
ISLANDS IN GRAPHS ON SURFACES

LOUIS ESPERET AND PASCAL OCHEM

Abstract. An island in a graph is a set X of vertices, such that each
element of X has few neighbors outside X. In this paper, we prove
several bounds on the size of islands in large graphs embeddable on
fixed surfaces. As direct consequences of our results, we obtain that:

(1) Every graph of genus g can be colored from lists of size 5, in such a
way that each monochromatic component has size O(g). Moreover
all but O(g) vertices lie in monochromatic components of size at
most 3.

(2) Every triangle-free graph of genus g can be colored from lists of
size 3, in such a way that each monochromatic component has
size O(g). Moreover all but O(g) vertices lie in monochromatic
components of size at most 10.

(3) Every graph of girth at least 6 and genus g can be colored from
lists of size 2, in such a way that each monochromatic component
has size O(g). Moreover all but O(g) vertices lie in monochromatic
components of size at most 16.

While (2) is optimal up to the size of the components, we conjecture
that the size of the lists can be decreased to 4 in (1), and the girth can
be decreased to 5 in (3). We also study the complexity of minimizing
the size of monochromatic components in 2-colorings of planar graphs.

1. Introduction

In this paper we consider a relaxed version of the classical notion of proper
coloring of a graph. We are interested in vertex colorings of graphs with the
property that each color class consists of the disjoint union of (connected)
components of bounded size. These components are said to be monochro-
matic, and the size of a monochromatic component is its number of vertices.
A proper coloring is the same as a coloring in which every monochromatic
component has size 1, so by allowing monochromatic components of larger
size, one expects that the minimum number of colors needed might decrease
significantly. For instance it was proved by Haxell, Szabó and Tardos [8]
that every graph with maximum degree at most 5 can be 2-colored in such
a way that all monochromatic components have size at most 20000 (such
graphs have chromatic number as large as 6).

It was conjectured by Hadwiger that every graph with no Kt-minor has a
proper coloring with t−1 colors. The case t = 5 was shown to be equivalent
to the famous 4 Color Theorem, which states that every planar graph has a
proper 4-coloring. On the other hand, it was proved by Kleinberg, Motwani,
Raghavan, and Venkatasubramanian [13], and independently by Alon, Ding,
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Oporowski and Vertigan [1] that there is no constant c such that every
planar graph has a 3-coloring in which every monochromatic component
has size at most c. More generally, for every t, there are graphs with no Kt-
minor that cannot be colored with t− 2 colors such that all monochromatic
components have size bounded by a function of t (see [14]). It follows that
the bound predicted by Hadwiger’s conjecture (and proved for t = 5, 6) on
the chromatic number of a graph with no Kt-minor is best possible, even in
our relaxed setting.

In this paper we prove that the bound can be significantly decreased in
the specific case of graphs embeddable on surfaces of bounded genus. Given
a graph G, a k-list assignment L (for the vertices of G) is a collection of lists
L(v), v ∈ V (G), such that each list contains at least k elements. Given a list
assignment L, an L-coloring c of G is the choice of an element c(v) ∈ L(v)
for each vertex v ∈ V (G). Unless stated otherwise, such a coloring is not
necessarily proper. It was proved by Thomassen [17] that for every planar
graph G and every 5-list assignment L, the graph G has a proper L-coloring.
We will prove that the same holds from any graph embeddable on a surface
of genus g, provided that monochromatic components are only required to
have size bouned by O(g) (Theorem 2). The fact that cliques of order Ω(

√
g)

can be embedded on such surfaces shows that the size of monochromatic
components has to depend on g. Moreover we will show that we can find a
list-coloring in which all vertices except O(g) of them lie in monochromatic
components of size at most 3.

A theorem of Grötzsch [7] states that every triangle-free planar graph has
a proper 3-coloring. Esperet and Joret [5] proved that there exist no constant
c such that every triangle-free planar graph has a 2-coloring in which every
monochromatic component has size at most c. Hence, it follows again that
Grötzsch’s theorem cannot be improved even in our relaxed setting. We
will show however that every triangle-free graph embeddable on a surface
of genus g can be colored from any 3-list assignment, in such a way that all
monochromatic components have size O(g), and all vertices except O(g) lie
in a monochromatic component of size at most 10 (Theorem 6). The case
of triangle-free graph is particularly interesting because Voigt [18] proved
that there exists a triangle-free planar graph G and a 3-list assignment L
such that G is not L-colorable. So our result is non-trivial (and previously
unknown, as far as we are aware of) even in the case of planar graphs.

The girth of a graph G is the smallest size of a cycle in G. We will
also show that every graph of girth at least 6 embeddable on a surface of
genus g can be colored from any 2-list assignment, in such a way that all
monochromatic components have size O(g), and all vertices except O(g) lie
in a monochromatic component of size at most 16 (Theorem 9).

All these results are direct consequences of purely structural results on
(large) graphs embeddable on surfaces of bounded genus. Given a graph G,
a k-island of G is a non-empty set X of vertices of G such that each vertex
of X has at most k neighbors outside X in G. The size of a k-island is the
number of vertices it contains. In Section 3 we show that
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(1) large graphs of bounded genus have a 4-island of size at most 3
(Theorem 1);

(2) large triangle-free graphs of bounded genus have a 2-island of size at
most 10 (Theorem 5);

(3) large graphs of girth at least 6 and bounded genus have a 1-island
of size at most 16 (Theorem 8).

