) further yields the
following,

∂I1
∂ρ

∂I2
∂δ
− ∂I1

∂δ

∂I2
∂ρ

=
(pγ)2

ρ2p+1

[

(

∫ δ+ρ

δ

s(s− δ)p−1ψ(s)ds
)2

−
∫ δ+ρ

δ

s2(s− δ)p−1ψ(s)ds ·
∫ δ+ρ

δ

(s− δ)p−1ψ(s)ds

]

− pγ(B − γ)ψ(δ)
ρp+1

(

∫ δ+ρ

δ

(s− δ)p+1ψ(s)ds
)

< 0,(3.30)

where the last inequality is from the Cauchy Schwarz Inequality,

(

∫ δ+ρ

δ

s(s− δ)p−1ψ(s)ds

)2

<

∫ δ+ρ

δ

(

s(s− δ) p−1
2 ψ(s)

1
2

)2

ds ·
∫ δ+ρ

δ

(

(s− δ) p−1
2 ψ(s)

1
2

)2

ds.

Inequality (3.30) implies that dI3(ρ)/dρ < 0, which proves the monotonicity of I3(ρ).
Thus, for any d, if d is in the range space of I3(ρ), we can always find a unique ρ such
that I3(ρ) = d. Now, we only have to fix the range of I3(ρ). Due to the definition of
I3(ρ), we define

ρ := inf{ρ ∈ R | I2(δ, ρ) = x0, δ ≥ 0, ρ > 0},(3.31)

ρ̄ := sup{ρ ∈ R | I2(δ, ρ) = x0, δ ≥ 0, ρ > 0}.(3.32)

From (3.27) and (3.28), we know that dρ/dδ < 0, if I2(δ, ρ) = x0 holds. It is not hard
to see ρ = 0. We can find the corresponding δ when ρ→ 0 as follows,

lim
ρ→0

I2(δ, ρ) = BH1(δ) = x0, ⇒ δ̄ := H−1
1 (x0/B).

Taking ρ→ ρ and δ → δ̄ yields the upper limit of I3(ρ),

sup
ρ>0

I3(ρ) = lim
δ→δ̄,ρ→0

I1(δ, ρ) = BH0(H
−1
1 (x0/B)).(3.33)

Now, we focus on the lower limit of I3(ρ). Since dρ/dδ < 0 when I2(δ, ρ) = x0 holds,
there are two candidates of ρ̄, namely, ∞ or the corresponding ρ when δ → 0. If
x0 ≤ γE[z(T )], we find ρ̄ by checking

lim
δ→0

I2(δ, ρ̄) = γH1(ρ̄)− γHp+1(ρ̄) = γKp(ρ̄) = x0, ⇒ ρ̄ = K−1
p (x0/γ),

which leads to the lower limit of I3(ρ),

inf
0<ρ≤ρ̄

I3(ρ) = lim
δ→0,ρ→ρ̄

I1(δ, ρ) = γJp(K
−1
p (x0/γ)).(3.34)

If x0 ≥ γE[z(T )], we have ρ̄ =∞. We can identify the corresponding δ in I2(δ, ρ) = x0
as

(B − γ)H1(δ) + γE[z(T )] = x0, ⇒ δ = H−1
1 (

x0 − γE[z(T )]
B − γ ),(3.35)
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which further gives rise to

inf
ρ>0

I3(ρ) = lim
ρ→∞,δ→δ

= (B − γ)H0

(

H−1
1

(

x0 − γE[z(T )]
B − γ

))

+ γ.(3.36)

As a summary, the upper and lower limits of I3(ρ) in (3.33) and (3.34) are just d̄ and
d defined in (3.22) and (3.21), respectively. Since I3(ρ) is a monotonically decreasing
function with respect to ρ, if d ∈ (d, d̄), we can find a unique ρ∗ > 0 that solves
I3(ρ

∗) = d. Due to the monotonicity of I2(δ, ρ), we can further substitute ρ∗ back to
I2(δ, ρ) to solve for δ∗ > 0. Note that the pairs (λ, η) and (δ, ρ) are of a one-to-one
mapping from (3.24), which completes the proof of (i) in this proposition.

(ii) We first consider the case when d = d. From (3.34) and x0 < γE[z(T )], we
know that both (3.25) and (3.26) hold, when δ = 0 and ρ = ρ̄ = K−1

p (x0/γ), which
further implies λ = 0 and η = qγq−1/K−1

p (x0/γ) by (3.24). When d < d, we can
easily verify that λ and η also satisfy the conditions in (3.7) and (3.8) in Theorem 1.

(iii) When d = d and x0 ≥ γE[z(T )], from (3.36), we know that both (3.25) and

(3.26) hold for δ∗ = H−1
1 (x0−γE[z(T )]

B−γ ) and ρ → ∞ which implies λ = 0 and η = 0.

From the proof for (ii) of Theorem 1, we know that any x∗(T ) in set X is optimal
to problem (Aq). It is not hard to verify x∗(T ) given in (3.23) to be one of such
solutions.

Proposistion 3. For problem (Aq) with 0 ≤ q ≤ 1, the following results hold.
(i) If d < d < d̄, the solution given in (3.14) solves problem (Aq) and there is a

unique pairs of λ > 0 and η > 0 satisfying the conditions in (3.15) and (3.16)
with equality holding for (3.15).

(ii) If d ≤ d and x0 < γE[z(T )], the solution given in (3.14) solves problem (Aq)
with λ = 0 and η = γq−1/H−1

1 (x0/γ) satisfying the conditions in (3.7) and
(3.8).

(iii) If d ≤ d and x0 ≥ γE[z(T )], the set X defined in (3.5) is nonempty and
any X ∈ X is a solution of problem (Aq). One of such solutions can be
constructed as in (3.23).

Proof. (i) Similar to the proof of Proposition 2, we identify the range of d un-
der which the equalities hold for both conditions (3.15) and (3.16). We change the
variables as

δ := λ/η, ρ := γq−1/η.(3.37)

Clearly, we have 0 ≤ δ and 0 < ρ. When the equalities hold for both conditions in
(3.15) and (3.16), we have the following system of two equations,

I1(δ, ρ) = d,(3.38)

I2(δ, ρ) = x0,(3.39)

where I1(δ, ρ) and I2(δ, ρ) are defined as

I1(δ, ρ) := BH0(δ) + γ
(

H0(δ + ρ)−H0(δ)
)

,

I2(δ, ρ) := BH1(δ) + γ
(

H1(δ + ρ)−H1(δ)
)

.

For any δ1 > δ2 > 0, we have

I1(δ1, ρ)− I2(δ2, ρ) = (B − γ)(H0(δ1)−H0(δ2)) + γ(H0(ρ+ δ1)−H0(ρ+ δ2)) > 0,
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which implies I1(δ, ρ) is monotonically increasing with respect to δ. Using the similar
procedure, we can prove that both I1(δ, ρ) and I2(δ, ρ) are monotonically increasing
with respect to δ and ρ, respectively. Rearranging (3.39) gives rise to

H1(δ + ρ) =
x0 − (B − γ)H1(δ)

γ
.(3.40)

The expression in (3.40) helps us obtain both upper and lower limits of δ, i.e.,

δ̄ := sup{δ ∈ R | I2(δ, ρ) = x0, δ ≥ 0, ρ > 0},
δ := inf{δ ∈ R | I2(δ, ρ) = x0, δ ≥ 0, ρ > 0}.

Due to the monotonicity ofH1(·), we have 0 ≤ H1(δ) < H1(δ+ρ) < H1(∞) = E[z(T )],
which further leads to

H1(δ) <
x0 − (B − γ)H1(δ)

γ
< E[z(T )], ⇒ x0 − γE[z(T )]

B − γ < H1(δ) ≤
x0
B
.(3.41)

The inequality in (3.41) provides the lower and upper limits of δ as follows,

δ =











0 if x0 < γE[z(T )],

H−1
1

(

x0 − γE[z(T )]
B − γ

)

if x0 ≥ γE[z(T )],
(3.42)

δ̄ = H−1
1 (x0/B).(3.43)

From (3.40), since δ ∈ (δ, δ̄), we also have

δ + ρ = H−1
1

(

x0 − (B − γ)H1(δ)

γ

)

.(3.44)

Substituting δ + ρ in (3.44) back to (3.38) yields the following function L(δ),

L(δ) := (B − γ)H0(δ) + γH0

(

H−1
1

(

x0 − (B − γ)H1(δ)

γ

))

.(3.45)

We first prove that L(δ) is a monotonically increasing function with respect to δ.
Considering δ1 and δ2 satisfying δ < δ1 < δ̄ and δ < δ2 < δ̄ with δ1 > δ2, we have

L(δ1) := (B − γ)H0(δ1) + γH0

(

H−1
1

(

x0 − (B − γ)H1(δ1)

γ

))

,

L(δ2) := (B − γ)H0(δ2) + γH0

(

H−1
1

(

x0 − (B − γ)H1(δ2)

γ

))

.

