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Abstract. Biological systematics studies suggest that species are discretized in niche space.
That is, rather than seeing a continuum of organism types with respect to continuous environmental
variations, observers instead find discrete species or clumps of species, with one clump separated from
another in niche space by a gap. Here, using a simple one dimensional model with a smoothly varying
environmental condition, we investigate conditions for a discrete niche partitioning instability of a
continuously varying species structure in the context of asexually reproducing microbes. We find that
significant perturbation of translational invariance is required for instability, but that conditions for
such perturbations might reasonably occur, for example, through influence of boundary conditions.
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1. Introduction.

1.1. Background. Characterization of plant and animal ecological structures
via species classification has a long and distinguished history. More recently, cat-
aloging microbial species, partly as a consequence of rapidly improving access to
molecular sequencing technology, has become increasingly popular as well. Despite
the ubiquity and importance of microbes, however, theory for ecological characteri-
zation of prokaryotic microbial communities is still relatively underdeveloped and, as
a consequence of asexual reproduction among other things, may be rather different
than theory developed for plants and animals [35]. It is generally suspected that,
via their rapid reproduction rate combined with a variety of genetic manipulation
capabilities (using enhanced mutation, horizontal gene transfer, etc.), inhabitants of
microbial ecosystems are able to adapt comparatively quickly to their environment
in comparison to multicellular organisms. Understanding of the consequences for the
resulting ecological structures, though, is limited.

We might suppose at least in some instances that microbial communities can
adapt to their environments on shorter times than the time scale of secular variation
of their environments. Then community structure could be determined in large part
by relatively straightforward competitive processes. (External stresses like predation
might also be important but here we suppose such influences to affect all species
equally. It should be noted though that when predation is present, Turing-like insta-
bilities may also be possible [27].) In well-mixed systems like chemostats [46], where
environmental conditions are effectively spatially uniform, there are questions as to
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1512 ISAAC KLAPPER, JACK DOCKERY, AND HAL SMITH

why there should be significant species variation at all, the so-called paradox of the
plankton [23]. Here well-mixed means that the mixing time is small in comparison
to other time scales, especially the growth time. The case that the environment isn’t
homogenized but the microorganisms are highly motile (so as to be able to sample
across the environment on a relatively short time scale) is likely similar. However in
many instances, microbial ecosystems are not well-mixed in either of these senses. As
a consequence, different organisms may be effectively exposed to different environ-
mental histories depending on their location within the community. Thus in contrast
to the well-mixed case, in a stable, continuously (in space) varying environment, one
might expect rapid (in space) variation in species, each adapted to its local conditions,
even if the environment varies relatively slowly (in space). In the extreme instance of
no microbial mobility at all, spatial location becomes a parameter and species struc-
ture might in theory vary continuously as adaptation to the local microenvironment
occurs pointwise. If there is a paradox here, it is instead a question of why there are
not more species rather than less.

A related problem, called the “paradox of the clumps” [38], refers to field ob-
servations of niche separation in a well-mixed domain for which data are catalogued
by a niche variable, for example, organismal body size, resulting in apparently non-
homogeneous species distribution in the relevant niche characteristic. Studies of this
phenomenon may allow species to interact with nearby (in niche coordinates) ones
through a Lotka–Volterra competition model. Typically, competitive mechanisms of
all sorts are combined under the umbrella of a single, phenomenologically defined com-
petition kernel, often of Gaussian or similar form. Depending on choice of competition
kernel, such models predict instability (or not) of homogeneous niche space species
structure leading to clumping in niche space (or not). Which occurs is determined by
choice of the competition kernel, with fairly sensitive dependence on such details as
tail decay rates [19, 34, 39]. Related models have included environmental changes in
space in the form of spatially dependent Lotka–Volterra carrying capacities [26, 36].
Again, however, results depend sensitively on kernel details. As a consequence, we
opt to move away from the Lotka–Volterra dynamics and, rather, choose a particu-
lar competition mechanism, namely, competition for space. Space is a key resource
in many communities, particularly microbial biofilms where suitable habitats can be
strictly confined by steep environmental gradients arising most typically as a conse-
quence of reaction-diffusion effects. As will be seen, we find in this case that results do
not appear to be sensitive to small parametrization details (such as tail decay rates).
A second central component of the model presented here is spatial transport in the
form of diffusive drift. Often, niche space based models also include diffusive drift in
niche space itself as a way to include evolutionary effects. Here, however, diffusion
acts in real space only.

Whether it is advantageous for an organism to be mobile in a spatially heteroge-
neous but temporally homogeneous environment has been the subject of a considerable
body of research. While this question is not central to our focus here, we note that
Hastings [20] was among the first to seek answers through mathematical models. He
showed that so-called unconditional mobility, random mobility independent of envi-
ronmental conditions, is disfavored. Later work of Dockery et al. [10] corroborated
and extended this conclusion. See the review chapter by Cantrell, Cosner, and Lou [5]
for more recent work. Though we allow random mobility here, relative fitness with
respect to mobility amplitude is not considered.

Despite the microscopic dimensions of each individual inhabitant, microbial com-
munities can extend over noticeable distances, e.g. lake and stream beds, length scales

D
ow

nl
oa

de
d 

02
/0

6/
15

 to
 1

29
.2

19
.2

47
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NICHE PARTITIONING ALONG AN ENVIRONMENTAL GRADIENT 1513

Fig. 1. Microbial mat in an effluent channel, Pinwheel Spring in Norris Basin, Yellowstone
National Park. Water from two different sources, each at its own temperature and with its own
chemistry, runs together into the same effluent channel. Species makeup changes rapidly (green
indicates presence of photoautotrophs, red indicates presence of iron oxidizing chemotrophs) at the
interface between the two runoffs, as suggested by color change in the cross channel direction. Photo
credit: Eileen Nauman.

large enough so that environmental conditions can change significantly. Further, as
mentioned, as a consequence of the fact that for sessile communities much and some-
times all of the environment is not well-mixed, it is typical that community related
diffusion-reaction balances induce spatial variation by themselves, even over distances
of the order of microns through reaction-diffusion related formation of stratified mi-
croenvironments [6, 25]. This self-induced source of heterogeneity tends to lead to
sharp environmental variation and, consequently, niche boundaries [47]. Related ef-
fects, though not necessarily self-induced, can be seen in microbiological communities,
e.g., [2] and Figure 1.
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1514 ISAAC KLAPPER, JACK DOCKERY, AND HAL SMITH

