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Abstract. The aim of this paper is to address optimality of stochastic control strategies via dynamic program-
ming subject to total variation distance ambiguity on the conditional distribution of the controlled process. We
formulate the stochastic control problem using minimax theory, in which the control minimizes the pay-off while the
conditional distribution, from the total variation distance set, maximizes it.

First, we investigate the maximization of a linear functional on the space of probability measures on abstract
spaces, among those probability measures which are within a total variation distance from a nominal probability
measure, and then we give the maximizing probability measure in closed form. Second, we utilize the solution
of the maximization to solve minimax stochastic control with deterministic control strategies, under a Markovian
and a non-Markovian assumption, on the conditional distributions of the controlled process. The results of this
part include: 1) Minimax optimization subject to total variation distance ambiguity constraint; 2) new dynamic
programming recursions, which involve the oscillator seminorm of the value function, in addition to the standard
terms; 3) new infinite horizon discounted dynamic programming equation, the associated contractive property, and
a new policy iteration algorithm. Finally, we provide illustrative examples for both the finite and infinite horizon
cases. For the infinite horizon case we invoke the new policy iteration algorithm to compute the optimal strategies.

Key words. Stochastic Control, Minimax, Dynamic Programming, Total Variational Distance

AMS subject classifications. 90C39, 93E20, 49J35

1. Introduction. Dynamic programming recursions are often employed in optimal con-
trol and decision theory to establish existence of optimal strategies, to derive necessary and
sufficient optimality conditions, and to compute the optimal strategies either in closed form
or via algorithms [7, 15, 20]. The cost-to-go and the corresponding dynamic programming
recursion, in their general form, are functionals of the conditional distribution of the un-
derlying state process (controlled process) given the past and present state and control pro-
cesses [7]. Thus, any ambiguity of the controlled process conditional distribution will affect
the optimality of the strategies. The term “ambiguity” is used to differentiate from the term
“uncertainty” often used in control nomenclature to account for situations in which the true
and nominal distribution (induced by models) are absolutely continuous, and hence they are
defined on the same state space. This distinction is often omitted from various robust de-
terministic and stochastic control approaches, including minimax and risk-sensitive formula-
tions [1–4, 8, 9, 11, 13, 14, 16, 17, 19, 21]. In this paper, the class of models is described by
a ball with respect to the total variation distance between the nominal distribution and the
true distribution, hence it admits distributions which are singular with respect to the nominal
distribution.

The main objective of this paper is to investigate the effect on the cost-to-go and dynamic
programming of the ambiguity in the controlled process conditional distribution, and hence
on the optimal decision strategies. Specifically, we quantify the conditional distribution am-
biguity of the controlled process by a ball with respect to the total variation distance metric,
centered at a nominal conditional distribution, and then we derive a new dynamic program-
ming using minimax theory, with two players: player I the control process and player II the
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conditional distribution (controlled process), opposing each other actions. In this minimax
game formulation, player’s I objective is to minimize the cost-to-go, while player’s II objec-
tive is to maximize it. The maximization over the total variation distance ball of player II
is addressed by first deriving results related to the maximization of linear functionals on a
subset of the space of signed measures. Utilizing these results, a new dynamic programming
recursion is presented which, in addition to the standard terms, includes additional terms that
codify the level of ambiguity allowed by player II with respect to the total variation distance
ball. Thus, the effect of player I, the control process, is to minimize, in addition to the classi-
cal terms, the difference between the maximum and minimum values of the cost-to-go, scaled
by the radius of the total variation distance ambiguity set. We treat in a unified way the finite
horizon case, under both the Markovian and non-Markovian nominal controlled processes,
and the infinite horizon case. For the infinite horizon case we consider a discounted pay-off
and we show that the operator associated with the resulting dynamic programming equation
under total variation distance ambiguity is contractive. Consequently, we derive a new policy
iteration algorithm to compute the optimal strategies. Finally, we provide examples for the
finite and for the infinite horizon case.

Previous related work on optimization of stochastic systems subject to total variation
distance ambiguity is found in [18] for continuous time controlled diffusion processes de-
scribed by Itô differential equations. However, the solution method employed in [18] is fun-
damentally different; it approaches the maximization problem indirectly, by employing Large
Deviations concepts to derive the maximizing measure as a convex combination of a tilted
probability measure and the nominal measure, under restrictions on the class of measures
considered. The dynamic programming equation derived in [18] is limited by the assumption
that the maximizing measure is absolutely continuous with respect to the nominal measure.

In this paper, our focus is to understand the effect of total variation distance ambiguity of
the conditional distribution on dynamic programming, from a different point of view, utilizing
concepts from signed measures. Consequently, we derive a new dynamic programming re-
cursion which depends explicitly on the radius of the total variation distance, the closed form
expression of the maximizing measure, or the oscillator seminorm of the value function. One
of the fundamental properties of the maximizing conditional distribution is that, as the ambi-
guity radius increases, the maximizing conditional distribution becomes singular with respect
to the nominal distribution. The point to be made here is that the total variation distance ambi-
guity set admits controlled process distributions which are not necessarily defined on the same
state space as the nominal controlled process distribution. In terms of robustness of the opti-
mal policies, this additional feature is very attractive compared to minimax techniques based
on relative entropy uncertainty or risk-sensitive pay-offs [1–4,8,9,11,13,14,16,17,19,21], be-
cause often the true controlled distribution lies on a higher dimensional state space compared
to the nominal controlled process distribution.

The rest of the paper is organized as follows. In Section 1.1, we give a high level dis-
cussion on classical dynamic programming for MCM and we present some aspects of the
problems and results obtained in the paper. In Section 2, we describe the abstract formulation
of the minimax problem under total variation distance ambiguity, and we derive the closed
form expression of the maximizing measure. In Section 3, we apply the abstract setup to
Feedback Control Model (FCM) (e.g., non-Markov) and to MCM. We derive new dynamic
programming recursions which characterize the optimality of minimax strategies. In Sec-
tion 3.4, we treat the infinite horizon case, where we show that the dynamic programming
operator is contractive, and we develop a new policy iteration algorithm. Finally, in Section 4
we present various examples to illustrate the applications of the new dynamic programming
recursions.
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1.1. Discussion on the Main Results. Next, we describe at a high level the results
obtained in this paper.

1.1.1. Dynamic Programming of Finite Horizon Discounted-Markov Control Model.
A finite horizon Discounted-Markov Control Model (D-MCM) with deterministic strategies
is a septuple

(1.1)
D-MCM :

(
{Xi}ni=0, {Ui}n−1

i=0 , {Ui(xi) : xi ∈ Xi}n−1
i=0 , {Qi(dxi|xi−1, ui−1) :

(xi−1, ui−1) ∈ Xi−1 × Ui−1}ni=0, {fi}n−1
i=0 , hn, α

)
consisting of

(a) State Space. A sequence of Polish spaces (complete separable metric spaces) {Xi :
i = 0, . . . , n}, which model the state space of the controlled random process {xj ∈ Xj : j =
0, . . . , n}.

(b) Control or Action Space. A sequence of Polish spaces {Ui : i = 0, . . . , n−1}, which
model the control or action set of the control random process {uj ∈ Uj : j = 0, . . . , n− 1}.

(c) Feasible Controls or Actions. A family {Ui(xi) : xi ∈ Xi} of non-empty measurable
subsets Ui(xi) of Ui, where Ui(xi) denotes the set of feasible controls or actions, when the
controlled process is in state xi ∈ Xi, and the feasible state-actions pairs defined by Ki ,{

(xi, ui) : xi ∈ Xi, ui ∈ Ui(xi)
}

are measurable subsets of Xi × Ui, i = 0, . . . , n− 1.
(d) Controlled Process Distribution. A collection of conditional distributions or stochas-

tic kernels Qi(dxi|xi−1, ui−1) on Xi given (xi−1, ui−1) ∈ Ki−1 ⊆ Xi−1 × Ui−1, i =
0, . . . , n. The controlled process distribution is described by the sequence of transition prob-
ability distributions {Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1, i = 0, . . . , n}.

(e) Cost-Per-Stage. A collection of non-negative measurable functions fj : Kj → [0,∞],
called the cost-per-stage, such that fj(x, ·) does not take the value +∞ for each x ∈ Xj , j =
0, . . . , n− 1. The running pay-off functional is defined in terms of {fj : j = 0, . . . , n− 1}.

(f) Terminal Cost. A bounded measurable non-negative function hn : Xn → [0,∞)
called the terminal cost. The pay-off functional at the last stage is defined in terms of hn.

(g) Discounting Factor. A real number α ∈ (0, 1) called the discounting factor.
The definition of D-MCM envisions applications of systems described by discrete-time

dynamical state space models, which include random external inputs, since such models give
rise to a collection of controlled processes distributions {Qi(dxi|xi−1, ui−1):(xi−1, ui−1) ∈
Ki−1, i = 0, . . . , n}. For any integer j ≥ 0, define the product spaces by X0,j , ×ji=0Xi
and U0,j−1 , ×j−1

i=0Ui. Define the discounted sample pay-off by

Fα0,n(x0, u0, x1, u1, . . . , xn−1, un−1, xn) ,
n−1∑
j=0

αjfj(xj , uj) + αnhn(xn).(1.2)

The goal in Markov controlled optimization with deterministic strategies is to choose a
control strategy or policy g , {gj : j = 0, 1, . . . , n − 1}, gj : X0,j × U0,j−1 −→ Uj(xj),
ugj = gj(x

g
0, x

g
1, . . . , x

g
j , u

g
0, u

g
1, . . . , u

g
j−1), j = 0, 1, . . . , n− 1 so as to minimize the pay-off

functional

E
{ n−1∑
j=0

αjfj(x
g
j , u

g
j ) + αnhn(xgn)

}
=

∫
X0×X1×...×Xn

Fα0,n

(
x0, u

g
0(x0), x1, u

g
1(x0, x1), . . . , xn−1, u

g
n−1(x0, x1, . . . , xn−1), xn)(1.3)

Q0(dx0)Q1(dx1|x0, u
g
0(x0)) . . . Qn(dxn|xn−1, u

g
n−1(x0, x1, . . . , xn−1)

)
.
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Clearly, pay-off (1.3) is a functional of the collection of conditional distributions {Qi(·|·) :
i = 0, 1, . . . , n}. Moreover, if this collection of distribution has countable support for each
(xi−1, ui−1), i = 0, . . . , n, then each integral in (1.3) is reduced to a countable summation.

