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ABSTRACT. We propose efficient algorithms based on a band-limited version of 2D synchrosqueezed transforms

to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze atomic

crystal images as an assemblage of non-overlapping segments of 2D general intrinsic mode type functions,

which are superpositions of non-linear wave-like components. In particular, crystal defects are interpreted as

the irregularity of local energy; crystal rotations are described as the angle deviation of local wave vectors from

their references; the gradient of a crystal elastic deformation can be obtained by a linear system generated by

local wave vectors. Several numerical examples of synthetic and real crystal images are provided to illustrate the

efficiency, robustness, and reliability of our methods.

1. INTRODUCTION

In materials science, crystal image analysis on a microscopic length scale has become an important re-

search topic recently [4, 5, 12, 14, 24–27, 38]. The development of image acquisition techniques (such as

high resolution transmission electron microscopy (HR-TEM) [18]) and the advancement of atomic simu-

lation of molecular dynamics [1] or mean field models like phase field crystals [11, 13] create data of large

scale crystalline solids with defects at an atomic resolution. This provides unprecedented opportunities

in understanding materials properties at a microscopic level. Given that defects such as dislocations and

grain boundaries are of crucial importance to materials properties, it is essential to have efficient tools to

analyze large scale images and to extract information about defects in the system. Previously, this was done

through analyzing the microscopic image manually; this is becoming impractical due to the extraordinarily

large magnitude of the measurements and simulations we are dealing with nowadays, in particular, in the

case of analyzing a time series of crystal images during an evolution process. Therefore, this calls for the

development of efficient and automatic crystal image analysis tools.

In this work, we will limit our scope to 2D images of (slices of) polycrystalline materials and aim at ex-

tracting mesoscopic and microscopic information from the given images. This involves the identification

of point defects, dislocations, deformations, grains and grain boundaries. Grains are material regions that

are composed of a single crystal, possibly with different orientations (which will be referred as crystal rota-

tions later, since we are working in 2D); they are usually slightly deformed due to defects and interactions

with neighboring grains at grain boundaries. Grains might contain point defects like vacancies and inter-

stitials, for which we would like identify their positions. Crystal analysis should also be able to locate cores

and Burgers vectors for dislocations, which play an important role in crystal plasticity. We refer the readers

to [19] for more background details of polycrystals and crystal defects. Our proposed method provides a

reliable and efficient way for extracting this information from crystal images.
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1.1. Our contribution. Due to the lattice structure on the microscopic scale, crystal images are highly os-

cillatory (see Figure 1 (right) as an example). Inspired by this, we introduce a new characterization of grains

by studying 2D general shape functions and 2D general intrinsic mode type functions, which are super-

positions of non-linear and non-stationary wave-like components (more precise definitions will be given

in Section 2). Using these two concepts, a crystal image can be considered as an assemblage of 2D gen-

eral intrinsic mode type functions with non-overlapping supports, specified propagating directions and

smoothly varying local wave vectors (see Figure 1 (left) as an example). In this model, crystal defects and

grain boundaries can be detected through the discontinuity and irregularity of these components; crystal

rotations and crystal deformations are estimated from a linear system provided by local wave vectors of

underlying wave-like components.

FIGURE 1. A phase field crystal (PFC) image and its zoomed-in image. Courtesy of

Benedikt Wirth [14].

The study of superpositions of non-linear and non-stationary wave-like components has been an ac-

tive line of analysis in the past two decades. The synchrosqueezing technique proposed in [10] is applied

to analyze and decompose superpositions of 1D signals using the synchrosqueezed wavelet transform in

[9]. Following the same methodology, synchrosqueezed wave packet transforms [35] and synchrosqueezed

curvelet transforms [36] are proposed to analyze and decompose superpositions of 2D components. 2D

synchrosqueezed transforms give a concentrated spectrum on the phase (spatial frequency) plane, which

can help to obtain information like local wave vectors and a spectral density in the 4D phase space domain.

Recent study on the robustness of these synchrosqueezed transforms in [32] supports their applications

to real problems where noise is ubiquitous. These transforms have been applied to analyze seismic wave

images with great success in [35, 36]. The numerical experiements in [34] show that these transforms have

better statistical stability than the window Fourier transform in the application of canvas thread counting.

In this paper, we propose efficient algorithms to analyze crystal images by adapting 2D synchrosqueezed

transforms to the problems at hand. First, 2D synchrosqueezed transforms are applied to obtain the syn-

chrosqueezed energy distributions of underlying wave-like components. Second, since the synchrosqueezed

energy is concentrating on local wave vectors, these local wave vectors can be estimated by averaging the

supports of the synchrosqueezed energy distribution. Third, the irregularity of each wave-like component

can be measured by the irregularity of its corresponding synchrosqueezed energy distribution. Finally, with

such information ready, the crystal image can be analyzed as discussed previously.
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1.2. Previous works. One important class of methods for crystal image analysis is variation based. General

variational methods for texture classification and segmentation have been extensively studied (see [3, 8, 20,

23, 29, 30], for example).

The method in [4] proposed to segment crystal images into disjoint regions with different constant crys-

tal rotations using the Chan-Vese level-set approximation in [8] of the piecewise constant Mumford-Shah

segmentation in [21]. The method involves search for a global deformation φ :Ω→ R2 acting on all grains.

To speed up the expensive optimization in [4], the authors in [5] proposed a convex relaxation via functional

lifting and the authors in [25] proposed a more efficient version by penalizing the segmentation interfaces

according to jumps in crystal rotations. Although a corresponding GPU implementation of these methods

is very fast, a bottleneck still exists due to the large memory cost coming from the additional dimension for

the functional lifting process.

More recently, Matt Elsey and Benedikt Wirth [12, 14] proposed a variational model based on finding a

tensor map, the gradient of the inverse deformation ∇(φ−1) :Ω→ R2×2 and developed an efficient L1 −L2

regularization scheme. Crystal defects, rotations, grain boundaries and strain can be recovered by the in-

formation hidden in ∇(φ−1). In addition, a corresponding GPU implementation is proposed and it shortens

the runtime for a 10242 image to about 40 seconds.

Another class of methods for texture classification and segmentation are based on a local, direction sen-

sitive frequency analysis [24, 28]. [28] constructed an over-complete wavelet frame for texture feature ex-

traction and segmented textures in a reduced feature space by clustering techniques. However, the frame

is not sensitive to crystal rotations and local defects. Hence, it cannot distinguish two grains with a small

angle boundary and cannot detect local defects. This method is neither capable of providing estimates of

crystal deformations. The work [24] develops a heuristic method that uses a “wavelet like” patch according

to a given reference crystal and quantify the similarity between local crystal patches with the reference. By

looking up a prefabricated table of crystal rotation angles and their corresponding similarity, crystal rota-

tions of each crystal patch can be estimated. However, in the case of deformed crystals, this method may

be problematic.

The method to be presented in this paper follows a different spirit from those methods. It is based on

a novel model characterizing deformed periodic textures using 2D general intrinsic mode type functions

and an efficient phase space representation method, 2D synchrosqueezed transforms proposed recently.

An analytic characterization of periodic textures allows rigorous analysis and indeed it is proved that 2D

synchrosqueezed transforms can estimate the local wave vectors of underlying wave-like components of

textures (grains in this paper) precisely under certain conditions. Most of all, non-linear deformations of

crystals are available by solving a simple linear system provided by local wave vectors.

The rest of this paper is organized as follows. In Section 2, we introduce a crystal image model on

the microscopic length scale based on 2D general intrinsic mode type functions and prove that 2D syn-

chrosqueezed transforms are able to estimate the local properties of the underlying wave-like components

of general intrinsic mode type functions. In Section 3, two efficient algorithms based on 2D discrete band-

limited synchrosqueezed transforms are proposed to detect crystal defects, estimate crystal rotations and

elastic deformations. In Section 4, several numerical examples of synthetic and real crystal images are pro-

vided to demonstrate the robustness and the reliability of our methods. Finally, we conclude with some

discussion on future works in Section 5.
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2. CRYSTAL IMAGE MODELS AND THEORY

In this section, at first, we describe a new model to characterize atomic crystal images. Inspired by the

periodicity of crystal images, 2D general intrinsic mode type functions are defined as a key ingredient of the

characterization of a perfect crystal image. Second, 2D synchrosqueezed transforms are briefly recalled to

analyze underlying wave-like components in 2D general intrinsic mode type functions. We will prove that

the 2D synchrosqueezed transforms accurately estimate the local wave vectors of these wave-like compo-

nents, and hence provides a useful tool for crystal image analysis.

2.1. 2D general intrinsic mode type functions. A perfect crystal image, i.e., a single undeformed grain

without defects, is characterized by a periodic function with two space variables. We will limit ourselves

to simple crystals (Bravais lattices). In 2D space domain, there are five kinds of Bravais lattices: oblique,

rectangular, centered rectangular (rhombic), hexagonal, and square [19]. The lattices and corresponding

unit cells are shown in Figure 2. For each lattice type, through an affine transform, we can transform the

|a | = |a |, φ = 90°1 2|a | = |a |, φ = 120°1 2

a1

|a | ≠ |a |, φ = 90°1 2 |a | ≠ |a |, φ ≠ 90°1 2
|a | ≠ |a |, φ ≠ 90°1 2

1 2 3

54

φ

a1

a2

φ
a2

φ

a1

a2

φ

a1

a2φ

a1

a2

FIGURE 2. Five fundamental 2D Bravais lattices: 1 oblique, 2 rectangular, 3 centered rect-

angular (rhombic), 4 hexagonal, and 5 square. Courtesy of Wikipedia.

unit cell to a square. As an example, for the hexagonal lattice, the transform is given by

x 7→ F x; F =
(

1 −
p

3
3

0 2
p

3
3

)
.

