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Abstract. In this paper, we study a few theoretical issues in the dizei Kohn-Sham (KS) density functional theory (DFT). Tlgigalence
between either a local or global minimizer of the KS totalrggeninimization problem and the solution to the KS equai®established under
certain assumptions. The nonzero charge densities ofregsivoal minimizer are shown to be bounded below by a positirestant uniformly. We
analyze the self-consistent field (SCF) iteration by fomting the KS equation as a fixed point map with respect to thengial. The Jacobian of
these fixed point maps is derived explicitly. Both global #hl convergence of the simple mixing scheme can be esteddliif the gap between
the occupied states and unoccupied states is sufficiemgg.la his assumption can be relaxed if the charge densityngpated using the Fermi-
Dirac distribution and it is not required if there is no exaba correlation functional in the total energy function@lthough our assumption on the
gap is very stringent and is almost never satisfied in reality analysis is still valuable for a better understandifithe KS minimization problem,
the KS equation and the SCF iteration.
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1 Introduction

The Kohn-Sham density functional theory in electronicatuce calculations can be formulated as either a total gnerg
minimization problem or a nonlinear eigenvalue problemngs: suitable discretization scheme whose spatial degree
of freedom isn, the electron wave functions pfoccupied states can be approximated by a marix [x1,...,zp] €
R™*P, The charge density of electrons associated with the oedwgtates is defined as

p(X) = diag(XXT), (1)

wherediag(A) denotes the vector containing the diagonal elements of titexd. Let tr(A) be the trace oA €
R™*™ j.e., the sum of the diagonal elementsAaf A commonly used discretized KS total energy function has th
form of

B(X) = 2ir(X"LX) + 21X Vign X) + 10 LY+ 2 ere() @)
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whereL is a finite dimensional representation of the Laplacian afoeyV;,,, is the ionic pseudopotentials sampled
on a suitably chosen Cartesian grid, corresponds to the pseudo-inversdgt is the column vector of all ones and
exc(p) denotes the exchange correlation energy functional. Tinetésms inE (X ) describe the kinetic energy, local
ionic potential energy, Hartree potential energy and emgbaorrelation energy, respectively.
The KS total energy minimization problem solves
min  E(X)
X eRnxp 3)
st. XTX =1

The orthogonality constraints are imposed since the wavetionsX must be orthogonal to each other due to phys-
ical constraints. It can be verified that the gradient:gfX') with respect toX is VE(X) = H(X)X, where the
HamiltonianH (X)) € R™*™ is a matrix function

1
H(X) = 5L+ Vion + Diag(L'p) + Diag(ttac(p) "), @)

wherep,..(p) = ‘95—;0 € R™*™ andDiag(x) denotes a diagonal matrix with on its diagonal. The so-called KS
equation is
H(X)X = XA,

(5)
XTX =1,

whereA is a diagonal matrix consisting pfsmallest eigenvalues @f (X). The KS equatior{5) is closely related to
the first-order optimality conditions fdrl(3) which are thrense as[(b) except that the diagonal matrizonsists of any
p eigenvalues of (X) rather than the smallest ones.

In this paper, we first study the relationship between the &8l &nergy minimization problerf](3) and the KS
equation[(b) under certain conditions. A simple countengpe is provided to demonstrate that the solutions of these
two problems are not necessarily the same. The second-opterality conditions of[(B) are examined based on
the assumption of the existence of the second-order dimevat the exchange correlation functional[16] 29]. For a
specialized exchange correlation functional, we proveglyhobal solution of[(8) is a solution dfl(5) if the gap betwee
the pth and(p + 1)st eigenvalues of the Hamiltoniaid (X ) is sufficiently large. The equivalence between a local
minimizer of [3) and the solutioi}5) needs an additionaliagstion that the corresponding charge densities are all
positive. For a strong local minimizeé¢* which is defined based on the second-order sufficient optyrainditions
of (3), we show that the nonzero charge densitiek ‘aare bounded below by a positive constant uniformly.

Our second purpose is the analysis of the most widely userbagip, the self-consistent field (SCF) iteration,
for solving the KS equatiori]5). The SCF iteration is based¢@mputing a sequence of linear eigenvalue problems
iteratively. Itis well known that the basic version of SC&rition often converges slowly or fails to convelgée [18]reve
with the help of various heuristics. A convergence analgtike SCF iteration for solving the Hartree-Fock equations
according to the optimal damping algorithm (ODA) is estsitdid in[6] and an analysis of gradient-based algorithms
for the Hartree-Fock equations is proposedin [21] usingki@wiscz inequality. The interested reader is referred to
[2,[3,[4/5 78,9, 10,12, 18,20,126] for discussion on ODA&,ghadient-based algorithms and numerical analysis of
DFT. A condition is identified in[[30] such that the SCF itéoatis a contractive fixed point iteration under a specific
form of the Hamiltonian without involving any exchange @ation term. Global and local convergence of the SCF
iteration for general Kohn-Sham DFT is established i [2dJif an optimization point of view. Their assumptions
include that the second-order derivative of the exchangeelation energy functional is uniformly bounded from
above and the gap between fite and(p + 1)st eigenvalues of the Hamiltonidg#( X ) is sufficiently large.



We improve the convergence results of the SCF iteration frmfiollowing three perspectives. (i) The KS equation
(@) is formulated as a nonlinear system of equations (fixéaktpaaps) respect to either the charge density or potential.
Applying the differentiability of spectral operators, thacobian of these fixed point map is derived explicitly and
analyzed. (ii) Global convergence (i.e., convergence ttaiopary point from any initial solution) of the simple
mixing scheme can be established when there exists a gapdmithh and(p + 1)st eigenvalues of the Hamiltonian
H(X). This assumption can be relaxed for local convergence sisalye., convergence behavior if the initial point is
selected in a neighborhood sufficiently close to the sahutib{8). If the charge density is computed using the Fermi-
Dirac distribution, the assumption on the gap is not needddrey as a suitable step size for simple mixing is chosen.
Our results requires much weaker conditions than the pusvamalysis in[[24]. (iii) We propose two approximate
Newton methods according to the structure of the Jacobitiredixed point maps. The second type of our approaches
is exactly the method of elliptic preconditioner propose{P3]. Preliminary convergence results are also estadydish
for them. Although our assumption on the gap between eideesaf the Hamiltonian in the above three perspectives
is very stringent and is almost never satisfied in reality,analysis is still valuable for a better understanding ef th
KS equation and the SCF iteration.

The rest of this paper is organized as follows. A counter gptafetween the equivalence of the KS minimization
and KS equation is presented in subsedfioh 2.1. The optimainditions of the KS minimization problem under
smoothness assumptions on the exchange functional isdein subsectio 2.2. The necessary conditions for the
equivalence between a local minimizer of the KS minimizatmd the KS equation is established in subseéfidn 2.3.
The corresponding analysis for a global minimizer is esshbd in subsection 2.4. Lower bounds for the charge
density at local minimizers are presented in subsegfidni@.subsectiof 311, we view the KS equation as fixed point
maps with respect to the charge density or potential. Thehiae of these fixed point maps is presented in subsection
[B.2. In sectiom 4, we establish both local and global corsmecg for the SCF iteration with simple mixing schemes.
Two approximate Newton approaches and their convergenpepies are discussed in section 5.