Let ρ1 and ρ2 satisfy

δ1 + ρ1 = H−1
1

(

x0 − (B − γ)H1(δ1)

γ

)

, ⇒ (B − γ)H1(δ1) + γH1(δ1 + ρ1) = x0,

(3.46)

δ2 + ρ2 = H−1
1

(

x0 − (B − γ)H1(δ2)

γ

)

, ⇒ (B − γ)H1(δ2) + γH1(δ2 + ρ2) = x0.

(3.47)
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From (3.44) and the monotonicity of H1(·), we have δ2 + ρ2 > δ1 + ρ1. The difference
between (3.46) and (3.47) gives rise to

γE[z(T )1δ1+ρ1≤z(T )≤δ2+ρ2
] = (B − γ)E[z(T )1δ2≤z(T )≤δ1 ].(3.48)

The following inequalities then hold,

γ(δ1 + ρ1)E[1δ1+ρ1≤z(T )≤δ2+ρ2
] ≤ γE[z(T )1δ1+ρ1≤z(T )≤δ2+ρ2

],(3.49)

(B − γ)E[z(T )1δ2≤z(T )≤δ1 ] ≤ δ1(B − γ)E[1δ2≤z(T )≤δ1 ].(3.50)

Combining (3.49), (3.50) and (3.48) yields

γ(δ1 + ρ1)E[1δ1+ρ1≤z(T )≤δ2+ρ2
] ≤ δ1(B − γ)E[1δ2≤z(T )≤δ1 ].(3.51)

The inequality in (3.51) implies,

L(δ1)− L(δ2) = (B − γ)E[1δ1≤z(T )≤δ2 ]− γE[1δ1+ρ1≤z(T )≤δ2+ρ2
]

≥ (B − γ)
(

ρ1
δ1 + ρ1

)

E[1δ2≤z(T )≤δ1 ] > 0.

Thus, function L(δ) is monotonically increasing with respect to δ. Then, we can
identify the range of L(δ) as,

inf
δ
L(δ) = lim

δ→δ
L(δ)(3.52)

=











γH0

(

H−1
1 (x0/γ)

)

if x0 < γE[z(T )],

(B − γ)H0

(

H−1
1

(

x0 − γE[z(T )]
B − γ

))

+ γ if x0 ≥ γE[z(T )],

sup
δ
L(δ) = lim

δ→δ̄
L(δ) = BH0

(

H−1
1 (x0/B)

)

,(3.53)

where (3.52) and (3.53) are exactly the constants d and d̄ defined in (3.21) and (3.22),
respectively. Thus, if d ∈ (d, d̄), due to the monotonicity of L(δ), we can find a unique
δ < δ∗ < δ̄ such that L(δ∗) = d. Again, by the monotonicity, the unique solution
ρ∗ > 0 can be found by substituting δ∗ into (3.40). Note that the two pairs of (δ∗, ρ∗)
and (λ, η) are of a one-to-one mapping from (3.37), which completes the proof of case
(i).

(ii) We first consider the case d = d and x0 < γE[z(T )]. From (3.43) and (3.52),
we know that the system of two equations in (3.38) and (3.39) hold when δ = δ = 0
with the correspondent ρ = ρ̂ = H−1

1 (x0/γ) by (3.40). Due to the one-to-one mapping
in (3.37), we have λ = 0 and η∗ = γq−1/H−1

1 (x0/γ). When d < d, it can be verified
that λ and η satisfy both conditions in (3.15) and (3.16) with strictly inequality
holding for (3.15).

(iii) Similar to case (iii) in Proposition 2, when d = d and x0 ≥ γE[z(T )], from
(3.52), the system of two equations in (3.38) and (3.39) has the solution of δ = δ =

H−1
1 (x0−γE[z(T )]

B−γ ) and ρ→∞, which further implies that η = 0 and λ = 0. From the

proof for item (ii) of Theorem 2, we have the result in (ii).
Note that Assumption 1 is necessary for the proof of Proposition 2, since we need

to use the differentiability of Hp(y). However, for Proposition 3, such an assumption
is not needed.
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Propositions 2 and 3 reveal the relationship between the parameters (d and γ)
and the existence and uniqueness of the Lagrange multiplies for problem (Pq

lpm). Only

when d ∈ (d, d̄), the two Lagrange multiplies in problem (Aq) are both positive, or
in other words, the two constraints in (3.3) and (3.4) are truly active in the problem.
We classify this case as the regular cases. When d < d, the parameter d does not
affect the problem any more. We classify this situation as the degenerated cases.
As a summary, we list in Table 3.2 the conditions for different situations under which
the optimal terminal wealth x∗(T ) of problem (Aq) is determined.

Condition q > 1 0 ≤ q ≤ 1
x∗(T ) is determined by x∗(T ) is determined by

d < d < d̄ case (i) in Proposition 2 case (i) in Proposition 3
d ≤ d, x0 < γE[z(T )] case (ii) in Proposition 2 case (ii) in Proposition 3
d ≤ d, x0 ≥ γE[z(T )] case (iii) in Proposition 2 case (iii) in Proposition 3

Table 3.1

Classification of the optimal terminal wealth x∗(T ) of problem (Aq)

In problem (Pq
lpm), especially for the regular cases, it will be interesting to inves-

tigate the probability of attaining upper bound B. Denote the probability that the
optimal terminal wealth x∗(t) reaches upper bound B as P(x∗(T ) = B). Then, the
following result is true.

Proposistion 4. In problem (Pq
lpm), if d < d < d̄, then the probability P(x∗(T ) =

B) is monotonically decreasing with respect to B. Furthermore, if x0 < γE[z(T )], we
have

lim
B→∞

P(x∗(T ) = B) = 0.

Proof. (i) We first prove the result for q > 1. Similar to Proposition 2, we replace
the variables λ and η by δ = λ/η and ρ = (λ+ γ)/η, respectively, in (3.7) and (3.8),
which leads to (3.25) and (3.26). Since Assumption 1 holds, we can check the following
total differential for both (3.25) and (3.26),

∂I1
∂δ

dδ +
∂I1
∂ρ

dρ+
∂I1
∂B

dB = 0,

∂I2
∂δ

dδ +
∂I2
∂ρ

dρ+
∂I2
∂B

dB = 0.

Solving these two equations by eliminating dρ yields the following,

dδ

dB
=

∂I1
∂ρ H1(δ)− ∂I2

∂ρ H0(δ)
∂I1
∂δ

∂I2
∂ρ − ∂I1

∂ρ
∂I2
∂δ

.(3.54)

From (3.30), we know that the denominator of (3.54) is positive, i.e.,

∂I1
∂δ

∂I2
∂ρ
− ∂I1
∂ρ

∂I2
∂δ

> 0.
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We now check the sign of the numerator of (3.54). By using (3.27), we have

∂I1
∂ρ

H1(δ)−
∂I2
∂ρ

H0(δ)

=
γp

ρp+1

[

∫ δ+ρ

δ

(s− δ)pψ(s)ds
∫ δ

−∞
τψ(τ)dτ −

∫ δ+ρ

δ

s(s− δ)pψ(s)ds
∫ δ

−∞
ψ(τ)dτ

]

=
γp

ρp+1

∫ δ+ρ

δ

∫ δ

−∞
(τ − s)(s− δ)pψ(τ)ψ(s)dsdτ < 0.

Thus, we can conclude that dδ/dB < 0, which further implies that δ is decreasing
when B increases. Note that the probability P(x∗(T ) = B) = P(z(T ) ≤ δ) = H0(δ)
is a monotonically increasing function of δ. Thus, the probability P(x∗(T ) = B) is
decreasing with respect to B. From (3.21) and (3.22), if x0 < γE[z(T )], we know d
is irrelative to B and d̄ is increasing when B increases. Thus, for a given d ∈ (d, d̄),
d will remain in the interval (d, d̄) when B increases. From (3.25), we have I1(δ, 0) ≤
I1(δ, ρ) = d, which implies H0(δ) ≤ d/B. Thus, when B →∞, H0(δ) is monotonically
decreasing to 0.