The proofs of these three results use the discharging method and are very
similar, but unfortunately each one has some particularities and therefore
we have not been able to factorize them.

In Section 4, we study the computational aspects of minimizing the size of
monochromatic components in 2-colorings of graphs. We show that approx-
imating this minimum within a constant multiplicative factor is NP-hard,
even when the input graph is a 2-degenerate graph of girth at least 8, or a
2-degenerate triangle-free planar graph.

2. Graphs on surfaces

All the graphs in this paper are simple (i.e., without loops and multiple
edges).

In this paper, a surface is a non-null compact connected 2-manifold
without boundary. We refer the reader to the monograph of Mohar and
Thomassen [16] for background on graphs on surfaces.

A surface can be orientable or non-orientable. The orientable surface Sh
of genus h is obtained by adding h > 0 handles to the sphere; while the
non-orientable surface Nk of genus k is formed by adding k > 1 cross-caps
to the sphere. The Euler characteristic χ(Σ) of a surface Σ is 2 − 2h if
Σ = Sh, and 2− k if Σ = Nk.

We say that an embedding is cellular if every face is homeomorphic to
an open disc of R2. Euler’s Formula states that if G is a graph with a
cellular embedding in Σ, with vertex-set V , edge-set E and face-set F , then
|V | − |E|+ |F | = χ(Σ).

Finally, if f is a face of a graph G cellularly embedded in a surface Σ, then
a boundary walk of f is a walk consisting of vertices and edges as they are
encountered when walking along the whole boundary of f , starting at some
vertex and following some orientation of the face. The degree of a face f ,
denoted d(f), is the number of edges on a boundary walk of f (note that
some edges may be counted more than once).

3. Islands in graphs on surfaces

Recall that a k-island in a graph G is a non-empty set X of vertices of
G such that each vertex of X has at most k neighbors outside X in G, and
that the size of X is its cardinality |X|.
Theorem 1. Let χ be an integer, and let G be a connected graph that can be
embedded on a surface of Euler characteristic χ. If G has more than −72χ
vertices, then it contains a 4-island of size at most 3.

Proof. For the sake of contradiction, we assume that there exists a χ and a
connected graph G that can be embedded on a surface of Euler characteristic
χ, and with more than −72χ vertices, but without any 4-island of size
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at most 3. We choose such a graph G in such way that the integer χ
is maximal. By maximality of χ, G has no embedding on a surface with
higher Euler characteristic, and then using [16, Propositions 3.4.1 and 3.4.2]
we can assume that G has a cellular embedding in Σ (in the non-orientable
case we use the fact that G is not a tree, which easily follows from the fact
that G has no 4-island of size at most 3). In the remainder, by a slight abuse
of notation we identify G with its embedding in Σ.

We can assume that the embedding of G in Σ is edge-maximal (with
respect to G being a simple graph), since if a graph obtained from G by
adding an edge contains a 4-island of size at most 3, then so does G. In
particular, we can assume that for every vertex v of G, there is a circular
order on the neighbors of v such that any two consecutive vertices in the
order are adjacent in G (note that it does not necessarily mean that G
triangulates Σ, since the edge between two consecutive neighbors of v might
not lie in a face containing v).

SinceG does not contain any 4-island of size at most 3, (1)G has mininum
degree at least 5; (2) G does not contain any path of at most 3 vertices of
degree at most 6 in which the two end-vertices have degree 5, and (3) G
does not contain any triangle whose vertices all have degree at most 6.

We now use the classical discharging method. First, every vertex v of G
is assigned a charge ρ(v) = d(v)− 6 (since G is simple, all faces have degree
at least 3 and then by Euler’s Formula, the sum of the charge on all vertices
is at most −6χ). Then, we locally move the charge as follows: (R1) Every
vertex of degree at least 7 gives a charge of 1

4 to every neighbor of degree

5, (R2) and also a charge of 1
12 to every neighbor of degree 6. (R3) Every

vertex of degree 6 gives a charge of 1
6 to every neighbor of degree 5.

We now prove that after the discharging phase, the charge of each vertex
is at least 1

12 .

Let v be any vertex of degree 5 (recall that by (1) G has mininum degree
at least 5). By (2), each neighbor of v has degree at least 6, and by (3)
no two consecutive neighbors of v have both degree 6. It follows from rules
(R1) and (R3) that v receives a charge of at least 3 · 14 + 2 · 16 = 13

12 . The

initial charge of v was ρ(v) = −1, so the new charge is ρ′(v) > −1+ 13
12 = 1

12 .
Let v be a vertex of degree 6. By (3), no two consecutive neighbors of

v have degree at most 6, so v has at least 3 neighbors of degree at least 7
(from which it receives a charge of at least 3 · 1

12 = 1
4 by rule (R2)). On

the other hand, by (2), v has at most one neighbor of degree 5, to which
it gives at charge of at most 1

6 by rule (R3). The initial charge of v was

ρ(v) = 6− 6 = 0, so the new charge is ρ′(v) > 1
4 − 1

6 = 1
12 .