For (i, x) ∈ {0, 1 . . . , n} × Xi, let V 0
i (x) ∈ R represent the minimal cost-to-go or value

function on the time horizon {i, i + 1, . . . , n} if the controlled process starts at state xi = x
at time i, defined by

V 0
i (x) , inf

gk∈Uk(xk)

k=i,...,n−1

Egi,x
{ n−1∑
j=i

αjfj(x
g
j , u

g
j ) + αnhn(xgn)

}
(1.4)

where Egi,x{·} denotes expectation conditioned on xgi = x. A Markov property on the con-
trolled process distributions, i.e., Qi(dxi|xi−1, ui−1)=Qi(dxi|xi−1, ui−1), ∀(xi−1, ui−1) ∈
×i−1
j=0Kj , i = 0, 1, . . . , n, under admissible non-Markov strategies, implies that Markov con-

trol strategies are optimal [15]. Consequently, it can be shown that the value function (1.4)
satisfies the following dynamic programming recursion relating the value functions V 0

i (·) and
V 0
i+1(·) [15],

V 0
n (x) = αnhn(x), x ∈ Xn(1.5)

V 0
i (x) = inf

u∈Ui(x)

{
αifi(x, u) +

∫
Xi+1

V 0
i+1(z)Qi+1(dz|x, u)

}
, x ∈ Xi.(1.6)

Since the value function V 0
i (x) defined by (1.4) and the dynamic programming recursion

(1.5), (1.6) depend on the complete knowledge of the collection of conditional distributions
{Qi(·|·) : i = 0, . . . , n}, any mismatch of the collection {Qi(·|·) : i = 0, . . . , n} from the
true collection of conditional distributions, will affect the optimality of the control strate-
gies. Our objective is to address the impact of any ambiguity measured by the total variation
distance between the true conditional distribution and a given nominal distribution on the
cost-to-go (1.4), and dynamic programming recursion (1.5), (1.6).

1.1.2. Dynamic Programming of Infinite Horizon D-MCM. The infinite horizon D-
MCM with deterministic strategies is a special case of the finite horizon D-MCM specified
by a six-tuple (

X ,U , {U(x) : x ∈ X}, {Q(dz|x, u) : (x, u) ∈ X × U}, f, α
)

(1.7)

where the elements defined under (a)-(f) are independent of time index i. That is, the state
space isX , the control or action space is U , the feasible controls or actions is a family {U(x) :
x ∈ X} ⊂ U , the controlled process distribution is a stochastic kernel Q(·|·) on X given K,
where K ,

{
(x, u) : x ∈ X , u ∈ U(x)

}
, the cost-per-stage is a one stage cost f : K −→

[0,∞], and there is no terminal cost (it is set to zero).
The dynamic programming equation of the infinite horizon D-MCM as given by [20] is

a function v0
∞ : X −→ R satisfying

v0
∞(x) = inf

u∈U(x)

{
f(x, u) + α

∫
X
v0
∞(z)Q(dz|x, u)

}
, x ∈ X .(1.8)

Similarly to the finite horizon D-MCM, the dynamic programming equation (1.8) depends
on the conditional distribution Q(dz|x, u), hence any ambiguity or mismatch of Q(dz|x, u)
from the true distribution affects optimality of the strategies.
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1.1.3. Dynamic Programming with Total Variation Distance Ambiguity. Motivated
by the above discussion, the objective of this paper is to investigate dynamic programming
under ambiguity of the conditional distributions of the controlled processes{

Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1

}
, i = 0, . . . , n.

The ambiguity of the conditional distributions of the controlled process is modeled by the total
variation distance. Specifically, given a collection of nominal controlled process distributions
{Qoi (dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1}, i = 0, . . . , n, the corresponding collection
of true controlled process distributions {Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1}, i =
0, . . . , n, is modeled by a set described by the total variation distance centered at the nominal
conditional distribution having radius Ri ∈ [0, 2], i = 0, . . . , n, defined by

BRi(Q
o
i )(xi−1, ui−1),

{
Qi(·|xi−1, ui−1):||Qi(·|xi−1, ui−1)−Qoi (·|xi−1, ui−1)||TV≤Ri

}
.

Here || · ||TV denotes the total variation distance between two probability measures, || · ||TV :
M1(Σ)×M1(Σ) 7−→ [0,∞] defined by

(1.9) ||α− β||TV , sup
P∈P(Σ)

∑
Fi∈P

|α(Fi)− β(Fi)|, α, β ∈M1(Σ)

whereM1(Σ) denotes the set of probability measures on B(Σ) and P(Σ) denotes the col-
lection of all finite partitions of Σ. Note that the distance metric (1.9) induced by the to-
tal variation norm does not require absolute continuity of the measures α ∈ M1(Σ) and
β ∈M1(Σ). The total variation distance model of ambiguity is quite general, and it includes
linear, non-linear, finite and/or countable state space models, etc, since no assumptions are
impossed on the structure of the stochastic control dynamical system model, which induces
the collection of conditional distributions {Qi(·|·) : i = 0, . . . , n}, {Qoi (·|·) : i = 0, . . . , n}.
Given the above description of ambiguity in distribution, we re-formulate the value function
and dynamic programming recursion via minimax theory as follows.

For (i, x) ∈ {0, 1 . . . , n} × Xi, let Vi(x) ∈ R represent the minimal cost-to-go on the
time horizon {i, i + 1, . . . , n} if the state of the controlled process starts at state xi = x at
time i, defined by

Vi(x) , inf
gk∈Uk(xk)

k=i,...,n−1

sup
Qk+1(·|xk,uk)∈BRk+1

(Qo
k+1

)(xk,uk)

k=i,...,n−1

Egi,x
{ n−1∑
j=i

αjfj(x
g
j , u

g
j ) + αnhn(xgn)

}

where Egi,x denotes conditional expectation with respect to the true collection of conditional
distribution {Qk(·|·) : k = i, . . . , n}. Even in the above minimax setting the Markov property
of the controlled process distribution under an admissible non-Markov strategy implies that
Markov control strategies are optimal. Moreover, the value function satisfies the following
dynamic programming recursion relating the value function Vi(·) and Vi+1(·), for all i =
0, 1, . . . , n− 1.

Vn(x) = αnhn(x), x ∈ Xn

Vi(x) = inf
u∈Ui(x)

sup
Qi+1(·|x,u)∈BRi+1

(Qoi+1)(x,u)

{
αifi(x, u)+

∫
Xi+1

Vi+1(z)Qi+1(dz|x, u)
}
, x ∈ Xi.
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Based on this formulation, if Vi+1(·) is bounded continuous non-negative, we show that the
new dynamic programming equation is given by

Vn(x) = αnhn(x), x ∈ Xn(1.10)

Vi(x) = inf
u∈Ui(x)

{
αifi(x, u) +

∫
Xi+1

Vi+1(z)Qoi+1(dz|x, u)

(1.11)
+
Ri
2

(
sup

z∈Xi+1

Vi+1(z)− inf
z∈Xi+1

Vi+1(z)
)}
, x ∈ Xi.

Note that the new term in the right side of (1.11) is the oscillator seminorm of Vj+1(·) called
the global modulus of continuity of Vj+1(·), which measures the difference between the max-
imum and minimum values of Vj+1(·).

For the infinite horizon D-MCM the new dynamic programming equation is given by

(1.12)

v∞(x) = inf
u∈U(x)

{
f(x, u)

+ α

∫
X
v∞(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

v∞(z)− inf
z∈X

v∞(z)
)}
, x ∈ X .

For finite and countable alphabet spaces Xj , X , the integrals in the right hand side of (1.11),
(1.12) are replaced by summations.

In addition to the D-MCM, we will also discuss the general discounted feedback con-
trol model (i.e., we relax the Markovian assumption). In summary, the issues discussed and
results obtained in this paper are the following: (1) formulation of finite horizon discounted
stochastic optimal control subject to conditional distribution ambiguity described by total
variation distance via minimax theory; (2) dynamic programming recursions for a) nominal
D-MCM, and b) Discounted-Feedback Control Model (D-FCM), under total variation dis-
tance ambiguity on the conditional distribution of the controlled process; (3) formulation of
the infinite horizon D-MCM and dynamic programming equation under conditional distribu-
tion ambiguity described by total variation distance via minimax theory; (4) characterization
of the maximizing conditional distribution belonging to the total variation distance set, and the
corresponding new dynamic programming recursions; (5) contraction property of the infinite
horizon D-MCM dynamic programming and new policy iteration algorithm; (6) examples for
the finite and infinite horizon cases.

2. Maximization With Total Variation Distance Ambiguity. In this section, we recall
certain results from [18] on the maximization of a linear functional on the space of probability
distributions subject to total variation distance ambiguity. We use these results to derive
the maximizing probability distribution subject to total variation distance ambiguity of the
controlled process.