(ii) We use the similar notations to these in Proposition 3 to prove the case with
0 ≤ q ≤ 1. Suppose that δ and ρ solve both (3.38) and (3.39). We show now that δ
monotonically decreases when B increases. Particularly, let B1 > B2 and δ1, ρ1, δ2
and ρ2 solve the following two systems of two equations in (3.38) and (3.39), i.e.,

{

B1H0(δ1) + γ
(

H0(δ1 + ρ1)−H0(δ1)
)

= d,

B1H1(δ1) + γ
(

H1(δ1 + ρ1)−H1(δ1)
)

= x0,
(3.55)

{

B2H0(δ2) + γ
(

H0(δ2 + ρ2)−H0(δ2)
)

= d,

B2H1(δ2) + γ
(

H1(δ2 + ρ2)−H1(δ2)
)

= x0.
(3.56)

We would like to prove δ2 > δ1. From the definitions of δ and ρ in (3.37), we have
δ1 < δ1 + ρ1 and δ2 < δ2 + ρ2. Note that if δ2 > δ1 + ρ1, then we have δ2 > δ1, which
completes our proof for the monotonicity. Thus, we only need to consider the case of
δ2 < δ1 + ρ1. For any y1 < y2 < δ1 + ρ1, we have

(

H0(y2)−
H1(y2)

δ1 + ρ1

)

−
(

H0(y1)−
H1(y1)

δ1 + ρ1

)

= E[1y1≤z(T )≤y2
]− 1

δ1 + ρ1
E[z(T )1y1≤z(T )≤y2

]

≥ (1− y2
δ1 + ρ1

)E[z(T )1y1≤z(T )≤y2
] > 0,(3.57)

which further implies that (H0(y) − 1
δ1+ρ1

H1(y)) is monotonically increasing with

respect to y for y > 0. Checking the difference between the first equations in (3.55)
and (3.56) gives rise to

(B1 − γ)H0(δ1)− (B2 − γ)H0(δ2) = γ
(

H0(δ2 + ρ2)−H0(δ1 + ρ1)
)

.(3.58)

If δ2 + ρ2 < δ1 + ρ1, due to the monotonicity of H0(·), we have

(B1 − γ)H0(δ1) < (B2 − γ)H0(δ2),
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which further implies δ2 > δ1. Next we consider the case of δ2 + ρ2 > δ1 + ρ1, under
which (3.58) becomes

(B1 − γ)H0(δ1)− (B2 − γ)H0(δ2) = γ(E[1δ1+ρ1≤z(T )≤δ2+ρ2
]).(3.59)

Similarly, checking the difference of the second equations in (3.55) and (3.56) yields,

(B1 − γ)H1(δ1)− (B2 − γ)H1(δ2) = γE[z(T )1δ1+ρ1≤z(T )≤δ2+ρ2
]

≥ γ(δ1 + ρ1)E[1δ1+ρ1≤z(T )≤δ2+ρ2
].(3.60)

Combining (3.59) with (3.60) gives rise to

(B1 − γ)
(

H0(δ1)−
H1(δ1)

δ1 + ρ1

)

≤ (B2 − γ)
(

H0(δ2)−
H1(δ2)

δ1 + ρ1

)

.

We already show in (3.57) that H0(y) − 1
δ1+ρ1

H1(y) is a monotonically increasing
function of y for y < δ1+ρ1. Thus, δ1 < δ2 and we can conclude that δ is monotonically
decreasing when B increases, which further implies P(x∗(T ) = B) = H0(δ) is a
monotonically decreasing function of B. When x0 < γE[z(T )], from (3.21) and (3.22),
we know that d ∈ (d, d̄) while we increase B. As the probability P(x∗(T ) = B) ≥ 0
and H0(δ) < d/B, when B goes to infinity, we have limB→∞ P(x∗(T ) = B) = 0.

3.3. Special market setting with a deterministic opportunity set. In this
section, we consider the case where the market parameters are deterministic, i.e., the
following assumption holds.

Assumption 2. The risk free return rate r(t), the drift rate µi(t), i = 1, · · · , n,
and volatility σij(t), i, j = 1, · · · , n, are all deterministic functions of t for t ∈ [0, T ].

Under Assumption 2, we can derive the explicit expressions for the optimal wealth
process and the portfolio process for problem (Pq

lpm). Note that the definition of the
deflator process z(t) in (3.2) implies that z(T )/z(t) follows a log-normal distribution.
In other words, ln

(

z(T )/z(t)
)

follows a normal distribution with its mean m(t) and
variance ν2(t) given as

m(t) = −
∫ T

t

(r(s) +
1

2
‖θ(s)‖2)dτ, t ∈ [0, T ],(3.61)

ν2(t) =

∫ T

t

‖θ(s)‖2ds, t ∈ [0, T ].(3.62)

As a special case, when t = 0, ln(z(T )) follows the normal distribution with mean
and variance being m(0) and ν2(0), respectively. Furthermore, we can also compute

E[z(T )] = e−
∫

T

0
r(s)ds.

Under Assumption 2, Proposition 1 reduces to

Ue−
∫

T

t
r(s)ds ≤ x∗(t) ≤ Be−

∫
T

t
r(s)ds,

as we can compute E[z(T )/z(t)|Ft] explicitly by using Lemma 3 in the Appendix.

We first investigate how the parameters d and d̄ in (3.21) and (3.22) become more
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explicit in such a market setting with a deterministic opportunity set.

Proposistion 5. Under Assumption 2, we have the following for problem (Pq
lpm),

d =



































γ
(

Φ
(

F (ρ̄)
)

− e−
∫

T

0
r(s)dsΦ

(

F (ρ̄)

− v(0)
)

/ρ̄
)

if x0 < γe−
∫

T

0
r(s)ds, q = 2,

γΦ
(

F (ρ̂)
)

if x0 < γe−
∫

T

0
r(s)ds, 0 ≤ q ≤ 1,

(B − γ)Φ
(

F (δ)
)

+ γ if x0 ≥ γe−
∫

T

0
r(s)ds,

(3.63)

d̄ = BΦ(F (δ̄)),(3.64)

where ρ̄, δ, ρ̂ and δ̄ are the solutions to the following four equations, respectively,

e−
∫

T

0
r(s)dsΦ

(

F (ρ̄)− ν(0)
)

+
e2m(0)+2ν2(0)

ρ̄
Φ
(

F (ρ̄)− 2ν(0)
)

=
x0
γ
,(3.65)

e−
∫

T

0
r(s)dsΦ

(

F (δ)− ν(0)
)

=
x0 − γe−

∫
T

0
r(s)ds

B − γ ,(3.66)

e−
∫

T

0
r(s)dsΦ

(

F (ρ̂)− ν(0)
)

=
x0
γ
,(3.67)

e−
∫

T

0
r(s)dsΦ

(

F (δ̄)− ν(0)
)

=
x0
B
,(3.68)

with F (y) := (ln(y)−m(0))/ν(0).

Proof. Let us consider first the case with x0 < γe−
∫

T

0
r(s)ds and q = 2. From the

definition of d in (3.21), we have

K1(ρ̄) = E[z(T )1z(T )≤ρ̄]− E[z2(T )1z(T )≤ρ̄]/ρ̄

= E[eln(z(T ))1ln(z(T ))≤ln(ρ̄)]− E[e2 ln(z(T ))1ln(z(T ))≤ln(ρ̄)]/ρ̄ = x0/γ,

which leads to (3.65) by using Lemma 3. Then we can compute d as

d = γ
(

H0(ρ̄)−H1(ρ̄)/ρ̄
)

= γ
(

E[1ln(z(T ))≤ln(ρ̄)]− E[eln(z(T ))1ln(z(T ))≤ln(ρ̄)]/ρ̄
)

,

which gives the first case in (3.63). We can compute d and d̄ for other cases in similar
ways.

The following two theorems offer the explicit optimal wealth process and optimal
portfolio policy of problem (Pq

lpm) for cases with q = 2 and 0 ≤ q ≤ 1, respectively.