However, niche partitioning is observed even in slowly varying (in space) envi-
ronments where appeal cannot be made to sharp transitions. By slowly varying, we
mean that organism displacements of the sort resulting from mobility do not result in
exposure to sharply variant environmental conditions on growth related time scales
or faster. Referring to Figure 1, for example, this sort of species variation would be
observed in the down-channel direction, not (necessarily) the cross-channel one. Here,
then, we consider the possibility of a spatially varying environment with some organ-
ismal mobility and, in particular, we examine the tendency for niche separation in a
community of mobile microbial species in a slowly varying (in space) environment.
Using a one dimensional model environment with a slowly varying environmental
condition (e.g., temperature or light) and a simple model microbial community sys-
tem, we will work to obtain insight into issues of continuous versus discrete species
structures. Are there mechanisms by which discrete species structure spontaneously
develops in slowly varying environments? To rule out effects of inherently favorable
local environmental conditions, we at first address this question using a linearly vary-
ing environment together with a biological response which is translation invariant in
the sense that no particular environmental condition is inherently favorable to others.
This is not necessarily a representative assumption—for example, in reality, obviously,
temperatures that are too cold or too hot cannot support life at all. However its use
allows study of the problem in a more “pure” way. Subsequently, though, we allow
favorable local environments in several different ways and study the resulting species
structure when some of the realities of actual environments are present.

2. Two species. We first examine the interaction of two species with a view
towards understanding when they can and cannot coexist. The aim is to inform results
for a continuously varying species ecology model that will follow. In particular, we
ask how do very similar species compete? With that motivation, consider, then, two
species, with volume fractionsX1(x, t; τ1) andX2(x, t; τ2), on domains x ∈ [a, b] or x ∈
(−∞,∞). Here volume fraction can be interpreted to mean the occupied percentage
of an infinitesimal one dimensional volume dx. We assume that X1 +X2 = 1 for all
x with the implication that the two species compete for space. Note also that only
solutions with 0 ≤ X1, X2 ≤ 1 are of interest. On the finite domain, application of no-
flux boundary conditions is natural. We introduce a spatially varying environmental
condition T = T (x), e.g., temperature. Parameters τ1 and τ2 index the response to
this environmental condition as explained below.

Populations of species 1 and 2 change in time according to

X1,t = r(f(T ; τ1)− c(x, t))X1 +DX1,xx,(2.1)

X2,t = r(f(T ; τ2)− c(x, t))X2 +DX2,xx,

where r is a growth rate coefficient and f(T ; τ) is the dimensionless environmental
response of species τ to condition T (T and τ have the same units). The function
c(x, t) is a loss rate determined so as to enforce the constraint X1 +X2 = 1 and can
be computed by adding these equations to obtain

c(x, t) = f(T ; τ1)X1 + f(T ; τ2)X2.

The supplied function f(T ; τ) distinguishes one species from another through its τ
dependence; τ can, for example, indicate the optimum environmental condition for
growth, though not necessarily. We will assume that f is integrable with f > 0 and
as smooth as necessary. As an example, f could be chosen to be of Gaussian form
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NICHE PARTITIONING ALONG AN ENVIRONMENTAL GRADIENT 1515

f(T ; τ) = C exp(−(τ − T )2/γ), indicating that a particular species with designation
τ grows fastest at environmental condition T = τ . More generally, a form f =
f(T − τ) indicates that species response translates with T − τ though not requiring
that response be symmetric in the sign of T − τ . We will suppose that T (x) = αx so
that no one local environmental profile is distinguishable from another in the sense
that environment changes uniformly with translation, i.e., T ′(x) is constant. The units
for the environmental condition are arbitrary, so we choose them in such a way that
α = 1. We can go ahead, in fact, and conflate units of the environmental condition
with length units. For example, in the case where the environmental condition is
temperature, then position and temperature are effectively interchangeable.

Using X2 = 1−X1 in (2.1) and renaming X1 by X , then

(2.2) Xt = β(x)rX(1 −X) +DXxx,

where β(x) = f(x; τ1) − f(x; τ2). We are particularly interested in characterizing
equilibrium (Xt = 0) solutions of (2.2). Note the extinction solutions X = 1 (i.e.,
X1 = 1, X2 = 0) and X = 0 (i.e., X1 = 0, X2 = 1). Defining an energy functional

E[X ](t) =

∫ [
β(x)r

(
X3

3
− X2

2

)
+

1

2
DX2

x

]
dx,

a short computation shows that, for X a solution of (2.2),

d

dt
E = −

∫
X2
t dx ≤ 0.

For the solutions X = 0 and X = 1, we have E[0] = 0 and E[1] = −(1/6)
∫
β(x)rdx.

Thus X = 0 is more energetically favorable when
∫
β(x)dx < 0 and X = 1 is more

energetically favorable when
∫
β(x)dx > 0. Given a solution X(x, t; τ) of (2.2), we

consider an approximate perturbation X + X̂, where X̂ satisfies

X̂t = β(x)r(1 − 2X)X̂ +DX̂xx,(2.3)

the linearization of (2.2). Note for the solution X = 0 we see that X̂t = βrX̂ +DX̂xx

so that, if
∫
β(x)dx > 0 then X = 0, is unstable to, for example, any constant positive

perturbation. Likewise for the solution X = 1 we see that X̂t = −βrX̂ + DX̂xx so
that, if

∫
β(x)dx < 0, then X = 1 is unstable to, for example, any constant negative

perturbation. Stability of the solution X = 0 when
∫
β(x)dx < 0 and of the solution

X = 1 when
∫
β(x)dx > 0 is more subtle and depends on the relative importance of

growth and diffusivity. Note for example that, for D = 0 and β(x) not single signed,
neither X = 0 nor X = 1 is linearly stable. Interestingly, when

∫
β(x)dx = 0 and

D �= 0, neither solution X = 0 nor X = 1 is stable.
To be precise, consider (2.1) for x ∈ [−L,L] with Neumann boundary conditions,

where f(x; τi) ≥ 0, i = 1, 2, are such that no dominance relation holds on [−L,L], i.e.,
β(x) takes both positive and negative values on [−L,L]. Without loss of generality
we may assume that, on average, species two is not inferior in fitness to species one:∫ L

−L
f(x; τ1)dx ≤

∫ L

−L
f(x; τ2)dx,(2.4)

i.e.,
∫ L
−L β(x)dx ≤ 0. If strict inequality holds in (2.4), define

λ(β) = inf
ψ∈S

∫ L
−L(ψ

′(x))2dx∫ L
−L β(x)ψ

2(x)dx
,(2.5)D
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1516 ISAAC KLAPPER, JACK DOCKERY, AND HAL SMITH

where

S =

{
ψ ∈W 1,2(−L,L) :

∫ L

−L
β(x)ψ2(x)dx > 0

}
.