Let (Σ, dΣ) denote a complete, separable metric space (a Polish space), and (Σ,B(Σ))
the corresponding measurable space, in which B(Σ) is the σ-algebra generated by open sets
in Σ. Let M1(Σ) denote space of countably additive probability measures on (Σ,B(Σ)).
Define the spaces

BC(Σ) ,
{

Bounded continuous functions ` : Σ −→ R : ||`|| , sup
x∈Σ
|`(x)| <∞

}
BM(Σ) ,

{
Bounded measurable functions ` : Σ −→ R : ||`|| <∞

}
C(Σ) ,

{
Continuous functions ` : Σ −→ R : ||`|| <∞

}
, C+(Σ) ,

{
` ∈ C(Σ) : ` ≥ 0

}
BC+(Σ) ,

{
` ∈ BC(Σ) : ` ≥ 0

}
, BM+(Σ) ,

{
` ∈ BM(Σ) : ` ≥ 0

}
.
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Clearly, BC(Σ), BM(Σ), C(Σ) are Banach spaces. We present the maximizing mea-
sure for `∈BC+(Σ), although the results can be generalized to real-valued functions ` ∈
L∞,+(Σ,B(Σ), ν), the set of all B(Σ)-measurable, non-negative essentially bounded func-
tions defined ν−a.e. endowed with the essential supremum norm ||`||∞,ν=ν-ess supx∈Σ `(x).

From [18], we have the following. For ` ∈ BC+(Σ), and µ ∈M1(Σ) fixed, then

(2.1) L(ν∗) , sup
||ν−µ||TV ≤R

∫
Σ

`(x)ν(dx) =
R

2

{
sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}

+

∫
Σ

`(x)µ(dx)

where R ∈ [0, 2], ν∗ satisfies the constraint ||ξ∗||TV = ||ν∗ − µ||TV = R, it is normalized
ν∗(Σ) = 1, and ν∗(A) ∈ [0, 1] on any A ∈ B(Σ). Moreover, by defining 1

x0 ∈ Σ0 , {x ∈ Σ : `(x) = sup{`(x) : x ∈ Σ} ≡ `max}
x0 ∈ Σ0 , {x ∈ Σ : `(x) = inf{`(x) : x ∈ Σ} ≡ `min}

then, the pay-off L(ν∗) can be written as

L(ν∗) =

∫
Σ0

`maxν
∗(dx) +

∫
Σ0

`minν
∗(dx) +

∫
Σ\Σ0∪Σ0

`(x)µ(dx)(2.2)

and the optimal distribution ν∗ ∈M1(Σ), which satisfy the total variation constraint, is given
by ∫

Σ0

ν∗(dx) = µ(Σ0) +
R

2
∈ [0, 1],

∫
Σ0

ν∗(dx) = µ(Σ0)− R

2
∈ [0, 1]

(2.3)
ν∗(A) = µ(A), ∀A ⊆ Σ \ Σ0 ∪ Σ0.

Note that if Σ0 = Σ0 = {∅} then ν(Σ0) = ν(Σ0) = 0, and L(ν∗) =
∫

Σ\Σ0∪Σ0
`(x)µ(dx).

The second right hand side term in (2.1) is related to the oscillator semi-norm of f ∈
BM(Σ), called the global modulus of continuity, and it is defined by

osc(f) , sup
(x,y)∈Σ×Σ

|f(x)− f(y)| = 2 inf
β∈R
||f − β||, for f ∈ BM(Σ).

However, for f ∈ BM+(Σ) then

osc(f) = sup
x∈Σ
|f(x)| − inf

x∈Σ
|f(x)| = sup

x∈Σ
f(x)− inf

x∈Σ
f(x).

Note that the above results can be extended to f ∈ C+(Σ).

The Maximizing Measure for Finite and Countable Alphabet Spaces
Here, we further elaborate on the form of the maximizing measures for finite and count-

able alphabet spaces, since we use them to analyze finite horizon D-MCM and D-FCM, and
infinite horizon D-MCM with finite (or countable) state and control spaces.

Let Σ be a non-empty denumerable set endowed with the discrete topology including
finite cardinality |Σ|, withM1(Σ) identified with the standard probability simplex in R|Σ|.
That is, the set of all |Σ|-dimensional vectors which are probability vectors, {ν(x) : x ∈
Σ} ∈ M1(Σ), {µ(x) : x ∈ Σ} ∈ M1(Σ), and let ` , {`(x) : x ∈ Σ} ∈ R|Σ|+ . Define the
maximum and minimum values of {`(x) : x ∈ Σ} by

`max , max
x∈Σ

`(x), `min , min
x∈Σ

`(x)

1We adopt the standard definitions; infimum (supremum) of an empty set to be +∞ (−∞).
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and its corresponding support sets by

Σ0 ,
{
x ∈ Σ : `(x) = `max

}
, Σ0 ,

{
x ∈ Σ : `(x) = `min

}
.

For all remaining sequence,
{
`(x) : x ∈ Σ\Σ0∪Σ0

}
, and for 1 ≤ r ≤ |Σ\Σ0∪Σ0|, define

recursively the set of indices for which the sequence achieves its (k + 1)th smallest value by

Σk ,
{
x ∈ Σ : `(x) = min

{
`(α) : α ∈ Σ \ Σ0 ∪ (

k⋃
j=1

Σj−1)
}}
, k ∈ {1, 2, . . . , r}

till all the elements of Σ are exhausted. Further, define the corresponding values of the se-
quence on sets Σk by

`(Σk) , min
x∈Σ\Σ0∪(

⋃k
j=1 Σj−1)

`(x), k ∈ {1, 2, . . . , r}

where r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|. For example, when k = 1,
`(Σ1) = minx∈Σ\Σ0∪Σ0

`(x), when k = 2, `(Σ2) = minx∈Σ\Σ0∪Σ0∪Σ1
`(x) and so on.

In [10] it is shown that the maximum pay-off subject to total variation constraint is given
by

L(ν∗) = `maxν
∗(Σ0) + `minν

∗(Σ0) +

r∑
k=1

`(Σk)ν∗(Σk),(2.4)

and that the optimal probabilities are given by (a water-filling) the following equations.

ν∗(Σ0) ,
∑
x∈Σ0

ν∗(x) =
∑
x∈Σ0

µ(x) +
α

2
≡ µ(Σ0) +

α

2
(2.5)

ν∗(Σ0) ,
∑
x∈Σ0

ν∗(x) =
( ∑
x∈Σ0

µ(x)− α

2

)+

≡
(
µ(Σ0)− α

2

)+

(2.6)

ν∗(Σk) ,
∑
x∈Σk

ν∗(x) =
( ∑
x∈Σk

µ(x)−
(α

2
−

k∑
j=1

∑
x∈Σj−1

µ(x)
)+)+

(2.7)

≡
(
µ(Σk)−

(α
2
−

k∑
j=1

µ(Σj−1)
)+)+

α , min(R,Rmax), Rmax , 2(1−
∑
x∈Σ0

µ(x)) ≡ 2(1− µ(Σ0)), R ∈ [0, 2](2.8)

where k ∈ {1, 2, . . . , r} and r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|.
The parameter α reinforces the intuitive notion of the total variation between the true

and nominal probability distribution as having attributes similar to “physical mass”. Thus, if
α = Rmax, then (2.5) implies that the probability “mass” on Σ0 set is ν∗(Σ0) = 1 and hence
ν∗(Σ \ Σ0) = 0. However, if α = R < Rmax, then (2.5) implies that the probability “mass”
on Σ0 set is ν∗(Σ0) < 1 and hence equations (2.6)-(2.7) are employed. While ν∗(Σ0) > 0,
(2.7) implies that ν∗(Σk) = µ(Σk) for all k = 1, . . . , r. However, if ν∗(Σ0) = 0, that is, all
the probability “mass” is removed from Σ0, then the solution is obtained by moving further
into the partition using (2.7). For all R ∈ [0, 2], the resulting solution is described via a
water-filling effect.

We are now equipped with the solution of maximizing linear functionals with total vari-
ation distance ambiguity for both finite, countable alphabets, and abstract alphabet spaces
(Polish spaces), and therefore we are ready to apply these results to the dynamic program-
ming recursion under ambiguity on the conditional distribution.
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3. Minimax Stochastic Control with Total Variation Distance Ambiguity. In this
section, we first introduce the general definition of finite horizon Discounted-Feedback Con-
trol Model (D-FCM) with randomized and deterministic control policies, under total varia-
tion distance uncertainty (which includes the D-MCM introduced in Section 1.1), and then
we apply the characterization of the maximizing distribution of Section 2 to the dynamic
programming recursion. In the last section we discuss the infinite horizon D-MCM.

Define Nn , {0, 1, 2, . . . , n}, n ∈ N. The state space and the control space are se-
quences of Polish spaces {Xj : j = 0, 1, . . . , n} and {Uj : j = 0, 1, . . . , n− 1}, respectively.
These spaces are associated with their corresponding measurable spaces (Xj ,B(Xj)),∀j ∈
Nn, (Uj ,B(Uj)), ∀j ∈ Nn−1. Define the product spaces byX0,n,×ni=0Xi, U0,n−1,×n−1

i=0 Ui,
and introduce their product measurable spaces, (X0,n,B(X0,n)), (U0,n−1,B(U0,n−1)), re-
spectively, for n ∈ Nn. The state process is denoted by xn , {xj : j = 0, 1, . . . , n}, and the
control process is denoted by un−1 , {uj : j = 0, 1, . . . , n− 1}. For any measurable spaces
(X ,B(X )), (Y,B(Y)), the set of stochastic Kernels on (Y,B(Y)) conditioned on (X ,B(X ))
is denoted by Q(Y|X ).