Theorem 3. Under Assumption 2, the optimal solution of problem (P2
lpm) is

given as follows. (i) If d < d < d̄, the optimal wealth process is

x∗(t) = em(t)+ ν2(t)
2

(

(B − γ − λ

2
)Φ
(

K1(t)− ν(t)
)

+ (γ +
λ

2
)Φ
(

K2(t)− ν(t)
)

)

+
z(t)η

2
e2m(t)+2ν2(t)

(

Φ
(

K1(t)− 2ν(t)
)

− Φ
(

K2(t)− 2ν(t)
)

)

(3.69)
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and the optimal portfolio policy is

π∗(t) =

{

1√
2πν(t)

em(t)+ ν2(t)
2

[

(B − γ − λ

2
)e−

(K1(t)−ν(t))2

2 + (γ +
λ

2
)e−

(K2(t)−ν(t))2

2

]

− ηz(t)

2
e2m(t)+2ν2(t)

[

Φ
(

K1(t)− 2ν(t)
)

− Φ
(

K2(t)− 2ν(t)
)

− 1√
2πν(t)

(

e−
(K1(t)−2ν(t))2

2 − e−
(K2(t)−2ν(t))2

2

)

]

}

(

σ(t)σ(t)′
)−1

b(t),(3.70)

where K1(t) and K2(t) are defined by

K1(t) =
ln
(

λ
ηz(t)

)

−m(t)

ν(t)
, K2(t) =

ln
(

λ+2γ
ηz(t)

)

−m(t)

ν(t)
,

and λ > 0 and η > 0 are the unique solutions of the following two equations,

(B − γ − λ

2
)Φ (K1(0)) + (γ +

λ

2
)Φ(K2(0))(3.71)

+
η

2
em(0)+ ν2(0)

2 (Φ (K1(0)− ν(0))− Φ (K2(0)− ν(0))) = d,

em(0)+ ν2(0)
2

(

(B − γ − λ

2
)Φ(K1(0)− ν(0)) + (γ +

λ

2
)Φ(K2(0)− ν(0))

)

(3.72)

+
η

2
e2m(0)+2ν2(0)

(

Φ(K1(0)− 2ν(0))− Φ(K2(0)− 2ν(0))
)

= x0.

(ii) If d ≤ d and x0 < γe−
∫

T

0
r(s)ds, the optimal wealth process and portfolio policy are

given as in (3.69) and (3.70), respectively, where λ = 0 and η = 2γ/ρ̄ with ρ̄ being
given in (3.65).

(iii) If d ≤ d and x0 ≥ γe−
∫

T

0
r(s)ds, the optimal wealth process and portfolio are given

as

x∗(t) = em(t)+ ν2(t)
2

(

(B − γ)Φ
(

K3(t)− ν(t)
)

+ γ
)

,(3.73)

π∗(t) =
1√

2πν(t)
em(t)+ ν2(t)

2 (B − γ)e−
(K3(t)−2ν(t))2

2

(

σ(t)σ(t)′
)−1

b(t),(3.74)

where K3(t) :=
(

ln
(

δ/z(t)
)

−m(t)
)

/ν(t) with δ being the solution of (3.66).

Proof. (i) We first consider the case with d < d < d̄. The following result is true
for any pair of parameters a > 0 and c > 0. Note that z(t) is Ft-adapted and λ > 0
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and η > 0 from Proposition 2. We then have

E

[

z(T )

z(t)

(

a+
η

2
z(T )

)

1ηz(T )≤λ+c

∣

∣

∣ Ft

]

= aE

[

z(T )

z(t)
1z(T )≤λ+c

η

∣

∣

∣
Ft

]

+
ηz(t)

2
E

[

(
z(T )

z(t)
)21z(T )≤λ+c

η

∣

∣

∣
Ft

]

= aE

[

eln
z(T)
z(t) 1

ln z(T )
z(t) ≤ln λ+c

ηz(t)

∣

∣

∣ Ft

]

+
ηz(t)

2
E

[

e2 ln z(T)
z(t) 1

ln z(T )
z(t) ≤ln λ+c

ηz(t)

∣

∣

∣ Ft

]

= aem(t)+ ν2(t)
2 Φ

(

ln λ+c
ηz(t) −m(t)

ν(t)
− ν(t)

)

+
ηz(t)

2
e2m(t)+2ν2(t)Φ

(

ln λ+c
ηz(t) −m(t)

ν(t)
− 2ν(t)

)

,(3.75)

where the last equality is based on Lemma 3. The discounted optimal wealth process
is a martingale under the probability measure P̃ (see [20]), i.e., we have

x∗(t) = E

[

z(T )

z(t)
x∗(T )

∣

∣

∣ Ft

]

, t ∈ [0, T ].

From the expression of x∗(T ) in (3.6), we can compute x∗(t) as

x∗(t) = E
[z(T )

z(t)

(

(

B − γ +
ηz(T )− λ

2

)

1ηz(T )≤λ

+
(

γ − ηz(T )− λ
2

)

1ηz(T )≤λ+2γ

)

| Ft

]

.(3.76)

Let a = B− γ − λ
2 and c = 0 for the first part of (3.76) and a = γ + λ

2 and c = 2γ for
the second part of (3.76). Applying (3.75) to (3.76) gives rise to the result in (3.69).

Under Assumption 2, we can assume x∗(t) as a deterministic function of z(t) and
t, i.e., there exists a function G(·, ·) such that x∗ = G(z(t), t). Now let us determine
the functional form of G(z(t), t). Applying Itö Lemma yields

dG(z(t), t) =
∂G(z(t), t)

∂z(t)
dz(t) +

∂G(z(t), t)

∂t
dt+

1

2

∂2G(z(t), t)

∂z(t)2
(θ(t)2z(t)2)dt

= (−z(t)∂G(z(t), t)
∂z(t)

r(t) +
∂G(z(t), t)

∂t
+

1

2

∂2G(z(t), t)

∂z(t)2
z(t)2‖θ(t)‖2)dt

− ∂G(z(t), t)

∂z(t)
z(t)θ(t)′dW (t).(3.77)

Comparing the diffusion term in (3.77) with the one of the wealth process in (2.4)
dictates the following,

π∗(t)′σ(t) = −∂G(z(t), t)
∂z(t)

z(t)θ(t)′.(3.78)

From the definition of θ in (3.1), multiplying σ(t) on both sides of (3.78) gives rise to

π∗(t) = −G(z(t), t)
∂z(t)

z(t)(σ(t)σ(t)′)−1b(t).
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Thus, differentiating (3.69) with respect to z(t) further gives rise to the result in
(3.70).

From Theorem 1 and Proposition 2, we can identify Lagrange multipliers η and
λ by solving equations (3.7) and (3.8). Equation (3.8) can be written explicitly by
letting t = 0 in (3.69) which yields (3.72). Based on (3.7), we have

E[x∗(T )] = E
[

(

B − γ − λ

2
+
η

2
z(T )

)

1ηz(T )≤λ +
(

γ +
λ

2
− η

2
z(T )

)

1ηz(T )≤λ+2γ

]

= E
[

(

B − γ − λ

2

)

1ln(z(T ))≤ln λ
η
+
η

2
eln z(T )1ln(z(T ))≤ln λ

η

+ (γ +
λ

2
)1ln z(T )≤ln(λ+2γ

η
) −

η

2
eln z(T )1ln z(T )≤ln(λ+2γ

η
)

]

.(3.79)

Applying Lemma 3 to (3.79) yields (3.71).
(ii) From Proposition 2, we know that x∗(T ) takes the same form as in (3.69)

with the Lagrange multipliers λ = 0 and η = 2γ/K−1
1 (x0/γ). Note that K−1

1 (x0/γ)
is nothing but ρ̄ given in (3.65).

(iii) From Proposition 2, there are multiple optimal solutions and one of the
optimal terminal wealth is given in (3.23). Then x∗(t) and π∗(t) can be computed
similarly as in case (i) by using Lemma 3. From the definition of δ in (3.66), we know

that δ = H−1
1 (x0−γE[z(T )]

B−γ ).