Hence, by introducing the matrix F , we can set up a reference configuration function as

f (x) =αS(2πF x)+ c,

for x ∈ R2. Here, S(x) is a 2π periodic general shape function (the rigorous definition is given later), which

has a unit L2([−π,π]2)-norm and a zero mean. α and c are two parameters.
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Allowing a rotation and a translation, a crystal image function for an undeformed grain is then modeled

by

f (x) =αS(2πN F (Rθx + z))+ c,

where N is the reciprocal of the lattice parameter, Rθ is the rotation matrix

Rθ =
(

cosθ −sinθ

sinθ cosθ

)

corresponding to a rotation angle θ, and z ∈ R2 gives the translation. In the case of multi-grains, it is ex-

pected that

f (x) =
M∑

k=1
χΩk (x)

(
αk Sk

(
2πNk Fk (Rθk

x + zk )
)+ ck

)
,

where χΩk (x) is the indicator function defined as

(1) χΩk (x) =
1, x ∈Ωk

0, otherwise,

andΩk is the domain of the kth grain withΩk ∩Ω j =;, if k 6= j . With these notations, grain boundaries are

interpreted as ∪∂Ωk (in real crystal images, grain boundaries would be a thin transition region instead of

a sharp boundary ∪∂Ωk ). In the presence of local defects, e.g., an isolated defect and a terminating line of

defects, ∪∂Ωk may include irregular boundaries and may contain point boundaries inside ∪Ωk .

Considering an uneven distribution of atoms on the mesoscopic length scale and possible reflection of

light when generating crystal images, the amplitudesαk and the global trends ck are assumed to be smooth

functions αk (x) and ck (x), respectively, in the domainΩk .

Notice that the rotation matrix Rθk
and the translation position zk act as a linear transformationψk from

x to ψk (x) = R−θk
(x − zk ). In a more complicated case, a smooth non-linear deformation ψk : R2 → R2

transferring an atom from position x to ψk (x) is introduced. Let φk (x) = ψ−1
k (x) defined in Ωk , then the

crystal image function becomes

(2) f (x) =
M∑

k=1
χΩk (x)

(
αk (x)Sk

(
2πNk Fkφk (x)

)+ ck (x)
)

.

This motivates the definition of 2D general shape functions and 2D general intrinsic mode type functions

as follows.

Definition 1 (2D general shape function). The 2D general shape function class SM consists of periodic

functions S(x) with a periodicity (2π,2π), a unit L2([−π,π]2)-norm, and an L∞-norm bounded by M satis-

fying the following conditions:

(1) The 2D Fourier series of S(x) is uniformly convergent;

(2)
∑

n∈Z2 |Ŝ(n)| ≤ M and Ŝ(0,0) = 0;

(3) Let Λ be the set of integers {|n1| ∈ N : Ŝ(n1,n2) 6= 0 or Ŝ(n2,n1) 6= 0 for some n2 ∈ Z}. The greatest

common divisor of all the elements inΛ is 1.

The requirement that Ŝ(0,0) = 0, which is equivalent to a zero mean over [−π,π]2, guarantees a well-

separation between the oscillatory partαk (x)Sk
(
2πNk Fkφk (x)

)
and the smooth trend ck (x) in (2), when Nk

is sufficiently large. The third condition implies the uniqueness of similar oscillatory patterns in SM up to a

scaling, i.e., if S(x) ∈ SM , S(N x) ∉ SM for any positive integer N > 1.
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Definition 2 (2D general intrinsic mode type function (GIMT)). A function f (x) =α(x)s(2πN Fφ(x)) is a 2D

GIMT of type (M , N ,F ), if S(x) ∈ SM , α(x) and φ(x) satisfy the conditions below.

α(x) ∈C∞, |∇α| ≤ M , 1/M ≤α≤ M ,

φ(x) ∈C∞, 1/M ≤ ∣∣∇(nTFφ)/|nTF |∣∣≤ M , and∣∣∇2(nTFφ)/|nTF |∣∣≤ M , ∀n ∈Z2 s.t. ŝ(n) 6= 0.

Hence, in the domain Ωk of each grain, the crystal image is a superposition of a 2D general intrinsic

mode type function and a smooth trend. Applying the 2D Fourier series of each 2D general shape function

Sk (x), it holds that

(3)

f (x) =
M∑

k=1
χΩk (x)

(
αk (x)Sk

(
2πNk Fkφk (x)

)+ ck (x)
)

=
M∑

k=1
χΩk (x)

( ∑
n∈Z2

αk (x)Ŝk (n)e2πi Nk nTFkφk (x) + ck (x)

)
,

In the domainΩk , each underlying wave-like component

αk (x)Ŝk (n)e2πi Nk nTFkφk (x)

is an intrinsic mode type function studied in [35, 36]. Hence, if they satisfy the well-separation condition

defined in [35, 36] and each Nk is large enough, the 2D synchrosqueezed wave packet transforms and the

synchrosqueezed curvelet transforms are expected to estimate the local wave vectors Nk∇(nTFkφk (x)) ac-

curately for x away from ∂Ωk .

Based on the estimates of local wave vectors, it is possible to define and analyze crystal rotations as

follows.

Definition 3. Given a reference configuration s(2πN F x), a deformation φ(x), an amplitude function α(x)

and a trend function c(x) such that f (x) =α(x)s(2πN Fφ(x))+ c(x) is a 2D GIMT of type (M , N ,F ), suppose

Ŝ(n) 6= 0, then the reference configuration has a local wave vector v(n) = N nTF and f (x) has a local wave

vector vφ = N nTF∇φ(x). The local rotation function of f (x) with respect to v(n) is defined as

β( f )(x) = arg(vφ(x))−arg(v(n)),

where arg(v) means the argument of a vector v .

In the case of an undeformed crystal image f (x) =α(x)s(2πN F (Rθx + z))+c(x), φ(x) = Rθx + z is a com-

position of a rotation and a translation. Then the local rotation functionβ( f )(x) = θwith respect to any local

wave vector v(n). This agrees with an intuition of a global crystal rotation. However, a global crystal rota-

tion is not well defined in a real crystal image due to a non-linear crystal deformation. This motivates the

definition of a local crystal rotation in Definition 3. Because the non-linear deformation φ(x) is a smooth

function with det
(∇φ(x)

) ≈ 1, local rotation functions β( f )(x) vary smoothly and are approximately the

same with respect to any local wave vector.

2.2. 2D synchrosqueezed transforms. For the sake of convenience, we adopt the name 2D synchrosqueezed

transforms instead of specifying 2D synchrosqueezed wave packet transform or 2D synchrosqueezed curvelet

transforms. Actually, when the scaling parameters s and t in the 2D synchrosqueezed curvelet transforms

are equal, these transforms become 2D synchrosqueezed wave packet transforms. For the same reason, we

prefer a uniform name general wave packet transforms, instead of the wave packet transforms in [35] and

the general curvelet transforms in [36]. Before a brief review of these transforms, here are some notations.
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(1) The scaling matrix

Aa =
(

at 0

0 as

)
,

where a is the distance from the center of one general wave packet to the origin in the Fourier

domain.

(2) A unit vector eθ = (cosθ, sinθ)T with a rotation angle θ.

(3) θα represents the argument of a given vector α.

(4) w(x) of x ∈R2 denotes a mother wave packet, which is in the Schwartz class and has a non-negative,

radial, real-valued, smooth Fourier transform ŵ(ξ) with a support equal to a ball Bd (0) centered at

the origin with a radius d ≤ 1 in the Fourier domain. The mother wave packet is required to obey

the admissibility condition: ∃0 < c1 < c2 <∞ such that

c1 ≤
∫ 2π

0

∫ ∞

1
a−(t+s)|ŵ(A−1

a R−1
θ (ξ−a ·eθ))|2a da dθ ≤ c2

for any |ξ| ≥ 1.

With the notations above, it is ready to define a family of general wave packets through scaling, modulation,

and translation as follows, controlled by geometric parameters s and t .

Definition 4. For 1
2 < s ≤ t < 1, define �waθb(ξ) = ŵ(A−1

a R−1
θ

(ξ−a ·eθ))e−2πi b·ξa− t+s
2 as a general wave packet

in the Fourier domain. Equivalently, in the space domain, the corresponding general wave packet is

waθb(x) =
∫

R2
ŵ(A−1

a R−1
θ (ξ−a ·eθ))e−2πi b·ξe2πiξ·x a− t+s

2 dξ

= a
t+s

2

∫
R2

ŵ(y)e−2πi b·(RθAa y+a·eθ)e2πi x·(RθAa y+a·eθ) dy

= a
t+s

2 e2πi a(x−b)·eθw(AaR−1
θ (x −b)).

In such a way, a family of general wave packets {waθb(x), a ∈ [1,∞),θ ∈ [0,2π),b ∈R2} is constructed.

Similar to classical time-frequency transforms, the general wave packet transform is defined to be the

inner product of a given signal and each general wave packet as follows.

Definition 5. The general wave packet transform of a function f (x) is a function

W f (a,θ,b) = 〈waθb , f 〉 =
∫
R2

waθb(x) f (x)dx

= 〈 �waθb , f̂ 〉 =
∫
R2

áwaθb(ξ) f̂ (ξ)dξ

for a ∈ [1,∞), θ ∈ [0,2π), b ∈R2.

Definition 6. The local wave-vector estimation of a function f (x) at (a,θ,b) is

(4) v f (a,θ,b) = ∇bW f (a,θ,b)

2πiW f (a,θ,b)

for a ∈ [1,∞), θ ∈ [0,2π), b ∈R2 such that W f (a,θ,b) 6= 0.