Given (X0,n,B(X0,n)), (U0,n−1,B(U0,n−1)) the Borel state and control or action spaces,
respectively, and the initial state distribution ν0(dx0), we introduce the space H0,n of admis-
sible observable histories by

H0,n , K0 ×K1 × . . .×Kn−1 ×Xn ≡ ×n−1
i=0 Ki ×Xn, n ∈ N, H0,0 = X0

where Ki , {(xi, ui) : xi ∈ Xi, ui ∈ Ui(xi)}, denote the feasible state-action pairs, for i =
0, 1, . . . , n− 1. A typical element h0,n ∈ H0,n is a sequence of the form

h0,n = (x0, u0, . . . , xn−1, un−1, xn), (xi, ui) ∈ Ki, i = 0, . . . , n− 1, xn ∈ Xn.

Similarly, introduce

G0,n = X0 × U0 × . . .×Xn−1 × Un−1 ×Xn ≡ ×n−1
i=0 (Xi × Ui)×Xn, n ∈ N

G0,0 = H0,0 = X0.

The spaces G0,n and H0,n are equipped with the natural σ-algebra B(G0,n) and B(H0,n),
respectively.

Next, we give the precise definition of discounted feedback control model.

DEFINITION 3.1. A finite horizon D-FCM is a septuple

(3.1)
D-FCM :

(
X0,n,U0,n−1, {Ui(xi) : xi ∈ Xi}n−1

i=0 , {Qi(dxi|x
i−1, ui−1) :

(xi−1, ui−1) ∈ X0,i−1 × U0,i−1}ni=0, {fi}n−1
i=0 , hn, α

)
consisting of the items (a)-(c), (e)-(g) of finite horizon D-MCM (1.1), while the controlled
process distribution in (d) is replaced by the non-Markov collection {Qi(dxi|xi−1, ui−1) :
(xi−1, ui−1) ∈ ×i−1

j=0Kj}ni=0.
Next, we give the definitions of randomized, deterministic, and stationary control strate-

gies or policies.

DEFINITION 3.2. A randomized control strategy is a sequence π , {π0, . . . , πn−1} of
stochastic kernels πi(·|·) on (Ui,B(Ui)) conditioned on (H0,i,B(H0,i)) (e.g., πi(dui|xi, ui−1)
) satisfying

πi(Ui(xi)|xi, ui−1) = 1 for every (xi, ui−1) ∈ H0,i, i = 0, 1, . . . , n− 1.
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The set of all such policies is denoted by Π0,n−1.
A strategy π , {πi : i = 0, . . . , n− 1} ∈ Π0,n−1 is called

(a) deterministic feedback strategy if there exists a sequence g , {gj : j = 0, 1, . . . , n − 1}
of measurable functions gj : ×j−1

i=0Ki × Xj 7−→ Uj , such that for all
(
xj , uj−1

)
∈ H0,j ,

j ∈ Nn−1, gj(x0, u0, x1, u1, . . . , xj−1, uj−1, xj) ∈ Uj(xj), and πj
(
·|xj , uj−1

)
assigns

mass 1 to some point in Uj , that is,

πi
(
Ai|xi, ui−1

)
= IAi

(
gi
(
xi, ui−1

))
, ∀Ai ∈ B(Ui), i = 0, 1, . . . , n− 1,

where IAi(·) is the indicator function of Ai ∈ B(Ui).
The set of deterministic feedback strategies is denoted by ΠDF

0,n−1;
(b) deterministic Markov strategy if there exists a sequence g , {gj : j = 0, 1, . . . , n− 1} of
measurable functions gj : Xj → Uj satisfying gj(xj) ∈ Uj(xj) for all xj ∈ Xj , j ∈ Nn−1,
and πj(·|xj , uj−1) is concentrated at gj(xj) ∈ Uj(xj) for all (xj , uj−1) ∈ H0,j , j ∈ Nn−1.
The set of deterministic Markov strategies is denoted by ΠDM

0,n−1;
(c) deterministic stationary Markov strategy if there exists a measurable function g : X −→ U
such that g(xt) ∈ U(xt), ∀xt ∈ X , and πj(·|xj , uj−1) assigns mass to some point uj ,
∀(xj , uj−1) ∈ H0,j , e.g.,

πi(Ai|xi, ui−1) = IAi(g(xi)), ∀Ai ∈ B(Ui), i = 0, . . . , n− 1.

The set of deterministic stationary Markov strategies is denoted by ΠDS
0,n−1.

According to Definition 3.2, the set of control policies is non-empty, since we have as-
sumed existence of measurable functions gj : K0,j−1 × Xj −→ Uj such that ∀xj , uj−1 ∈
K0,j−1 × Xj , gj(xj , uj−1) ∈ Uj(Xj),∀j ∈ Nn−1. Sufficient conditions for this to hold
are in general obtained via measurable selection theorems [12]. For denumerable set (count-
able alphabet) Xj endowed with the discrete topology any function is measurable. Given a
controlled process

{
Qi(·|xi−1, ui−1) : (xi−1, ui−1) ∈ K0,i−1

}n
i=0

and a randomized control
process

{
πi(·|xi, ui−1) : (xi, ui−1) ∈ K0,i−1 ×Xi

}n
i=0
∈ Π0,n−1 and the initial probabil-

ity ν0(·) ∈ M1(X0), then by Ionescu-Tulceu theorem [6] there exists a unique probability
measure Qπ

ν on (Ω,F) defined by

(3.2)

Qπ
ν (dx0, du0, dx1, du1, . . . , dxn−1, dun−1, dxn) = Q0(dx0)π0(du0|x0)

⊗Q1(dx1|x0, u0)π1(du1|x1, u0)⊗ . . .⊗Qn−1(dxn−1|xn−2, un−2)

πn−1(dun−1|xn−1, un−2)⊗Qn(dxn|xn−1, un−1)

such that

Qπ
ν (x0 ∈ A) = ν(A), A ∈ B(X0)

Qπ
ν (uj ∈ B|h0,j) = πt(B|h0,j), B ∈ B(Uj)

Qπ
ν (xj+1 ∈ C|h0,j , ut) = Q(C|h0,j , uj), C ∈ B(Xj+1).

Given the sample pay-off

Fα0,n(x0, u0, x1, u1, . . . , xn−1, un−1, xn) ,
n−1∑
j=0

αjfj(xj , uj) + αnhn(xn)(3.3)

its expectation is

(3.4)
EQπ

ν

{
Fα0,n(x0, u0, x1, u1, . . . , xn−1, un−1, xn)

}
=

∫
Fα0,n(x0, u0, x1, u1, . . . ,

xn−1, un−1, xn)Qπ
ν (dx0, du0, dx1, du1, . . . , dxn−1, dun−1, dxn).
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Note that the class of randomized strategies Π0,n−1 embeds deterministic feedback and
Markov strategies.

3.1. Variation Distance Ambiguity. Next, we introduce the definitions of nominal con-
trolled process distributions (for finite horizon D-FCM and D-MCM), and their corresponding
ambiguous controlled process distributions.

For each π ∈ ΠDF
0,n−1, π ∈ ΠDM

0,n−1 and π ∈ ΠDS
0,n−1 the nominal controlled process is

described by a sequence of conditional distributions as follows.

DEFINITION 3.3. (Nominal Controlled Process Distributions). A nominal controlled
state processes {xg = xg0, x

g
1, . . . , x

g
n : π ∈ ΠDF

0,n−1, π ∈ ΠDM
0,n−1, or π ∈ ΠDS

0,n−1}
corresponds to a sequence of stochastic kernels as follows:
(a) Feedback Controlled Process.

For every A ∈ B(Xj), P rob(xj ∈ A|xj−1, uj−1) = Qoj(A|xj−1, uj−1)

where Qoj(A|xj−1, uj−1) ∈ Q(Xj |K0,j−1),∀j ∈ Nn+.
(b) Markov Controlled Process.

For every A ∈ B(Xj), P rob(xj ∈ A|xj−1, uj−1) = Qoj(A|xj−1, uj−1)

where Qoj(A|xj−1, uj−1) ∈ Q(Xj |Kj−1),∀j ∈ Nn+.
(c) Stationary Markov Controlled Process.

For every A ∈ B(X ), P rob(xj ∈ A|xj−1, uj−1) = Qo(A|xj−1, uj−1)

where Qo(A|xj−1, uj−1) ∈ Q(X|K).

The class of controlled processes is described by the sequence of stochastic kernels,

{Qj(dxj |xj−1, uj−1) ∈ Q(Xj |K0,j−1 : j = 0, . . . , n}

belonging to a total variation distance set as follows.

DEFINITION 3.4. (Class of Controlled Process Distribution) Given a nominal controlled
process stochastic kernel of Definition 3.3, and Ri ∈ [0, 2], 0 ≤ i ≤ n the class of controlled
process stochastic kernels is defined as follows:
(a) Class with respect to Feedback Nominal Controlled Process.
Given a fixed Qoj(·|xj−1, uj−1) ∈ Q(Xj |K0,j−1), j = 0, 1, . . . , n the class of stochastic
kernels is defined by

BRi(Q
o
i )(x

i−1, ui−1) ,
{
Qi(·|xi−1, ui−1) ∈ Q(Xi|K0,i−1) :

||Qi(·|xi−1, ui−1)−Qoi (·|xi−1, ui−1)||TV ≤ Ri
}
, i = 0, 1, . . . , n.

(b) Class with respect to Markov Nominal Controlled Process.
Given a fixed Qoj(·|xj−1, uj−1) ∈ Q(Xj |Kj−1), j = 0, 1, . . . , n the class of stochastic ker-
nels is defined by

BRi(Q
o
i )(x

i−1, ui−1) ,
{
Qi(·|xi−1, ui−1) ∈ Q(Xi|K0,i−1) :

||Qi(·|xi−1, ui−1)−Qoi (·|xi−1, ui−1)||TV ≤ Ri
}
, i = 0, 1, . . . , n.
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(c) Class with respect to Stationary Markov Nominal Controlled Process.
Given a fixed Qo(·|xj−1, uj−1) ∈ Q(X ,K) the class of stochastic kernels is defined by

BR(Q0)(x, u) ,
{
Q(·|x, u) ∈ Q(X|K) : ||Q(·|x, u)−Qo(·|x, u)||TV ≤ R

}
.