Let v be a vertex of degree 7. Assume first that v has at most two
neighbors of degree 5. Then in this case v gives a charge of at most 2 ·
1
4 + 5 · 1

12 = 11
12 by (R1) and (R2). Assume now that v has at least three

neighbors of degree 5, and let x1, x2, . . . , x7 be the neighbors of v, in their
circular order. Then, by (2), v has precisely 3 neighbors of degree 5, say
x1, x3, x5 without loss of generality. Moreover, it follows from (2) again that
x2, x4 have degree at least 7. Therefore, in this case v gives a charge of at
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most 3 · 14 + 2 · 1
12 = 11

12 by (R1) and (R2). In both cases, the new charge

of v is ρ′(v) > 7− 6− 11
12 = 1

12 .
Assume now that v has degree d > 8. By (2), no two consecutive neigh-

bors have degree 5, so v gives a charge of at most d
2 · 14 + d

2 · 1
12 = d

6 by (R1)

and (R2). Therefore, the new charge of v is ρ′(v) > d−6− d
6 = d · 56 −6 > 2

3
whenever d > 8.

It follows that the charge of each vertex is at least 1
12 . Therefore, −6χ >

n
12 and so n 6 −72χ, contradicting our initial assumption that n > −72χ.

�

It was pointed out to us by a referee that Theorem 1 is close from a result
of Jendrol’ and Voss [10], who proved that if G has a cellular embedding in
a surface of Euler characteristic χ, and has more than −83χ vertices, then
it contains a vertex of degree at most 4, or a triangular face f such that the
sum of the degrees of the vertices on f is at most 18. Because of triangular
faces with vertices of degree 5, 6 and 7 respectively, it seems that Theorem 1
and this result are incomparable. More results on light subgraphs in graphs
on surfaces can be found in two surveys of Jendrol’ and Voss [9, 11]

Note that there exist planar graphs with minimum degree 5 in which
the degree 5 vertices are arbitrarily far apart. This shows that our bound
on the size of 4-islands is best possible, even in the case of planar graphs.
Theorem 1 has the following direct consequence.

Theorem 2. For any integer χ, for any graph G that can be embedded
on a surface of Euler characteristic χ, and any 5-list assignment L, G has
an L-coloring in which every monochromatic component has size at most
max(3,−72χ). Moreover, all vertices except at most −72χ of them lie in
monochromatic components of size at most 3.

Proof. Let G be a graph that can be embedded on a surface Σ of Euler
characteristic χ, and let L be any 5-list assignment. The proof proceeds
by induction on the number of vertices of G. If G contains at most −72χ
vertices, then the theorem is certainly true. Assume now that G has more
than −72χ vertices. We can assume that the embedding of G in Σ is edge-
maximal, since proving the theorem for a supergraph of G also proves it for
G. In particular, we can assume that G is connected, and therefore apply
Theorem 1. It follows that G contains a 4-island X of size at most 3.Then by
the induction hypothesis, the graph G \X has an L-coloring such that each
monochromatic component has size at most max(3,−72χ), and all vertices
except at most −72χ of them lie in monochromatic components of size at
most 3. We extend this coloring to G by choosing, for each vertex v of X,
a color from L(v) that is distinct from that of its neighbors outside X (if
any). The coloring obtained is an L-coloring in which every monochromatic
component has size at most max(3,−72χ). Moreover, all vertices except
at most −72χ of them lie in monochromatic components of size at most 3.
This concludes the proof. �

Cushing and Kierstead [4] proved that for every planar graph G and every
4-list assignment L to the vertices of G, there is an L-coloring of G in which
each monochromatic component has size at most 2. Hence, Theorem 2
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restricted to planar graphs is significantly weaker than their result. We
conjecture the following:

Conjecture 3. There is a function f such that for any integer χ, for any
graph G that can be embedded on a surface of Euler characteristic χ, and
any 4-list assignment L, G has an L-coloring in which every monochromatic
component has size at most f(χ).

We believe that any large graph of bounded genus contains a 3-island of
bounded size, which would directly imply Conjecture 3, but we have not
been able to prove it, even in the case of planar graphs.

Kawarabayashi and Thomassen [12] proved that every graph that has an
embedding on a surface of Euler characteristic χ can be colored with colors
1, 2, 3, 4, 5, in such a way that each color i 6 4 is an independent set, while
color 5 induces a graph in which each connected component contains O(χ2)
vertices. A small variation in the proof of Theorem 2 shows the following
corollary.

Corollary 4. Every graph that has an embedding on a surface of Euler
characteristic χ can be colored with colors 1, 2, 3, 4, 5, in such a way that each
color i 6 4 induces a graph in which each connected components has size at
most 3, while color 5 induces a graph in which each connected component
contains O(|χ|) vertices.

We now prove a triangle-free version of Theorem 1.

Theorem 5. Let χ be an integer, and let G be a connected triangle-free
graph that can be embedded on a surface of Euler characteristic χ. If G has
more than −72χ vertices, then it contains a 2-island of size at most 10.

Proof. The proof is similar to that of Theorem 1. We consider a counterex-
ample G (we can assume that it has a cellular embedding on some surface of
Euler characteristic χ). Since G does not contain any 2-island of size at most
10, (1) G has mininum degree at least 3, and (2) G does not contain any
path of at most 10 vertices of degree at most 4 in which the two end-vertices
have degree 3 (the two end-vertices are allowed to coincide).

We now use the discharging method. First, every vertex v of G is assigned
a charge ρ(v) = d(v)− 4, and every face f of G is assigned a charge ρ(f) =
d(f)−4 (by Euler’s Formula, the sum of the charge on all vertices and faces
is equal to −4χ). Then, we locally move the charge as described below.