2 Equivalence Between the KS Total Energy Minimization andhe KS Equa-
tion

2.1 A Counter Example

The following three-dimensional toy example shows that latsm of the KS equation is not necessary a global
optimal solution of the KS total energy minimization praileLetn = 3, p = 1 and choose

1.4299  —0.2839 —0.4056
L=1-0.2839 1.1874 0.2678 |, Vion =0, ande,.(p) =0.
—0.4056  0.2678 1.3826

T
It can be verified numerically that * = (0.3683 —0.6188 0.6939) is a global minimizer of{(B). On the other

hand, we have
) 0.9735 —0.1419 —-0.2028

H(X*):2L+Diag(LTp(X*)): —0.1419  0.8955  0.1339 |,
~0.2028 0.1339  1.0569

and X* is an eigenvector associated with the second smallest\gifyenof H(X*). Therefore, the equivalence
between the KS total energy minimization and the KS equatioy holds under certain assumptions. For this counter



example, our assumptions in subsectlon 2.3 add 2.4 do ftbbkoause the gap between the eigenvalud$(of *)
is & = 0.046 and it is smaller tham/L'||» = 1. We should point out that the above example may not existén th
practice of DFT.

2.2 Optimality Conditions Under Smoothness Assumptions on,.(p)

The Lagrangian function of the minimization problérh (3) is
L(X,\):=E(X) - %tr(A(XTX - 1).

SupposeX is a local minimizer of[(B). It follows fromX T X = I that the linear independence constraint qualification
is satisfied. Hence, there exists a Lagrange multiglisuch that the first-order optimality conditions hold:

VxL(X,A)=H(X)X - XA=0andX"X =1. (6)

Multiplying both sides of the first equality ifJ(6) by ™ and usingX™ X = I, we haveA = XTH (X)X, which is
a symmetric matrix. Note thal(X Q) = E(X) andH(X Q) = H(X) hold for any orthogonal matrig) € RP*?.
Hence, if X is a stationary point, any matrix in the seXQ | @ € RP*? andQTQ = I} is also a stationary point,
and their objective values are the same. Q&tQ™ be the eigenvalue decomposition®f H (X)X andX := XQ.
Then the Lagrangian multipliek = X™ H (X)X is a diagonal matrix whose entries are the eigenvalués(of).

Let L(R™*? R™*?) denote the space of linear operators which rR&p? to R"*?. The Fréchet derivative of
VE(X) is defined as the (unique) functid? £ : R"*? — L£(R"*P R"*P) such that

IVEX +8) = VE(X) = V2E(X)(S)|r

=0.
115l —0 1S]|r

The next lemma shows an explicit form of the Hessian operdttre exchange correlation energy is second-order
differentiable.

Lemma 2.1 (Lemma 2.1 in[[2B]) Suppose that,.(p(X)) is twice differentiable with respect to(X). Given a
directionS € R™*?, the Hessian-vector product éf(X) is

V?E(X)[S] = H(X)S + 2Diag (J(p)diag(SX™")) X, 7)

where
J(p) =Lt + 8,“16(/))8' (8)

Consequently, the second-order necessary and sufficiéintaljpy conditions can be obtained from Theorems
12.5 and 12.6 i [25], respectively.

Theorem 2.2. 1) Suppose thaX is a local minimizer of probler(8) ande,..(p(X)) is twice differentiable with respect
to p(X). Then, for allS € 7(X), it holds

tr(STH(X)S — ASTS) + 2diag(X S™) " Jdiag(X ST) > 0, 9)
whereA = XTH(X)X and

T(X):={S|XTS+STX =0}. (10)



2) Suppose thak € R™*? satisfies(@) with a symmetric matrixA and (@) holds with a strict inequality for all
0# S € T(X). ThenX is a strict local minimizer for probler(B).

Proof. It follows from Theorem 12.5 i [25] that the second-ordecessary condition foX to be a local minimizer

of @) is
(S, Vi xL(X,AN)[S]) >0, forallSeT(X). (11)
Using Lemma 211 and the fact that

tr(X "Diag(y)Z) = y diag(ZX"), forall X,Z € R"*?, y € R",

we obtain
(S, VixL(X,N)[S]) = tr(STVZE(X)[S] — ASTS)
= tr(STH(X)S + 25" Diag (Jdiag(SX ")) X — ASTS)
= tr(STH(X)S — ASTS) + 2diag(X S™)T Jdiag(X S™),
which together with[{11) yield§19). The second part is adiepplication of Theorem 12.6 in [R5]. O

An equivalent formulation of the tangent spacel (10) is
T(X)={S:=XK+PxZ|K=-K'cRP*P| 7 c R"*P}, (12)

whereP% := I — X XT. Hence, the second-order optimality conditions in Thed2&lrcan be presented in terms of
an arbitraryZ € R™*? similar to the analysis of maximization of the sum of the éraatio on the Stiefel Manifold in

[31].

Theorem 2.3. 1) Suppose thaX is a local minimizer of problerf8) ande,..(p(X)) is twice differentiable with respect
to p(X). Thenfor allZ € R**?, it holds

tr(ZVH(X)Z) + (X" ZAZTX) — t0(ZTYXAXT Z) — tr(ZAZ7T)
+ 2diag(X Z"P%)T Jdiag(X ZTP%) > 0. (13)
2) Suppose thak € R™*? satisfies(@) with a symmetric matrixA and (I3) holds with a strict inequality for all
P+ Z # 0. ThenX is a strict local minimizer for probler(@).

Proof. Using [8) and the definition dP+;, we obtainPyPy = Py, PxX = 0 andP4H(X)X = 0. For any
S = XK +PxZ, itholds

tr(STH(X)S) = tr(K"XTH(X)XK)+tr(ZTPxH(X)P%Z)
= t(KT"AK) +tr(ZTH(X)Z) - tr(Z " H(X)X X" Z)
tr(KTAK) +tr(ZTH(X)Z) — tr(ZTXAX T Z). (14)

It can be verified thas™S = KTK + ZTP+ Z, which yields

tr(ASTS) = tr(KTKA)+tr(ZTZA) — tr(ZTXXTZA)



= tr(KTAK) +tr(ZAZ") —tr( XY ZAZTX), (15)
where the last equality holds becausd®f= — K. Since it holds
diag(XKTXT) = %(diag(XKTXT) + diag(XK X)) = %diag(X(K +KNHXT) =0,

we obtain
diag(XST) = diag(X KTXT) + diag(X ZTP%;) = diag(X ZTP%),

which together with[{14) and (15) givds {13). The proof of seeond part follows directly from TheorémP.2. 0O

2.3 Necessary Condition for Local Minimizers

In this subsection, we establish a necessary conditionrumgieh a local minimizer of({B) is a solution of a modifica-
tion of the KS equatiori{5). Our discussion is restricted $pacial exchange correlation functional

3 o1
eene(p) = —Zpré : (16)

wherey = 2 (%)l/3 andp% denotes the component-wise cubic root of the veptofhe next result shows that the
charge density is bounded.

Lemma 2.4. Let X € R™*? satisfyXTX = I, andp be defined b{Il). We have
0<p; <1, forali=1,...,n. a7

Proof. The inequality[(1l7) holds frolX ' X' = T and the fact thap; = >°%_, X7, foralli =1,...,n. O
Our analysis relies on the gap betweenjtteand(p + 1)st eigenvalues off (X).

Assumption 2.5. LetA; < ... <A, < Ay <... < )\, be the eigenvalues of a given symmetric matfix R™*".
There exists a positive constansuch that\,+1 — A, > 4.

Note thatE'(X) may not be second-order differentiable since some compspgX') can be zero. Let be the
collection of indices of the nonzero componentgX ), i.e.,

T={i|pi(X)#0,i=1,...,n}. (18)

Then the complement s&tof 7 is the set of indices of the zero componentgX). Letr be the cardinality of.
We haver > p by the orthogonality ofX. If Z = {ax, ..., «, }, we define the submatricés; and L7z as

Xocl,lv"'vXOcl,p Lal,lv--'vLal,ar
XI: ,andLn:
Xf!ml?"'?XamP L(!r,lv"-aLaT,aT

The notationg Vi, )7z, LTII, Hzz(X) andAzz are defined similar td.zz.
The following theorem shows that a local minimiz€r of the KS total energy minimizatioitl(3) is a solution of
KS equation[(b) if all rows of{ * are nonzero and AssumptibnP.5 holds with a sufficientlydayaps.