Note that S is not empty since β attains positive values and that constant functions
do not belong to S due to our assumption that strict inequality holds in (2.4). Thus,
the numerator of (2.5) cannot vanish. According to [30], λ(β) > 0 and the infimum
is attained. Recall that equations (2.1) have trivial solutions X1 ≡ 1, X2 ≡ 0 and
X1 ≡ 0, X2 ≡ 1. We say that (X1, X2) is a nontrivial equilibrium if Xi(x) ≥ 0 but
Xi is not identically zero, and X1(x) +X2(x) = 1 holds for all x. Note that, in fact,
by maximum principle arguments, Xi(x) > 0 holds for any nontrivial equilibrium.

Theorem 2.1 (Thm. 3.2, Remark 3.3 in [30]; Thms. 3.1 and 5.1 in [14]). The
following hold.

(a) If strict inequality holds in (2.4), then
(i) if r/D ≤ λ(β), then the trivial equilibrium X1 ≡ 0, X2 ≡ 1 is globally

asymptotically stable;
(ii) if r/D > λ(β), then there is a unique nontrivial equilibrium which attracts

all nontrivial initial data.
(b) If equality holds in (2.4), then there exists a unique nontrivial equilibrium

which attracts all nontrivial initial data.
If species two is, on average, superior to species one, then it excludes species one at

all locations provided that D is not too small (r/D ≤ λ(β)); otherwise (r/D > λ(β)),
the two species coexist. In the case that the two species have, on average, identical
fitness, then they coexist. An interesting point is that even if species two has, on
average, superior growth fitness to species one, it is still obliged to share habitat with
species one if

√
D/r is sufficiently small. Note that the length scale

√
D/r measures,

roughly, the distance a disturbance is spread via diffusion over the growth time scale.
One can then interpret the coexistence case (a)(ii) of Theorem 2.1 in two ways: (1)
if diffusive transport is small enough, then microbes are better able to remain in the
most favorable locations where they have a growth advantage, allowing persistence of
both species even if one is on spatial average better adapted to the environment than
the other. On the other hand, if diffusive transport is sufficiently large, then microbes
are forced to sample disadvantageous regions and then the species with greater average
fitness can exclude the lesser. (2) An alternative view is that if the length scale

√
D/r

is small relative to the distance between optimal regions of species one and two, then
diffusive transport is relatively ineffective as a competitive tool and both species can
cooccur. On the other hand, if that length scale is relatively large, then the species
with the larger average can use diffusive transport to invade the lesser species’ favored
regions faster than growth can counterbalance.

2.1. Asymptotics. While Theorem 2.1 describes conditions for coexistence, it
doesn’t say much about the nature of coexisting solutions. In particular, in prepara-
tion for studying coexistence of a continuum (in τ) of species, we would like to know
more about the form of solutions when species are asymptotically close together (in
τ). Let, then, τ0 = (τ1+τ2)/2, ε = τ0−τ2 (so τ1 = τ0+ ε, τ2 = τ0− ε). In anticipation
of the continuous species problem, let ε→ 0, with the motivation of studying whether
two very “nearby” species can coexist stably or not and, if so, how. We expand as

X = X(0) + εX(1) + ε2X(2) +O(ε3),(2.6)

β = f(x; τ0 + ε)− f(x; τo − ε) = 2fτ (x; τ0)ε+O(ε3),
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and assume fτ (x; τ0) �= 0 identically, i.e., that the two species are asymptotically
distinguishable to first order. We are interested in the long time behavior of X , so
we set initial conditions X(0)(x, 0) = X(x, 0) and X(1)(x, 0) = X(2)(x, 0) = 0 and
consider large t behavior.

2.1.1. Zeroth order. To zeroth order,

X
(0)
t = DX(0)

xx .

On a finite spatial interval, X(0) will approach a constant C = 〈X(0)(x, 0)〉 on a
diffusion time scale, where 〈·〉 denotes averaging with respect to x. We will see below
that only certain values of C are consistent with the proposed asymptotic expansion
for long times, with the implication over long times that the growth term βrX(1−X)
will asymptotically drive 〈X〉 to one of those distinguished values.

2.1.2. First order. The first order problem is

X
(1)
t = 2rfτ (x; τ0)X

(0)(1−X(0)) +DX(1)
xx(2.7)

which will tend towards an equilibrium (if stable) determined by

0 = 2rfτ (x; τ0)C(1 − C) +DX(1)
xx .(2.8)

In the case of no-flux boundary conditions, or with Xx → 0 as |x| → ∞ for an
unbounded domain, we can average (2.8) to obtain the Fredholm condition

0 = C(1 − C)〈fτ (x; τ0)〉.

Note thus that if 〈fτ (x; τ0)〉 �= 0, indicating that one species has an asymptotic overall
advantage over the other, then C = 0 or C = 1. Averaging (2.7) to obtain

〈X(1)〉t = 2r〈fτ (x; τ0)〉C(1 − C),(2.9)

it becomes evident that, for C �= 0 or 1, 〈X(1)〉 will increase secularly if 〈fτ (x; τ0)〉 > 0
and decrease secularly if 〈fτ (x; τ0)〉 < 0. In either case the asymptotic expansion
breaks down, but nevertheless we infer that if 〈fτ (x; τ0)〉 > 0 (overall advantage to
species 1) then the solution X = 0 is unstable and X will tend to 1 generally, and if
〈fτ (x; τ0)〉 < 0 (overall advantage to species 2) then the solution X = 1 is unstable
and X will tend to 0. This observation follows from directly averaging (2.2) as well.

If 〈fτ (x; τ0)〉 = 0 (no overall advantage for either species) and C �= 0 or 1, we need
to proceed to second order in ε to obtain a value for C. Note that if f = f(x − τ),
then fτ = −fx so that 〈fτ (x; τ0)〉 = (f(a − τ0) − f(b − τ0))/(b − a). On (−∞,∞)
this quantity will be zero under the condition f → 0 as |x| → ∞, but on a finite
interval it generally will not be zero, with sign determined by the relative advantage
of conditions at the interval endpoints. That is, as a consequence of boundary effects,
for most choices of τ0, 〈fτ (x; τ0)〉 �= 0 so that C = 0 or 1 necessarily so that the two
species will not coexist.