In [35, 36], it has been proved that v f (a,θ,b) accurately estimates local wave-vectors independently of

the amplitude functions αk or the position b from a finite superposition of wave-like components without

boundaries. Hence, if the coefficients with the same v f are reallocated together, then the nonzero energy

would be concentrating around local wave-vectors of f (x). Mathematically speaking, the synchrosqueezed

energy distribution is defined as follows.
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Definition 7. Given f (x), W f (a,θ,b), and v f (a,θ,b), the synchrosqueezed energy distribution T f (v,b) is

(5) T f (v,b) =
∫

|W f (a,θ,b)|2δ(Rev f (a,θ,b)− v)a da dθ

for v ∈R2, b ∈R2.

If the Fourier transform f̂ (ξ) vanishes for |ξ| < 1, one can check the following L2-norms equivalence up

to a uniform constant factor following the proof of [7, Theorem 1], i.e.,

(6)
∫

|W f (a,θ,b)|2a da dθdb =Θ
(∫

| f (x)|2 dx

)
.

Our goal is to apply and adapt the 2D synchrosqueezed transforms to analyze the 2D general intrinsic

mode type functions in the image function (3). This problem is similar to but different from the 1D general

mode decomposition problems studied in [31, 33], where 1D synchrosqueezed transforms are applied to

estimate the instantaneous properties of 1D general intrinsic mode type functions. Generalizing the con-

clusions in [33, 36], the theorem below shows that the 2D synchrosqueezed transforms precisely estimate

the local wave vectors of the wave-like components in (3) at the points away from boundaries.

Theorem 8. For a 2D general intrinsic mode type function f (x) of type (M , N ,F ) with |F | ≥ 1, any ε> 0 and

any r > 1, we define

Rε =
{

(a,θ,b) : |W f (a,θ,b)| ≥ a− s+t
2
p
ε, a ≤ 2M N r

}
and

Zn = {
(a,θ,b) :

∣∣A−1
a R−1

θ

(
a ·eθ−N∇(nTFφ(b))

)∣∣≤ d , a ≤ 2M N r
}

For fixed M, r , s, t , d, and ε, there exists N0(M ,r, s, t ,d ,ε) > 0 such that for any N > N0(M ,r, s, t ,d ,ε) and a

2D GIMT f (x) of type (M , N ,F ), the following statements hold.

(i)
{

Zn : Ŝ(n) 6= 0
}

are disjoint and Rε ⊂⋃
Ŝ(n)6=0 Zn ;

(ii) For any (a,θ,b) ∈ Rε∩Zn , ∣∣v f (a,θ,b)−N∇(nTFφ(b))
∣∣∣∣N∇(nTFφ(b))

∣∣ .
p
ε.

For simplicity, the notations O (·),. and& are used when the implicit constants may only depend on M ,

s, t , d and K . The proof of the theorem is similar to those theorems in [33, 36] and relies on two lemmas in

[36]. Although the parameter d is set to be 1 in [36], it is easy to extend these two lemmas for a general value

of d . We state the generalizations here, leaving the proofs to the reader.

Lemma 1. Suppose f (x) = ∑K
k=1 fk (x) = ∑K

k=1 e−(φk (x)−ck )2/σ2
kαk (x)e2πi Nφk (x) is a well-separated superposi-

tion of type (M , N ,K ) (refer to [36]). Set

Ω=
{

(a,θ) : a ∈
(

N

2M
,2M N

)
,∃k s.t .

∣∣θ∇φk (b) −θ
∣∣< θ0

}
,

where θ0 = arcsin(( M
N )t−s ). For any ε > 0, there exists N0(M , s, t ,d ,ε) such that the following estimation of

W f (a,θ,b) holds for any N > N0.

(1) If (a,θ) ∈Ω,

W f (a,θ,b) = a− s+t
2

 ∑
k: |θ∇φk (b)−θ|<θ0

fk (b)ŵ
(

A−1
a R−1

θ

(
a ·eθ−N∇φk (b)

))+O (ε)

 ;

(2) Otherwise,

W f (a,θ,b) = a− s+t
2 O (ε).
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Lemma 2. Suppose f (x) = ∑K
k=1 fk (x) = ∑K

k=1 e−(φk (x)−ck )2/σ2
kαk (x)e2πi Nφk (x) is a well-separated superpo-

sition of type (M , N ,K ). For any ε > 0, there exists N0(M , s, t ,d ,ε) such that the following estimation of

∇bW f (a,θ,b) holds for any N > N0.

∇bW f (a,θ,b) = a− s+t
2

2πi N
∑

k: |θ∇φk (b)−θ|<θ0

∇φk (b) fk (b)ŵ
(

A−1
a R−1

θ (a ·eθ−N∇φ(b))
)+O (ε)

 ,

when

(a,θ) ∈Ω=
{

(a,θ) : a ∈
(

N

2M
,2M N

)
,∃k s.t .

∣∣θ∇φk (b) −θ
∣∣< θ0

}
.

In the scope of this paper, we have σk =∞ for all k. Now, we are ready to prove Theorem 8.

Proof of Theorem 8. By the uniform convergence of the 2D Fourier series of general shape functions, we

have

W f (a,θ,b) = ∑
n∈Z2

W fn (a,θ,b),

where fn(x) = Ŝ(n)α(x)e2πi N nTFφ(x). Introduce the short hand notation, φ̃n(x) = nTFφ(x)/|nTF |, then

fn(x) = Ŝ(n)α(x)e2πi N |nTF |φ̃n (x).

By the property of 2D general intrinsic mode functions, fn(x) is a well-separated superposition of type

(M , N |nTF |,1) defined in [36].

For each n, we estimate W fn (a,θ,b). By Lemma 1, there exists a uniform N1(M , s, t ,d ,ε) independent of

n such that, if N |nTF | > N1,

W fn (a,θ,b) = a− s+t
2

(
fn(b)ŵ

(
A−1

a R−1
θ

(
a ·eθ−N |nTF |∇φ̃n(b)

))+ ∣∣Ŝ(n)
∣∣O (ε)

)
for (a,θ) ∈Ωn , and

W fn (a,θ,b) = a− s+t
2

∣∣Ŝ(n)
∣∣O (ε)

for (a,θ) 6∈Ωn . Here

Ωn =
{

(a,θ) : a ∈
(

N |nTF |
2M

,2M N |nTF |
)

,
∣∣∣θ∇φ̃n (b) −θ

∣∣∣< θ0

}
,

and θ0 = arcsin(( M
N |nTF | )

t−s ). Let Γaθ = {n ∈Z2 : (a,θ) ∈Ωn}, then

W f (a,θ,b) = a− s+t
2

( ∑
n∈Γaθ

fn(b)ŵ
(

A−1
a R−1

θ

(
a ·eθ−N |nTF |∇φ̃n(b)

))+∑
n

∣∣Ŝ(n)
∣∣O (ε)

)

= a− s+t
2

( ∑
n∈Γaθ

fn(b)ŵ
(

A−1
a R−1

θ

(
a ·eθ−N |nTF |∇φ̃n(b)

))+O (ε)

)
.

Notice that for any n 6= ñ, the distance between the local wave vectors N |nTF |∇φ̃n(b) and N |ñTF |∇φ̃ñ(b)

are bounded below. In fact,∣∣N |nTF |∇φ̃n(b)−N |ñTF |∇φ̃ñ(b)
∣∣= N

∣∣(n − ñ)TF∇φ(b)
∣∣

≥ N

M
|(n − ñ)TF | ≥ N

M
.

The first inequality above is due to the definition of 2D general intrinsic mode type function. Observe that

the support of a general wave packet centered at (a cos(θ), a sin(θ)) is within a disk with a radius of length

d at . Because the range of a of interest is a ≤ 2M N r , the general wave packets of interest have supports of
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size at most 2d(2M N r )t . Hence, if N
M ≥ 2d(2M N r )t , which is equivalent to N ≥ (21+t M 1+t dr t )

1
1−t , then for

each (a,θ,b) of interest, there is at most one n ∈Z2 such that∣∣A−1
a R−1

θ

(
a ·eθ−N∇(nTFφ(b))

)∣∣≤ d .

This implies that {Zn} are disjoint sets. Notice that ŵ(x) decays when |x| ≥ d . The above statement also

indicates that there is at most one n ∈ Γaθ such that

fn(b)ŵ
(

A−1
a R−1

θ

(
a ·eθ−N |nTF |∇φ̃n(b)

)) 6= 0.

Hence, if (a,θ,b) ∈ Rε, there must be some n such that Ŝ(n) 6= 0 and

W f (a,θ,b) = a− s+t
2

(
fn(b)ŵ

(
A−1

a R−1
θ

(
a ·eθ−N |nTF |∇φ̃n(b)

))+O (ε)
)

.(7)

By the definition of Zn , we see (a,θ,b) ∈ Zn . So, Rε ⊂⋃
Ŝ(n)6=0 Zn and (1) is proved.

Now, we estimate ∇bW f (a,θ,b). Suppose (a,θ,b) ∈ Rε∩ Zn . Similarly to the estimate of W f (a,θ,b), by

Lemma 2, there exits N2(M , s, t ,d ,ε) such that if N > N2 then

∇bW f (a,θ,b)

= a− s+t
2

(
2πi N

∑
n∈Γaθ

|nTF |∇φ̃n(b) fn(b)ŵ
(

A−1
a R−1

θ (a ·eθ−N |nTF |∇φ̃n(b))
)+O (ε)

)

= a− s+t
2

(
2πi N |nTF |∇φ̃n(b) fn(b)ŵ

(
A−1

a R−1
θ (a ·eθ−N |nTF |∇φ̃n(b))

)+O (ε)
)

for the same n in (7).

Let g = fn(b)ŵ
(

A−1
a R−1

θ
(a ·eθ−N |nTF |∇φ̃n(b))

)
, then

v f (a,θ,b) = N |nTF |∇φ̃n(b)g +O (ε)

g +O (ε)
.