We first choose, for every face f of G, an orientation of f and set it as
the positive orientation of f (we do not need to have a consistent choice
of positive orientations, therefore Σ is not required to be orientable). For
any face f of G, for any orientation of f (positive or negative), and for any
occurrence of a vertex v of degree 3 in a boundary walk of f according to
the chosen orientation, take a maximal facial walk of f (a walk consisting
only of vertices and edges incident to f) starting at v and going around f
in the prescribed orientation of f , such that the inner vertices of the walk
have degree precisely 4. Let u be the other end-vertex of the walk. If the
walk contains at least 3 inner vertices, then the face f gives a charge of 1

6
to v. Otherwise (1), (2) and the maximality of the walk imply that u has
degree at least 5. In this case u gives a charge of 1

6 to v.
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We now prove that after the discharging phase, all vertices and faces have
nonnegative charge.

Let v be any vertex of degree 3 (recall that by (1) G has mininum degree
at least 3). Then v appears 6 times in the union of all boundary walks
of faces of G (for each face, we consider a boundary walk in the positive
orientation and a boundary walk in the negative orientation of the face),
and therefore receives 6 times a charge of 1

6 . The initial charge of v was

ρ(v) = −1, so the new charge is ρ′(v) = −1 + 6 · 16 = 0.
Vertices of degree 4 start with an initial charge of 4 − 4 = 0 and do not

give or receive any charge. Now let v be a vertex of degree d > 5. Consider
the facial walks through which it gives a charge of 1

6 to some vertices of
degree 3, and observe that if a neighbor u of v is right after v in more than
one such facial walk, then u has degree 3 (and receives exactly 2 · 16 = 1

3
from v). For if u had degree at least 4 and was just after v in two facial
walks starting at v as defined above, u would have degree exactly 4 and
there would be two paths starting at u, each containing at most 1 inner
vertex (of degree 4) and finishing at a vertex of degree 3, contradicting (2).
It follows that ρ′(v) > d − 4 − 2d · 16 = 2

3d − 4 > 2d
21 whenever d > 7. If

d = 6, then observe that v is adjacent to at most three vertices of degree 3
(otherwise G would contain a 2-island of size 5). Therefore, in this case we
have ρ′(v) > 2−3 · 13−3 · 16 = 1

2 = d
12 . If d = 5, then the walks through which

v gives some charge contain at most two neighors of v, since otherwise G
would contain a 2-island of size at most 10. It follows that in this case we
have ρ′(v) > 1− 2 · 13 = 1

3 = d
15 .

Let f be a face of degree d in G. If d = 4, no vertex receives any
charge from f , since otherwise f contains a vertex of degree 3 and three
vertices of degree 4, and then the vertices of f form a 2-island of size 4.
It follows that if d = 4, ρ′(f) = 0. Assume now that d > 5. For each
occurrence of a vertex v of degree 3 that receives 1

6 from f in the positive
orientation, let A+(v) be the set consisting of the three vertices of degree
exactly 4 following v in the positive orientation of f (the existence of
these vertices follows from the definition of our discharging procedure).
Similary, define A−(v) for each occurrence of a vertex v of f receiving
some charge from f in the negative orientation of f . Observe that all the
sets A+(v) and A−(u) are pairwise disjoint: for a pair of sets A+(u) and
A+(v), or A−(u) and A−(v), this follows from the definition of these sets
and the fact that they exist only if u and v have degree three. For each
pair A+(u), A−(v), if these two sets have non-empty intersection then G
contain a 2-island of size at most 7, which is a contradiction. It follows that
f gives at most 1

6 ·
⌊
d
3

⌋
. Since d > 5 and the face f starts with an initial

charge of ρ(f) = d−4, in this case the new charge is ρ′(f) > d−4− 1
6

⌊
d
3

⌋
> d

6 .

We proved that all vertices and faces have nonnegative charge (if G is
projective planar this is already a contradiction since in this case the total
charge is negative). Moreover, vertices v with degree d > 5 have a charge
ρ′(v) > d

15 , while faces f with degree d > 5 have a charge ρ′(v) > d
6 . We now

redistribute the charge as follows: every vertex of degree at least 5 gives 1
18

to every incident face, and then every face f gives 1
54 to every occurrence of
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a vertex of degree 3 or 4 in a boundary walk of f . Each face of degree d > 5
is left with at least d

6 − d
54 > 0. Note that a face of degree 4 is incident to

at most 3 vertices of degree 3 or 4 (otherwise G would contain a 2-island of
size 4), therefore such a face starts with a charge of 0, receives 1

18 from a

vertex of degree at least 5, and gives at most 3× 1
54 = 1

18 to the remaining
vertices of its boundary. Therefore, each face has nonnegative charge.

Each vertex of degree d > 5 starts with a charge of at least d
15 and gives

at most d
18 , thus the remaining charge is at least d

90 >
1
18 . Each vertex v of

degree 3 or 4 starts with a charge of 0 and receives 1
54 from each incident

face, for a total of at least 1
18 (note that since faces give charge to every

occurrence of a vertex on their boundary, this holds even if the number of
faces incident to v is less than d(v) because then v appears several times in
a boundary walk of some face). It follows that the charge of each vertex is
at least 1

18 . Since all faces have nonnegative charge, we have −4χ > n
18 and

so n 6 −72χ, contradicting our initial assumption that n > −72χ. �

Our bound on the size of 2-islands is not optimal in the case of planar
graphs: it is possible to show, using a more detailed (and significantly longer)
analysis, that every triangle-free planar graph contains a 2-island of size at
most 5, which is best possible. It is likely that the result extends to higher
surfaces as well, but we preferred to present a short and simple proof of a
slightly weaker result instead (the most important part of the theorem being
that the island is a 2-island).