Theorem 2.6. Suppose thal* is a local minimizer of(3) using(@8) and A* = (X*)T H(X*)X* is a diagonal
matrix. LetZ* be the index set of * defined a{18). If Assumptiof 215 holds &f (X *) with a constant satisfying

t, = 1
6>2(lILfll: - ), (19)
then it holds
Hrog (X" X7 = X7 A",
77+ (X*) X7 7 (20)
(X%*)TX%* = Iv
and the diagonal o\* consists of the smallest eigenvalues éfz«7« (X*).
Proof. It can be verified thak * is a local minimizer of the restricted problem
min  E(X)
XERnxP (22)
st. XTX =1, Xz =0.
Hence,X. is a local minimizer of the reduced problem
: (Y 1 T % 1 T O Lo i % 3 AT v\ %
min  E(X) = —tr(X "Lz 2+ X) + =t2(X " (Vion) 2o+ X) + = p(X) " LY. 7. p(X) — =vp(X) " p(X)3,
Xerrxr 4 2 4 4 (22)

s.t. XTX =1

The structure of the energy function@l( X ) impliesVE(X%.) = Hz.7-(X*) X%, and(X3.) T Hr-7- (X5.) X5 =
A*. These facts together with the first-order optimality[of)(@22X %. yield (20).

It is obvious that the diagonal entries &f are the eigenvalues diz.z-(X*). Suppose that they are not the
smallest eigenvalues &fz-z- (X *). For convenience, we denote the eigenvalud$pfz- (X*) in an ascending order
as)\; < ... < ), and their corresponding eigenvectorsayei = 1,...,r, wherer = |Z*|. Letx;, 1 <14 < p, be the
ith column forX ... Without loss of generality, let; be associated with an eigenvalue greater tharandui (i <p)
be an eigenvector associated with an eigenvalue less trexquaf toﬁ\p but not be a column ok ;.. The Assumption
[2.3 implies that; ¢ span{X3. }. LetV be a matrix whose columns satisfy

’Uj:
x; ifj=2,...,p.

Since the functiorE(X) is twice differentiable af{';. according to the definition af*. Therefore, an application of
Theoreni ZB gives

A = tr(VTHzz (X5)V) + (X5 ) "VAVIXE) — tr(VIXEAN(X2)TV) — tr(VA*VT)
+2diag(X5. VTP, )T (LTM* - %Diag (p(X}*)_%)) diag(X5.V'P%. )
> 0. (23)

It follows from thatV is an orthonormal eigenbasis Bf;-z- (X.) and Assumptiof2]5 that

tr(VT Hreze (X*)V) — tr((X3.) T Hyezo (X*)X5) < Ai — Apy1 < —6. (24)



Sinceu; ¢ span{X3. }, we obtain

(X5 )"V =VTX: = T-—ee], (25)
Xz, VTPL%* = (26)
which further give
A = tr(VVHrz-(X5)V) — tr(A%) + 2diag(z1u) )T (LTI*I* 3Diag (p(X})_g)) diag(ziu))
TN * \—2
< - .
< —0+ Qmax{)\md ( Te T+ 3Dlag (p(XI ) 3)) , 0}
< - ! 7
< =6+ 2max {max (LL.7. - 31) .0}
< - _
< —s+2max{(ILh.o. Il - 3), 0}
< 0, (27)

where the first inequality usés(24) and the fact thtg(z;u} )||2 < 1, the second inequality follows frome [0, 1],

the third inequality uses the fact thmz*I*Hg < ||LT||2 since the largest/smallest eigenvalue of a matrix is no
less/greater than the largest/smallest eigenvalue ohiténcipal submatrix, and the last inequality27) is dae t
(19). However,[(2]7) is a contradiction {0 {23). This cometethe proof. O

2.4 Necessary Condition for Global Minimizers

In this subsection, we consider whether a global minimiZe@b is a solution of the KS equatiofill(5) under the
exchange correlation function&l {16). We first show thedfelhg inequality.

Lemma 2.7. It holds for alla, b € [0, 1] that

a— a” + 2ab + =3a" —4a°b+b" > =(a” — .
b)2(3a® + 2ab + b?) = 3a* — 4a®b + b* 332

[SVRN )

Proof. The inequality holds fow = 0 or b = 0. Consider the case am > b > 0. Introducing the variable
t=>b/a € (0,1] yields
at(3 — 4t +t*) — gaﬁ(l — 32 > aSf (1),

wheref(t) = 3—4t+t"— 2(1—t3)2. Sincef’(t) = (t*—1)(4—4t*) < 0forall¢ € [0,1], we havef(t) > f(1) =
forall ¢t € [0, 1], and then the inequality is proved. The caséona > 0 can be proved in a similar fashion. O

The next theorem establishes the equivalence based oraértithe difference of total energy function values.

Theorem 2.8. Suppose thaK * is a global minimizer of(3) using (18). If Assumptiofi 215 holds & (X*) with a
constant satisfying

6>p (1L~ 7). (28)

thenX™* must be an orthonormal eigenbasisi{ X *) corresponding to ity smallest eigenvalues, namely, a solution
of the KS equatioiff).



Proof. Suppose thakX * is not butY” is an orthonormal eigenbasis Bf( X *) corresponding to its smallest eigenval-
ues. SinceX * must be an orthonormal eigenbasigdf X *) and using Assumptidn 2.5, we have

AH(Y, X*) = tr(Y TH(X")Y) — tr(X*)TH(X)X*) € M(H(X)) = Appa (H(XT) € =6, (29)

Applying Lemma$ 2} arld 2.7 gives

n

S (p)F = o(X9E) (300)F + 20 F (X +00x)F) 2 2lor) — p(X)IE (30)
i=1

-

It follows from Lemmd Z.4 that

(1= p(Y)) " p(X*) + (1= p(X*))p(Y) (31)
1Tp(X*) +1Tp(Y) = tr(XXT) + tr(YYT)

lp(Y) = p(X™)]?

IN A

2p.

Using the relationshipr(Y T Diag(LTp(X*))Y) = p(Y)TLTp(X*), the inequalities[{29)[(30) and(31), and the
assumption[(28), we obtain

AE(Y,X*) = E(Y)-E(X")
= %AH(KX*) + i (P(YV)"LIp(Y) = p(X™)TLTp(X7)) — %7 (V)T p(V)} = p(X*)Tp(x 7))
—%tr(YTDiag(LTp(X*) —p(X*)F)Y) + %tr(XTDiag(LTp(X*) (X)) X
= SAHY,X) 4 (o)L () — p(X*VTE (X)) = 2L (p(r)Tp(¥)% — p(X*)Tp(X")? )
_% (P LTp(X™) = p(X*) T LTp(X™)) + %”Y (P(Y)TP(X*)% - p(X*)TP(X*)%)
= SAHY,X) 4 () — p(X7) L (V) — p(X*)
2 (el - p(x)1) (30000 + 200 p()F 4 p(x)})
:
< -5+ (L - ) i) - s
:
< _g+ <||L4||2 _%) (29)
< 0,
which is a contradiction to the fact that* is a global minimizer. This completes the proof. O

Remark 2.9. When the exchange correlation functign(p) is equal to zero, our conditiof28) becomes > p||LT||2,
which is much weaker than the conditién- 12p/n||L||2 in Theorem 1 of[[24].

2.5 Lower Bounds for the Charge Density of Local Minimizers

The exchange correlation energy functional is twice défeiable if all components gf(X) are positive. However,
the second-order derivative may not be bounded at an aspfiant X. In this subsection, we provides a few lower



bounds for the charge density at certain types local mirensizThese properties are useful for our analysis on the KS
equation.