2.1.3. Second order. In the case 〈fτ (x; τ0)〉 = 0 and C �= 0 or 1, we consider
the second order problem

X
(2)
t = 2rfτX

(1)(1− 2X(0)) +DX(2)
xx(2.10)
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1518 ISAAC KLAPPER, JACK DOCKERY, AND HAL SMITH

which will tend to an equilibrium (if stable)

0 = 2rfτX
(1)(1 − 2C) +DX(2)

xx .

Averaging, we obtain the Fredholm condition

0 = 〈fτX(1)〉(1 − 2C).(2.11)

Note that at steady state, from (2.8) upon multiplying by X(1) and averaging,

r〈fτX(1)〉C(1 − C) = D〈(X(1)
x )2〉.

Since C �= 0 or 1, if 〈fτX(1)〉 = 0 at steady state then X(1) will be a constant (in x)
at steady state. From (2.7), however, this requires X(0) → 0 or 1 or fτ (x; τ0) = 0,
contrary to assumptions. Hence we can conclude that, at steady state, if C �= 0 or 1
then 〈fτX(1)〉 �= 0 and thus, from (2.11), that C = 1/2. That is, species 1 and 2 coexist
equally to zeroth order. Recall also that C = 〈X(0)(x, 0)〉. If 〈X(0)(x, 0)〉 �= 1/2 then
X(2) will increase or decrease secularly.

In summary, asymptotics for the two species model suggest that the continuous
species model will not indicate species clumping unless the uniform favorability of en-
vironmental response is somehow broken. Rather, a translationally invariant solution
should be expected; when two asymptotically similar species are able to coexist, they
spread equally through the domain to zeroth order as opposed to creating a sharp
boundary between domains where one or the other is dominant.

2.2. Numerics: Two and three species. Note that the assumption that βr =
2rfτ (x; τo)ε + O(ε2) is small breaks down at fixed ε for large growth rate r. To
investigate, we compute solutions at fixed ε of the two species model

X1,t = r(f(x + τ) − c(x, t))X1 +DX1,xx,(2.12)

X2,t = r(f(x − τ) − c(x, t))X2 +DX2,xx

on a finite interval−1 < x < 1, with f chosen to be the Gaussian f(x) = exp(−x2/σ2).
We impose no flux boundary conditions at x = ±1. Recall, as previously,

c(x, t) = f(x+ τ)X1 + f(x− τ)X2.

The aim is to illustrate the significance of the length scale
√
D/r which measures,

roughly, the distance that organisms can diffuse before growth effects become impor-
tant. As r becomes large, this length scale approaches zero and the implicit assump-
tion made in the asymptotic analysis of the dominance of diffusion (see section 2.1.1),
becomes invalid.

According to Theorem 2.1 and the results of [14] and consistent with asymptotic
predictions, since

∫ 1

−1

(f(x+ τ) − f(x− τ))dx = 0,

then both extinction states, (X1 = 1, X2 = 0) and (X1 = 0, X2 = 1), are unstable
and there is for each r > 0 a unique stable coexistence steady state solution to (2.12).
We used AUTO [11] to compute the one parameter family (in r) of these stable

D
ow

nl
oa

de
d 

02
/0

6/
15

 to
 1

29
.2

19
.2

47
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NICHE PARTITIONING ALONG AN ENVIRONMENTAL GRADIENT 1519

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

r=200

 

 

X1
X2

0 50 100 150 200 250
0.5

0.6

0.7

0.8

0.9

1

r

|
|
X
1
|
|

∞

Fig. 2. Stable solution for r = 200 (top) and steady state solution branch (bottom) for (2.12)
with D = 1, τ = 0.6, f(ξ) = exp(−|ξ|2/σ2), and σ2 = 0.02.

steady states. In particular, AUTO numerically follows solutions of a finite difference
approximation for

DX1,xx + r(f(x + τ)− f(x+ τ)X1 − f(x− τ)X2)X1 = 0,(2.13)

DX2,xx + r(f(x − τ)− f(x+ τ)X1 − f(x− τ)X2)X2 = 0.

This also allowed us to compute stability along the branch. Results are shown in
Figure 2. Note that at small r, both species coexist everywhere in approximately
equal concentrations, i.e., X1 and X2 are close to 1/2 for all x, consistent with the
asymptotic analysis which predicts that Xi = 0.5 + O(r). At large r, however, the
solution approaches the D = 0 case where, at each location x, the more fit species
excludes the less fit one, i.e., X1 is close to 1 for x < 0 and X2 is close to 1 for x > 0.
This behavior occurs when the distance

√
D/r becomes small relative to the distance

2τ between the two species. Note that
√
D/r would seem to approximate a realized

niche width [31] in this model.
This observation suggests that if the two species are far apart (as measured by the

ratio of 2τ and
√
D/r), then a third species should be able to coexist between them.

To see what happens as this ratio changes we extend to a three species symmetric
model,

X1,t = r(f(x + τ) − c(x, t))X1 +DX1,xx,(2.14)

X2,t = r(f(x) − c(x, t))X2 +DX2,xx,

X3,t = r(f(x − τ) − c(x, t))X3 +DX3,xx
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Fig. 3. Stable solutions to (2.14) for r = 2 and r = 10. Other parameters are as in Figure 2.

on −1 < x < 1, again with no flux boundary conditions. As before we require that the
three species compete for space such that at each point x they satisfy the constraint
X1 +X2 +X3 = 1 with the necessary consequence that

c(x, t) = f(x+ τ)X1 + f(x)X2 + f(x− τ)X3.

Results of Theorem 2.1 imply that there are nontrivial steady-state solutions to
the system (2.14) for each r > 0 of the typeXi ≡ 0 for one i ∈ {1, 2, 3} at least for some
values of

√
D/r, though the stability results are not applicable to the extended three

component system. We refer to these states as crowded solutions (since only two of the
species are able to coexist, crowding out the third). There can be three such solutions:
(X1 = 0, X2 �= 0, X3 �= 0), (X1 �= 0, X2 = 0, X3 �= 0), and (X1 �= 0, X2 �= 0, X3 = 0),
though the first and third of these can only exist for sufficiently small

√
D/r; see

Theorem 2.1. We have found numerically that the middle stable crowded state is
possible. In particular, if

√
D/r is large enough and hence the realized niche width

is large enough, then we can find stable steady state solutions to (2.14) for which
the middle species X2 ≡ 0 while X1 and X3 are nonzero. That is, due to relatively
large diffusivity and no flux boundary conditions, species X1 and X3 can exclude the
intermediate species X2. On the other hand, if