Euler’s formula shows that every triangle-free planar graph G contains a
vertex of degree at most 3. It follows that for any 4-list assignment L, G
has a proper L-coloring. On the other hand, Voigt [18] proved that there
is a triangle-free planar graph G and a 3-list assignment L such that G is
not L-colorable. Using the same proof as that of Theorem 2, Theorem 5
has the following direct consequence (which seems to have been previously
unknown even for planar graphs).

Theorem 6. For any integer χ, for any triangle-free graph G that can be
embedded on a surface of Euler characteristic χ, and any 3-list assignment
L, G has an L-coloring in which every monochromatic component has size
at most max(10,−72χ). Moreover, all vertices except at most −72χ of them
lie in monochromatic components of size at most 10.

Note that the size of the lists in Theorem 6 is best possible: Esperet and
Joret [5] proved that triangle-free planar graphs G cannot be 2-colored such
that each monochromatic component has bounded size. We conjecture the
following:

Conjecture 7. There is a function f such that for any integer χ, for any
graph G of girth at least 5 that can be embedded on a surface of Euler charac-
teristic χ, and any 2-list assignment L, G has an L-coloring in which every
monochromatic component has size at most f(χ).

We now prove a weaker version of this conjecture, for graphs of girth at
least 6 (instead of 5).

Theorem 8. Let χ be an integer, and let G be a connected graph of girth
at least six that can be embedded on a surface of Euler characteristic χ. If
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G has more than −357χ vertices, then it contains a 1-island of size at most
16.

Proof. The proof is similar to that of Theorem 1. We consider a counterex-
ample G (we can assume that it has a cellular embedding on some surface of
Euler characteristic χ). Since G does not contain any 1-island of size at most
16, (1) G has mininum degree at least 2, and (2) G does not contain any
path of at most 16 vertices of degree at most 3 in which the two end-vertices
have degree two (the two end-vertices are allowed to coincide).

We now use the classical discharging method. First, every vertex v of G
is assigned a charge ρ(v) = 2d(v) − 6, and every face f of G is assigned a
charge ρ(f) = d(f) − 6 (by Euler’s Formula, the sum of the charge on all
vertices and faces is equal to −6χ). Then, we locally move the charge as
described below.

We first choose, for every face f of G, an orientation of f and set it as
the positive orientation of f . For any face f of G, for any orientation of f
(positive or negative), and for any occurrence of a vertex v of degree two in
a boundary walk of f according to the chosen orientation, take a maximal
facial walk of f (a walk consisting only of vertices and edges incident to f)
starting at v and going around f in the prescribed orientation of f , such that
the inner vertices of the walk have degree precisely 3. Let u be the other
end-vertex of the walk (note that possibly u = v if for instance all vertices
of f distinct from v have degree three; another extreme case is that there
are no inner vertices at all and u and v are neighbors). If the walk contains
at least 5 inner vertices, the face f gives a charge of 1

2 to v. Otherwise (1),
(2) and the maximality of the walk imply that u has degree at least 4. In
this case u gives a charge of 1

2 to v.

We now prove that after the discharging phase, all vertices and faces have
nonnegative charge.

Let v be any vertex of degree two (recall that by (1)G has mininum degree
at least 2). Then v appears four times in the union of all boundary walks
of faces of G (for each face, we consider a boundary walk in the positive
orientation and a boundary walk in the negative orientation of the face),
and therefore receives four times a charge of 1

2 . The initial charge of v was

ρ(v) = −2, so the new charge is ρ′(v) = −2 + 4 · 12 = 0.
Vertices of degree 3 start with an initial charge of 0, and neither give nor

receive any charge, so after the discharging their charge is still 0. Now let
v be a vertex of degree d > 4. Consider the facial walks through which it
gives a charge of 1

2 to some vertices of degree two, and observe that if a
neighbor u of v is right after u in more than one such facial walk, then u
has degree two. For if u had degree at least three and was just after v in
two facial walks starting at v as defined above, u would have degree exactly
three and there would be two paths starting at u, each containing at most
3 inner vertices (each of degree 3) and finishing at a vertex of degree two.
Thus G would contain a path on at most 9 vertices, such that all vertices
have degree at most 3 and the two endpoints have degree two, contradicting
(2).
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It follows that v gives a charge of at most d · 2 · 12 . Since it starts with an
initial charge of ρ(v) = 2d− 6, its new charge ρ′(v) is at least 2d− 6− d =
d− 6 > d

7 as soon as d > 7.
If d = 6 observe that v cannot be adjacent to at least 5 vertices of degree

2, since otherwise v together with these vertices would form a 1-island of
size at most 6. Hence if d = 6, v gives at most 4 + 2 · 12 = 5. Since it starts

with an initial charge ρ(v) = 6, we have ρ′(v) > 6− 5 = 1 > d
6 .