Theorem 4. Under Assumption 2, the optimal solution of problem (Pq
lpm) with

0 ≤ q ≤ 1 is given as follows. (i) If d < d < d̄, the optimal wealth process is

x∗(t) = em(t)+
ν2(t)

2

(

(B − γ)Φ
(

K̄1(t)− ν(t)
)

+ γΦ
(

K̄2(t)− ν(t)
)

)

(3.80)

and the optimal portfolio policy is

π∗(t) =
em(t)+ ν2(t)

2√
2πν(t)

(

(B − γ)e−
(K̄1(t)−ν(t))2

2 + γe−
(K̄2(t)−ν(t))2

2

)

(σ(t)σ(t)′)−1b(t),

(3.81)

with the optimal objective value being

E[(γ − x∗(T ))q+] = γq(1− Φ(K2(0))),(3.82)

where K̄1(t) and K̄2(t) are defined as

K̄1(t) =
ln
(

λ
ηz(t)

)

−m(t)

ν(t)
, K̄2(t) =

ln
(

λ+γq−1

ηz(t)

)

−m(t)

ν(t)
,

with λ > 0 and η > 0 being the solution of the following two equations,

(B − γ)Φ
(

K̄1(0)
)

+ γΦ
(

K̄2(0)
)

= d,(3.83)

(B − γ)Φ
(

K̄1(0)− ν(0)
)

+ γΦ
(

K̄2(0)− ν(0)
)

= e−m(0)− ν2(0)
2 x0.(3.84)

(ii) If d ≤ d and x0 < γe−
∫

T

0
r(s)ds, the optimal wealth process and portfolio policy

are given as in (3.80) and (3.81), respectively, where λ = 0 and η = γq−1/ρ̂ with ρ̂
being given as in (3.67).
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(iii) If d ≤ d and x0 ≥ γe−
∫

T

0
r(s)ds, the optimal wealth process and portfolio are

given as in (3.73) and (3.74), respectively.
Proof. From Theorem 2 and Proposition 3, we can compute x∗(t) and π∗(t) by

using a method similar to the proof of Theorem 3 for cases (i), (ii) and (iii). We thus
omit the details here.

Remark 1. In Theorems 3 and 4, the optimal wealth process x∗(t) and optimal
portfolio policy π∗(t) are represented by the market state density z(t). Although z(t)
can be computed by observing the price when the market is complete, z(t), in general
case, cannot be observed or computed directly. Thus, it is more favorable to have
the portfolio policy in a feedback form, i.e., to represent the portfolio policy π∗(t) in
terms of the current wealth x∗(t). Taking the derivative of x∗(t) with respect to z(t)
in (3.69) and (3.80), we can show that x∗(t) is a monotonically decreasing function
of z(t) under a common market setting when B is sufficiently large. That is to say,
the expressions in (3.69) and (3.70) define a one to one mapping between x∗(t) and
z(t). Thus, theoretically, we can replace z(t) by x∗(t) in both (3.70) and (3.81) to
achieve a feedback type of policy. Since there is no analytical form to represent z(t)
by x∗(t) from (3.69) and (3.80), we should discretize z(t) first and compute next the
correspondent value of π∗(t) and x∗(t) for each z(t). The relationship of π∗(t) and
x∗(t) can be approximately achieved by using a curve fitting method.

Note that the probability that x∗(T ) reaches the upper bound for problem (Pq
lpm)

can be expressed as

P(x∗(T ) = B) = P(z(T ) ≤ λ

η
).

When the market opportunity set is deterministic, this probability can be computed

explicitly for problem (Pq
lpm) as P(x∗(T ) = B) = Φ( ln(λ/η)−m(0)

µ(0) ), where λ and η are

the solution to (3.71) and (3.72) for problem (P2
lpm) and the solution to (3.83) and

(3.84) for problem (Pq
lpm) with 0 ≤ q ≤ 1.

4. Optimal Portfolio Policy for Mean-CVaR Formulation. We solve in
this section the mean-CVaR portfolio optimization model (Pcvar). Recall the defini-
tion of the investment loss, f(x(T )), in (2.6) and the definition of CVaR of the loss
in [31]. As the cumulative distribution function of f(x(T )) is defined as

Ψ(y) = P(f(x(T )) ≤ y),

the correspondent β-tail distribution for a given confidence level β is

Ψβ(y) =







0, if y < VaRβ,

Ψ(y)− β
1− β , if y ≥ VaRβ,

(4.1)

where VaRβ = inf{y | Ψ(y) ≥ β}. The CVaR of the loss function f(x(T )) is then
given as

CVaR[f(x(T ))] :=

∫

f(x(T ))≥VaRβ

f(x(T ))dΨβ(y),(4.2)

where the integration should be understood as a summation when the distribution
of y is discrete. Note that the above definition of CVaR is for a general distribution
function of the loss function f(x(T )), see for example Rockafllar and Uryasev [31]
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for some subtle difference between the cases of discrete distributions and continuous
distributions.

To solve the mean-CVaR portfolio optimization problem (Pcvar), we utilize the
parameterized expression of CVaR introduced in [30] and [31].

Lemma 2. The CVaR of the loss f(x(T )) of the terminal wealth can be computed
as follows,

CVaR[f(x(T ))] = min
α

{

α+
1

1− βE
[

(x̄T − x(T )− α)+
]

}

,(4.3)

where α is an auxiliary variable.
Introducing parameter α and rewriting the objective function of problem (Pcvar)

using (4.3) yields the following equivalent formulation of problem (Pcvar),

(Pcvar) min
π(·)∈L2

F
(0,T ;Rn)), α

J(α) := α+
1

1− βE
[

(x̄T − x(T )− α)+
]

,(4.4)

Subject to











E[x(T )] ≥ d,
(x(·),π(·)) statisfies (2.4) ,
0 ≤ x(T ) ≤ B.

(4.5)

To solve problem (Pcvar), we first solve the following auxiliary problem for fixed α,

(Pcvar(α)) : min
π(·)∈L2

F
(0,T ;Rn)

E
[

(x̄T − α− x(T ))+
]

Subject to











E[x(T )] ≥ d,
(x(·),π(·)) statisfies (2.4) ,

0 ≤ x(T ) ≤ B.

The difference between problem (Pcvar) and (Pcvar(α)) is that the decision vari-
able α is fixed as a constant in problem (Pcvar(α)), which leaves π(·) as the only
decision vector. Thus, we can first solve the problem (Pcvar(α)) for given α and
then identify optimal α∗ under which the optimal portfolio policy for (Pcvar(α

∗)) also
solves (Pcvar). Once α is fixed in problem (Pcvar(α)), if we regard x̄T − α as γ, then
(Pcvar(α)) takes the same form as (P1

lpm). However, when α varies, d is changing.
From (3.63) for 0 ≤ q ≤ 1, we redefine d for a fixed α in problem (Pcvar(α)) as

d(α) =

{

(x̄T − α)Φ (F (ρ̂(α))) if x0 < (x̄T − α)e−
∫

T

0
r(s)ds,

(B − x̄T + α)Φ(F (δ(α))) + x̄T − α if x0 ≥ (x̄T − α)e−
∫

T

0
r(s)ds,

(4.6)

where F (·) is defined in Proposition 5, and ρ̂(α) and δ(α) are determined by the
following equations,

ρ̂(α) : e−
∫

T

0
r(s)dsΦ

(

F (ρ̂(α)) − ν(0)
)

=
x0

x̄T − α
,(4.7)

δ(α) : e−
∫

T

0
r(s)dsΦ

(

F (δ(α)) − ν(0)
)

=
x0 − (x̄T − α)e−

∫
T

0
r(s)ds

B − x̄T + α
.(4.8)

Note that the d̄ can be computed by (3.22), as it is independent of α.
Under Assumption 2, let

(4.9) α∗ := argmin J(α),
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where

J(α) :=



































α− γ

1− β (1 − Φ(K̄2(0, α))) if d(α) < d < d̄,

α− γ

1− β (1 − Φ(K̄2(0, α))) if d ≤ d(α) and x0 < e−
∫

T

0
r(s)ds(x̄T − α),

α if d ≤ d(α) and x0 ≥ e−
∫

T

0
r(s)ds(x̄T − α).

+∞, otherwise.