Note that in Definition 3.4 (a), (b), although we use the same notation BRi(Q
o
i )(x

i−1, ui−1)
these sets are different because the nominal distributionQoi (·|·) can be of Feedback or Markov
form. The above model is motivated by the fact that dynamic programming involves condi-
tional expectation with respect to the collection of conditional distributions {Qi(·|xi−1, ui−1)
∈ Q(Xi|K0,i−1) : i = 0, . . . , n}. Therefore, any ambiguity in these distributions will affect
the optimality of the strategies.

3.2. Pay-Off Functional. For each π ∈ ΠDF
0,n−1 or π ∈ ΠDM

0,n−1 the average pay-off is
defined by

J0,n(π,Qi : i = 0, . . . , n) , EQπ
ν

{ n−1∑
j=0

αjfj(xj , uj) + αnhn(xn)
}

(3.5)

where EQπ
ν
{·} denotes expectation with respect to the true joint measure Qπ

ν (dxn, dun−1)
defined by (3.2) such that Qi(·|xi−1, ui−1) ∈ BRi(Q

o
i ), i = 0, 1, . . . , n (e.g., it belongs to

the total variation distance ball of Definition 3.4).
Next, we introduce assumptions so that the maximization over the class of ambiguous

measures is well-defined.

ASSUMPTION 3.5. The nominal system family satisfies the following assumption: The
maps {fj : Xj × Uj 7−→ R : j = 0, 1, . . . , n− 1}, hn : Xn 7−→ R are bounded, continuous
and non-negative.

Note that it is possible to relax Assumption 3.5 to lower semi-continuous non-negative
functions bounded from below.

3.3. Minimax Dynamic Programming for Finite Horizon D-FCM and D-MCM. In
this section we shall apply the results of Section 2 to formulate and solve minimax stochastic
control under a) finite horizon D-FCM ambiguity, and b) finite horizon D-MCM ambiguity.

3.3.1. Dynamic Programming for Finite Horizon D-FCM Subject to Ambiguity.
Utilizing the above formulation, next we define the minimax stochastic control problem,
where the maximization is over a total variation distance ball, centered at the nominal con-
ditional distribution Qoi (dxi|xi−1, ui−1) ∈ Q(Xi|K0,i−1) having radius Ri ∈ [0, 2], for
i = 0, 1, . . . , n.

PROBLEM 3.6. Given a nominal feedback controlled process of Definition 3.3 (a), an ad-
missible policy set ΠDF

0,n−1 and an ambiguity class BRk(Qok)(xk−1, uk−1), k=0, ..., n of Def-
inition 3.4 (a), find a π∗∈ΠDF

0,n−1 and a sequence of stochastic kernelsQ∗k(dxk|xk−1, uk−1) ∈
BRk(Qok)(xk−1, uk−1), k = 0, 1, ..., n which solve the following minimax optimization prob-
lem.

(3.6)

J0,n(π∗, Q∗k : k = 0, . . . , n) = inf
π∈ΠDF

0,n−1

{
sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k
)(xk−1,uk−1)

k=0,1,...,n

EQπ
ν

{ n−1∑
k=0

αkfk(xgk, u
g
k) + αnhn(xgn)

}}
.
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Next, we apply dynamic programming to characterize the solution of (3.6), by first addressing
the maximization. Define the pay-off associated with the maximization problem

J0,n(π,Q∗k : k = 0, . . . , n) , sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k
)(xk−1,uk−1)

k=0,1,...,n

J0,n(π,Qk : k = 0, . . . , n).

For a given π ∈ ΠDF
0,n−1, which defines {gj : j = 0, . . . , n − 1}, and π[k,m] ≡ ug[k,m],

denoting the restriction of policies in [k,m], 0 ≤ k ≤ m ≤ n − 1, define the conditional
expectation taken over the events G0,j , σ{xg0, . . . , x

g
j , u

g
0, . . . , u

g
j}maximized over the class

BRk(Qok)(xk−1, uk−1), k = j + 1, . . . , n, as follows [7, 15]:

(3.7)
Vj(u

g
[j,n−1],G0,j) , sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k
)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k)

+ αnhn(xgn)|G0,j

}
where EQπ

ν
{·|G0,j} denotes conditional expectation with respect to G0,j calculated on the

probability measure Qπ
ν . Then, Vj(u

g
[j,n−1],G0,j) satisfies the following dynamic program-

ming equation [15],

Vn(G0,n) = αnhn(xgn)(3.8)

Vj(u
g
[j,n−1],G0,j) = sup

Qj+1(·|xj ,uj)∈BRj+1
(Q0

j+1)(xj ,uj)

{
(3.9)

EQj+1(·|xj ,uj)

{
αjfj(x

g
j , u

g
j ) + Vj+1(ug[j+1,n−1],G0,j+1)

}}
where EQj+1(·|xj ,uj){·} denotes expectation with respect to Qj+1(dxj+1|K0,j).

Next, we present the dynamic programming recursion for the minimax problem. Let
Vj(G0,j) represent the minimax pay-off on the future time horizon {j, j + 1, ..., n} at time
j ∈ Nn+ defined by

(3.10)

Vj(G0,j) , inf
π∈ΠDF

j,n−1

sup
Qk(·|xk−1,uk−1)∈BRk

(Q0
k
)(xk−1,uk−1)

k=j+1,...,n

{

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j

}}
= inf
π∈ΠDF

j,n−1

Vj(u
g
[j,n−1],G0,j).

Then by reconditioning we obtain

(3.11)

Vj(G0,j) , inf
u∈Uad[j,n−1]

sup
Qk(·|xk−1,uk−1)∈BRk

(Q0
k
)(xk−1,uk−1)

k=j+1,...,n

{

EQπ
ν

{
αjfj(x

g
j , u

g
j ) + EQπ

ν

{ n−1∑
k=j+1

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j+1

}
|G0,j

}}
.

Hence, we deduce the following dynamic programming recursion

Vn(G0,n) = αnhn(xgn)(3.12)

Vj(G0,j) , inf
uj∈Uj(x)

sup
Qj+1(·|xj ,uj)∈BRj+1

(Q0
j+1)(xj ,uj)

{
(3.13)

EQj+1(·|xj ,uj)

{
αjfj(x

g
j , u

g
j ) + Vj+1(G0,j+1)

}}
.
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By applying the results of Section 2 to (3.12), (3.13) we obtain the following theorem.

THEOREM 3.7. Suppose there exist an optimal policy for Problem 3.6, and assume
Vj+1(·):X0,j+1×U0,j 7−→[0,∞) in (3.10) is bounded continuous in x∈Xj+1, j = 0, . . . , n−1.

1) The dynamic programming recursion is given by

Vn(G0,n) = αnhn(xgn)(3.14)

Vj(G0,j) = inf
uj∈Uj(x)

{
EQoj+1

(
αjfj(x

g
j , u

g
j ) + Vj+1(G0,j+1)|G0,j

)
(3.15)

+
Rj
2

(
sup

xj+1∈Xj+1

Vj+1(G0,j+1)− inf
xj+1∈Xj+1

Vj+1(G0,j+1)
)}
.

Moreover,

(3.16) Vj(G0,j) = inf
uj∈Uj(x)

EQ∗j+1

{
αjfj(x

g
j , u

g
j ) + Vj+1(G0,j+1)|G0,j

}
where, the optimal conditional distributions {Q∗j : j = 0, 1, . . . , n− 1} are given by

Q∗j+1

(
X+
j+1|x

j , uj
)

= Qoj+1(X+
j+1|x

j , uj) +
Rj+1

2
∈ [0, 1], (xj , uj)∈K0,j(3.17)

Q∗j+1

(
X−j+1|x

j , uj
)

= Qoj+1(X−j+1|x
j , uj)− Rj+1

2
∈ [0, 1], (xj , uj)∈K0,j(3.18)

Q∗j+1

(
A|xj , uj

)
= Qoj+1(A|xj , uj), ∀A⊆Xj+1\X+

j+1∪X
−
j+1, (xj , uj)∈K0,j(3.19)

and 2

X+
j+1 ,

{
xj+1 ∈ Xj+1:Vj+1(G0,j+1)= sup

{
Vj+1(G0,j+1):xj+1∈Xj+1

}}
(3.20)

X−j+1 ,
{
xj+1 ∈ Xj+1:Vj+1(G0,j+1)= inf

{
Vj+1(G0,j+1):xj+1∈Xj+1

}}
.(3.21)

2) The total pay-off is given by

(3.22) J0,n(π∗, Q∗i : i = 0, . . . , n− 1) = sup
Q0(·)∈BR0

(Qo)

EQ0

{
V0(G0,0)

}
.

Proof. 1) Consider (3.13) expressed in integral form

(3.23)

Vj(G0,j) = inf
uj∈Uj(x)

{
αjfj(xj , uj)

+ sup
Qj+1(·|xj ,uj)∈BRj+1

(Qoj+1)(xj ,uj)

∫
Vj+1(G0,j , z)Qj+1(dz|xj , uj)

}
.

By applying (2.5) we obtain (3.14), (3.15), while (3.17)-(3.21) follow as well.
2) By evaluating (3.10) at j = 0 we obtain (3.22). This completes the derivation.