If d = 5, then by the same argument as above it cannot be adjacent to
at least 4 vertices of degree 2. If it is adjacent to at most two vertices of
degree 2, it gives a charge of at most 2 + 3 · 12 = 7

2 and it follows that

ρ′(v) > 4− 7
2 = 1

2 >
d
10 . Otherwise, v is adjacent to exactly three vertices of

degree 2. But then observe that v cannot give a charge of 1
2 through any of

its two neighbors of degree more that two, since otherwise G would contain
a 1-island of size at most 9. Therefore in this case v gives a charge of 3, and
then ρ′(v) = 1 > d

5 .
If d = 4, then using again the same argument, v cannot be adjacent

to more than two vertices of degree two. Moreover, if v is adjacent to two
vertices of degree two, then it does not give any charge through its neighbors
of degree more than two (in this case it follows that ρ′(v) = 0). If v has one
neighbor of degree two then it cannot give charge through more than one
neighbor of degree more than two (otherwise G contains a 1-island of size
at most 12), so in this case we obtain ρ′(v) > 2− 1− 1

2 = 1
2 >

d
8 . If v has no

neighbor of degree 2, then1 v does not give charges through more than two
of its neighbors, since otherwise G would contain a 1-island of size at most
16. Thus, in this case ρ′(v) > 2− 2 · 12 = 1 > d

4 .
We proved that for any vertex v, ρ′(v) > 0, and if v has degree at least

four and is not a vertex of degree four with exactly two neighbors of degree
two, then ρ′(v) > 1

10 d(v).

Let f be a face of degree d in G (since G has girth at least 6, d > 6).
If d = 6, no vertex receives any charge from f , since otherwise f contains
a vertex of degree two and 5 vertices of degree three, and then the vertices
of f form a 1-island of size 6. It follows that if d = 6, ρ′(f) = 0. Assume
now that d > 7. For each vertex v of degree two that receives 1

2 from f in
the positive orientation, let A+(v) be the set consisting of the five vertices
of degree exactly 3 following v in the positive orientation of f (the existence
of these vertices follows from the definition of our discharging procedure).
Similary, define A−(v) for each vertex v of f receiving some charge from f
in the negative orientation of f . Observe that all the sets A+(v) and A−(u)
are pairwise disjoint: for a pair of sets A+(u) and A+(v), or A−(u) and
A−(v), this follows from the definition of these sets and the fact that they
exist only if u and v have degree two. For each pair A+(u), A−(v), if these
two sets have non-empty intersection then G contain a 1-island of size at
most 11, which is a contradiction. It follows that f gives at most 1

2 ·
⌊
d
5

⌋
.

1In the planar case we can avoid this argument and simply say that in this case v gives
at most 4 · 1

2
and therefore its new charge is at least 0. This allows to find 1-islands of

size at most 12 (instead of 16) in any 2-edge-connected planar graph of girth at least 6.
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Since d > 7 and the face f starts with an initial charge of ρ(f) = d − 6, in
this case the new charge is ρ′(f) > d− 6− 1

2

⌊
d
5

⌋
> d

14 .

Recall that the total charge on the vertices and faces is −6χ, and we
proved that the charge of every vertex and every face is nonnegative (if
χ > 0 this is already a contradiction, since in this case the total charge is
negative). In the previous paragraphs we also proved that if a vertex or face
of degree d has non-zero charge, then this charge is at least d

14 .

A vertex that has non-zero charge, or is incident to a face of non-zero
charge, or shares a face of degree 6 with a vertex with non-zero charge, is
said to be heavy. Observe that every face f with non-zero charge defines at
most d(f) heavy vertices, and every vertex v with non-zero charge defines at
most 4d(v) + 1 6 17

4 d(v) heavy vertices. So the number of heavy vertices is

at most 17
4 times the sum of the degrees of the vertices and faces with non-

zero charge, which by the previous paragraphs is itself at most 14 times the
total charge. Hence, there are at most 14· 174 ·(−6χ) = −357χ heavy vertices.
Since G contains more than −357χ vertices, it contains a vertex v that is
not heavy. By the definition of v, all the faces incident to v have degree 6,
and all the vertices incident to these faces (including v) have degree 2, 3 or
4 (and if one of these vertices has degree 4, it has precisely two neighbors of
degree 2).

Let f be any face incident to v. Since d(f) = 6, f contains at least
one vertex of degree 4 (since otherwise the vertices of f would form a 1-
island of size 6). By definition of v, any such vertex of degree 4 has exactly
two neighbors of degree 2. In particular, two such vertices of degree four
cannot be adjacent, otherwise they would form a 1-island of size at most 6
(together with their neighbors of degree 2). Thus, we can assume that f
contains at most 3 vertices of degree 4. If each of these vertices has at least
one neighbor of degree 2 outside f , then we obtain a 1-island of size at most
9. It follows that some vertex u1 of degree four on the boundary of f has
its two neighbors of degree two on f . Let P be the set of three vertices of
f distinct from u1 and its two neighbors of degree 2. Then P contains at
least one vertex of degree 4, since otherwise we find a 1-island of size 5 in
G. Using the same argument as above P contains a vertex u2 of degree 4
such that its two neighbors of degree 2 belong to f . One of these neighbors
is also a neighbor of degree two of u1, since otherwise we have a 1-island
consisting of two adjacent vertices of degree two. It follows that f contains
a third vertex u3 of degree 4, having its two neighbors of degree two on f .
Therefore, f contains only vertices of degree 2 and 4, that alternate on its
boundary.

Note that the conclusion above holds for any face f incident to v. This
implies that that d(v) 6= 4, since otherwise v would have four neighbors of
degree two, and d(v) 6= 2, since otherwise a neighbor of degree four of v has
at least three neighbors of degree two.