Since |W f (a,θ,b)| ≥ a− s+t
2
p
ε for (a,θ,b) ∈ Rε, then |g |&p

ε. So∣∣v f (a,θ,b)−N∇(nTFφ(b))
∣∣∣∣N∇(nTFφ(b))

∣∣ =
∣∣v f (a,θ,b)−N |nTF |∇φ̃n(b)

∣∣∣∣N |nTF |∇φ̃n(b)
∣∣

.
∣∣∣∣ O (ε)

g +O (ε)

∣∣∣∣
.

p
ε.

The above estimate holds for N > N0 = max{N1, N2, (21+t M 1+t dr t )
1

1−t }. The proof is complete. �

Theorem 8 indicates that the underlying wave-like components Ŝ(n)α(x)e2πi N nTFφ(x) of the 2D general

intrinsic mode type function f (x) = α(x)S(2πN Fφ(x)) are well-separated, if they are within a scale a ≤
2M N r and N is sufficiently large. By the definition of the synchrosqueezed energy distribution, T f (a,θ,b)

would concentrate around their local wave vectors N∇(nTFφ(b)). The energy around each local wave vec-

tors reflects the energy of the corresponding wave-like component by the norm equivalence (6).

In the crystal image analysis, grains would have local defects, irregular boundaries and smooth trends

caused by reflection etc. First, it is important to know where we can keep the local wave vector estimates

accurate. Suppose a 2D general intrinsic mode type function Ŝ(n)α(x)e2πi N nTFφ(x) is defined in a domain

Ω with a boundary ∂Ω. The smallest scale used to estimate local wave vectors is of order N
M . Hence, the

general wave packets used have supports of size at most M t

d N t by M t

d N t . Let us denote a perfect interior ofΩ as

Ω̃=
{

x ∈Ω :
∣∣x − y

∣∣> M t

d N t ,∀y ∈ ∂Ω
}

,
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then the estimates of local wave vectors remain accurate in Ω̃. As the numerical results in [9,33,35,36] show,

synchrosqueezed transforms can still approximately recover instantaneous or local properties near ∂Ω.

The second concern is the influence of the smooth trends ck (x) in (2). By the method of stationary phase,

the Fourier transform ĉk (ξ) would decay quickly as |ξ| increases. Hence, the influence of smooth trends

is essentially negligible when the synchrosqueezed transforms are applied to estimate local wave vectors

N nTF∇φ(x)) with a sufficiently large wave number.

3. CRYSTAL DEFECT ANALYSIS ALGORITHMS AND IMPLEMENTATIONS

This section introduces several algorithms based on the features of crystal images and 2D synchrosqueezed

transforms for a fast analysis of local defects, crystal rotations and deformations. As discussed in the intro-

duction, we will focus on the analysis of an image with only one type of crystals, i.e., suppose

f (x) =
M∑

k=1
χΩk (x)

(
αk (x)S

(
2πN Fφk (x)

)+ ck (x)
)

=
M∑

k=1
χΩk (x)

( ∑
n∈Z2

Ŝ(n)αk (x)e2πi N nTFφ(x) + ck (x)

)
.

In the 2D space domain, there are five kinds of Bravais lattices, which are oblique, rectangular, centered

rectangular (rhombic), hexagonal, and square [19] as shown in Figure 2. Accordingly, there are five kinds of

2D Fourier power spectra |Ŝ(n)|. These spectra have a few dominant wave vectors in terms of energy, i.e.,

a few |Ŝ(n)| with large values. At each interior point of a grain, a sufficiently localized Fourier transform is

able to recover an approximate distribution of the 2D Fourier power spectrum, based on which the corre-

sponding reference configuration of this grain can be specified. Hence, for the simplicity of a presentation,

we will restrict ourselves to the analysis of images of hexagonal crystals (e.g. Figure 3 (left)). A generaliza-

tion of our algorithms to other kinds of simple crystal images is straightforward. In the case of a complex

lattice, there might be numerous local wave vectors with relatively large energy. Feature extraction and di-

mension reduction techniques should be applied to provide a few crucial local wave vectors. This would be

an interesting future work.

We will introduce two fast algorithms for crystal image analysis. Algorithm A provides estimates of grain

boundaries and crystal rotations; while Algorithm B further identifies point defects, dislocations, and defor-

mations. To make our presentation more transparent, the algorithms and implementations are introduced

with toy examples. For Algorithm A, we will use the example in Figure 3 (left) which contains two unde-

formed grains with a straight grain boundary. While Figure 3 is a synthetic example, it illustrates nicely

the key feature of atomic crystal images and the idea of local phase plane spectrum. In this example, the

reciprocal lattice parameter N = 120 and the crystal rotations are given by 15 and 52.5 degrees on the left

and right respectively. We introduce Algorithm B using strained examples of a small angle boundary (see

Figure 6 (left)) and with some isolated dislocations (see Figure 6 (right)). These are examples from phase

field crystal simulations [13].

3.1. Frequency band detection (bump detection). Typically, each grain

χΩk (x)
(
αk (x)S

(
2πN Fφk (x)

)+ ck (x)
)

in a polycrystalline crystal image can be identified as a 2D general intrinsic mode type function of type

(M , N ,F ) with a small M near 1, unless the strain is too large. Hence, the 2D Fourier power spectrum of a

multi-grain image would have several well-separated nonzero energy annuli centered at the origin due to
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crystal rotations (see an example shown in Figure 3 (middle)). Suppose the radially average Fourier power

spectrum is defined as

E(r ) = 1

r

∫ 2π

0

∣∣ f̂ (r,θ)
∣∣dθ,

where f̂ (r,θ) is the Fourier transform in the radial coordinate: f̂ (r,θ) = f̂ (ξ) and ξ= (r cos(θ),r sin(θ))T ∈R2.

Then E(r ) would have several well-separated energy bumps (see Figure 3 (right)) for the same reason.

As we can see in Figure 3 (middle), a hexagonal crystal image with a single grain

f (x) =α(x)S
(
2πN Fφ(x)

)+ c(x)

has six dominant local wave vectors close to v j (θ(x)), j = 0,1, . . . ,5, which are the vertices of a hexagon

centered at the origin in the Fourier domain, i.e.,

v j (θ(x)) =
(

N cos(θ(x)+ jπ

3
), N sin(θ(x)+ jπ

3
)

)T

, j = 0,1, . . . ,5,

for θ(x) ∈ [0, π3 ). Suppose S (2πN F (x)) is a reference configuration, then the local rotation function with

respect to each vertex v j (0) is

(8) β( f )(x) ≈ arg(v j (θ(x)))−arg(v j (0)) = θ(x).

Actually, f (x) can approximately be considered as a rotated version of αS (2πN F (x + z))+ c by an angle

θ(x)+ kπ
3 for any k ∈ Z due to the crystal symmetry. The restriction θ(x) ∈ [0, π3 ) guarantees a unique local

rotation function β( f )(x).
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FIGURE 3. Left: An undeformed example of two hexagonal grains with a vertical line

boundary. Middle: Its Fourier power spectrum. The number of dominant local wave vec-

tors is 12 due to the superposition of spectrum of the two grains. Right: Its radially average

Fourier power spectrum with the identified most dominant energy bump indicated by two

red circles.

The discussion above shows that it is sufficient to compute the local rotation function using the dom-

inant local wave vectors. To reduce the computational cost of 2D SST, the support of the most dominant

energy bump in the radially average Fourier power spectrum should be identified (see Figure 3 (right)).

Suppose the support (i.e. frequency band) is [r1,r2]. Then a band-limited fast 2D SST as introduced later is

applied to estimate the local wave vectors with wave numbers in [r1,r2].

In what follows, we would walk through the steps to determine the dominant frequency band [r1,r2] with

a time complexity O(L2 logL) for an L by L image. For simplicity, we consider images that are periodic over
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the unit square [0,1)2 in 2D . If it is not the case, the images will be periodized by padding zeros around the

image boundary. Let

X = {(n1/L,n2/L) : 0 ≤ n1,n2 < L, n1,n2 ∈Z}

be the L×L spatial grid at which crystal image functions are sampled. The corresponding L×L Fourier grid

is

Ξ= {(ξ1,ξ2) : −L/2 ≤ ξ1,ξ2 < L/2, ξ1,ξ2 ∈Z}.

For a function f (x) ∈ `2(X ), we apply the 2D FFT to obtain f̂ (ξ) ∈ `2(Ξ) first. Then the energy
∣∣ f̂ (ξ)

∣∣ should

be stacked up and averaged to obtain the radially average Fourier power spectrum E(r ). To realize this step,

a grid of step size ∆ is generated to discretize the domain [0,∞) in variable r as follows:

R = {n∆ : n ∈N}.

At each r = n∆ ∈ R, we associate a cell Dr started at r

Dr = [n∆, (n +1)∆) .

Then E(r ) is estimated by

E(r ) = 1

r

∑
ξ∈Ξ:|ξ|∈Dr

∣∣ f̂ (ξ)
∣∣ .

The component task to identify the most dominant energy bump in E(r ) here belongs to a simple case

of geometric object identification problems which have been extensively studied in [2, 15, 16, 37]. For a 1D

discrete signal of length L, it has been proved that the optimal complexity to detect bumps in this signal is

O(L) in [2]. Since E(r ) has only a few well-separated and sharp energy bumps with relatively small noise, we

would adopt the following straightforward but still effective algorithm with O(L) complexity to detect the

most dominant energy bump in E(r ).

Algorithm 9. Bump detection algorithm

1: Input: Vector E = (Ei ), i = 0, . . . ,L−1, parameters c1 and c2.

2: Output: End points of the identified bump r1 and r2.

3: function BumpDetection(E ,c1,c2)

4: Find p0 s.t. Ep0 = maxi Ei and set up a threshold δ= Ep0 c1.