√
D/r is small, then all three species

stably coexist. See Figure 3.
We calculated the bifurcation diagram for steady state solutions to system (2.14)

numerically using AUTO. AUTO is able to compute the number of unstable eigen-
values for the linearization about our numerical steady state solution to (2.14). This
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Fig. 4. Bifurcation diagram for steady state solution to (2.14) with f(ξ) = exp(−|ξ|2/(σ2)),
τ = 0.6, D = 1, and σ2 = 0.02. Vertical axis is the L2 norm of the 3-vector of solution components.
Horizontal axis measures bifurcation parameter r, vertical axis measures solution norm. Solid:
stable solutions; dashed: unstable solutions. Thick: two species crowded solutions; thin: three
species solutions.

allows us to determine the stability along the solution branches as well as the di-
mension of the unstable manifold for these steady solution numerical approximations.
Partial results are shown in Figure 4. Note again that for small

√
D/r the crowded

solution with middle species X2 ≡ 0 is stable (see Figure 4, solid black curve), while
as r increases, this type of solution loses stability through a transcritical bifurcation
at r ≈ 3.03. Note that at this value of r, the ratio 2τ/

√
D/r ∼= 2, that is, the distance

between species 1 and species 3 is roughly twice their realized niche widths. For larger
values of r, when species 1 and species 3 no longer overlap, a stable steady state for
which all three species coexist stably emerges (see Figure 4, solid red curve). These
results suggest a separation scale on which niche partitioning might occur. In combi-
nation with the two species results that indicate that continuum species distribution
(i.e., no niche partitioning) can be expected unless the translation invariance of envi-
ronmental favorability can somehow be broken, we are now prepared to consider the
full continuous species model.

We note that the model equations studied in this section are similar to ones
that arise in some models of evolution of gene frequencies. Of particular note is
the paper [29] which considers a model describing the evolution of gene frequencies
in a population subject to migration and selection at a multiallele locus where the
selection coefficients are independent of gene frequencies. In the special case where
the population density is constant and migration is conservative (does not change
density) and isotropic, the equations studied there describing the relative frequencies
Xi of genotype AiAj at position x at time t are analogous to (2.1) in the case of
two alleles and to (2.14) for three alleles. The authors assume genotypic fitnesses
that are spatially dependent, corresponding to our functions f(T (x), τi). In much
more generality than considered here and for n alleles (see Theorem 1.1 in [29]), they
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prove that X1(x, t) → 1 uniformly in x if its average fitness (as in (2.4) above but
with inequality reversed) exceeds that of all others provided that diffusion d is large
relative to scaled fitnesses (a parameter analogous to our r). In an earlier paper
the same authors showed [28, Theorems 1.4 and 1.8] that persistence of all alleles
holds and there exists an “internal equilibrium” when diffusion is small relative to r
provided that each allele has a selective advantage over all others at some position.
Persistence of all alleles means the existence of δ > 0 such that Xi(x, t) ≥ δ for all x
when t > T for some T which may depend on (positive) initial data.

3. Continuous species distribution.

3.1. Setup. Consider species volume fraction density X = X(x, t; τ) (with units
of volume fraction per species), where −∞ < τ < ∞ is the species label, with con-
straint ∫ ∞

−∞
X(x, t; τ)dτ = 1 ∀(x, t),(3.1)

(i.e., total population at a given location x is constrained by available space) and
X ≥ 0. Note that τ is now allowed to vary continuously, so that a continuum of
differing species may be present at each location x and time t. We suppose that X
satisfies

Xt = r(f(T (x); τ) − c(x, t))X +DXxx,(3.2)

where T , r, f ,D, and c are as described previously. In particular, rf(T (x); τ)X(x, t; τ)
is the growth rate of species (density) τ at location x and time t and environmental
condition T (x), while rc(x, t)X(x, t; τ) is the corresponding loss rate as a consequence
of competition for space with other organisms at the same location. The loss c is
computed by integrating (3.2) over all species labels τ to obtain

c(x, t) =

∫ ∞

−∞
f(T (x); τ)X(x, t; τ)dτ(3.3)

using
∫∞
−∞Xt dτ =

∫∞
−∞Xxx dτ = 0 as consequences of (3.1). We assume that f ≥ 0

and ∫ ∞

−∞
f(T (x); τ)dτ <∞.

Observe that (3.2) has the appearance of being a nonlocal Fisher (or Fisher-KPP)
equation [4, 16, 17, 18, 24], though the nonlocality in (3.2) is through the species
variable τ rather than the spatial direction x (the direction in which diffusion is
active). Also, note that the nonlocal term is effectively an average of fitness f against
kernel X rather than the average of X against some sort of competition kernel as
typically used in nonlocal Fisher models. One consequence is that the coefficient of X
in (3.2) likely changes sign (as a function of x) so that traveling waves are generally
not expected.

3.2. Continuum species equilibrium. We study the problem first on the infi-
nite interval x ∈ (−∞,∞). However, the same (actually easier) analysis works on the
finite interval with Neumann or periodic boundary conditions. Consider the special
case that T = x and f = f(T − τ) = f(x− τ), where f satisfies

f(x) ≥ 0, x ∈ R, and 0 <

∫ ∞

−∞
f(s)ds <∞.(3.4)
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Typically, although not necessarily, f assumes its maximum at zero meaning that x =
τ is the most favorable location for the subpopulation experiencing growth function
f(x− τ).

We can look for an infinite species solution of the form X = X(T (x) − τ, t) =
X(x−τ, t) = X(ξ, t), where ξ = x−τ . By (3.1), this requires that X(ξ, t) is integrable
in its first variable. Note then that c is independent of x, with c given by

c(t) =

∫ ∞

−∞
f(x− τ)X(x− τ, t)dτ =

∫ ∞

−∞
f(ξ)X(ξ, t)dξ,

in order to enforce (3.1), and that X(ξ, t) satisfies

Xt = r (f(ξ)− c)X +DXξξ.(3.5)

An equilibrium solution of (3.5) is a positive integrable solution X(ξ) of

DXξξ + rf(ξ)X = rλXX,(3.6)

satisfying

λX =

∫ ∞

−∞
f(ξ)X(ξ)dξ, 1 =

∫ ∞

−∞
X(ξ)dξ.(3.7)

Theorem 3.1. Under the condition that
∫
(1 + x2)f(x)dx < ∞, there exists a

unique equilibrium solution of (3.6)–(3.7).
This result follows from recasting the problem as a linear eigenvalue problem; see

the appendix for details. The solution X(ξ) = X(x− τ) of (3.6)–(3.7) sets the species
distribution at a location x. A full continuum of species are able to coexist at each
spatial location and tends to zero as τ → ±∞. This distribution shifts continuously
in τ as x varies. Note again that

√
D/r sets the natural length scale of (3.5) and

hence also the width of the distribution X .