By Theorem 3.7, the maximizing measure is given by (3.17)-(3.19), and it is a functional
of the nominal measure. At this stage we cannot claim that the maximizing measure is Marko-
vian, and hence the optimal strategy is not necessarily Markov. Therefore, the computation
of optimal strategies using non-Markov nominal controlled processes is computationally in-
tensive. Next, we restrict the minimax formulation to Markov controlled nominal processes.

2Note the notation Σ0 and Σ0 in Section 2 is identical to the notation X+
j+1 and X−j+1, respectively.



DYNAMIC PROGRAMMING SUBJECT TO TOTAL VARIATION DISTANCE AMBIGUITY 15

3.3.2. Dynamic Programming for Finite Horizon D-MCM Subject to Ambiguity.
Consider the Markov nominal controlled processes, based on Definition 3.3 (b), and define

Vj(u
g
[j,n−1],G0,j) , sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k
)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j

}
.

In view of Section 2, specifically, the relation between the maximizing distribution and
the nominal distribution (2.1)-(2.3), which also apply to conditional distributions, we de-
duce that the maximization conditional distribution Q∗i (dxi|xi−1, ui−1) is Markovian, hence
Q∗i (dxi|xi−1, ui−1) = Q∗i (dxi|xi−1, ui−1), ∀(xi−1, ui−1) ∈ K0,i−1. This observation can
be verified by checking expressions (3.17)-(3.19). Then we define

(3.24) Vj(u
g, x) , sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k
)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k)+αnhn(xgn)|x

}
.

Utilizing the above observations we obtain the analog of Theorem 3.7 for finite horizon D-
MCM, as follows.

Define the value function
(3.25)

Vj(x)= inf
π∈ΠDM

j,n−1

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k
)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k)+αnhn(xgn)|x

}
.

Then we obtain the following theorem.

THEOREM 3.8. Suppose there exists an optimal policy for Problem 3.6, for the class of
Markov Nominal Controlled Process of Definition 3.4 (b). Then the following hold:

1) If the infimum over feedback strategies in (3.25) exists it is Markov π ∈ ΠDM
0,n−1.

2) The value function Vj(x) satisfies the dynamic programming recursion

Vn(x) = αnhn(x), x ∈ Xn(3.26)
Vj(x) = inf

u∈Uj(x)
sup

Qj+1(·|x,u)∈BRj+1
(Qoj+1)(x,u)

(3.27)
EQj+1(·|x,u)

{
αjfj(x, u) + Vj+1(xj+1)

}
, x ∈ Xj .

3) Assume Vj+1(·) : Xj+1 → [0,∞) is bounded continuous in x ∈ Xj+1, j = 0, . . . , n−
1, then the dynamic programming recursion is given by

Vn(x) = αnhn(x), x ∈ Xn(3.28)

Vj(x) = inf
u∈Uj(x)

{
αjfj(x, u) +

∫
Xj+1

Vj+1(z)Qoj+1(dz|x, u)

(3.29)
+
Rj
2

(
sup

z∈Xj+1

Vj+1(z)− inf
z∈Xj+1

Vj+1(z)
)}
, x ∈ Xj .

Moreover,

(3.30) Vj(x) = inf
u∈Uj(x)

EQ∗j+1

{
αjfj(x

g
j , u

g
j ) + Vj+1(xj+1)|xj = x

}
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where the optimal conditional distribution {Q∗j (·|·, ·) : j = 0, 1, . . . , n− 1} is given by

Q∗j+1

(
X+
j+1|xj , uj

)
= Qoj+1(X+

j+1|xj , uj) +
Rj+1

2
∈ [0, 1], (xj , uj) ∈ Kj(3.31)

Q∗j+1

(
X−j+1|xj , uj

)
= Qoj+1(X−j+1|xj , uj)−

Rj+1

2
∈ [0, 1], (xj , uj) ∈ Kj(3.32)

Q∗j+1 (A|xj , uj) = Qoj+1(A|xj , uj), ∀A⊆Xj+1\X+
j+1∪X

−
j+1, (xj , uj) ∈ Kj(3.33)

and

X+
j+1 ,

{
xj+1 ∈ Xj+1:Vj+1(xj+1)= sup{Vj+1(xj+1):xj+1∈Xj+1}

}
(3.34)

X−j+1 ,
{
xj+1 ∈ Xj+1:Vj+1(xj+1)= inf{Vj+1(xj+1):xj+1∈Xj+1}

}
.(3.35)

4) The total minimax pay-off is

(3.36) J0,n(g∗, {Q∗i }ni=0) = sup
Q0(·)∈BR0

(Qo0)

EQ0

{
V0(x0)

}
.

Proof. 1) Since the nominal controlled process is Markov, from Theorem 3.7, (3.17)-
(3.19) we deduce that the maximizing measure is also Markov. By the same arguments as
in [15] we can show that if the infimum over u ∈ ΠDF

0,n−1 in (3.25) exists, then it is Markov,
and hence u ∈ ΠDM

0,n−1.
2) By reconditioning we deduce that, the value function satisfies the dynamic program-

ming equation (3.26), (3.27).
3) By definition, (3.27) is also equivalent to

Vj(x) = inf
u∈U(x)

{
αjfj(x, u) + sup

Qj+1(·|x,u)∈BRj+1
(Qoj+1)(x,u)

∫
Xj+1

Vj+1(z)Qj+1(dz|x, u)
}
.

Hence, by applying the results of Section 2 we obtain (3.28)-(3.33).
4) By evaluating (3.25) at j = 0 we obtain (3.36). This completes the derivation.

REMARK 3.9. We make the following observations regarding Theorem 3.8.
(a) The dynamic programming equation (3.28), (3.29) involves in its right hand side the os-
cillator seminorm of Vj+1(·).
(b) The dynamic programming recursion (3.28), (3.29) can be applied to controlled process
with continuous alphabets and to controlled process with finite or countable alphabets, such
as Markov Decision models.

Next, we show that for any j ∈ Nn−1, the minimax pay-off Vj(x) ≡ V Rj (x) as a function
of Rj is non-decreasing and concave.

LEMMA 3.10. Suppose the conditions of Theorem 3.8 hold and in addition Rj = R,
j = 1, . . . , n. The minimax pay-off V Rj (x) ≡ Vj(x) defined by (3.25) is a non-decreasing
concave function of R.

Proof. Consider two values for R1, R2 ∈ R+ such that 0 ≤ R1 ≤ R2. Since

BR1(Qok)(xk−1, uk−1) ⊆ BR2(Qok)(xk−1, uk−1)

then for every Qk(·, xk−1, uk−1) ∈ BR1(Qok)(xk−1, uk−1) we have Qk(·, xk−1, uk−1) ∈
BR2(Qok)(xk−1, uk−1), k = j + 1, . . . , n − 1. Hence, V R

1

j (x) ≤ V R
2

j (x) and thus, V Rj (x)
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is a non-decreasing function of R ∈ R+.
Next, for a fixed π ∈ ΠDM

j,n−1 consider two points (R1, V π,R
1

j ), (R2, V π,R
2

j ) such that
{Q1

k(·|xk−1, uk−1) : k = j + 1, . . . , n} achieves the supremum in (3.24) for R1, and
{Q2

k(·|xk−1, uk−1) : k = j + 1, . . . , n} achieves the supremum in (3.24) for R2. Then

||Q1
k(·|xk−1, uk−1)−Qok(·|xk−1, uk−1)||TV ≤ R1, k = j + 1, . . . , n− 1

||Q2
k(·|xk−1, uk−1)−Qok(·|xk−1, uk−1)||TV ≤ R2, k = j + 1, . . . , n− 1.

For any λ ∈ (0, 1) we have

||λQ1
k(·|xk−1, uk−1) + (1− λ)Q2

k(·|xk−1, uk−1)−Qok(·|xk−1, uk−1)||TV
≤ λ||Q1

k(·|xk−1, uk−1)−Qok(·|xk−1, uk−1)||TV + (1− λ)||Q2
k(·|xk−1, uk−1)(3.37)

−Qok(·|xk−1, uk−1)||TV ≤ λR1 + (1− λ)R2, k = j + 1, . . . , n.

Define Q∗k(·|xk−1, uk−1) , λQ1
k(·|xk−1, uk−1) + (1 − λ)Q2

k(·|xk−1, uk−1), R = λR1 +
(1 − λ)R2. By (3.37), Q∗k ∈ BR(Qok)(xk−1, uk−1), k = j + 1, . . . , n. Define the unique
probability measure

Q∗j+1,n(dxn||un),λ⊗nk=j+1 Q
1
k(dxk|xk−1, uk−1)+(1−λ)⊗nk=j+1 Q

2
k(dxk|xk−1, uk−1).

Then,

V π,Rj (x) ≥
∫ ( n−1∑

k=j

fk(xk, uk) + hn(xn)
)
Q∗j+1,n(dxn||un)).

Hence,

V π,Rj (xj) = RHS of (3.24)

≥ λ
∫ ( n−1∑

k=j

fk(xk, uk) + hn(xn)
)
⊗nk=j+1 Q

1
k(dxk|xk−1, uk−1)

+(1− λ)

∫ ( n−1∑
k=j

fk(xk, uk) + hn(xn)
)
⊗nk=j+1 Q

2
k(dxk|xk−1, uk−1)

= λV π,R
1

j (xj) + (1− λ)V π,R
2

j (xj), j = 0, . . . , n− 1.

Hence, for any π ∈ ΠDM
j,n−1, V π,Rj (xj) is a concave function of R, and thus it is also concave

for the π ∈ ΠDM
j,n−1, which achieve the infimum in (3.25).

This concavity property of the pay-off is also verified in the examples presented in Sec-
tion 4.

REMARK 3.11. The previous results apply to randomized strategies as well.