This final contradiction concludes the proof of the theorem. �

The bound on the size of 1-islands is certainly far from optimal. We were
only able to construct large toroidal graphs of girth 6 with no 1-island of
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Figure 1. Arbitrarily large toroidal graphs of girth 6 with
no 1-island of size at most 6. A 1-island on 7 vertices is
highlighted.

size at most 6 (see Figure 1). Using the same proof as that of Theorem 2,
the following is a direct consequence of Theorem 8.

Theorem 9. For any integer χ, for any graph G of girth at least 6 that can
be embedded on a surface of Euler characteristic χ, and any 2-list assignment
L, G has an L-coloring in which every monochromatic component has size
at most max(16,−357χ). Moreover, all vertices except at most −357χ of
them lie in monochromatic components of size at most 16.

Using the argument mentioned in the footnote in the proof of Theorem 8,
Theorem 9 can be slightly improved for planar graphs:

Theorem 10. For any planar graph G of girth at least 6 and any 2-list as-
signment L, G has an L-coloring in which every monochromatic component
has size at most 12.

Note that it was proved by Borodin, Kostochka, and Yancey [3] that every
planar graph of girth at least 7 has a 2-coloring in which every monochro-
matic component has size at most 2.

4. Complexity

In this section we show that it is NP-hard to approximate the minimum
size of the largest monochromatic component in a 2-coloring of a graph
within a constant multiplicative factor. Let us define an MC(k)-coloring as
a 2-coloring such that every monochromatic component has size at most k.
Let MC(k) be the class of graphs having an MC(k)-coloring.

Theorem 11. Let k > 2 be a fixed integer. The following problems are
NP-complete.

(1) Given a 2-degenerate graph with girth at least 8 that either is in
MC(2) or is not in MC(k), determine whether it is in MC(2).

(2) Given a 2-degenerate triangle-free planar graph that either is in
MC(k) or is not inMC(k(k−1)), determine whether it is inMC(k).
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Before proving Theorem 11, we first describe a gadget used in the proof
and its properties. Let t > 2 be an integer. Let Tx,t be the complete rooted
tree of height 3 with root x such that every internal node has 5t children.
We consider the planar embedding of T into 4 layers such that the root is
on layer 0 and the leaves are on layer 3. We label the (5t)3 leaves with the
triples in {1, 2, . . . , 5t}3 in lexicographical order from the leftmost leaf with
label (1, 1, 1) to the rightmost leaf with label (5t, 5t, 5t). Let Jy,z,t be the
graph obtained from two copies Ty,t and Tz,t of Tx,t by identifying the leaf
labelled (l1, l2, l3) in Ty,t with the leaf labelled (l3, l2, l1) in Tz,t, for every
triple (l3, l2, l1) ∈ {1, 2, . . . , 5t}3.
Claim 12.

(i) The graph Jy,z,t is bipartite, 2-degenerate, and the distance between y
and z is 6.

(ii) The girth of Jy,z,t is 8.
(iii) Every MC(t)-coloring of Jy,z,t is such that y and z have the same color.

Proof.

(i) Trivial.
(ii) Since Jy,z,t is bipartite, we suppose for contradiction that it contains

a cycle C of length 4 or 6. Notice that C necessarily contains exactly
2 vertices u and v of degree 2. Let (u1, u2, u3) and (v1, v2, v3) be the
labels of u and v in Ty,t. The cycle C consists in a path py contained in
Ty,t and a path pz contained in Tz,t that both link u to v. Since u and
v are distinct, there exists an index i such that ui 6= vi. The length
of py is at least 2(4 − i) and the length of pz is at least 2i. Thus, the
length of C is at least 2(4− i) + 2i = 8, a contradiction.

(iii) Suppose that Tx,t has an MC(t)-coloring using colors in {0, 1} such
that the root is colored 0. Notice that a vertex colored c in Tx,t has
at least 5t − (t − 1) = 4t + 1 children with color 1 − c. This implies
that at least (4t + 1)i vertices in layer i are colored i (mod 2). Since
(4t + 1)3 > 1

2(5t)3, more than half of the leaves are colored 1. This
forces y and z to have the same color in every MC(t)-coloring of Jy,z,t.

�

Proof of Theorem 11. In each case, we make a reduction from 3-uniform
hypergraph 2-colorability, which is a well-known NP-complete problem [15].
We consider a 3-uniform hypergraph H and construct a corresponding graph
G as follows. For every vertex v of H, we consider a corresponding vertex v
in G. These vertices are called the primitive vertices of G.

(1) We describe the reduction for the first result. For every hyperedge
e = {u0, u1, u2} of H, we add a path e1, e2, . . . , ek+1 in G. For every vertex
ej in this path, we take a new copy of Jy,z,k and identify the vertex y with
ej and the vertex z with uj (mod 3). By Claim 12, the girth of Jy,z,k is 8 and
thus the girth of G is also 8.

We now show that G is in MC(2) if H is 2-colorable and that G is not
inMC(k) otherwise. If H is 2-colorable, then we consider a 2-coloring of H
and color the primitive vertices of G accordingly. This colors the vertex z
of every copy of Jy,z,k and we extend this precoloring to all the vertices of
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G by properly 2-coloring every copy of Jy,z,k. All the monochromatic edges
belong to paths e1, e2, . . . , ek+1 corresponding to hyperedges e in H. In such
a path, no three consecutive vertices can have the same color since it would
correspond to a monochromatic hyperedge in H. This implies that G is in
MC(2).