5: Compute Ẽi = min(Ei ,δ) for i = 1, . . . ,L−1.

6: Find the largest p2 < p0 s.t. Ẽp2 ≥ Ẽp2+1. If p2 does not exist, let p2 = 0.

7: Find the largest p1 < p0 s.t. Ẽp1 > Ẽp1+1. If p1 exists, let r1 = (p1 +p2)/2. Otherwise, let r1 = p2.

8: Find the smallest p1 > p0 s.t. Ẽp1 ≥ Ẽp1−1. If p1 does not exist, let p1 = L−1.

9: Find the smallest p2 > p0 s.t. Ẽp2 > Ẽp2−1. If p2 exists, let r2 = (p1 +p2)/2. Otherwise, let r2 = p1.

10: Let r1 = max{0,r1(1− c2)} and r2 = min{L−1,r2(1+ c2)}.

11: return [r1,r2]

12: end function

When the dominant energy bump is located in the low frequency part, i.e. r1 = 0, the energy comes from

the smooth trend functions of the crystal image. Hence, it is reasonable to eliminate this bump from E(r )

and apply Algorithm 9 again to update new [r1,r2], which is the frequency band of dominant local wave

vectors. Since the complexity of each searching procedure is at most O(L), the complexity of Algorithm 9 is

O(L). Because the time complexity of 2D FFT is O(L2 logL), the total time complexity for frequency band

detection is O(L2 logL).
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3.2. Band-limited 2D fast SST. The 2D synchrosqueezed transforms were originally proposed in [35,36] for

2D mode decomposition problems. For an image of size L by L, the time complexity for these transforms

is O(L2+t−s log(N )), where t and s are the geometric scaling parameters for the general wave packet trans-

forms. To reduce the complexity, a band-limited 2D fast SST is introduced following a similar methodology

to estimate local wave vectors with wave numbers in [r1,r2] provided by the frequency band detection.

The band-limited 2D SST is based on a band-limited 2D general wave packet transform. The key idea is

to restrict the class of general wave packets

{waθb(x), a ∈ [1,∞),θ ∈ [0,2π),b ∈R2}

to a band-limited class

{waθb(x), a ∈ [r1,r2],θ ∈ [0,2π),b ∈R2}.

Meanwhile, a discrete analog of the band-limited class of general wave packets is constructed by specifying

a set of tilings covering the annulus {ξ ∈ R2 : r1 ≤ |ξ| ≤ r2}. To be more specific, we need to specify how to

decimate the Fourier domain (a,θ) and the position space b as follows.

In the Fourier domain, the decimation follows two steps. First, we follow the discretization and con-

struction of the discrete general curvelet transform in [36] to construct the discrete general wave packets

here. Notice that the support parameter d in [36] is 1. The sizes of tilings in this paper should be multi-

plied by d . Second, we keep those discrete general wave packets with supports overlapping the annulus

{ξ ∈R2 : r1 ≤ |ξ| ≤ r2} to obtain the band-limited class of discrete general wave packets.

To decimate the position space b, we discretize it with an LB ×LB uniform grid:

B = {(n1/LB ,n2/LB ) : 0 ≤ n1,n2 < LB ,n1,n2 ∈Z}.

It is required that LB is large enough so that a sampling grid of size LB ×LB can cover the supports of general

wave packets of interest in the Fourier domain. For a crystal image

f (x) =∑
k
χΩk (x)

(
αk (x)S

(
2πN Fφk (x)

)+ ck (x)
)

defined in [0,1)2, its fundamental wave number is O(N ), i.e., r1 = O(N ) and r2 = O(N ). Hence, the largest

support of general wave packets in the Fourier domain is of size O(N t ), implying that LB is at least O(N t ).

With the band-limited class of general wave packets ready, we follow the fast algorithms in [36] to com-

pute the forward general wave packet transform W f (a,θ,b), the local wave vector estimate v f (a,θ,b) and

the synchrosqueezed energy distribution T f (a,θ,b). Notice that the width of the frequency band r2 −
r1 = O(1) compared to the fundamental wave number, which implies that the cardinality of the band-

limited class is O(N 1−s ). A straightforward calculation shows that the time complexity of the band-limited

general wave packet transform is O(L2 logL + N 1−s L2
B logLB ). Because the synchrosqueezing procedure

takes a complexity of O(N 1−s L2
B ), the total time complexity for the band-limited 2D fast SST is O(L2 logL +

N 1−s L2
B logLB ).

As an example, Figure 4 shows the synchrosqueezed energy distribution T f (a,θ,b) in a polar coordinate

at three different positions. Because the crystal image is real, it is enough to compute the synchrosqueezed

energy distribution for θ ∈ [0,π). The results show that the essential support of T f (a,θ,b) can accurately

estimate local wave vectors when location b is not at the boundary. When b is at the boundary, the essential

support of T f (a,θ,b) can still provide some information, e.g. crystal rotations.
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FIGURE 4. The synchrosqueezed energy distribution T f (a,θ,b) of Figure 3 (left) at three

different points bi , i = 1,2,3. Left: b1 = (0.25,0.5) is in the middle of the left grain. Middle:

b2 = (0.5,0.5) is at the boundary. Right: b3 = (0.75,0.5) is in the middle of the right grain.

Note that the scale of colorbar is different in the middle panel.

3.3. Defect detection algorithms. As we can see in Figure 4, the synchrosqueezed energy around each local

wave vector ∇(
N nTFφ(x)

)
is stable and of order |Ŝ(n)|αk (x) when x is in the perfect interior Ω̃k . Moreover,

the energy would decrease fast near the boundary ∂Ωk and becomes zero soon outsideΩk . This motivates

the application of synchrosqueezed energy distribution to identify grain boundaries by detecting the irreg-

ularity of energy distribution as follows.

Algorithm A (Fast defect detection algorithm based on stacked synchrosqueezed energy).

Step 1: Stack the synchrosqueezed energy distribution and define a stacked synchrosqueezed energy distribu-

tion as

T̃ f (a,θ,b) = T f (a,θ,b)+T f (a,θ+ π

3
,b)+T f (a,θ+ 2π

3
,b)

for θ ∈ [0, π3 ).

Step 2: Compute an angular total energy distribution

Ea(θ,b) =
∫ r2

r1

T̃ f (a,θ,b)d a.

Step 3: For each b, apply Algorithm 9 to identify the most dominant energy bump in Ea(θ,b). Denote the

range of this bump as [θ11(b),θ12(b)].

Step 4: Compute the total energy of the first identified bump as

TE1(b) =
∫ θ12(b)

θ11(b)
Ea(θ,b)dθ.

Step 5: Compute a weighted average angle of the first bump as

Angle(b) = 1

TE1(b)

∫ θ12(b)

θ11(b)
Ea(θ,b)θdθ.

Step 6: For each b, update Ea such that Ea(θ,b) = 0, if θ ∈ [θ11(b),θ12(b)]. Apply Algorithm 9 again to update

the most dominant energy bump in Ea . Denote the range of this bump as [θ21(b),θ22(b)].

Step 7: Compute the total energy of the second identified bump by

TE2(b) =
∫ θ22(b)

θ21(b)
Ea(θ,b)dθ.
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Step 8: Compute the boundary indicator function

BD(b) = 1√
TE1(b)−TE2(b)+1

.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

x
1

E
n
e
rg

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 5. Left: The total energy function T E1(b) in blue and T E2(b) in red for fixed b2 =
0.5. Middle: The boundary indicator function BD(b). Right: The weighted average angle

Angle(b) as an approximation of crystal rotations. The real crystal rotations are 15 degrees

on the left and 57.5 degrees on the right.

The synchrosqueezed energy distribution of each grain behaves like an energy bump essentially sup-

ported inΩk and quickly decays outside Ωk . Hence, two energy bumps have close energy in the transition

area containing the grain boundary. Since TE1(b) acts as the maximum of two energy distributions and

TE2(b) acts as the minimum (see Figure 5 (left)), TE1(b)−TE2(b) decays near the grain boundary and the

boundary indicator function BD(b) is relatively large at the grain boundary. As Figure 5 (middle) shows, the

grain boundary can be identified from a grayscale image of BD(b).

By the discussion in Section 3.1, the local rotation function with respect to each local wave vector of

the reference hexagonal configuration are approximately the same. Since, the synchrosqueezed energy

distribution T f (a,θ,b) is stacked together per π
3 in θ, the weighted average Angle(b) approximates the local

rotation functions in a weighted average sense. As shown in Figure 5 (right), Angle(b) accurately reflects the

crystal rotations in this example.

As discussed in Section 3.1 and 3.2, before Algorithm A, it takes O(L2 logL + N 1−s L2
B logLB ) time com-

plexity to estimate the frequency band [r1,r2] and to compute T f (a,θ,b). Suppose that the discrete grid of

T f (a,θ,b) at each b is of size LR ×L A , then the time complexity of Algorithm A is O(L ALR L2
B ). Hence, the

total complexity for the crystal analysis is O(L2 logL+N 1−s L2
B logLB +L ALR L2

B ).

The stacking step in Algorithm A is averaging the influence of each local wave vector. This gives a stable

result of grain boundary and crystal rotation estimates even with severe noise as will be illustrated in Section

4. However, Algorithm A might miss some local defects that would not influence all local wave vectors

simultaneously. For example, in Figure 6 (left), two of the underlying wave-like components have smoothly

changing directions, while the third one changes its direction suddenly at a line segment, resulting in a

small angle boundary. At some local dislocations, as Figure 6 (right) shows, the dislocation might not cause

irregularity to all wave-like components. Hence, to be more sensitive to local irregularity, it is reasonable to

remove the stacking step in Algorithm A, if noise is relatively small. This motivates the following algorithm.