3.4. Minimax Dynamic Programming for Infinite Horizon D-MCM Subject to Am-
biguity. In this section, we consider the infinite horizon version of the finite horizon D-
MCM, and we derive similar results. In addition, we show that the operator associated with
the dynamic programming equation is contractive, and we introduce a new policy iteration
algorithm.

Consider the problem of minimizing the finite horizon cost

sup
Qk(·|x,u)∈BRk

(Qo
k
)(x,u)

k=0,1,...,n

EQπ
ν

{ n−1∑
j=0

αjf(xgj , u
g
j )
}

(3.38)
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with 0 < α < 1. By Theorem 3.8 the value function of (3.38), denoted by Vj(x), j =
0, . . . , n, x ∈ Xj satisfies the dynamic programming equations (3.28), (3.29) with hn = 0,
Rj = R, Xj = X , Uj = U , Uj(x) = U(x) and Qoj(·|·) = Qo(·|·) . Define vi(x) =

αi−nVn−i(x), where 0 ≤ i ≤ n is the time to go, (see [20]). Then,

v0(x)=0(3.39)

vi(x)= inf
u∈U(x)

{
f(x, u)+α

∫
X
vi−1(z)Qo(dz|x, u)+α

R

2

(
sup
z∈X

vi−1(z)− inf
z∈X

vi−1(z)
)}
.(3.40)

In contrast with finite horizon case the one given by (3.39)-(3.40) proceeds from lower to
higher values of indices i. The dynamic programming for the discounted cost

EQπ
ν

{ ∞∑
j=0

αjf(xgj , u
g
j )
}

(3.41)

is given by

(3.42) v∞(x) = inf
u∈U(x)

{
f(x, u)+α

∫
X
v∞(z)Qo(dz|x, u)+α

R

2

(
sup
z∈X

v∞(z)− inf
z∈X

v∞(z)
)}
.

The maximizing conditional distribution is

Q∗
(
X+|x, u

)
= Qo(X+|x, u) +

R

2
∈ [0, 1], (x, u) ∈ K(3.43)

Q∗
(
X−|x, u

)
= Qo(X−|x, u)− R

2
∈ [0, 1], (x, u) ∈ K(3.44)

Q∗ (A|x, u) = Qo(A|x, u), ∀A ⊆ X \ X+ ∪ X−, (x, u) ∈ K(3.45)

where

X+ ,
{
x∈X : V (x) = sup{V (x) : x∈X}

}
(3.46)

X− ,
{
x∈X : V (x) = inf{V (x) : x∈X}

}
.(3.47)

Next, we show that the operator in the right hand side of (3.42) is contractive.

LEMMA 3.12. Let L be the class of all measurable functions V : X −→ R, with finite
norm ||V || , maxx∈X |V (x)|, and T : L 7−→ L defined by
(3.48)

(TV )(x) = inf
u∈U(x)

{
f(x, u) + α

∫
X
V (z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V (z)− inf
z∈X

V (z)
)}
.

If V ∈ BC+(X ) and supz∈X V (z), infz∈X V (z) are finite, then T is a contraction.
Proof. For V1, V2 ∈ L,

(TV1)(x)− (TV2)(x) =

inf
u∈U(x)

{
f(x, u) + α

∫
X
V1(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

− inf
u∈U(x)

{
f(x, u) + α

∫
X
V2(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}
.
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Let

v , arg inf
u∈U(x)

{
f(x, u) + α

∫
X
V2(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}
.

Then,

(TV1)(x)− (TV2)(x)

= inf
u∈U(x)

{
f(x, u) + α

∫
X
V1(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

−
{
f(x, v) + α

∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

≤
{
f(x, v) + α

∫
X
V1(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

−
{
f(x, v) + α

∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

(a)
=
{
α

∫
X
V1(z)QV1(dz|x, v)

}
−
{
α

∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

(b)

≤
{
α

∫
X
V1(z)QV1(dz|x, v)

}
−
{
α

∫
X
V2(z)QV1(dz|x, v)

}
= α

∫
X

(V1(z)− V2(z))QV1(dz|x|v) ≤ α sup
z∈X
|V1(z)− V2(z)| = α||V1 − V2||

where (a) is obtained by applying (2.1), with ` ≡ αV1, ν∗(·) ≡ QV1(·|·), µ(·) ≡ Qo(·|·),
and (b) is obtained by first apply (2.1) as in (a) with QV2 and then replace QV2 by QV1

which is suboptimal hence, the upper bound. By reversing the roles of V1 and V2 we get
(TV2)(x)− (TV1)(x) ≤ α||V2−V1||. Hence, |(TV1)(x)− (TV2)(x)| ≤ α||V1−V2|| for all
x ∈ X , and

||TV1 − TV2|| , max
x∈X
|(TV1)(x)− (TV2)(x)| ≤ α||V1 − V2||

which implies that the operator T : L 7−→ L is a contraction.

Utilizing Lemma 3.12 we obtain the following theorem which is analogous to the classi-
cal result given in [20].

THEOREM 3.13. Assume v∞ ∈ BC+(X ) and supz∈X v∞(z), infz∈X v∞(z) are finite.
(1) The dynamic programming equation

v∞(x) = inf
u∈U(x)

{
f(x, u) + α

∫
X
v∞(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

v∞(z)− inf
z∈X

v∞(z)
)}

has a unique solution.
(2) Moreover,

v∞(x) = inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj , uj)|x0 = x
}
.

(3) The mapping T defined by

(TV )(x) = inf
u∈U(x)

{
f(x, u) + α

∫
X
V (z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V (z)− inf
z∈X

V (z)
)}
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is a contraction mapping with respect to the norm ||V || = maxx∈X |V (x)|.
(4) For any V , limn→∞ ||TnV − v∞|| = 0 and so

lim
n−→∞

(TnV )(x) = v∞(x), for all x ∈ X .

Proof. (1) Follows from [20] (Theorem 6.3.6, part (a)).
(2) We need to show that v∞(x) is the minimum value of EQ∗

{∑∞
j=0 α

jf(xj , uj)
}

starting in state x0 = x. Recall that 0 ≤ f(x, u) ≤ M for all x ∈ X , u ∈ U(x). Clearly,
with x0 = x and for all n,

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj , uj)
}
≥ inf
g∈U(x)

EQ∗
{ n−1∑
j=0

αjf(xj , uj)
}

= vn(x).

Hence, inf
g∈U(x)

EQ∗
{∑∞

j=0 α
jf(xj , uj)

}
≥ lim
n→∞

vn(x) = v∞(x). Conversely, for all n

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj , uj)
}
≤ inf
g∈U(x)

EQ∗
{ n−1∑
j=0

αjf(xj , uj)
}

+

∞∑
j=n

αjM=vn(x)+
αnM

1− α

and so

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj , uj)
}
≤ lim
n→∞

[
vn(x) +

αnM

1− α

]
= v∞(x).

Hence, inf
g∈U(x)

EQ∗
{∑∞

j=0 α
jf(xj , uj)

}
= v∞(x).

(3) This follows from Lemma 3.12.
(4) Follows from [20] (Theorem 6.3.6, part (b)).

3.4.1. Policy Iteration Algorithm. Next, we present a modified version of the classical
policy iteration algorithm [15]. From part 4 of Theorem 3.8, the policy improvement and pol-
icy evaluation steps of a policy iteration algorithm must be performed using the maximizing
conditional distribution obtained under total variation distance ambiguity constraint. Hence,
in addition to the classical case, in which the policy improvement and evaluation steps are
performed using the nominal conditional distribution, here, under the assumption that f(·) is
bounded and non-negative, by invoking the results developed in earlier sections we propose
a modified algorithm which is expected to converge to a stationary policy in a finite number
of iterations, since both state space X and control space U are finite sets, and that at each
iteration a better stationary policy will be obtained.

First, we introduce some notation. Since the state space X is a finite set, with say, n
elements, any function V : X −→ Rn may be represented by vector in Rn defined by

V (x) ,
(
V (x1) · · · V (xn)

)T ∈ Rn.

Write z ≤ y, if z(i) ≤ y(i), for ∀i ∈ Zn , {1, 2, . . . , n}; and z < y if z ≤ y and z 6= y. For
a stationary control law g, let

f(g) =
(
f(x1, g(x1)) · · · f(xn, g(xn))

)T
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and define each entry of the transition matrixQo(g)∈Rn×n byQoij(g) = Qo(xj |xi, g(xi)) ≡
Qg,o(xi|xj). Rewrite (3.48) (with supz∈X V (z) denoting componentwise supremum, and
similarly for the infimum) as

TV = min
g∈Rn

{
f(g) + αQo(g)V + α

R

2

{
sup
z∈X

V (z)− inf
z∈X

V (z)
}}

which by Theorem 3.8 is equivalent to

TV = min
g∈Rn

{
f(g) + αQ∗(g)V

}
where Q∗(g) ∈ Rn×n and is given by (3.43)-(3.45). Note that, the minimization is taken
componentwise, i.e., g(x1) is the minimum of the first component of f(g) + αQ∗(g)V and
so on. For each stationary policy g, define T (g) : Rn −→ Rn by

T (g)V = f(g) + αQ∗(g)V.

Then, T (g) is a contraction mapping on the space of bounded continuous functions to itself,
and from Theorem 3.13 it follows that

V (g) = T (g)V = f(g) + αQ∗(g)V

has a unique solution V (g) ∈ Rn. Next, we give the policy iteration algorithm.

ALGORITHM 3.14 (Policy Iteration). Consider the notation above.

Initialization. Let m = 0. Solve the equation

f(g0) + αQo(g0)VQo(g0) = VQo(g0) for VQo(g0) ∈ Rn.