3.3. Numerics. We computed solutions to (3.1)–(3.2) (or to (3.6)–(3.7)) on a
space-species rectangular domain x ∈ [−L L], τ ∈ [−L−H L+H ] with T (x) = x for
several choices of environmental response function f and for two different choices of
spatial boundary conditions (periodic and no flux, to be discussed in detail below).
Spatially periodic boundary conditions were used to approximate infinite spatial do-
mains. Each of our choices for f had an approximate width w in the sense that f(T ; τ)
is small for |T − τ | > w with w small compared to L; in the case of no-flux boundary
conditions, the parameter H was chosen to be sufficiently larger than w to ensure
that all species that are capable of being competitive within the spatial domain are
present. For periodic boundary conditions, H = 0 was appropriate; see below.

The rectangular domain was discretized sufficiently finely so as to resolve both the
response function width w and the length

√
D/r. The resolution of the discretization

was tested by grid refinement in a number of cases. Equation (3.2) was integrated us-
ing a modified Crank–Nicolson method with growth terms treated explicitly. The loss
rate c(x, t) was computed by approximating (3.3) through summing the discretized
version of (3.2) over the species label τ . Although this summation leads to a first order
approximation of the integral in (3.3), it also satisfies the constraint (3.1), which is
anyway the true purpose of the loss term, to round-off error. Initial conditions for all
computations shown were chosen to be uniformly constant, i.e., initial species density
at a grid location xi, τj , was set to be X(xi, 0; τj) = C, where C = (2(L + H))−1

to satisfy constraint (3.1). We have also sometimes used random initial conditions to
check some results.
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Fig. 5. Left panel: one period of the 2L periodic extension of the temperature response function
f(ξ) = exp(−|ξ|2/(π/2)). Right panel: one period of the resulting 2L periodic species volume fraction
X(ξ, t) at t = 104.

3.3.1. Spatially periodic boundaries: Translational equivalence. In order
to approximate an infinite spatial domain x ∈ (−∞ ∞), we impose periodic bound-
ary conditions on the computational domain x ∈ (−L L) and choose f(T ; τ) to be 2L
periodic in T (x), where L is chosen to be much larger than the width w of f as well as√
D/r. While the periodic bump structure of the environmental response function is

nonrealistic, the bumps are sufficiently far from each other so that in practice they do
not feel each others’ effects in the computations (except when T is close to L or −L
where, as intended, the periodicity “fools” the local population into thinking there is
no boundary).

As a representative example, we choose f = f(ξ) = exp(−|ξ|m/2πσ2) for ξ ∈
[−L L] with L = 10, ξ = x − τ , and m = 2, σ = 0.5, see Figure 5, left panel.
2L periodicity defines f outside of the interval [−L L]. Other parameter values are
D = 0.1, r = 1, dx = dτ = 0.05. Different choices of parameter values (including m
smaller or larger than 2) do not appear to result in qualitatively different solutions.
With these choices, X(ξ, t) reaches a steady state shown in Figure 5, right panel.
This computed X satisfies (3.6)–(3.7) (with central differencing approximation to the
second derivative) with residual of 10−12 or less, pointwise. Contours of the solution
X in x, τ coordinates are shown in Figure 6. Note that the species structure is the
same at each x except translated in τ . That is, the continuously varying species
solution is apparently stable. The numerical solution is periodic; in the full plane,
the contour plot would consist of a tiling using the square shown in Figure 6 with
repeating, parallel (with slope 1) clusters of contour lines. In between the clusters,
however, X is vanishingly small and there is effectively no diffusive communication
between clusters.

In reality, tolerance functions cannot necessarily be expected to have the symme-
try of Gaussians. Hence we also tried the function

f(ξ) =

⎧⎨
⎩
0, ξ < ξmin,
b(ξ − ξmin)

2(1− exp[d(ξ − ξmax)])
2, ξmin ≤ ξ ≤ ξmax,

0, ξ > ξmax

(3.8)

(see Figure 7), a form that has been fitted to growth versus temperature data for a
large variety of bacteria, e.g., [43]. We chose d so that the tolerance maximum was 3/4
of the way from the minimum tolerable environmental variation ξmin to the maximum
tolerable environmental variation ξmax, in rough agreement with [43]. The parameters
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Fig. 6. Contour plot of X(x, t; τ) for t = 104. D = 0.1, r = 1.
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Fig. 7. Left panel: one period of the 2L periodic temperature response function given in (3.8)
with b = (1/9)(1 − e−2)−2 ≈ 0.1486, d = 2, ξmin = −2, ξmax = 2. Right panel: one period of the
resulting 2L periodic species volume fraction X(ξ, t) at t = 104.

b, ξmin, ξmax were chosen so that the height and width of f would be approximately
the same as the Gaussian version; see Figure 5, left panel. Results (contour plot not
shown) did not vary qualitatively; compare Figures 5 and 7, right panels.

Altogether, numerics seem to indicate that for translationally equivalent envi-
ronmental responses, i.e., for f = f(ξ), there is no mechanism for discrete species
structure to emerge. That is, the balance of diffusion and environmentally controlled
growth with spatial competition does not result, in and of itself, in a mechanism for
discrete niche partitioning. This conclusion is supported by the asymptotics of the
two species (with species labels τ1 and τ2) case, where for any applicable f = f(ξ)
and fixed r and in the limit of τ1 approaching τ2, the two species are able to coexist.

3.3.2. Spatially periodic boundaries: Translational modulation. In envi-
ronmental systems, a translationally equivalent environmental response on an infinite
interval does not occur. We thus will remove both of these assumptions starting with
translational equivalence f = f(ξ). Translational equivalence implicitly supposes
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Fig. 8. Contour plot of X(x, t; τ) for t = 104 with f(x; τ) = (1 + 0.1 cos(πτ/10))
exp(−|x− τ |2/(π/2)). Parameters are the same as for the computation illustrated in Figure 6.

that all environmental conditions are equally favorable. By relaxing this assump-
tion we can test the robustness of the partitioning model to more realistic environ-
mental influence—perhaps differences, even small ones, in environmental favorability
can trigger finite niche partitioning? Note that without translational equivalence,
f = f(T (x); τ) need not satisfy 〈fτ (T (x); τ0)〉 = 0, even over an infinite interval, so
that, in the two species setup anyway, one species may be more likely to outcompete
the other asymptotically as their preferred temperatures come together.