Now suppose for contradiction that H is not 2-colorable and that G is
in MC(k). Since H is not 2-colorable, any 2-coloring of the primitive ver-
tices of G is such that there exists three primitive vertices u, v, and w
in G corresponding to a monochromatic hyperedge e = {u, v, w} in H. By
Claim 12, any MC(k)-coloring of the gadgets Jy,z,k containing u, v, or w and
extending the precoloring of u, v, or w, is such that the path e1, e2, . . . , ek+1

corresponding to e is monochromatic. This gives a monochromatic compo-
nent of size k + 1, which is a contradiction. So, if H is not 2-colorable then
G is not in MC(k).

(2) The reduction for the second result is similar: for every hyperedge e
in H, we add a path e1, e2, . . . , ek(k−1)+1 in G. Such a path cannot be
monochromatic in an MC(k(k − 1))-coloring of G. We now present the
gadgets that are needed to transfer the color of the primitive vertices to the
paths corresponding to the hyperedges of H.

Let Ny,z,k be the bipartite graph obtained from two non-adjacent vertices
y and z and a path v1, v2, . . . , v3k4 such that y is adjacent to all the vertices
vi with i ≡ 0 (mod 2) and z is adjacent to all the vertices vi with i ≡ 1
(mod 2). Every MC(k(k − 1))-coloring of Ny,z,k is such that y and z have
distinct colors. For if y and z had the same color, say color 0, then at
most 2k(k − 1) − 2 vertices on the path would be colored 0. Then the
path would contain a monochromatic subpath colored 1 of length at least⌈
3k4−(2k(k−1)−2)

2k(k−1)−1

⌉
> k(k − 1) + 1.

The gadget Ny,z,k can thus be used to force two vertices to have distinct
colors in an MC(k(k − 1))-coloring. To force two vertices to have the same
color, we could simply chain two copies of Ny,z,k. We prefer to use a copy
of K2,2k(k−1)−1, since it is smaller.

In the last gadget Uk depicted in Figure 2, the dotted edges represent
copies of K2,2k(k−1)−1 and the dashed edges represent copies of Ny,z,k.
Every vertex yi, 1 6 i 6 2(k − 1), has precisely k − 1 neighbors connected
to xN by a dotted edge.

The gadget Uk has the following properties:

(1) Every MC(k(k− 1))-coloring of Uk is such that xN and xS have the
same color, xW and xE have the same color.

(2) There exists an MC(k)-coloring of Uk such that xN and xW have
the same color, and there exists an MC(k)-coloring of Uk such that
xN and xW have distinct colors.

Consider an MC(k(k − 1))-coloring c of Uk such that c(xN ) = a ∈ {0, 1}
and c(xW ) = b ∈ {0, 1} (note that possibly a = b). In what follows, we
write ā instead of 1 − a and b̄ instead of 1 − b. By the properties of the
dotted and dashed edges, c(y2i+1) = b̄, c(y2i) = c(xE) = b. Every vertex
yi has k − 1 neighbors that are linked to xN with dotted edges. These
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b

a

ā

a

xC

xS a

xN

y2y1 y2(k−1)
xExW

b b̄ b̄ b̄ b bb

Figure 2. Uncrosser gadget Uk with k = 4.

k − 1 neighbors are thus colored a. The vertex xC is adjacent to k − 1
vertices colored b and k − 1 vertices colored b̄. In particular, xC is adjacent
to k − 1 vertices colored a, and each of them is adjacent to k − 1 vertices
colored a. So xC cannot be colored a, since it would create a monochromatic
component of size k(k − 1) + 1. Thus we have c(xC) = ā and c(xS) = a.
This proves property (1). To prove property (2), observe that the 2-coloring
we just considered contains only monochromatic components of size at most
k, regardless whether a = b or not.

To construct G, we use copies of K2,2k(k−1)−1 to transfer the color of the
primitive vertices to the vertices of the paths as we did in the in the previous
proof. We can draw the graph in the plane in such a way that the edges of
the paths do not cross any other edge (for instance by drawing each path on
the line of equation x = 0). The obtained graph is not necessarily planar,
so we replace each crossing of edges by a copy of Uk in order to obtain a
planar graph G. �

Remark. We can modify the gadget Jy,z,t in the proof of Theorem 11(1),
so that the same result holds for graphs with arbitrarily large (but fixed)
girth. Note that in this case we lose the 2-degeneracy. The new gadget
consists in the bipartite double cover of a good expander (for instance, a
Ramanujan graph) having large girth and degree significantly larger that k.
The vertices y and z are any pair of (far apart) vertices on the same size of
the bipartition. Using the vertex expansion property, it can be proven that
such a graph admits no MC(k)-coloring other than the proper 2-coloring
(and therefore y and z are always colored the same in such a coloring). We
omit the details.

Related (recent) results. After this paper was submitted, two
manuscripts dealing with similar topics appeared. In [6], Chappell and Gim-
bel conjectured that for any fixed surface Σ there is a constant k such that
every graph embeddable on Σ can be 5-colored without monochromatic com-
ponents of size more than k. Note that our Theorem 2 proves this conjecture
in a strong sense. In [2], Axenovich, Ueckerdt, and Weiner proved the fol-
lowing strong variant of our Theorem 10: any planar graph of girth at least
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6 has a 2-coloring such that each monochromatic component is a path on at
most 14 vertices.
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