Identify the support sets using (3.46)-(3.47) and the analogue of Σk of Section 2, and con-
struct the matrix Q∗(g0) using (3.43)-(3.45). Solve the equation

f(g0) + αQ∗(g0)VQ∗(g0) = VQ∗(g0) for VQ∗(g0) ∈ Rn.

1. For m = m+ 1 while min
g∈Rn

{
f(g) + αQ∗(g)VQ∗(gm−1)

}
< VQ∗(gm−1) do:

(a) (Policy Improvement) Let gm ∈ Rn be such that

f(gm) + αQ∗(gm)VQ∗(gm−1) = min
g∈Rn

{
f(g) + αQ∗(g)VQ∗(gm−1)

}
.

(b) (Policy Evaluation) Solve the following equation for VQo(gm) ∈ Rn

f(gm) + αQo(gm)VQo(gm) = VQo(gm).

Identify the support sets using (3.34)-(3.35), and construct the matrix Q∗(gm) using
(3.31)-(3.33). Solve the equation

f(gm) + αQ∗(gm)VQ∗(gm) = VQ∗(gm) for VQ∗(gm) ∈ Rn.

2. Set g∗ = gm.
In the next section, we illustrate through examples how the theoretical results obtained

in preceding sections are applied.
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4. Examples. In Section 4.1 we illustrate an application of the finite horizon minimax
problem to the well-known machine replacement example, and in Section 4.2 we illustrate
an application of the infinite horizon minimax problem for discounted cost by employing the
policy iteration algorithm.

4.1. Finite Horizon MCM. Consider a machine replacement example inspired by [5].
Specifically, we have a machine that is either running or is broken down. If it runs throughout
one week, it makes a profit ofe 100 for that week. If it fails during the week, the profit is zero
for that week. If it is running at the start of the week and we perform preventive maintenance,
the probability that it will fail during the week is 0.4. If we do not perform such maintenance,
the probability of failure is 0.7. The maintenance cost is set at e 20. When the machine is
broken down at the start of the week, it may either be repaired at a cost of e 40, in which case
it will fail during the week with a probability of 0.4, or it may be replaced at a cost of e 150
by a new machine that is guaranteed to run through its first week of operation. Assume that
after N>1 weeks the machine, irrespective of its state, is scrapped with no cost.

The system dynamics is of the form xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,
where the state xk is an element of a space Sk = {R,B}, R = machine running, B =
machine broken, the control uk is an element of a space Uk(xk), Uk(R) = {m,nm}, m =
maintenance, nm = no maintenance, Uk(B) = {r, s}, r = repair, s = replace. The random
disturbance has a nominal conditional distribution wk ∼ µ(·|xk, uk).

Such a system can be described in terms of the discrete-time system equation xk+1 = wk,
where the nominal probability distribution of wk is given by

µ(wk = R|xk = R, uk = m) = 0.6, µ(wk = B|xk = R, uk = m) = 0.4,

µ(wk = R|xk = R, uk = nm) = 0.3, µ(wk = B|xk = R, uk = nm) = 0.7,

µ(wk = R|xk = B, uk = r) = 0.6, µ(wk = B|xk = B, uk = r) = 0.4,

µ(wk = R|xk = B, uk = s) = 1, µ(wk = B|xk = B, uk = s) = 0

and the input costs Cu are given by: if u = m then Cm = e 20, if u = nm then Cnm =
e 0, if u = r then Cr = e 40, and if u = s then Cs = e 150. The cost per stage is
gk(xk, uk, wk) = Cuk if wk = R, and gk(xk, uk, wk) = Cuk + 100 if wk = B. Since
it is assumed that after N weeks the machine, irrespective of its state, is scrapped without
incurring any cost the terminal cost is gN (R) = gN (B) = 0.

The dynamic programming algorithm for the minimax problem subject to total variation
distance uncertainty is given by

VN (xN ) = 0(4.1)

Vk(xk) = min
uk∈Uk(xk)

max
ν(dwk|xk,uk):||ν(·|xk,uk)−µ(·|xk,uk)||TV ≤R

{
E
{
gk(xk, uk, wk) + Vk+1(f(xk, uk, wk))

}}
(4.2)

= min
uk∈Uk(xk)

max
ν(dwk|xk,uk):||ν(·|xk,uk)−µ(·|xk,uk)||TV ≤R

E
{
`k(xk, uk, wk)

}
where `k(xk, uk, wk) = gk(xk, uk, wk) + Vk+1(wk), k = 0, 1, . . . , N − 1. To adress the
maximization problem in (4.2), for each k = 0, 1, . . . , N − 1, xk ∈ {R,B} and uk ∈
{m,nm, r, s}, define the maximum and minimum values of `(xk, uk, wk) by

`max(xk, uk) , max
wk∈{R,B}

`(xk, uk, wk), `min(xk, uk) , min
wk∈{R,B}

`(xk, uk, wk)
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and its corresponding support sets by Σ0={wk∈{R,B}:`(xk, uk, wk)=`max(xk, uk)}, and
Σ0={wk∈{R,B}:`(xk, uk, wk)=`min(xk, uk)}. By employing (2.5), the maximizing con-
ditional probability distribution of the random parameter wk is given by

α = min
(R

2
, 1− µ(Σ0|xk, uk)

)
(4.3a)

ν∗(Σ0|xk, uk) = µ(Σ0|xk, uk) + α, ν∗(Σ0|xk, uk) =
(
µ(Σ0|xk, uk)− α

)+

.(4.3b)

Based on this formulation, the dynamic programming equation is given by

VN (xN ) = 0(4.4)

Vk(xk) = min
uk∈Uk(xk)

Eν∗(·|·,·)
{
gk(xk, uk, wk) + Vk+1(f(xk, uk, wk))

}
.(4.5)

We assume that the planning horizon is N = 3. The optimal cost-to-go and the optimal
control policy, for each week and each possible state, as a function ofR ∈ [0, 2] are illustrated
in Figure 4.1. Clearly, Figure 4.1a depicts that the optimal cost-to-go is a non-decreasing
concave function of R as stated in Lemma 3.10.

In addition, the optimum solution for two possible values of R and for each week re-
sults in optimal control policies as depicted in Table 4.1. By setting R=0, we choose to
calculate the optimal control policy when the true conditional probability ν(·|xk, uk) =
µ(·|xk, uk), k=0, 1, 2. This corresponds to the classical dynamic programming algorithm.
By setting R=0.85, we choose to calculate the optimal control policy when the true condi-
tional distribution ν(·|xk, uk) 6= µ(·|xk, uk), k=0, 1, 2. Taking into consideration the max-
imization (that is, by setting R>0) the dynamic programming algorithm results in optimal
control policies which are more robust with respect to uncertainty, but with the sacrifice of
low present and future costs. In cases in which we need to balance the desire for low costs
with the undesirability of scenarios with high uncertainty, we must choose the appropriate
value of R by using Figure 4.1a.

Stock
Week.0 Week.1 Week.2

Cost-to-go Optimal Cost-to-go Optimal Cost-to-go Optimal
Policy Policy Policy

R = 0
R 196 m 128 m 60 m
B 216 r 148 r 80 r

R = 0.85
R 340 m 221 m 100 nm
B 360 r 241 r 122 r

Table 4.1: Dynamic Programming Algorithm Results

4.2. Infinite Horizon D-MCM. Here, we illustrate an application of the infinite horizon
minimax problem for discounted cost, by considering the stochastic control system shown in
Figure 4.2a, with state space X = {1, 2, 3} and control set U = {u1, u2}.

Assume the nominal transition probabilities are given under controls u1 and u2 by

Qo(u1) =
1

9

 3 1 5
4 2 3
1 6 2

 , Qo(u2) =
1

9

 1 2 6
4 2 3
4 1 4

(4.6)
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(a)

(b)

Fig. 4.1: (a) Optimal Cost-to-Go; (b) Optimal Control Policy (“m”= maintenance, “nm= no
maintenace”, “r=repair”, “s=replace”).

the discount factor is α = 0.9, the total variation distance radius is R = 6
9 , and the cost

function under each state and action is

f(1, u1) = 2, f(2, u1) = 1, f(3, u1) = 3, f(1, u2) = 0.5, f(2, u2) = 3, f(3, u2) = 0.
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Using policy iteration of Section 3.3, with initial policies g0(1) = u1, g0(2) = u2,
g0(3) = u2, the algorithm converge to the following optimal policy and value after two
iterations.

g∗ = g2 ,

g2(1)
g2(2)
g2(3)

 =

u2

u1

u2

 , VQ∗(g
∗) = VQ∗(g2) ,

VQ∗(1)
VQ∗(2)
VQ∗(3)

 =

6.79
7.43
6.32

 .

Figure 4.2b depicts the optimal value functions for all possible values of R, and shows that,
the value functions are non-decreasing and concave functions of R as stated in Lemma 3.10.

(a) (b)

Fig. 4.2: (a) Transition Probability Graph; (b) Optimal Value as a Function of Total Variation
Parameter.

5. Conclusions. In this paper, we examined the optimality of stochastic control strate-
gies via dynamic programming, when the ambiguity class is described by the total variation
distance between the conditional distribution of the controlled process and the nominal condi-
tional distribution. The problem is formulated using minimax strategies in which the control
process seeks to minimize the pay-off while the controlled process seeks to maximize it over
the total variation ambiguity class. By using concepts from signed measures a closed form ex-
pression of the maximizing measure is derived. It is then employed to obtain a new dynamic
programming recursion which, in addition to the standard terms, includes the oscillator semi-
norm of the value function, while for the infinite horizon case a new discounted dynamic
programming equation is obtained. It is shown that the dynamic programming operator is
contractive, and a new policy iteration algorithm is developed for computing the optimal
stochastic control strategies. Finally, we illustrate through examples the applications of our
results.
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