As a particular form, we considered a modulated environmental response function
of the type f = α(x)g(x − τ). Recalling the interchangeability of spatial coordinate
x and environmental condition T , we can think of the amplitude modulator α as,
for example, picking out particularly good or bad environmental conditions. For a
first example, we add a relatively small amplitude, slow modulation to the temper-
ature response function used in Figure 6 by setting f(x; τ) = (1 + 0.1 cos(πτ/10))
exp(−|x− τ |2/(π/2)). This response function favors those species with labels τ such
that cos(πτ/10) is close to 1 and, conversely, disfavors those species with labels τ
such that cos(πτ/10) is close to −1. Otherwise, parameters are the same as those
used in the computation for Figure 6. Contours of the computed solution for X(x; τ)
are shown in Figure 8 and, although modulated, are also similar to those in Figure 6.
This example together with similar computations suggests that long wavelength per-
turbations of translational invariance do not result in species clumping.

As a second example, we use a relatively rapid modulation to the temperature
response function by setting f(x; τ) = (1+0.1 cos(10πτ)) exp(−|x−τ |2/(π/2)). Again,
other parameters are the same as those used in the computation for Figure 6. Contours
of the computed solution for X(x; τ) are shown in Figure 9. In this instance, we see
the species structure is discretized into ten species per period (one for each crest
of the modulation). Figure 10 presents cross sections of X : the left panel shows
the species structure at a fixed location and the right panel shows the distribution
in x of an individual, surviving species. The difference between the examples of
Figures 8 and 9 is quantified by the length scale

√
D/r which measures, roughly, how
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Fig. 9. Contour plot of X(x, t; τ) for t=104 with f(x; τ)= (1 + 0.1 cos(10πτ))
exp(−|x − τ |2/(π/2)). Parameters are the same as for the computation illustrated in Figure 6.
Discretization of species structure is indicated—projecting contours onto the τ -axis would show that
most species are absent (or nearly so) and the remaining species are separated by gaps (in τ). Pro-
jecting onto the X-axis indicates that, roughly, three or four species predominate at each spatial
location.
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X
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x

X

Fig. 10. Left panel: cross section of X (as shown in Figure 9) as a function of τ at x = 0.
The three spikes mark the three species labels that happen to predominate at location x = 0. Right
panel: cross section of X (as shown in Figure 9) as a function of x at τ = 0. This curve shows the
niche interval of the species label τ = 0.

far organisms can drift diffusively within the time scale of significant growth. For
the computation shown in Figure 8, the ratio of perturbation length scale to

√
D/r

is approximately 63. In the case of Figure 9 this ratio is about 0.63. Generally,
environmental modulations with shorter wavelengths than

√
D/r can be felt by the

organisms resulting in clumping; modulations with longer wavelengths are effectively
invisible.

3.3.3. No-flux boundaries. Spatially infinite environments do not exist as a
rule. So, while their use has been a convenient way to isolate interactions of growth
and mobility from the influence of boundary effects, it is interesting to consider a
finite domain x ∈ [−L, L] with no-flux boundary conditions (microbes cannot escape
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Fig. 11. Contour plot of X(x, t; τ) for t = 3.0 · 106. As in Figure 9, projecting contours onto
the τ -axis indicates that discretization in species space is occurring.
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1

x
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Fig. 12. Left panel: vertical cross section of X (as shown in Figure 11) as a function of τ
at x = 0. The spikes indicate species labels that happen to predominate at location x = 0. Right
panel: horizontal cross section of X (as shown in Figure 11) as a function of x at τ = 2. The curve
describes the niche of species label τ = 2.

the domain) as in section 2.2. This is a significant perturbation (see Figures 11, 12,
and 13): species optimally preferring environmental conditions close to (but inside)
those existing at one of the boundary endpoints are subject to less competitive stress
than the infinite interval case, because species optimally preferring conditions nearby
(but outside) the boundary endpoints are relatively disadvantaged. This special ad-
vantage enables them to largely control a territory near the domain boundaries and
crowd out nearby species. Towards the edge of this territory in the domain inte-
rior, however, these species become less dominant, effectively creating a new, smaller
boundary-like region where new dominant species can emerge; see, for example, Fig-
ure 13(a)–(b) where the smaller subinterval is, roughly, [−7 7]. Another discretization
instability then occurs near the boundaries of this subinterval; see Figure 13(c)–(d).
This process iterates until the entire domain is thus carved up; see Figure 13(e)–(h).
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(b) t=100
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(c) t=1000
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(d) t=104
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(e) t=105
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(f) t=5×105
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(g) t=1.5×106
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(h) t=3.0×106
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Fig. 13. Time series for the same computation as in Figures 11 and 12. Projecting onto the
τ -axes indicates that while all species in the range, roughly, −10 ≤ τ ≤ 10 are present initially, over
time discretization occurs working from the outside species inwards.
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Parameters for Figures 11–13 are D = 3, r = 1, f is a Gaussian with width 0.5. It is
also worth noting that the latter stages of discretization occur very slowly, so slowly
in fact that the time scale might, at some point, overlap with that of evolutionary
change [38].

4. Discussion. Through use of highly conserved genetic sequences, e.g., those
coding for bacterial 16S rRNA [49], as species classification tools, researchers are cur-
rently surveying microbial community structure in many contexts. Recently, careful
examination of putative niche partitioning in spatially varying environmental condi-
tions has suggested that, rather than continuous variation, instead finite and discrete
(in species space) species structure is observed [7, 22, 33, 37, 42]. Classification based
on gene sequence has in at least one instance been supported by matching phenotypic
differences with respect to temperature tolerance in a Yellowstone hot spring efflu-
ent channel [3, 13]. In that particular system, other than an inflow boundary, there
are no obvious, abrupt coincident environmental changes to explain species demar-
cations. Further, the channel is sufficiently irregular and complex so that isolation
of factors that determine species discretization and niche width is difficult. As such
empirical studies become more common for more and more complex systems, it seems
likely that simplified, theoretical models of the type presented here may be useful or
even essential in suggesting hypothetical mechanisms for determination of community
ecological structure at the species level. Generally, one might like to understand the
relation between any particular environment and the species structure that is present.
This model is meant as a step in that direction.