(4.10)

Corollary 1. Under Assumption 2, the optimal solution of problem (Pcvar)
takes one of the following forms: (i) If d(α∗) < d < d̄, then x∗(t) and π∗(t) are given
as

x∗(t) = em(t)+ ν2(t)
2

(

(B − x̄T + α∗)Φ
(

K̄1(t, α
∗)− ν(t)

)

(4.11)

+ (x̄T − α∗)Φ
(

K̄2(t, α
∗)− ν(t)

)

)

,

π∗(t) =
em(t)+ ν2(t)

2√
2πν(t)

(

(B − x̄T + α∗)e−
(K̄1(t,α∗)−ν(t))2

2(4.12)

+ (x̄T − α∗)e−
(K̄2(t,α∗)−ν(t))2

2

)

(σ(t)σ(t)′)−1b(t),

where K̄1(t, α) and K̄2(t, α) are given as

K̄1(t, α) =
ln
(

λ(α)
η(α)z(t)

)

−m(t)

ν(t)
, K̄2(t, α) =

ln
(

λ(α)+1
η(α)z(t)

)

−m(t)

ν(t)
,(4.13)

with λ(α), η(α) being the solution to the following two equations,

(B − x̄T + α)Φ
(

K̄1(0, α)
)

+ (x̄T − α)Φ
(

K̄2(0, α)
)

= d,(4.14)

(B − x̄T + α)Φ
(

K̄1(0, α)− ν(0)
)

+ (x̄T − α)Φ
(

K̄2(0, α)− ν(0)
)

(4.15)

= e
∫

T

0
r(s)dsx0.

(ii) If d ≤ d(α∗) and x0 < e−
∫

T

0
r(s)ds(x̄T −α∗), then x∗(t) and π∗(t) are given as

in (4.11) and (4.12), respectively, with λ(α∗) = 0 and η(α∗) = 1/ρ̂(α∗), where ρ̂(α∗)
is given in (4.7).

(iii) If d ≤ d(α∗) and x0 ≥ e−
∫

T

0
r(s)ds(x̄T − α∗), then there are multiple optimal

solutions. One of the solution is given as

x∗(t) = em(t)+ ν2(t)
2

(

(B − x̄T + α∗)Φ
(

K3(t, α
∗)− ν(t)

)

+ γ
)

π∗(t) =
1√

2πν(t)
em(t)+

ν2(t)
2 (B − x̄T + α∗)e−

(K3(t,α∗)−2ν(t))2

2

(

σ(t)σ(t)′
)−1

b(t),

where K3(t) :=
(

ln
(

δ(α∗)/z(t)
)

−m(t)
)

/ν(t) with δ(α∗) being the solution of (4.8).
Proof. For any fixed α, problem (Pcvar(α)) takes the same form as (P1

lpm). Thus,
for case (i), substituting γ by x̄T − α to (3.80), (3.81), (3.83) and (3.84) gives rise to
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the results in (4.11), (4.12), (4.14) and (4.15), respectively. For case (ii) and (iii), we
just substitute γ by x̄T − α in (ii) and (iii) of Theorem 4, respectively. The object
value in (3.82) then becomes

E[(x̄T − α− x∗(T ))+] = (x̄T − α)(1 − Φ(K̄2(0, α))).

From Lemma 2, we know that CVaR[f(x(T ))] can be computed by minimizing α in
(4.3). It can be verified that J(α) defined in (4.10) is α+ 1

1−βE[(x̄T − x∗(T )− α)+].

Note that the optimal α∗ defined in (4.9) may not be unique. Due to the special
feature of the distribution function of x∗(T ) , from Theorem 10 in [31], the set {α | α =
argminα J(α)} is a closed and bounded interval. Since the objective function J(α)
is convex with respect to α, we can use the following gradient searching procedure to
find one optimal α∗ in Corollary 1.
Searching algorithm for α∗

Input: The parameters of problem (Pcvar), small positive numbers ǫ > 0 and
ζ > 0, the step size ϑ > 0.

Step 0 Choose α← α0 as the initial point and small positive number ǫ > 0 as the
stopping criteria. Go to Step 1.

Step 1 For given α, let α̂← α+ ζ, then compute J(α) and J(α̂) by (4.10). Go to
the next step.

Step 2 Compute the gradient κ =
(

J(α̂) − J(α)
)

/ζ. If |κ| < ǫ, return α as the
optimal solution. Otherwise, let α = α+ ϑ · κ. Go to Setp 1.

Note that when implementing the above gradient searching procedure, controlling
the step size plays a key role. Furthermore, the above procedure can only guarantee
identification of one optimal solution of α∗.

5. Illustrative Examples and Comparison. In this section, we first inves-
tigate an illustrative example to compare the dynamic mean-downside risk portfolio
policy derived in this paper with the well known dynamic mean-variance portfolio
policy. The continuous-time dynamic mean-variance portfolio selection problem is
solved by [35] for the market setting with a deterministic opportunity set, by [25] for
the case with a stochastic opportunity set, and by [7] for the case with bankruptcy
restriction. In this section we compare our results with the one in [7], in which no
bankruptcy restriction is placed as we do in this paper for our mean-downside risk
portfolio models.

Let us discuss first the solution to the following dynamic mean-variance portfolio
optimization model,

(Pmv) min
π(·)∈L2

F
(0,T ;Rn)

var[x(T )] := E[x(T )2]− (E[x(T )])2

Subject to











E[x(T )] = d,

(x(·),π(·)) statisfies dynamics (2.4) ,

0 ≤ x(T ).

Different from [7] in which Bielecki et al. introduce a fictitious security to represent the
optimal wealth process and optimal portfolio policy, we represent the optimal wealth
process and portfolio policy in terms of the state price density z(t). Actually, z(t) can
be also regarded as an artificial security. Although these two ways are equivalent, we
modify the result in [7] to fit our purpose of comparison.
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We still use the martingale approach to solve problem (Pmv) and find the optimal
terminal wealth by solving the following auxiliary problem,

(Amv) min
X∈L2

FT
(Ω,R)

E[X2]− d2,

Subject to











E[X ] = d,

E[z(T )X ] = x0,

0 ≤ X.

Theorem 5. (i) The optimal terminal wealth of problem (Amv) is

X∗ =
1

2
(λ− ηz(T ))1λ−ηz(T )≥0,(5.1)

where the parameters λ > 0 and η > 0 are the solution to the following system of two
equations,

E[(λ− ηz(T ))+] = 2d,(5.2)

E[x(T )(λ − ηz(T ))+] = 2x0.(5.3)

(ii) Under Assumption 2, the optimal wealth process and optimal portfolio policy
of (Pmv) are given, respectively, as

x∗(t) =
λ

2
em(t)+ ν2(t)

2 Φ(K(t)− ν(t))− η

2
z(t)e2m(t)+2ν2(t)Φ(K(t)− 2ν(t)),(5.4)

π∗(t) =
( λ

2ν(t)
√
2π
em(t)+ ν2(t)

2 − (K−ν(t))2

2 − ηz(t)

2
e2m(t)+2ν2(t)

(

Φ
(

K(t)− 2ν(t)
)

(5.5)

− 1√
2πν(t)

e−
(K(t)−2ν(t))2

2

))

(σ(t)σ(t)′)−1b(t),

where K(t) = ln(λ/η−m(t))/ν(t), and m(t) and ν(t) are defined in (3.61) and (3.62),
respectively. Furthermore, parameters η and λ are the solution to the following two
equations,

λΦ(K(0))− ηem(0)+ ν2(0)
2 Φ(K(0)− ν(0)) = 2d,(5.6)

λem(0)+ ν2(0))
2 Φ(K(0)− ν(0))− ηe2m(0)+2ν2(0)Φ(K(0)− 2ν(0)) = 2x0.(5.7)

Proof. The proof of result (i) can be found in [7] and the result (ii) can be proved
by a method similar to the proof in Theorem 3.

Example 1. We consider the following example to demonstrate the properties
of the mean-LPM problem, (Pq

lpm), with all the market parameters being set as the
same as in Example 7.1 of [18]. The risk free rate is r(t) = 0.06 and there is only
one risky asset with µ(t) = 0.12 and σ(t) = 0.15 for t ∈ [0, T ]. The initial wealth is
x(0) = 1 (in a unit of thousand dollars, for example), the expected terminal payoff
is d = 1.3, and the investment horizon is T = 1 year. The benchmark level is set
as γ = e0.06x(0) = 1.0618, which is the payoff of the investment solely in the bank
account. We also set the upper bound of terminal wealth as B = 10. Now, we
compare the mean-LPM portfolio optimization models, (P2

lpm) and (P1
lpm) with the

mean-variance portfolio model (Pmv). We first compute the parameters d and d̄ by
Proposition 5 (see Table 5.1). By using Theorem 3 and Theorem 4, we solve the pair
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η λ d d̄
P2
lpm 0.2007 0.7852 1.0618 1.9847

P1
lpm 0.7852 0.3261 1.0618 1.9847

Pmv 3.421 5.7694 - -

Table 5.1

Parameters λ and η in Example 1

of Lagrange multipliers, η and λ, for problem (P2
lpm) according to (3.71) and (3.72);

for problem (P1
lpm) according to (3.83) and (3.84); and for problem (Pmv) according

to (5.6) and (5.7), respectively, which are listed in Table 5.1. Following Theorems 3,
4 and 5, we can also compute the analytical expressions of optimal wealth x∗(t) and
optimal portfolio policy π∗(t) for problems (P2

lpm), (P1
lpm) and (Pmv), respectively.