Traditionally, a pointz* is called a strong local minimizerl[L, 15] of a functigh: R™ — R, if there exists a
constant > 0 and a neighborhood of =* such that the inequality

fla) = f@") + ke — 273 (32)

holds for anyx € U. Here, we define a strong local minimizer based on the seootel-optimality conditions.

Definition 2.10. A pointX* is called a strong local minimizer of8) using(@8) if and only if X*. is local minimizer
of (22) and there exists a constant> 0 such that, for allZ € R"*?,

tr(ZV Hroz- (X3)2) + tr(Xp) " ZN 2V X5 — (2T X5 A (X5) T 2) — te(ZA* Z7T)
: * Y1 * O\ — 2 : *
+ 2diag(X5.)Z P4, )T (LTI*Z*—ngag(p(XI*) 3))d1ag((XI*)ZTP§;*)2/@|\Z||%, (33)

whereA* = (X3 )T Hz.z+-(X*) X%, andZ* is the index set ok * defined aqI8).

Our condition[(3B) is weaker than (32) applying to problgdnvBen the total energk( X ) is twice differentiable.
The next result shows that the charge densities at a straadjieinimizer are bounded below uniformly if they are
positive.

Theorem 2.11. Suppose thak is positive semidefinite anki* is a strong local minimizer of3) satisfying Definition

[Z.10. Let

Nlw

_ . . Y
¢ := min{l, ¢q, ..., ¢, } and¢; := min ) 34
{Le } i <3(Lji — 2L}, +L}j)> (34)
Then it holds:
forany: € {1,2,...,n}, pi(X*) € 0,e) = pi(X*)=0. (35)

Proof. For convenience, we dengté. = p(X7.). If there exists a row in X 7. such that eithet or —1 is an entry
of this row, then this row has only one nonzero entry accaytiirthe orthonormality o %... Hence(p%.), = 1 and
(35) holds ay.

We next consider the components in theget= {;j | j € Z* and|(X}.),s| < 1, s = 1,...,p}. For any given
J € J, there exists a nonzero entry, denoted &$. ), in the j-th row of X7.. Since|(X7.);s| < 1, there exists
at least another nonzero entry, denoted8$. );5, in thes-th column of X}, due to the orthonormality ok’}.. For
simplicity, letz;, I = 1, ..., p, be thel-th column ofX . and setr = |Z*|, z;, = (X}.);s andz;s = (X}.):s. Define
avectorz € R" whosel-th componentl(=1,...,p)is

Tis 1 —_—
NCETR ifl = j;
= _ —Tis i =1
2 CE ifl =i (36)
0, otherwise.
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A short calculation givefz||» = 1, zTx, = 0 and

LisLjs
T o Ui
Lis + 'rjs

wheree; _;) € R" hasl on its j-th entry,—1 on itsi-th entry and) elsewhere.

Fora € [0,1], let Z, € R™*? be a matrix whose-th column isaz + v/1 — a2z, and all other columns are zero.
Without loss of generality, lex; < ... < )\, be the eigenvalues diz-z- (X*) in the ascending order, and be an
eigenvector off7.7- (X *) associated with,, s € {1, ...,r}. Then, we obtain

diag(zal) =

S

37)

tr(Z Hrere (X*) Za) < a? A + (1 — a?) s, (38)
tr(ZoA* ZY) = tr(A*ZF Z,) = A, (39)
which yields

tr(Z Hrege (X ) Zy) — tr(Z,A Z7) < a?A + (1 — a®)As — As = a?(\ — Ay). (40)

The definition ofZ, gives

aztzy, ifp=s,q#s;
(ZoX7)pg =4 VI=a® ifp=sq=s (41)
0, otherwise.

Hence, we have

tr((X5 )Y ZuN* ZF X5

tr(A 2y X5 (X7.) Za) = A | D a®(z72y)? + (1 - d?)
q=1,q#s

= A <Z az(zT:cq)2 +(1-a?) — az(szs)2>
q=1

= 5\5(1 +a?||2T X5 2 - a?) = a2;\s||zTX}* 24 (1 - a2);\s. (42)

and

tr(ZF X5 A (X5)"2Z,) =

Y

— ZP: a?(zTxy)? A + (1 — amS)

2;\1||ZTX;—* % +(1- a2);\s. (43)

I
S
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Combining [42) and (43) together yields

tr(X5 )Y Z N ZF X5 — to(Z) Xp A* (X)) 2,)
(@ A2 X2 |5 + (1= a®)As) = (@M][zT X515 + (1= a®)As) = a® (A = A)|[2" X2 13
< a*( = A1) (44)

IN

The equality[(3]7) gives

ATisTjs

diag(X3.Z, Px- ) = adiag(z,z") = ——=L—e(; _;. (45)
\/ 15 Jjs
Let Z, with a = /X:x . Using [40) and{44), we have
tr(Z) Hrez- (X3.)Z40) + tr(X3) T ZoAz- Z) X5)
—tr(ZE X5 A7 (X3 Z,) — t0(ZoAz- ZF) < a2 (N — M1) = K. (46)
It follows from our definition of strong local minimizers tha
tr(ZF Hrez- (X*) Zo) + tr(X3 )T Z N ZE X5) — tr(Z X A (X3 Z,) — te(Zo N Z))
: * T e * O\ — = . *
+  2diag(X;. ZiPx)?t (LTZ*I* - ngag ((pz*) 3)) diag(X7- Z;rPf;(;*) > K, (47)
which together with[{46) gives
. * Ve * \—2 : *
diag(X5. 2T P%. )T (LTM* — IDiag ((pp) )) diag(X1. Z]P%. ) > 0. (48)
Substituting[(4b) intd{48), we obtain
Y . \_2
6(1;',—1') (LTPI* — §D1ag ((pz*) %)) eij,—iy = 0. (49)
Expending the terms of (#9) yields
(Lroz.)is = 2(LEg )i + (Lhog )i = 5(022); 7 = 5(02);° 20, (50)
which implies
Vow -2
(Lz-z-)ji = 2(Lg-z)ji + (L-z-)ii = 5 (p10); 7 (51)
Therefore, we obtain
3
~y 2
(p7); = < ) > ¢j, (52)
T B(L )5 = 2(L g )i+ (L)) ’
wherec; is defined in[(3K4). Similarly, we can prove{52) holds for gny 7. This completes the proof. O
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3 Analysis of the KS Equation

3.1 Formulating the KS Equation as a Fixed Point Map

The KS equation[{5) constitutes a nonlinear system withaesfp X. Note that the Hamiltonian matrix](4) is a
symmetric matrix function with respect goas

- 1
H(p) := 5L + Vion + Diag(L"p) + Diag(piac(p) e), (53)
and the KS equation becomes
H(p)X = XA,
(p) (54)
XTX =1,

whereX € R"*?P andA € RP*? is a diagonal matrix consisting of tesmallest eigenvalues (b}‘(p). The eigenvalue
decomposition oﬁ(p) is determined oncg is given. Hence, we can writ¥ asX (p) to reflect the dependence pn
and the KS equatiofi{5) can be viewed as a system of nonligeatiens with respect to the charge dengigs

p = diag(X (p) X (p)"). (55)

Alternatively, the function
Vi=V(p) = LTP + MwC(p)Te (56)

is called potential and the Hamiltonian matﬁ&(p), by convenient abuse of notation, can be expressed as
1
H(V):= 5L + Vion + Diag(V). (57)

Obviously, it holdsH (p) = H(V (p)). Therefore X can be interpreted as an implicit function 6f Let X (V) e
R™*? be the eigenvectors corresponding to themallest eigenvalues df (V). Then, the fixed point map (55) is a
system of nonlinear equations with respecttas

{ V =V(Es(V)), (58)

Fy(V) = diag(X (V)X (V)").