Algorithm B (Fast defect detection algorithm with enhanced sensitivity).
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FIGURE 6. Left: An example of a small angle boundary. Right: An example of some iso-

lated dislocations. Courtesy of Benedikt Wirth. The sizes of these images are 512× 512

pixels.

Step 1: Define T̃ j (a,θ,b) = T f (a,θ+ jπ/3,b) for θ ∈ [0, π3 ) and j = 0,1,2. Apply Steps 2−8 in Algorithm A to

T̃ j (a,θ,b) to compute TE1 j (b), TE2 j (b), Angle j (b) and BD j (b) for each j .

Step 2: For each j = 0,1,2, compute the weight function

W j (b) = TE1 j (b)+TE2 j (b)∑
j

(
TE1 j (b)+TE2 j (b)

) .

Step 3: Compute the weighted average angle

Angle(b) =∑
j

W j (b)Angle j (b).

Step 4: Compute the weighted boundary indicator function

BD(b) =∑
j

W j (b)BD j (b).

In the example in Figure 6 (left), only the second local wave vector exhibits irregularity at the small angle

boundary, resulting in a sharp decrease of TE11(b) and a sharp increase of TE21(b) at the boundary. Hence,

as shown in Figure 7, the weighted boundary indicator function BD(b) with BD1(b) as a key integrand can

clearly indicate the small angle boundary. As Figure 8 shows, the top point dislocation in the example in

Figure 6 (right) interrupts the first and third underlying wave-like component, resulting in a sharp decrease

in TE10(b) and TE12(b) and a sharp increase in TE20(b) and TE22(b). Therefore, the weighted boundary indi-

cator function can reveal this point dislocation. The results in Figure 7 and 8 indicates that the information

of some local defects is hidden behind some particular local wave vectors. By using the synchrosqueezed

energy distribution of each local wave vector individually, more information of local defects can be discov-

ered.

3.4. Recovery of local deformation gradient. In addition to grain boundaries and crystal rotations, a reli-

able extraction of the elastic deformation of a crystal image is also essential for an efficient material charac-

terization. Instead of estimating the elastic deformation φ(x) directly, we would emphasize how to recover

the local deformation gradient

∇φ(x) =
(
∂x1φ1(x) ∂x2φ1(x)

∂x1φ2(x) ∂x2φ2(x)

)
,
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FIGURE 7. Top: TE1 j (b) (in blue) and TE2 j (b) (in red) of Figure 6 (left) for fixed b1 = 0.5

and j = 0,1,2 from left to right, respectively. Center: The weighted average angle functions

Angle j (b) provided by each local wave vector for j = 0,1,2, respectively. Bottom left: the

weighted boundary indicator function BD(b). Bottom right: the weighted average angle

function Angle(b).

and how to read more information from ∇φ(x), e.g., directions of Burgers vectors.

The estimation of the local deformation gradient ∇φ(x) relies on the complete estimate of at least two

local wave vectors ∇(
N nTFφ(x)

)
. Let us continue with hexagonal crystal images as an example. In this case,

there are six local wave vectors of interest as discussed in Section 3.1. By symmetry, it is enough to consider

those in the upper half plane of the Fourier domain. They are

v j (x) = (∇φ(x)
)T

(
N cos(

jπ

3
), N sin(

jπ

3
)

)T

, j = 0,1,2.

In Algorithm B , the argument of each v j (x) has been estimated by the weighted average angle Angle j (b).

Similarly, one more step for applying the bump detection algorithm radially can provide a fast estimate of

the length of v j (x). Suppose ṽ j (x) is an estimate of v j (x) obtained by the fast algorithms above, then we

have an over-determined linear system at each x

ṽ j (x) ≈ (∇φ(x)
)T

(
N cos(

jπ

3
), N sin(

jπ

3
)

)T

, j = 0,1,2.
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FIGURE 8. Top: TE1 j (b) (in blue) and TE2 j (b) (in red) of Figure 6 (right) for fixed b1 =
0.8 and j = 0,1,2, respectively. Center: The weighted average angle functions Angle j (b)

provided by each local wave vector for j = 0,1,2, respectively. Bottom left: the weighted

boundary indicator function BD(b). Bottom right: the weighted average angle function

Angle(b).

Notice that the reciprocal number N can be estimated by argmaxE(r ), where E(r ) is the radially average

Fourier power spectrum of the given crystal image. Hence, a least square method is sufficient to provide a

good estimate ∇φ̃(x) of the local deformation gradient ∇φ(x).

As an example of reading information from the local deformation gradient ∇φ(x), a local volume distor-

tion estimate of det
(∇φ(x)

)−1 is computed by

Vol(x) = det

(
∇φ̃(x)∫

Ωdet
(∇φ̃(x)

)
dx/ |Ω|

)
−1,

where Ω is the domain of the crystal image and |Ω| denotes its area. The normalization reduces the influ-

ence of the estimate error of N . In the presence of a lattice distortion of a dislocation, a Burgers vector is

introduce to represent this distortion. On one side of a Burgers vector, the space between atoms is slightly

compressed, while the space on the other side is expanded. Hence, the local volume distortion would be

positive on one side of the Burgers vector and negative on the other side. Suppose Vol(x1) and Vol(x2) are

the maximum and the minimum of Vol(x) in a local region near the dislocation. Then Vol(x1)−Vol(x2)

reflects the length of the Burgers vector and the vector x1 −x2 is orthogonal to the Burgers vector.
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Figure 9 shows the local distortion volume estimate Vol(x) of the example in Figure 6 (right). Vol(x)

reaches its local maximum and local minimum near each point dislocation and the direction of the corre-

sponding Burgers vector can be directly read off from the color coding of Vol(x). As a remark, Vol(x) is not

tightly supported around local dislocations in this example. This is because the synchrosqueezed trans-

forms cannot be too localized in space and the estimate of ∇φ(x) is polluted by the information at the other

points nearby. We leave further regularization of these estimates to future works.
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FIGURE 9. The local distortion volume Vol(x) of the example in Figure 6 (right). To make

the image more readable, the color limits of these two images are set to be 0.15 and −0.15

as the maximum and the minimum, respectively.

4. EXAMPLES AND DISCUSSIONS

This section contains a series of experiments of synthetic and real images to illustrate the performance of

Algorithm A and B . In the first part of this section, we focus on the application of Algorithm A to detect grain

boundaries and to estimate crystal rotations. The robustness of this method will be emphasized and sup-

ported by some noisy examples and examples with blurry grain boundaries. In the second part, Algorithm

B is applied to two more examples with different types of point dislocations. Algorithm B is more sensitive

to local defects and is able to discover Burgers vectors of these dislocations by estimating the local volume

distortion Vol(b). Throughout all examples, the threshold value ε for the synchrosqueezed transforms is

10−4 and other primary parameters such as s, t and d are application dependent. Generally speaking, large

parameters s, t and d result in more sensitive synchrosqueezed transforms to local defects, while smaller

parameters provide more stable analysis results.

Recall that both Algorithm A and B have a time complexity O(L2 logL +N 1−s L2
B logLB +L ALR L2

B ). Since

the time complexity depends on the reciprocal number N of a given crystal image and N is not known a

priori, we would not emphasize the runtime taken to analyze images of different sizes. All the numerical

results except for the one in Figure 15 and 16 take within 10 seconds using a Matlab code in a MacBook

Pro with a 2.7GHz quad-core Intel Core i7 CPU. The result in Figure 15 and 16 takes about 50 seconds

and the most expensive part is for the bump detection. The time expense will be reduced significantly by

straightforward parallelization, though this is not our focus in this paper. The codes of these algorihtms

together with some numerical examples are open source and available as SynLab at https://github.
com/HaizhaoYang/SynLab.

https://github.com/HaizhaoYang/SynLab
https://github.com/HaizhaoYang/SynLab
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4.1. Examples for Algorithm A. Our first example is a phase field crystal (PFC) image in Figure 10 (left). It

contains several grains with low and high angle grain boundaries and some point dislocations. As shown

in Figure 10 (middle), the weighted average angle Angle(b) is changing gradually in the interior of a grain

and jumps at a large angle boundary. Figure 10 (right) shows the boundary indicator function BD(b). Large

angle grain boundaries appear in a form of line segments. Adjacent point dislocations are connected and

identified as grain boundaries, while well-separated point dislocations are identifed by light grey regions.

As pointed out in Section 3, some isolated point dislocations may be missed due to the stacking step, while

Algorithm B is better suited for detecting local defects, as will be shown in Figure 15 and Figure 18.
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FIGURE 10. Analysis results of a large phase field crystal image (of size 1024×1024 pixels)

provided by Algorithm A. The top row is the original image and the bottom row gives

the zoomed-in view. Left: A phase field crystal (PFC) image and its zoomed-in image.

Courtesy of Benedikt Wirth [14]. Middle: The weighted average angle Angle(b) and its

zoomed-in result. Right: The boundary indicator function BD(b) and its zoomed-in result.

Primary implementation parameters: s = t = 0.5, d = 1.

We next consider a real data example of a twin boundary in a TEM-image in GaN (see Figure 11 (left)).

Algorithm A identifies two grains as shown in Figure 11 (middle) and estimates their rotation angles. The

grain boundary is approximated by a smooth curve in the image of the boundary indicator function BD(b)

in Figure 11 (right).

Figure 12 shows an example of blurry boundaries in a photograph of a bubble raft. In this case, the

transition between two grains is not sharp due to large distortion, in particular the local crystal structure is

heavily disturbed near the boundary. Nevertheless, Algorithm A is capable of identifying three grains with

sharp grain boundaries matching the distortion area as shown in Figure 12 (middle) and 12 (right).