Figures 5.1(a) and 5.1(b) show the optimal wealth x∗(t) of problems (P2
lpm),

(P1
lpm) and (Pmv) at t = 1 and t = 0.5, respectively. We can see that when z(t)

is small, i.e., the market condition is good, the wealth level x∗(t) of problem (P2
lpm)

(or (P1
lpm)) is much higher than the wealth level generated from problem (Pmv). As

z(t) increases, i.e., the market condition becomes worse, the wealth level of (Pmv)
reduces to zero faster than the wealth level of (P2

lpm) or (P1
lpm). As for the portfo-

lio policy π∗(t), which is plotted in Figure 5.1(c), we can see that the mean-variance
policy of (Pmv) allocates most wealth for the intermediate range of state z(t). How-
ever, the mean-LPM policies of (P2

lpm) and (P1
lpm) allocate more wealth in the risky

asset when the market state is in a good condition. When the market condition is
in the mediant state, a mean-LPM investor tends to allocation his wealth in risk free
asset. Contrary to intuitive thinking, when the market condition becomes worse (i.e.,
z(t) is increasing), the mean-LMP portfolio policy increases its demand in the risky
asset. Figure 5.1(d) plots the relationship between the proportion in the risky asset,
w∗(t) = π∗(t)/x∗(t), and x∗(t), and demonstrates a feature of the threshold type, i.e.,
there is a threshold around 1 under which or above which the LPM investor increases
his allocation in the risky asset. Compared with the (P2

lpm) policy, the (P1
lpm) policy

is more aggressive when the current wealth x(t) is below the threshold, and a similar
pattern appears between them when the wealth is above the threshold. This kind of fea-
ture is significantly different from the mean-variance policy and the policy generated
from the utility maximization. Figures 5.2(a) and 5.2(b) show the allocations in the
risky asset for different time points t = 0.2, t = 0.5 and t = 0.8. Generally speaking,
as the investment approaches to the terminal time, the mean-LPM policies increase
their allocations in the risk assets. However, when the wealth is around the threshold
point, the (P1

lpm) policy is more sensitive to the time than the (P2
lpm) policy. We can

also compute the probability that x∗(T ) reaches the upper bound B = 10 as 2.2% and
3.2%, respectively, for (P1

lpm) and (P2
lpm). If we increase B to 30, then the probability

drops to 0.7% and 0.9%, respectively, for (P1
lpm) and (P2

lpm). That is to say, although

there is an upper bound on the wealth level in problems (P1
lpm) and (P2

lpm), the proba-
bility that the wealth level actually reaches such an upper bound is very small. Figure
5.3 plots the (x∗(t), w∗(t)) pair for different values of B. We can see that when the
current wealth level x∗(t) is above the threshold, allocation to the risky asset becomes
more aggressive when the upper bound B is increasing. However, when the current
wealth is below or near the threshold, both optimal policies of (P1

lpm) and (P2
lpm) keep

almost invariant with respect to B. We can thus conclude that, although the upper
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limit B affects the investment policy, the portfolio weight is actually quite robust with
respect to B, if the current wealth does not deviate too much from the threshold.
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(b) Optimal wealth x∗(t) at t = 0.5
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(c) Optimal portfolio π∗(t) at t = 0.5
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(d) The optimal portfolio and wealth pair
(x∗(t), π∗(t)) at t = 0.5

Fig. 5.1. Optimal wealth and portfolio of problems (Pmv), (P1

lpm
) and (P2

lpm
) for Example 1

Example 2. In this example, we compare the dynamic mean-CVaR portfolio op-
timization model studied in Section 4 with the well known static mean-CVaR portfolio
model proposed in [30] and [31]. We adopt a market setting similar to that given
in [30], where the portfolio is constructed by three assets, the Standard & Poor 500
index (S&P 500), the long-term US Government Bond (Bond), and the portfolio of
the US small capital stocks (Small-Cap). We scale the statistics (Tables 1 and 2 in
[30]) of the monthly returns listed in [30] to the annual ones. Table 5.2 lists the mean
value and the covariance of the asset returns. Note that the expected return rate and
the covariance matrix are estimated by using the sample mean and sample covari-
ance. Different from the assumption in [30], we assume that the asset returns are
log-normally distributed instead of normally distributed, as we assume in this study
that the assets prices follow the SDE in (2.2), from which the resulted distributions
of the asset returns are indeed log-normally distributed when the market parameters
are deterministic. We assume that the drift rate vector µ(t) and volatility matrix σ(t)
are constants, i.e., µ(t) = µ and σ(t) = σ, for all t ∈ [0, T ]. From Table 5.2, we can
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(b) The (w∗(t), x∗(t)) pair of (P2
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)

Fig. 5.2. The optimal portfolio policy pair (w∗(t), x∗(t)) of problems (P1

lpm
) and (P2

lpm
) in

Example 1 at t = 0.2, t = 0.5 and t = 0.8
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Fig. 5.3. The optimal portfolio policy pair (w∗(t), x∗(t)) of problems (P1

lpm
) and (P2

lpm
) in

Example 1 at t = 0.5 for different B

compute parameters µ and σ as follows,

µ =





0.1346
0.0530
0.1722



 , σ =





0.1428 0.0094 0.1002
0.0094 0.0728 0.0031
0.1002 0.0031 0.2353



 .

In this example, we assume that the market is complete, which further implies
that the market price of risk is θ(t) =

(

0.4864, 0.4269, 0.4510
)′

for all t ∈ [0, T ].
The dynamic mean-CVaR portfolio policy can be computed according to Corollary 1.
For the static buy-and-hold policy, we use the Monte Calo simulation approach (see,
e.g., [30]) to compute the CVaR value, CVaR[f(x(T ))]. More specifically, we first
randomly generate 105 samples of the returns of the three assets from the log-normal
distribution according to the mean and covariance listed in Table 5.2. Note that, while
the static optimization model includes the same constraints as in problem (Pcvar), its
optimal portfolio is only sought within the buy-and-hold type. We can compute the
CVaR value of the buy-and-hold policy by solving the linear programming problem
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Assets Expected rate Assets Covariance
of Return S&P 500 Bond Small Cap

S&P 500 0.1213 0.039 0.0028 0.0504
Bond 0.0522 0.0028 0.006 0.0023

Small Cap 0.1645 0.0504 0.0023 0.0917
Table 5.2

The statistics of the annual returns of the assets

Buy-and-hold Policy Dynamic Policy of (Pcvar)
CVaR(f(x(T))) CVaR(f(x(T)))

d β = 0.9 β = 0.95 β = 0.99 β = 0.9 β = 0.95 β = 0.99

11.00 1.129 1.414 2.003 0.056 0.074 0.078
11.20 1.351 1.718 2.394 0.079 0.098 0.148
11.40 1.618 2.034 2.756 0.104 0.123 0.238
11.60 1.870 2.300 3.212 0.130 0.150 0.347
11.80 2.042 2.649 3.589 0.158 0.179 0.473
12.00 2.319 2.849 3.997 0.187 0.208 0.615
12.20 2.434 3.227 4.377 0.218 0.239 0.774
12.40 2.752 3.437 4.850 0.249 0.271 0.948
12.60 2.989 3.809 5.150 0.282 0.304 1.139
12.80 3.252 3.939 5.557 0.316 0.338 1.346
13.00 3.405 4.342 5.884 0.351 0.373 1.570

Table 5.3

Comparison between Buy-and-Hold policy and dynamic policy

associated with these samples. In this example, we use CPLEX 12.3 as the solver for
the correspondent linear programming problem (see, e.g., [30]).