The fixed point map(38) is well defined if there is a gap betwtberpth and(p + 1)st smallest eigenvalues of
H (V). However, when these two eigenvalues are equal, theresexisbiguity on choosing the eigenvectof$l’)
since the multiplicity is greater than one. A common apphoaco reviseF, (V') in (58) by constructing a proper
filter function. Letq;(V),..., ¢, (V) be the eigenvectors dff (V') associated with eigenvalugs(V),..., A\, (V),
respectively. A particular choice of the filter function ieetFermi-Dirac distribution of the form

1
fu(t) = T Bl (59)
wherey is the solution of the equations
> fuXi(V) =p. (60)

Since the left hand side df (60) is monotonic with respegt for a fixed 3, the solution to[{60) is unique for any
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choice of3 and);. Then the fixed map_(58) is replaced by the approximation
V =V(Fy,(V)),

" 61
Py (V) = diag (Z fmxv»qi(mqi(vﬂ) . o

3.2 The Jacobian of the Fixed Point Maps

We first reformulate the functions, (V) in (&8) andF, (V) in (€1)) as the form of spectral operators. Using the dif-
ferentiability of spectral operators, they can be proveoitalifferentiable under some conditions. §at(V), ¢;(V)}
be the eigenpairs df (V') and assume that the eigenvalugéV'), ..., A, (V') are sorted in an ascending order,

M) < < 0(0) € A (V) << A (V).
The eigenvalue decomposition Bi(V) can be written as
H(V)=QWI(V)Q(V)", (62)
whereQ (V') andII(V) are
QW) =[a(V), 2(V), ....qu(V)] € R™™ and TI(V) = Diag(\ (V), Aa(V), ..., An(V)) € R™ ™. (63)
Hence, the functio, (V) in (58) is equivalent to
Fy(V) = diag(Q(V)o(II(V)Q(V)™), (64)

whereg(Il) = Diag(¢(A1(V)), d(A2(V)), - -, 6(An(V))) and

1 for t < )‘T—'(V)+2>‘:D+1(V)
o(t) = . ’ (65)
P JF)‘p 1(V
0 fort> %
Similarly, the functionF;, (V') in (€])) in the spectral operator form is
Fy, (V) = diag(Q(V) fu(IL(V))Q(V) ™). (66)

Letyu, -+, ur(vy be the distinct eigenvalues amofy; (V), - -, A, (V)}, (V') be the total number of distinct
values andr,(V') be the number of distinct eigenvalues no greater thanFor anyk = 1,--- ,r(V), the set of
indicesi such that\; = p, is denoted byy, := {i | \; = p, i = 1,--- ,n}. The next lemma shows the directional
derivative of F, (V) by using the differentiability of the spectral operatard, (14,2228, 27].

Lemma 3.1. Suppose that Assumptibn 2.5 holdsfatV), i.e., \p11(V) > A\, (V). ThenE4(V) is continuously
differentiable and its directional derivative &t alongz € R™ is

Oy Fy(V)[2] = diag (Q(V) (g4(II(V)) o (Q(V)"Diag (2) Q(V))) Q(V)") , (67)

where “o” denotes the Hadamard product between two matrices,gttll(V')) € R"*™ is the so-called first divided
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difference matrix defined as

W |f'L€O[k,j€0&l, kSTp(V),l>Tp(V),
(g¢(H(V)))” = Wl&m if i € e, j € o, k> ’I’p(V), l < Tp(V), (68)
0 otherwise.

Proof. The chain rule gives

ia, T
o r,v)E - O gy, (69)

By applying the continuous differentiability of the spedwperators in Proposition 2.10 6f[14], the functi@n(I1)QT
is differentiable with respect t&f and its directional derivative is given by

AQmQ" o

0 =Q (95(I) 0 (QTSQ))Q", forall S eS8, (70)

where, forany,j =1,...,n,

SOV (V) i .
S el ficag, € o, k#L
<%mwmw—{ ROAy S fi€on jcan ks )

0 otherwise.

Substituting[(6b) into[(A11) yields the specific formg@f(w(V)) in (€8). Sincediag(-) is a linear function, we obtain

ddiag (Qo(A)Q™) 5] = ddiag (Qo(A)Q") dQé(A)QT 1]
dH - dQo(A)QT dH
= diag (Q (95(I) o (QTSQ))Q"), forall Ses". (72)
It follows from (52) that
Oy H(V)[z] = Diag(z). (73)
Plugging [72) and (23) intd (69), we obtain {67). This congdethe proof. O

Remark 3.2. Computingdy F4(V')[#] requires all the eigenvector@(V') and all eigenvaluesl(V'). LetE; , (O, )
be thej x p matrix with ones (zeros) at all its entries. Then the maggII(V')) € R"*" takes the specific form

%mw»=<%* ¢ >,

T
G On*Pv"*P
where
1
T LN L iy Plaal o)
G =
1 1
Forp (V) —Porp (V)1 E|04rp(v)\a\0¢rp(w+1| Forp (V) — Hor (V) Elarp(v)\a\ar(v)\

The directional derivative of’;, (V)[z] can be assembled in a similar fashion.
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Lemma 3.3. The function/y, (V') is continuously differentiable and its directional deriive atl” alongz € R" is

Oy Fy, (V)[z] = diag (Q(V) (g7, (IL(V)) o (Q(V)"Diag () Q(V))) Q(V)") , (74)

whereg;, (II(V)) € R"*™ is defined as, forany, j = 1, ..., n,

(97, MV = XA b E o kAL 75)
L(Ai(V)) otherwise.

We next compute the JacobianefF; (V') andV(Fy, (V)).
Theorem 3.4. LetJ(p) be defined ag).

1. Suppose that Assumption2.5 holdd&f), i.e., A\,1+1 (V) > A, (V). Then the Jacobian af(F,(V)) at V' is

OV(Fs(V))[z] = J(Fy(V)0y Fy(V)[z], forall z € R, (76)

2. The Jacobian oP(Fy, (V)) atV is

OvV(Fy, (V)z] = J(Fy,(V))Ov Fy, (V)[z], forall zeR". (77)

Proof. Note that
0,(V(p))[z] = J(p)z, forall zeR". (78)

Applying the chain rules tdy V(F,(V))[z] and using[(7B) and(67), we obtaln{76). This completes thefpor [

4 Convergence of the SCF iteration

4.1 The SCF lteration and the Simple Mixing Scheme

Starting from an initial vectol’ € R, the SCF iteration for solving the fixed point m&p](58) reaualy computes
the eigenpairg X (V1) A(ViT1)} as the solution of the linear eigenvalue problem:

HVHX (V') = X(VEHAVTY,
X(Vi-l-l)TX(Vi-l-l) _ I,

and then the potential is updated as
Vit = Y(E, (V). (79)

When the difference betwedii andV*! is negligible, the system is said to be self-consistent kadSICF iteration
is terminated.

The SCF iteration often converges slowly or even fails toveoge. One of the heuristics for accelerating and
stabilizing the SCF iteration is charge or potential mixjad,[19]. Basically, the new potenti&i‘*! is constructed
from a linear combination of the previously computed patr@ind the one obtained from certain schemes at current
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iteration. In particular, the simple mixing scheme rep&atd) by updating

VI =V —a(V! = V(F, (V) (80)
whereq is a properly chosen step size. Similarly, the SCF iteratising simple mixing for solving the fixed point
map [61) is

VHL =V — (V= V(Fy, (VY))). (81)

4.2 Global Convergence Analysis

We first make the following assumptions.

Assumption 4.1. The second-order derivatives of the exchange correlatimetfonale,..(p) is uniformly bounded
from above. Without loss of generality, we assume that tidsts a constartt such that

|Opac(p)ell, < 6, forall peR™, (82)

Although we cannot verify Assumpti@n4.1 for ady e R™*?, it holds at a strong local minimizer using our lower
bounds for nonzero charge densities in subseEiidn 2.5 #xhbange correlation energy iS116).