To show the ability of our algorithm to analyze crystal images with strong illumination artifacts in the

imaging like reflections and shadows, we analyze the example shown in Figure 13 (left), where the reflec-

tions and shadows exhibit strong spatial variations. Algorithm A identifies two grains as shown in Figure
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FIGURE 11. Left: A TEM-image of size 420 × 444 pixels in GaN. Courtesy of David M.

Tricker (Department of Material Science and Metallurgy, University of Cambridge). Mid-

dle: The weighted average angle Angle(b) provided by Algorithm A. Right: The boundary

indicator function BD(b) provided by Algorithm A. Primary implementation parameters:

s = t = 0.5, d = 0.5.
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FIGURE 12. Left: A photograph of a bubble raft with large disorders and blurry bound-

aries. Courtesy to Barrie S. H. Royce in Princeton University. The image size is 223×415.

Middle and right: The weighted average angle Angle(b) and the boundary indicator func-

tion provided by Algorithm A. Primary implementation parameters: s = t = 0.5, d = 1.

13 (middle). The weighted average angle Angle(b) is slowly varying, indicating a smooth deformation over

the domain. A large angle grain boundary consisting of an array of close point dislocations is identified

by BD(b) in Figure 13 (right). This example also shows that Algorithm A may miss isolated defects, which

motivates the design of Algorithm B . We will revisit this example later with Algorithm B which will discover

all the missing point defects.

Algorithm A also works robustly in noisy examples. A noisy example of a real atomic resolution image

of a Sigma 99 tilt grain boundary in aluminum is shown in Figure 14 (a). The domain consists of three

grains with fuzzy transition regions. This is a rather challenging example, as individual atoms are hardly

identifiable in the middle-left part of the image. Grain boundaries by manual inspection are indicated in

red in Figure 14 (g). The small region indicated by blue color contains a grain boundary that is hardly seen.

The weighted average angle Angle(b) provided by Algorithm A reveals three grains with slight deformation

of lattices in Figure 14 (b). Grain boundaries can be also clearly seen from the boundary indicator function

BD(b) as shown in Figure 14 (c). They can be identified by a simple thresholding using BD(b). Figure 14 (h)

embeds the identified boundaries into the original crystal image. The result by manual inspection in Figure

14 (g) agrees with the one in Figure 14 (h).
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FIGURE 13. Left: A photograph of a bubble raft with strong reflections and point dislo-

cations (courtesy to Don Stone, copyright 2009 Board of Regents of the University of Wis-

consin System). Its size is 476×476 pixels. Middle and right: The weighted average angle

Angle(b) and the boundary indicator function provided by Algorithm A. Primary imple-

mentation parameters: s = t = 0.5, d = 0.5.

To demonstrate the robustness of our method, we normalize the image in Figure 14 (a) such that the

maximum intensity is 1 and add Gaussian white noise with a standard deviation equal to 1. The polluted

example is shown in Figure 14 (d). The atom structure is barely seen even away from the grain bound-

aries. The weighted average angle Angle(b), the boundary indicator function BD(b), and the estimated

grain boundaries are shown in Figure 14 (e), (f), and (i). As shown by these results, Algorithm A is able to

give similar results matching with the one by manual inspection even if noise is heavy.

4.2. Examples for Algorithm B . As pointed out previously, Algorithm B is more sensitive to local defects

than Algorithm A. Therefore, it can better discover local defects hidden in the underlying wave-like com-

ponents of crystal images. To validate this, let us revisit the phase field crystal image example shown in

Figure 10. The analysis results are presented in Figure 15 and 16. First, as shown in Figure 15 (middle),

the weighted average angle Angle(b) provided by Algorithm B is consistent with the one by Algorithm A.

Second, the boundary indicator function BD(x) by Algorithm B reveals all local defects including grain

boundaries and isolated dislocations clearly. As a trade off, Algorithm B visualizes grain boundaries as nar-

row fuzzy bands instead of sharp curves. Finally, as shown in Figure 16, isolated point dislocations appear

as dipoles in the visualization of the local volume distortion Vol(b). As a consequence, the Burgers vectors

of corresponding isolated point dislocations can be inferred by the directions of these dipoles.

To demonstrate the robustness of Algorithm B , we normalize the intensity of the crystal image in Figure

15 and add Gaussian white noise with distributions 0.5N (0,1) and 1.4N (0,1). These noisy examples are

shown in Figure 17 (a) and (d), respectively. In these heavily polluted cases, even when no crystal structure

is clearly visible by human eyes, Algorithm B is still able to reveal grain boundaries and isolated defects with

a reasonable accuracy (see Figure 17 (b) and (e)). The distortion volume in Figure 17 (c) and (f) still roughly

reflects the strain stress encoded by color.

We also revisit the example shown in Figure 13 and apply Algorithm B to identify point defects. Different

to the point dislocations in the previous phase field crystal example, some point defects here do not destroy

the crystal lattice nearby. For example, the point defect in the bottom-left part of the bubble raft image

looks like a missing bubble and it does not influence the positions of neighbor bubbles. Therefore, methods

depending on identifying neighbor bubbles might fail to detect such a kind of local defects. Since missing
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FIGURE 14. (a) and (d): An atomic resolution image of 424× 424 pixels of Sigma 99 tilt

grain boundary in Al and its noisy version. Courtesy of National Center for Electron Mi-

croscopy in Lawrence Berkeley National Laboratory. (b) and (e): The weighted average

angle Angle(b) of the images in (a) and (d), respectively. (c) and (f): The boundary indica-

tor functions provided by Algorithm A for the images in (a) and (d), respectively. (g): The

original crystal image associated with identified defect regions (in red) by manual inspec-

tion. The region indicated in blue contains a grain boundary that is hardly seen. (h) and

(i): Identified defect regions (in red) by thresholding the boundary indicator function of

(a) and (d), respectively. Primary implementation parameters: t = 0.75, s = 0.65, d = 1.

bubbles would reduce the synchrosqueezed energy at their places, Algorithm B is still able to detect them.

As an illustration, Figure 18 shows the results provided by Algorithm B and the positions of those local

defects in the left figure are accurately depicted in the right figure.

4.3. Quantitative analysis for statistical stability. We quantitatively analyze the performance of our algo-

rithms in this subsection in terms of statistical stability using the example in Figure 15. Suppose g = f +e is
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FIGURE 15. Analysis results of a phase field crystal image provided by Algorithm B . Com-

pare with Figure 10. Left: A phase field crystal (PFC) image and its zoomed-in images.

Middle: The weighted average angle Angle(b) and its zoomed-in results. Right: The

weighted boundary indicator function BD(b) and its zoomed-in results. The small rectan-

gles in the bottom-left corner of these images indicate the zoomed-in images in top-left

corner. Primary implementation parameters: s = t = 0.8, d = 1.
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FIGURE 16. Left: The local volume distortion estimate Vol(b) of the phase field crystal

image example in Figure 15 and its zoomed-in result. The color limits of these two images

are set to be 0.08 and −0.08.

the noisy crystal image, where e is white Gaussian noise with a distributionσ2N (0,1) and f is the noiseless

crystal image. We introduce the signal-to-noise ratio (SNR) of the input data g = f +e as follows:

SNR[dB ](g ) = 10log10

(
Var( f )

Var(e)

)
.
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FIGURE 17. Analysis results of noisy phase field crystal images provided by Algorithm B .

First row: Results of noisy data with Gaussian white noise 0.5N (0,1). Second row: Results

of noisy data with Gaussian white noise 1.4N (0,1). First column: input images. Second

column: detected grain boundaries and isolated defects. Third column: distortion vol-

ume. Zoomed-in images show that our method can still identify isolated defects even if

noise is heavy.
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FIGURE 18. Revisit the example in Figure 13. Left: A photograph of a bubble raft with

strong reflections and point dislocations. Middle and right: The weighted average angle

Angle(b) and the weighted boundary indicator function provided by Algorithm B . Primary

implementation parameters: s = t = 1, d = 1.
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We test Algorithm A and Algorithm B on these noisy examples with SNR’s ranging from 35 to −10. All results

are summarized in Figure 19.

Since the ground truth for grain boundaries and the crystal rotations is not available, we compare the

results of noisy examples with those in the noiseless case. To quantify the statistical stability of the grain

boundary estimation, we apply the earth mover’s distance (EMD) [22] to measure the distance between a

boundary indicator function of a noisy example and the one of the noiseless example. The boundary indi-

cator functions are converted to grayscale images. They can be considered as two-dimensional histograms

discribing the distribution of defects. At each pixel, the image intensity is from 0 to 255. One unit in the

grayscale image is one unit of the mass of the distribution. The EMD in this paper is the total mass per pixel

that we need to move from one distribution to match the other one. A smaller EMD indicates better statis-

tical stability. Figure 19 (left) plots the EMD as a function of SNR for the boundary indicator functions given

by Algorithm A and Algorithm B . Although the EMD functions gradually increase as the SNR decreases,

the values of these functions remain reasonably small, which means that our algorithms give similar grain

boundary estimates.

To quantify the statistical stability of the crystal rotation estimation, we compute the difference of the

rotation estimations in noisy and noiseless cases and measure the difference of its mean and standard de-

viation. The mean of the difference as a function of SNR is shown in Figure 19 (middle) and the standard

deviation function is shown in Figure 19 (right). Even though noise is heavy, most estimation errors are

bounded by a small degree. This shows that our algorithms are statistically stable against noise.
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FIGURE 19. Left: The earth mover’s distance (EMD) between the estimated grain bound-

aries of a noisy image and that of a clean image. Middle: The mean of the estimation

error of crystal rotations. Right: The standard deviation of the estimation error of crystal

rotations. Data plotted above is the average of 10 independent realizations.