Table 5.3 compares the CVaR values between the static buy and hold policy and our
dynamic policy resulted from solving problem (Pcvar). For different confidential levels
of β (= 0.9, 0.95, 0.99) and different levels of the target terminal wealth d, we can
observe that the dynamic mean-CVaR portfolio policy always reduces the CVaR value
of the static model significantly. For example, when the investor’s expected terminal
wealth is 12 (or equivalently, the expected target return is 20%) and the confidence
level is 95%, the correspondent CVaR is 2.849 if he implements the buy and hold static
portfolio policy and the CVaR is only 0.208 if he implements the dynamic mean-CVaR
portfolio policy. Figure 5.4 plots the mean-CVaR efficient frontiers of the buy-and-hold
(BnH) policies and our dynamic portfolio policy (Dyn). We can see that the efficient
frontiers of the buy-and-hold policy are more sensitive than the ones generated by the
dynamic mean-CVaR policy when the confidence level β increases.

6. Conclusion. We have investigated in this paper two long-standing challenges
in dynamic portfolio selection, the dynamic mean-LPM and dynamic mean-CVaR
portfolio optimization problems, and have solved both completely. By adding a lim-
ited funding level on the terminal wealth, we ensure the well-posedness of the two
problems, which further enables us to adopt the martingale approach in characterizing
the solution. We have proved that, under some mild conditions, Lagrange multipliers
always exist for the static hedging equations, which is the key in adopting such a mar-
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Fig. 5.4. The mean-CVaR efficient frontiers of Example 2 generated by the buy-and-hold policy
and the dynamic policy

tingale approach. When the market opportunity set is deterministic, we can achieve
analytical portfolio policies of these problems. Our examples show that the dynamic
mean-LPM portfolio policy performs better than the well known mean-variance port-
folio policy with respect to management of the downside risk. Compared with the
static buy-and-hold mean-CVaR portfolio policy, the dynamic portfolio policy can re-
duce the CVaR level significantly. Our dynamic mean-downside-risk portfolio shows
some prominent features, e.g., implementing such a policy can control the CVaR value
at a very low level even when the expected return is set at a high level. However, the
price of using these portfolio policies could be also quite high. Usually, a dynamic
mean-LPM or mean-CVaR policy requires to short a large amount of some assets in
the portfolio. Thus, it would be more realistic to impose a no-shorting constraint in
the dynamic mean-LPM and dynamic mean-CVaR models, which deserves our future
endeavors.

Appendix: Proof of Lemma 1. Proof. In the following proof, we use v(·)
to denote the optimal value of problem (·). Since the optimal solution of problem
(B) is a feasible solution of problem (L(λ1, λ2)), we have a weak duality relationship,
v(L(λ1, λ2)) ≤ v(B), for any λ1 ∈ R+ and λ2 ∈ R. On the other hand, if Y ∗ ∈ C solves
problem (L(λ∗1, λ∗2)) and Y ∗ satisfies E[Y ∗] ≥ b and E[ZY ∗] = a, then Y ∗ is a feasible
solution of (B), which implies v(B) ≤ v(L(λ∗1, λ∗2)). Together with the weak duality
relationship, we have v(L(λ∗1 , λ∗2)) = v(B), which further implies λ∗1(E[Y ]−b) = 0 and
λ∗2(E[ZY ]− a) = 0. That is to say, Y ∗ solves the problem (B).

Now, we prove the other direction. Let Y ∗ be the solution of problem (B) and
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J∗ = v(B). We construct the epigraph set of problem (B) as

O :=
{

(κ1, κ2, κ3)
′ ∈ R

3 | ∃ Y ∈ C, b− E[Y ] ≤ κ1,
E[ZY ]− a = κ2, κ3 ≥ E[f(Y )]

}

.(6.1)

Obviously, due to the convexity of f(·), set O is a convex set in R
3. We construct

another setM :=
{

(0, 0, J) ∈ R
3 | J < J∗}, which is also convex. We have O⋂M =

∅. If O⋂M 6= ∅, there exists (0, 0, Ĵ) ∈ O⋂M. Since (0, 0, Ĵ) ∈ M, we have
Ĵ < J∗. Similarly, (0, 0, Ĵ) ∈ O implies that there exists Ŷ ∈ C such that E[Ŷ ] ≥ b,
E[ZŶ ] = a and E[f(Ŷ )] ≤ Ĵ < J∗. That is to say, Ŷ is the solution of problem (B)
with a smaller objective value, which contradicts the optimality of Y ∗. Since both
O and M are convex sets and do not intersect each other, by using the Separating
Hyperplane Theorem [29], there exist ǫ and (φ1, φ2, φ3) 6= (0, 0, 0) such that, for any
(κ1, κ2, κ3) ∈ O and (0, 0, J) ∈M,

φ1κ1 + φ2κ2 + φ3κ3 ≥ ǫ,(6.2)

φ3J ≤ ǫ.(6.3)

From the definition in (6.1), we must have φ1 ≥ 0 and φ3 ≥ 0. Otherwise, φ1κ1+φ3κ3
is unbounded from below over O (κ1 and κ3 can go to infinity in set O), which
contradicts (6.2). Condition (6.3) implies that φ3J ≤ ǫ for all J < J∗, and we thus
have φ3J

∗ ≤ ǫ. Together with (6.2), we have

φ3f(Y ) + φ1(b − E[Y ]) + φ2(E[ZY ]− a) ≥ ǫ ≥ φ3J∗,(6.4)

for any Y ∈ C. Now we first assume φ3 > 0. Dividing both sides of (6.4) by φ3 gives
rise to

f(Y ) + λ̄1(b− E[Y ]) + λ̄2(E[ZY ]− a) ≥ J∗,(6.5)

for any Y ∈ C, where λ̄1 = φ1/φ3 and λ̄2 = φ2/φ3. Together with the weak duality
relationship, the inequality in (6.5) implies that v(B) = v(L(λ̄1, λ̄2)) and λ̄1(E[Y ] −
b) = 0. Thus, Y ∗ solves problem (L(λ̄1, λ̄2)), which completes the proof for the case
when φ3 > 0.

Now, we show that φ3 6= 0. If φ3 = 0, the inequality in (6.4) becomes,

φ1(b− E[Y ]) + φ2(E[ZY ]− a) ≥ 0,(6.6)

for any Y ∈ C. Let Ȳ be some interior feasible solution of (B) and condition (6.6)
becomes φ1(b− E[Ȳ ]) ≥ 0. Due to the strict feasibility, we have b − E[Ȳ ] < 0, which
implies φ1 = 0. Note that (φ1, φ2, φ3) 6= (0, 0, 0), thus, φ2 6= 0. Thus, the condition in
(6.6) becomes φ2(E[ZY ]−a) ≥ 0 for all Y ∈ C, which is impossible. Note that there is
a strictly interior feasible solution Ȳ ∈ C such that φ2(E[ZȲ ]−a) = 0. That is to say,
in the neighborhood of Ȳ , we can always find Ỹ ∈ C such that φ2(E[ZỸ ]− a) < 0.2

Thus, we can conclude that φ3 6= 0 and thus complete our proof.

2A strictly interior feasible point is also called a relative interior point of the feasible set. Let FB

be the feasible set of problem (B). For a given point Ȳ , if we can find an open ball OB centered at
Ȳ such that FB

⋂
OB ⊂ FB , then Ȳ is a strictly feasible interior point.
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Appendix: Lemma 3. Lemma 3. Let Y be a random variable that follows the
normal distribution with mean µ and variance v2, respectively. Then, we have

E[eaY · 1Y≤d] = exp

(

aµ+
a2v2

2

)

Φ

(

d− µ
v
− av

)

,(6.7)

where Φ(·) is the cumulative distribution function of standard normal random vari-
able.

Proof. Let Z = (Y − µ)/v. Then Z follows the standard normal distribution and

E[eaY 1Y≤d] = E[ea(zv+µ)1zv+µ≤d]

=
1√
2π

∫
d−µ
v

−∞
exp

(

− (z2 − 2azv − 2aµ

2

)

dz

=
1√
2π

exp(
2aµ+ a2v2

2
)

∫
d−µ
v

−∞
exp

(

− (z − av)2
2

)

dz

= exp

(

aµ+
a2v2

2

)

Φ

(

d− µ
v
− av

)

,

which is exactly (6.7).
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