It can be verified from the definition of the operafgrF,, (V)[] in (1) thatit is a linear map. The inducégnorm
of Oy V(F4(V)) anddy F,(V)[-] are defined as

s NV E(V))[2]]l2
240 [ 2]]2

respectively. The next lemma shows that tfginorms are bounded if AssumptibnP.5 holdg#&t/).

10v Fy (V) [2]l]2
Izl 7

[0vV(Fs (V)2 = and||dy F (V)2 = max (83)

Lemma 4.2. If Assumptiof 215 holds &f (V) for a givenV € R", then it holds

10v Fs(V)]l2 < and [OvV(E (V)2 <

LYo+ 6
5 IE7 +6 H52 . (84)

Proof. For anyz € R"™, we obtain

[[diag (Q(V) (gs(IL(V)) o (Q(V) Diag (2) Q(V))) Q(V)") |I2
1Q(p) (94(I1(p)) o (Q(p) " Diag(2)Q(p))) Qp)" Ilr
ll96(I1(p)) o (Q(p) " Diag(2)Q(p)) Ilr

%”Q(p)TDiag(Z)Q(P)HF

1
< 5lele, (®5)

[0y F(V)[2]]]2

IN

IN

where the second inequality is du€{tg, (I1(p)));| < 1/4. Then the firstinequality if (84) holds from the definitions
(83) and[(8b). It follows from[{76) and(B5) that

[ILT]]2 + 6 ||2 +6

[ovV(Fs (V)22 < [IT(EFE(V)ll2l0v Fs(V)[2][l2 < ———— |22 (86)

This completes the proof. O
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The set{ H(V) | V € R"} is called uniformly well posed (UWP)[2,"30] with respect te@nstanty > 0 if
Assumptio 2.6 holds at/ (V) with § for any V' € R™. We next establish the convergence of the simple mixing
scheme[(80) when UWP holds.

Theorem 4.3. Suppose that Assumption}4.1 holds (V') | V € R™} is UWP with a constant such that

Ll +0
bpzl—l—%i—>0. 87)

Let{V?} be a sequence generated by the simple mixing scii@d)asing a step size satisfying

I<a<

T (88)

Then{V*} converges to a solution of the KS equatfBjwith linear convergence rate no more thdn-a|+a(1—by).

Proof. For anyV?, it follows from (88), [8T) and(88) that

[(1=a)l 4+ advV(Fy(V"))]2

< [=al+lallovV(Fs(V1)]2
1—a+am#:l—ab1, fo<a<l1
a—14+allllt — o _py—1, ifa>1
< 1,
which completes the proof. O

Remark 4.4. When the step size = 1, the simple mixing schen@0) becomes the SCF iteratiaf@d) with the
convergence raté’%. Since neithep nor n is involved in(&1), it is much weaker tha Qk‘/ﬁlgﬂ”ﬁe <1
required by Theorem 1 in[24].

We next establish convergence to the solutions of the madifted-point map[{@1) without assuming the UWP
properties.

Theorem 4.5. Suppose that Assumptionk4.1 holds and

| ALYz +0)

b2 = 4

> 0. (89)
Let{V?} be a sequence generated by the simple mixing scii&l)asing a step size satisfying

I<a<

s (90)

Then the sequendé’*} converges to a solution ¢E1) with linear convergence rate no less thian- a| + a(1 — b).
Proof. Using the mean value theorem and the fact that

—BePt—n)

p
(14 eBt—m))2 ST

110l =
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we obtain|(gy, (II(V'))):;| < 8/4, which yields

0w V(Fy, (V)2 < 20220

Then, the convergence ¢f(81) is proved similar to that oforbel4.3. O

Remark 4.6. Suppose that UWP holds arfg is chosen such that

— Ll >1—7,
{Heﬁup W = v 91)

1
1+€B(>\p+1fﬂ) S Vs

wherey < 1 is a constant. It can be shown that> % -In 1*77 Hence, we havé > % and the conditior{87) is

implied by(89) whenln I_T” > 2 or equivalentlyy < €++1 ~ 0.12. On the other hand, the closeris to zero, the

closer f,, is to ¢ from ([@1)). Therefore, the convergence rate of the fixed-point iteratisingFy, is better than that of
Fy, whenF}  is sufficiently close td.

Remark 4.7. The convergence of the SCF iteration without simple mixingélving a special KS equation without
the exchange correlation energy is established i [30] uride condition

4 LT
L |

5 (92)

We can see that our condition is weaker tH{@8) sincen is not required.

4.3 Local Convergence Analysis

Suppose thal’* is a solution of the fixed point map(B0). LB(V*,7) := {V | ||V — V*||2 < n} be a neighborhood
of V* for a givenn > 0. The Taylor expansion at* yields

VL v = VR —a(VE = V(F,(VF) = (VF = a(VE = V(Fs(V7))))
= (I —a(l =0y V(E;(VONVF =V +o(||[VE=V*|5), forall V¥ e B(V*,n). (93)

If the spectral radius of the operatbr- o(I — 9y V(F,(V*))) is less than one, there must exist a sufficiently small
so that the simple mixing schenie180) initiating from a painB(V *, n) converges td’* linearly.
We first present a few properties of the linear operators oetine space of linear operators by

L(R™,R"):={P|P:R" — R"is alinear map.

SinceL(R™, R™) is isomorphic taR™*", the eigenvalue, eigenvector and the spectrum for anyrliogerator can be
defined similar to a matrix. For a givén € L(R™, R™), if a scalar\ € C and a nonzero vectare C" satisfy

Plz] = Az, (94)

the scalar\ and the vector are called the eigenvalue and eigenvectoPofespectively. The spectrum &f, denoted
by \(P), is the set consisting of all the eigenvaluegofThe spectral radius, denoted b{P), is the largest absolute
value of all elements in its spectrum. The opera®ds called symmetric if,TP[z] = =T P]y| for anyz,y € R".
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Definition 4.8. GivenP € L(R",R"), the matrixP = (Plei],...,Ples]) is called the basic transformation matrix
of P, wheree;, i = 1,2, ..., n, is theith column of the identity matrix. A linear operatpr € L(R™, R") is called the
adjoint operator ofP if P*[x] = PTx holds for allz € R™.

Let P be the basic transformation matrix 8f ¢ L(R™,R™). ThenP is symmetric if and only ifP is symmetric.
Moreover,P and P has the same spectrum sirPé¢z] = Pz. Let My, M> € R™*" be two real matrices ang
and P, be the basic transformation matricesif, P, € L(R",R"), respectively. Thed/, P, + M, P> is the basic
transformation matrix of the linear operatbf; P; + M2P>. A linear operatorP € L(R™,R") is called positive
semidefinite ifzTP[z] > 0 for all z € R™. We next show that the eigenvalues of the product of a synicattrix
and a symmetric positive semidefinite linear operator aak re

Lemma 4.9. Suppose that/ € R"*" is a symmetric matrix, an® € L(R",R") is a symmetric positive semidefinite
linear operator. Then all the eigenvalues of the linear @ter M P are real. Furthermore, it holds

/\max(M))\max(P)a if /\max(M) > 07

)\maX(MP) < (95)
/\max(M))\min (,P), OtherWise
Amin M Amin P P if Amin M Z 07

Amin(MP) 2 ) dmin (P) i (96)
Amin(M)Amax(P),  otherwise

Proof. Let P be the basic transformation matrix Bf It suffices to prove the statements withreplaced byP. Since
‘P is symmetric positive semidefinitd? is also symmetric positive semidefinite. Hence, it can bgdhalized as
P =UDU?T, whereU is orthogonal and) = Diag (1, . . ., jun) SUch thagy; > 0. DefineDz := Diag(u%, . u:%)
and writeP% = UD=>UT. Then we obtair® = Pz P%. We now prove that every eigenvalue®f.= Pz M P? is an
eigenvalue of\/ P and vice versa. It is known that the eigenvalues of a mataxcantinuous functions of the matrix
entries. LetD, := D + eI andP. := UD.U" fore > 0. ThenP. — P andPﬁ = UDE%UT — P? ase — 0.
Hence, M P, - MP andR, := PE%MPE% — R ase — 0. SincePﬁ is invertible, we haveR, = PﬁMPEP[%.
Therefore,R. and M P. have the same eigenvalues. As+ 0, these eigenvalues converge to thos&adnd M P,
respectively. Hencek and M P have the same eigenvalues. The symmetri éfirther implies that the eigenvalues
of M P are real.