5. CONCLUSION

This paper has proposed a new model for atomic crystal images and an efficient tool for their multiscale

analysis. Through various synthetic and real data, it has been shown that the proposed methods are able

to provide robust and reliable estimates of mesoscopic properties, e.g., crystal defects, rotations, elastic de-

formations and grain boundaries, in a short time. Since these methods are well suitable for parallelization,

the runtime will be considerably reduced by parallel computing. This would be appealing in the analysis of

a series of large crystal images to study the time evolution of crystals on a microscopic length scale.
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Note that the recovery of local deformation gradients is not smooth and its local distortion volume is

not sparsely supported in some cases, due to the estimate error of local wave vectors and the lack of reg-

ularization. This inspires future work by combining synchrosqueezed transform with regularization and

optimization to find a more accurate and smoother local deformation gradient with a sparser local distor-

tion volume.

We focus on the analysis of images with the presence of only one type of crystal and without solid and

liquid interfaces in this paper. The extension is not difficult. In fact, in the presence of liquid, the solid-liquid

interface can be identified as “boundary between grains” by our method. One could use imaging methods

for detecting geometric objects in the cartoon part of images [6, 17] to identify the liquid part immediately

after grains are identified by our method. Moreover, when the given image consists of multiple types of

crystals, local Fourier transforms taken at enough sampling positions can identify reference crystals. Fixing

one type of reference crystals, we apply our method to extract the boundaries, the rotations, the defects

and the deformations of grains of this type. A complete analysis can be obtained by combining the results

of each type of reference crystals.

Another interesting and challenging future direction is to analyze crystal images corresponding to com-

plex lattices. First, it might be difficult to automatically identify reference crystals directly from a given im-

age. The information hidden in the image is very redundant and hence feature extraction and dimension

reduction techniques are necessary. Second, the well-separation condition for synchrosqueezed transforms

may not hold due to a large number of underlying wave-like components of each grain. A 2D generalization

of the 1D diffeomorphism based spectral analysis method in [33] may provide a solution to this problem.

The current methods can be easily extended to 3D crystal analysis by designing a 3D synchrosqueezed

transform. This should be relevant for applications.

Acknowledgments. J.L. was partially supported by the Alfred P. Sloan foundation and National Science

Foundation under award DMS-1312659. H.Y. and L.Y. were partially supported by the National Science

Foundation under award DMS-0846501 and the U.S. Department of Energy’s Advanced Scientific Comput-

ing Research program under award DE-FC02-13ER26134/DE-SC0009409. H.Y. also thanks the support of

National Science Foundation under award ACI-1450372 and AMS-Simons Travel Award. We are grateful to

Benedikt Wirth for inspiring discussions and for providing us image data from PFC simulations. We thank

Matt Elsey for helpful comments on an earlier version of the manuscript. J.L. is also grateful to Robert

V. Kohn who brought his attention to this problem originally.

REFERENCES

[1] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diz De La Rubia, and M. Seager, Simulating materials failure by using up to

one billion atoms and the world’s fastest computer: Work-hardening, Proc. Nat. Acad. Sci. USA 99 (2002), 5783–5787.

[2] E. Arias-Castro, D. L. Donoho, and X. Huo, Near-optimal detection of geometric objects by fast multiscale methods, IEEE Trans. Inf.

Theory 51 (2005), 2402–2425.

[3] J.-F. Aujol and T. F. Chan, Combining geometrical and textured information to perform image classification, J. Vis. Commun. Image.

R. 17 (2006), 1004–1023.

[4] B. Berkels, A. Rätz, M. Rumpf, and A. Voigt, Extracting grain boundaries and macroscopic deformations from images on atomic

scale, J. Sci. Comput. 35 (2008), 1–23.

[5] M. Boerdgen, B. Berkels, M. Rumpf, and D. Cremers, Convex relaxation for grain segmentation at atomic scale, Vision, Modeling,

and Visualization, 2010, pp. 179–186.

[6] X. Cai, R. Chan, and T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and

thresholding, SIAM J. Imaging Sci. 6 (2013), 368–390.



CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS 29

[7] E. J. Candès and D. L. Donoho, Continuous curvelet transform. II. Discretization and frames, Appl. Comput. Harmon. Anal. 19

(2005), 198–222.

[8] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Process. 10 (2001), 266–277.

[9] I. Daubechies, J. Lu, and H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comp.

Harmonic Anal. 30 (2011), 243–261.

[10] I. Daubechies and S. Maes, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, Wavelets

in Medicine and Biology, Ed. A. Aldroubi and M. Unser, 1996, pp. 527–546.

[11] K. R. Elder and Martin Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,

Phys. Rev. E 70 (2004), 051605.

[12] M. Elsey and B. Wirth, Segmentation of crystal defects via local analysis of crystal distortion, Proceedings of the 8th International

Conference on Computer Vision Theory and Applications (VISAPP), 2013, pp. 294–302.

[13] , A simple and efficient scheme for phase field crystal simulation, ESAIM: Math. Mod. Num. Anal. 47 (2013), 1413–1432.

[14] , Fast automated detection of crystal distortion and crystal defects in polycrystal images, Multi. Model. Simul. 12 (2014), 1–

24.

[15] W. A. Götz and H. J. Druckmüller, A fast digital Radon transform – An efficient means for evaluating the Hough transform., Pattern

Recogn. 28 (1995), 1985–1992.

[16] J. Illingworth and J. Kittler, A survey of the Hough transform, Comput. Vision Graph. Image Process. 44 (1988), 87–116.

[17] M. Jung, G. Peyré, and L. Cohen, Nonlocal active contours, SIAM J. Imaging Sci. 5 (2012), 1022–1054.

[18] W. E. King, G. H. Campbell, S. M. Foiles, D. Cohen, and K. M. Hanson, Quantitative HREM observation of the
∑

11(113)/[1̄10]

grain-boundary structure in aluminium and comparison with atomistic simulation, J. Microsc. (1998), 131–143.

[19] C. Kittel, Introduction to solid state physics (7th Ed.), Wiley, 1995.

[20] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations: The Fifteenth Dean Jacqueline B. Lewis

Memorial Lectures, American Mathematical Society, Boston, MA, USA, 2001.

[21] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm.

Pure Appl. Math. 42 (1989), 577–685.

[22] O. Pele and M. Werman, Fast and robust Earth Mover’s Distances, Computer Vision, 2009 IEEE 12th International Conference on,

2009, pp. 460–467.

[23] B. Sandberg, T. F. Chan, and L. A. Vese, A level-set and Gabor-based active contour algorithm for segmenting textured images, UCLA

Department of Mathematics CAM report, 2002.

[24] H. M. Singer and I. Singer, Analysis and visualization of multiply oriented lattice structures by a two-dimensional continuous

wavelet transform, Phys. Rev. E 74 (2006), 031103.

[25] E. Strekalovskiy and D. Cremers, Total variation for cyclic structures: Convex relaxation and efficient minimization, Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 2011, pp. 1905–1911.

[26] A. Stukowski and K. Albe, Dislocation detection algorithm for atomistic simulations, Model. Simul. Mater. Sci. Eng. 18 (2010),

025016.

[27] , Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul. Mater. Sci. Eng.

18 (2010), 085001.

[28] M. Unser, Texture classification and segmentation using wavelet frames, IEEE Trans. Image Proc. 4 (1995), 1549–1560.

[29] L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J.

Comput. Vision 50 (2002), 271–293.

[30] L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci.

Comput. 19 (2003), 553–572 (English).

[31] H.-T. Wu, Instantaneous frequency and wave shape functions (I), Appl. Comp. Harmonic Anal. 35 (2013), 181–199.

[32] H. Yang, Robustness analysis of synchrosqueezed transforms, arXiv:1410.5939 [math.ST] (2014). preprint.

[33] , Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions,

Appl. Comput. Harmon. Anal. 39 (2015), no. 1, 33 –66.

[34] H. Yang, J. Lu, W.P. Brown, I. Daubechies, and L. Ying, Quantitative canvas weave analysis using 2-D synchrosqueezed transforms:

Application of time-frequency analysis to art investigation, Signal Processing Magazine, IEEE 32 (2015July), no. 4, 55–63.

[35] H. Yang and L. Ying, Synchrosqueezed wave packet transform for 2D mode decomposition, SIAM J. Imaging Sci. 6 (2013), 1979–

2009.



30 HAIZHAO YANG, JIANFENG LU, AND LEXING YING

[36] , Synchrosqueezed curvelet transform for two-dimensional mode decomposition, SIAM J. Math. Anal. 46 (2014), no. 3, 2052–

2083.

[37] Z. Yu and C. Bajaj, Detecting circular and rectangular particles based on geometric feature detection, J. Struct. Biol. 145 (2004),

168–180.

[38] X. Zeng, B. Gipson, Z. Y. Zheng, L. Renault, and H. Stahlberg, Automatic lattice determination for two-dimensional crystal images,

J. Struct. Biol. 160 (2007), 353–361.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY

E-mail address: haizhao@math.duke.edu

DEPARTMENTS OF MATHEMATICS, PHYSICS, AND CHEMISTRY, DUKE UNIVERSITY

E-mail address: jianfeng@math.duke.edu

DEPARTMENT OF MATHEMATICS AND INSTITUTE FOR COMPUTATIONAL & MATHEMATICAL ENGINEERING, STANFORD UNIVERSITY

E-mail address: lexing@math.stanford.edu


	1. Introduction
	1.1. Our contribution
	1.2. Previous works

	2. Crystal image models and theory
	2.1. 2D general intrinsic mode type functions
	2.2. 2D synchrosqueezed transforms

	3. Crystal defect analysis algorithms and implementations
	3.1. Frequency band detection (bump detection)
	3.2. Band-limited 2D fast SST
	3.3. Defect detection algorithms
	3.4. Recovery of local deformation gradient

	4. Examples and discussions
	4.1. Examples for Algorithm A
	4.2. Examples for Algorithm B
	4.3. Quantitative analysis for statistical stability

	5. Conclusion
	References