In fact, the notion of a microbial species in isolation from its environment is not
even necessarily a clear one. The concept of species is accepted for organisms that
reproduce sexually, largely because any one species is usually reproductively isolated
from members of different species; for example, the biological species definition groups
together organisms that exchange genetic information among themselves [32, 9]. Such
does not apply, however, for asexually reproducing microbial organisms which, on the
one hand, reproduce clonally and, on the other, can often exchange genetic material
with other, unrelated microorganisms. Some suggest that, as a consequence of such
lateral gene transfer and other available genetic manipulation mechanisms, coherent
microbial species may not even exist in many instances [12]. One can rather imagine
that fluidity of genetic content might result in collections of organisms selected for the
local conditions, at least in a stable environment. If environmental conditions vary
spatially, then, the result would be something like a continuously varying genome
distribution. The aim here is to investigate the stability of such an ecology. Might
a continuously varying genome spontaneously break up into a discrete set of clumps
which could be viewed as a discrete set of species, that is, is there an inherent tendency
for discrete niche partitioning? The presented model suggests that though this may
not occur in an ideally varying environment or, at least, no mechanism for discretiza-
tion has been found under the model assumptions, nevertheless such an instability
might well occur under reasonable environmental inhomogeneities—even imposition
of boundary conditions can be a trigger, for example. Clumping can be interpreted
as development of a discrete species structure. And, while the full development of
the instability might be a slow process, the initial breakup can be rapid enough that
clumping and thus niche partitioning can be predicted even in time varying environ-
ments. That is, the message of the model studied here is that, while there is no
apparent inherent mechanism for species discretization, nevertheless natural environ-
mental heterogeneities (like boundaries) can trigger such a discretization. The key
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length scale, at least in the model, is determined by
√
D/r, the length that organisms

diffuse before growth effects become important. (In the case of an advective transport
mechanism, e.g. [15], this length scale would presumably be determined rather by v/r,
where v is a typical advective velocity.) As a reminder, we have conflated length and
environmental condition, essentially setting them equal in some sense. If we were
to separate them again, then the conversion factor α (see section 2) determines the
discretization distance in species space as α

√
D/r.

The viewpoint offered here differs a bit from the traditional focus on biological pro-
cesses as instruments for amplification or suppression of genes and genomes and rather
is meant to remind one of the importance of environment in structuring ecologies in-
dependent of particular mechanisms. That is, how does the environment itself dictate
its ecology? (Such types of questions fit under the rubric of landscape ecology [48].)
Ultimately, the goal might be to predict at least some aspects of local ecology based
on knowledge of local environment. Though it is likely unrealistic to expect to predict
all ecology independent of the details of genetic manipulation processes in all cases,
it is still possible that environmental effects are evinced through species structure.
More broadly, fundamental questions of microbial community function and efficiency
are closely tied to community structure (e.g., clumped versus continuous species dis-
tribution) as well as species structure (e.g., realized niche width), and both of these
are closely tied to environmental structure. Models of the type proposed here can and
are meant to aid in development of the basic intuition and theory needed to formulate
hypotheses just as they have been able to do so for plant and animal communities.
In light of rapid advances in observational microbial ecology, such theory is timely.

Appendix: Proof of Theorem 3.1. Let u be a nontrivial positive solution of
the linear eigenvalue problem

μu′′ + f(s)u = λu,(4.1)

where μ = D/r, f satisfies (3.4), eigenvalue λ ∈ R, and

∫ ∞

−∞
u(s)ds <∞.

We then say that u is a principal eigenfunction corresponding to the principal eigen-
value λ. Note that a nontrivial positive solution of (4.1) satisfies u(s) > 0, s ∈ R.

Lemma 4.1. There is at most one principal eigenvalue λ and the corresponding
principal eigenfunction u is unique up to positive multiple. Moreover, 0 < λ < ‖f‖∞.

u satisfies u(s) ∼ e−|s|
√
λ/μ as s→ ±∞.

Proof. The positivity and integrability of u are easily seen to imply that 0 < λ <
max f . Otherwise, the second derivative of u has a fixed sign which is incompatible
with positivity and integrability.

As λ > 0 and f is integrable, the differential equation (4.1) has a fundamental

set of solutions u1, u2 satisfying u1(s) ∼ e−s
√
λ/μ as s → ∞ and u2(s) ∼ es

√
λ/μ as

s → ∞ by Theorem 2 of Chapter IV of [8]. Integrability of a principal eigenfunction
u implies that u is a multiple of u1. A similar argument applies as s → −∞, so

u(s) ∼ e−|s|
√
λ/μ as s→ ±∞.

If both λ and u and λ̃ and v are principal eigenvalue and principal eigenfunctions,
respectively, then multiplying (4.1) by v and integrating yields
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λ

∫ ∞

−∞
u(s)v(s)ds =

∫ ∞

−∞
v(s) (μu′′(s) + f(s)u)ds

=

∫ ∞

−∞
u(s) (μv′′(s) + f(s)v) ds

= λ̃

∫ ∞

−∞
u(s)v(s)ds

implying that λ = λ̃. As both u and v must be multiples of u1, it follows that they
are positive multiples of each other.

Proposition 4.2. Let f satisfy (3.4). Then there exists a positive solution of
(3.6) and (3.7) if and only if (4.1) has a principal eigenfunction. There exists at most
one positive solution of (3.6) and (3.7).

Proof. If (3.6) has a positive solution X(ξ) satisfying (3.7), then u = X is a
principal eigenfunction of (4.1).

Conversely, if u is a principal eigenfunction of (4.1), then integrating the equation
and applying the normalization

∫∞
−∞ u(s)ds = 1 yields that

∫ ∞

−∞
f(s)u(s)ds = λ.

Therefore, we see that a principal eigenfunction u yields an equilibrium solution
X(ξ) = u(ξ) of (3.6).

The uniqueness assertion follows from the uniqueness of the normalized principal
eigenfunction of (4.1).

The existence of a principal eigenfunction and principal eigenvalue of (4.1) is a
classical problem for the one dimensional Schrödinger equation, where, traditionally,
(4.1) is multiplied by −1 and where −f(s) is regarded as the potential function. See
Theorem 2.5 of [45].

Theorem 4.3. Let f satisfy the hypotheses of Proposition 4.2 as well as∫
(1 + x2)f(x)dx < ∞. Then there exists a principal eigenvalue and principal eigen-

function of (4.1).
A useful result from Simon’s paper [45, Theorem 2.5], is that if

∫
R
(1+x2)β(x)dx <

∞, then d2

dx2 + β(x) has a positive eigenvalue if and only if
∫
R
β(x)dx ≥ 0. See also

Theorem XIII.110 in [44]. The restriction
∫
(1 + x2)f(x)dx < ∞ is unnecessary

according to a personal communication from Y. Pinchover. Ideas from [40, 41] and
from “criticality theory” can be used to remove the condition.
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