SinceAmax(M)I = M, we obtain

Amax(M)P = P? (Apax(M) — M)P? + P MP? = P3 MP?,

which yields [@5) since the eigenvalues Bf = Pz M Pz and M P are the same. Similarly{{P6) holds due to
M = Apin(M)I and

P:MP? = P2(M — Apin(M))P2 + Ain(M)P = Ain (M) P.

This completes the proof. O

The next lemma shows thay F,(V')[-] is negative semidefinite.
Lemma 4.10. For anyz € R", it holdsz"dy F,,(V)[2] < 0.

Proof. For anyz € R™, we have
SJovFy(V)[z] = 2diag (Q(V) (95(IL(V)) o (Q(V) ' Diag () Q(V))) Q(V)")
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((Q(V)"Diag (2) Q(V)) , g4 (I(V)) o (Q(V)" Diag (2) Q(V)))
e’ (9o(IL(V)) o (Q(V)"Diag (2) Q(V)) o (Q(V) " Diag () Q(V))) e
< 0,

where the third equality uses the properties of the Hadapradiucts and the inequality is due to

(Q(V)"Diag (2) Q(V)) o (Q(V)" Diag (2) Q(V)) = 0 andgy (IL(V)) < 0.
This completes the proof. O
We now establish the local convergence result for the simmidéng scheme.

Theorem 4.11.LetV* be a solution of the KS equati@H). Suppose that Assumptionl4.1 holds and Assumiption 2.5
is valid at H (V*) with a constanbt satisfying
0 > —Ain> (97)

whereX’ ;. := min{0, Amin(J(F5(V*)))}. There exists an open neighborhdeaf V*, such that the sequen¢®*}

generated by the simple mixing sche(@@) usingV? € Q and a step size

20
o< (0’ ||LT||27+9+5> (%8)

converges td’* with R-linear convergence rate no more than

max 1_@754')\:}11;1 a7||LT||2+9+5—1
0 ’ 20 '

Proof. The Taylor expansioh (93) implies that local convergenabefschemd (80) holds if
ol —aA) <1, (99)

whereA := I — J(F,(V*))0y Fs(V*). According to Lemm&Z4.10; 0y F,(V*) is symmetric positive semidefinite.
Using Lemma& 419, we conclude that all the eigenvalued afe real. Hence[ (99) is guaranteed if

Amin(A) > 0 (100)
Amax(A) < 2. (101)

Note thathin(A) = 1 + Amin(J(Fs(V*))(=0v F»(V*))). Using LemmadZI0A,,ax(—0v F,(V*)) < + from
Lemmd4.2 and the definition of ; , we obtain

in?

() 1 > Amin (T (Fp (V) Amin (=0v Fs(V*)),  if Amin(J(Fp(V*))) > 0,
o - )\miﬂ(J(Fqﬁ(V*))))\max(_aVFqﬁ(V*)), otherwise

- O’ if /\mm(J(F¢(V*))) > 0,
| P (J(Fs(V*))),  otherwise
AL
> mln7
- 0
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which yields [(I0D) from the assumptidn {97).
Using Lemm&Z9 again, we have

/\maX(A) < 1+ /\maX(J(de(V*))(_8VF¢(V*)))

. . [ILTll2 + 0
< 14+ max{0, Amax(J (Fp (V*)) Amax (—Ov Ep (V) } <1+ s (102)
which together with[(98) give§ (1D1). O
The condition[(917) can be much weaker thdH || + 6 < J required in Theoref 41.3.
Corollary 4.12. Suppose that Assumption#.1 holds. Then the cond@@yholds if
max(f — Amin(L1),0) < 0. (103)
Proof. It follows from (8) and Assumption 411 that
Amin (J(Fy(V))) = /\min(LT + Opac(Fp(V))e) > /\min(LT) + Amin (Hze(Fp(V))e) > /\min(LT) —0.
Hence, [[9F7) holds from the definition &f, .. O

In particular, whenJ(F,(V*)) is positive semidefinite, we have,;, = 0 and [97) is a direct consequence of
Assumption 2.b.

Corollary 4.13. Suppose that Assumptidns]2.5 holdg#&f/*) and J(F,(V*)) is positive semidefinite. Then the
condition(@7) holds.

We can obtain the following local convergence result forrtiwlified fixed-point mag (81) in the same manner as

Theoreni 4.b.
Corollary 4.14. Suppose that Assumptionk.1 holds and

4
= > ~Ains (104)

B
where X%, = min{0, Amin(J(Fs(V*)))}. LetV* be a solution of the KS equatidf)). There exists an open
neighborhood? of V*, such that the sequené&‘} generated by the simple mixing sche@#) usingV® € Q and
a step size

8
o< <°’ (1T +9)ﬁ+4) (105)

converges td/* with R-linear convergence rate no more than

max{(l —a/\:ninTM> ’ <a(||LT||2;9)ﬁ+4 B 1)}

5 Convergence Analysis of Approximate Newton Approaches

The generalized Jacobiahy V(F(V)) in (Z8) suggests that Newton’s method for solving the fixeidipmap [58) is

Vitl — i g (I _ J(Fqb(vz))aqub(Vz))*l (VZ % (F¢(V1))) )
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wherea is a step size. Obviously, this method is not computatigrathctical for solving the fixed-point maps due to
the presence of all eigenvectors and eigenvalués-if; (V)[-]. In this section, we propose two approximate Newton
approaches in the form

VI Vi o (I- DY) (VI =V (Fy(V?)), (106)

wherea > 0 andD? € R™*" is a matrix for approximating the Jacobi@nV(F(V'?)).

Theorem 5.1. Suppose that Assumption#.1 and UWP hold.{l&t} be a sequence generated @@8) using{ D}
and a step size such that

2 . .
0<a< b_a 0< Ymin S Umin(I - DZ) andamax(I - Dl) S Ymax;
2

T . . .
whereby =1 + W ando,;, andoy,., are the smallest and largest singular valuedof D, respectively. If

by :=1-— Zym—az”m# > 0, then{V"} converges to a solution of the KS equat@hwith linear convergence rate

no more thamax(1 — ay;, L b1, L by — 1).
Proof. For anyV?, it follows from the definitions ofD?, o andb, that

11 = a(I = D)~ = v V(E;(V))l2
= |I—all =D") +a(l - D) ovV(Fs (V"))

< M=ol = DYz + |al[(I = D)HI(Fs (V) (V)2
< 1 - a'yr;l;x + O"Yr;iln HLT‘<‘$2+9 =1- O"Yr;;xbla if o < Ymax;
N cwr;iln -1+ om;ilnw = CW,;ilnb2 — 1, otherwise,
< 1.
This completes the proof. O

5.1 Approximate Newton Method |

Our first approach replaces the operatprF,(V?)[] by a diagonal matrix-*/, wherer® is a non-positive scalar.
It is chosen to be non-positive sinbg F;(V*)[] is negative semidefinite from Lemrha4.10. Consequently,ate s
D' := 1% J(p) and the schem&(ID6) becomes

VI =V o (T =7 J(Fy(V9))) T (V= V (Fy(VY))) . (107)

The next theorem presents the local convergence analysissfonethod{107).
Theorem 5.2. Let V* be a solution of the KS equati@B). Suppose that Assumption}4.1 holds with a congtamtd
Assumptiofi 215 is valid a7 (V*) with a constant satisfying

5> -\ (108)

min’

whereX* . = min{0, Amin(J(F,(V*)))}. Let{V} be a sequence generated by the sch@i@)using lim 7¢ =
1—r 00

min

7 € (—%,0) and a step size

0+ Ain
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If the initial point VV? is selected in a sufficiently small open neighborhood df then{V*} converges td/* with
R-linear convergence rate no more than

max{(l_a( B )) (ai"”"ﬁe”_l)}
|LtH|lo+ 6048 06+, /)) 54+ A '

Proof. The convergence of the iteratidn (107) is guaranteed by

oI —aM) <1, (110)
whereM = (I — 7*J(Fy(V*))) " (I — J(Fp(V*))0v Fs(V*)). Adirect linear algebraic calculation yields

M = (=7 J(F(V*)) ™ = (I = 7" T (F (V) T(F(V*)Dy Fy(V?)

L4 (L= J(E, (V) J(ES(V)) (7T = Oy Fy(V*)). (111)

The symmetry of/ (F,,(V*)) implies that(/ — 7* J(F,(V*))) "' J(F,(V*)) is also symmetric, which together with
the fact that* I — 9y F» (V*) is positive definite and Lemnia4.9 shows that all the eigeresbfM are real. Similar
to the proof of Theorem 4.11, the inequality (110) holds if

Amin(M) > 0; (112)
Amax(M) < 2. (113)
Using0 > 7* > —1 and the definition of\}, ., we have
Auinl [ =7 J(F(V))) > 2 Rmin o (114)
Ml D = 7 a(Fy vy < A EOES (115)

Using the fact that the smallest eigenvalue of a summatidnw@matrices is larger than the summation of the smallest
eigenvalues of these matrices, we obtain

NaioM) 2 A (1= 7 TEVN) ™) + Aan (= 7 J(ESV ) T EV)) (=0 Fo (V)
> mumm(u—rwm(v*))) LI(E, (V) (=0y Fy (V). (116)

Applying LemmdZP )\, ax (—y Fp (V*)) < % from LemmdZ.P and the definition af ; , we have

Amin (I = 7T (Fy(V*))) LT (Fy (V) (= 0y Fs (V¥))))

. {Amm« — 7 J(Fs (V)™ Aain (T E (V) Amin (=0 Fp (V) if Ain(J(F(V*))) 2 0,
Amax (I = 7T (Fo (V) ™) Amin(J (Fs (V*))) Ama (—0v Fy(V*)),  otherwise

N {o, i Aia ( (F (V7)) =

B 7A‘“i“g‘fgf*))), otherwise

> mn (117)

min

24



which together with[(1116) giveE (1112).
It follows from Lemmd4.p and (114) that

)‘maX(M) < )‘maX((I - T*J(F¢(V*)))71) + /\maX((I - T*J(F<z5(V*)))il)‘maX(J(Eb(V*))))‘maX(_aVEb(V*)))

ILY|l2+0+4
< ==
T S+ M (118)
Combining [Z0D) and (118) together yields (1.13). O

Similar to Corollary[[4.IB), the conditioh {108) holds whét¥,,(V*)) is positive semidefinite.

5.2 Approximate Newton Method Il

The matrix.J(p) has to be calculated for eaghin the approximate Newton methdd (107). If the computationa
cost of second-order derivatives of the exchange coroglditinction is expensive, a simpler choice is to approximate
J(F,(V*)) by LT anddy Fs (V) by 71, thatis,D* = 7' LT. Hence, approximate Newton meth&d (1106) becomes

yit :Vi—a(I—TiLTYl (Vi—V (Fy(V1)), (119)

where{r?} is negative. In fact[(119) is exactly the method of elligtieconditioner proposed in [23].

Theorem 5.3. Let V* be a solution of the KS equati@l). Suppose that Assumption}4.1 holds with a constaamtd
Assumptiofi 215 is valid & (V*) with a constant satisfying

5> 0. (120)

Let{V'} be a sequence generated by the schf&) using lim 7; = 7* € (—%, 0) such thatt > ”Léf# and a
11— 00
step size

2
e TS

If the initial point VV? is selected in a sufficiently small open neighborhood df then{V*} converges td/* with
R-linear convergence rate no more than

el ) G ) e

Proof. Let M = (I — 7*LT)~1(I — oy V(F;(V*))). The convergence of the iteratidn (119) is guaranteed by
oI —aM) < 1. (123)

Using the formulation 0By V(F,(V*)), we can decompostt = M; — Mz, whereMy = (I — 7*LT)~}(I —
LToy Fg(V*)) and Mg = (I — 7*LT) "1 (J(Fs(V*)) — LT)dv Fs(V*). SinceL' is positive semidefinite, a similar
proof as Theoreiin 5.2 implies that all the eigenvalue$tf are real and

_ €
AminlM0) > A e (2
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L[]z +

Amax(M1) < 5 (125)
Using Assumptiofi 411 and Lemrha}d.2, we have
Mallz = [[(I = 7"LY) " (J(Fe(VF)) = LNy Fs (V7|
< A =7 LY YT (Es(VF)) = LT||af|0v Es (V)2 < g- (126)
Using [124) and > ”?# we obtain
A1) > (127)
which together with[(126) yields
(1 = aAmin(M1)) < 1 —af|[Ma|[o. (128)
On the other hand, it follows fromi (IR 1), (125) ahd (1126) that
(@Amax(M1) = 1) < 1 = al[Malo. (129)
Combining [12B) and (129) together gives
o(1 —aM;) < 1— al|Ma|. (130)
which guarantee§ (1P3). O

6 Conclusion

The equivalence between the KS total energy minimizatioblem and the KS equation is ambiguous in the current
literatures on KSDFT. A simple counter example shows thatsthlutions of these two problems are not necessarily
the same. We examine the equivalence based on the optiratigitions for a specialized exchange correlation
functional. We prove that a global solution of the KS miniatinn problem is a solution of the KS equation if the gap
between theth and(p + 1)st eigenvalues of the Hamiltonidii(X) is sufficiently large. The equivalence of a local
minimizer requires that the corresponding charge dessitie all positive. For strong local minimizers, the nonzero
charge densities are bounded below by a positive constéfotunty. These properties are summarized in Téble 1.

We improve the convergence analysis on the SCF iteratiosdioing the KS equation by analyzing the Jacobian
of the corresponding fixed point maps. Global convergenadb@timple mixing scheme can be established when
there exists a gap betwegth and(p + 1)st eigenvalues of the Hamiltonidi(X'). This assumption can be relaxed
for local convergence analysis and if the charge densitpisputed using the Fermi-Dirac distribution. Our results
requires much weaker conditions than the previous anaily§&4]. The structure of the Jacobian also suggests two
approximate Newton methods. In particular, the second ®egactly the method of elliptic preconditioner proposed
in [23]. Although our assumption on the gap is very stringgmd is almost never satisfied in reality, our analysis is
helpful for a better understanding of the KS minimizatioaldem, the KS equation and the SCF iteration. A summary
of our convergence results is presented in Thble 2.
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Table 1: Equivalence between the KS total energy miningzesind the KS equation using the exchange correlation
functione™e,.(p) = —%WPTP%

properties eigenvalue gap Other Assumptions

A global minimizerX™ | oo\ otiof 26 holds & (X*) with

solves
T, — 2
the KS equation 0> p (LMl - 3)

A local minimizerX*
solves
the KS equation
pi(X) € 0,0) =
pi(X*) =0

Assumptio 2.6 holds &t (X*) with

pi>01=1,....n
6>2(|[L7]l2 — 3)

- X* is a strong local minimizer
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