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Abstract. In this paper, we study a few theoretical issues in the discretized Kohn-Sham (KS) density functional theory (DFT). The equivalence

between either a local or global minimizer of the KS total energy minimization problem and the solution to the KS equationis established under

certain assumptions. The nonzero charge densities of a strong local minimizer are shown to be bounded below by a positiveconstant uniformly. We

analyze the self-consistent field (SCF) iteration by formulating the KS equation as a fixed point map with respect to the potential. The Jacobian of

these fixed point maps is derived explicitly. Both global andlocal convergence of the simple mixing scheme can be established if the gap between

the occupied states and unoccupied states is sufficiently large. This assumption can be relaxed if the charge density is computed using the Fermi-

Dirac distribution and it is not required if there is no exchange correlation functional in the total energy functional.Although our assumption on the

gap is very stringent and is almost never satisfied in reality, our analysis is still valuable for a better understanding of the KS minimization problem,

the KS equation and the SCF iteration.
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1 Introduction

The Kohn-Sham density functional theory in electronic structure calculations can be formulated as either a total energy

minimization problem or a nonlinear eigenvalue problem. Using a suitable discretization scheme whose spatial degree

of freedom isn, the electron wave functions ofp occupied states can be approximated by a matrixX = [x1, . . . , xp] ∈
Rn×p. The charge density of electrons associated with the occupied states is defined as

ρ(X) := diag(XXT), (1)

wherediag(A) denotes the vector containing the diagonal elements of the matrix A. Let tr(A) be the trace ofA ∈
Rn×n, i.e., the sum of the diagonal elements ofA. A commonly used discretized KS total energy function has the

form of

E(X) :=
1

4
tr(XTLX) +

1

2
tr(XTVionX) +

1

4
ρ⊤L†ρ+

1

2
eTǫxc(ρ), (2)
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whereL is a finite dimensional representation of the Laplacian operator,Vion is the ionic pseudopotentials sampled

on a suitably chosen Cartesian grid,L† corresponds to the pseudo-inverse ofL, e is the column vector of all ones and

ǫxc(ρ) denotes the exchange correlation energy functional. The four terms inE(X) describe the kinetic energy, local

ionic potential energy, Hartree potential energy and exchange correlation energy, respectively.

The KS total energy minimization problem solves

min
X∈Rn×p

E(X)

s.t. XTX = I.
(3)

The orthogonality constraints are imposed since the wave functionsX must be orthogonal to each other due to phys-

ical constraints. It can be verified that the gradient ofE(X) with respect toX is ∇E(X) = H(X)X , where the

HamiltonianH(X) ∈ Rn×n is a matrix function

H(X) :=
1

2
L+ Vion +Diag(L†ρ) + Diag(µxc(ρ)

Te), (4)

whereµxc(ρ) = ∂ǫxc

∂ρ ∈ Rn×n andDiag(x) denotes a diagonal matrix withx on its diagonal. The so-called KS

equation is
H(X)X = XΛ,

XTX = I,
(5)

whereΛ is a diagonal matrix consisting ofp smallest eigenvalues ofH(X). The KS equation (5) is closely related to

the first-order optimality conditions for (3) which are the same as (5) except that the diagonal matrixΛ consists of any

p eigenvalues ofH(X) rather than thep smallest ones.

In this paper, we first study the relationship between the KS total energy minimization problem (3) and the KS

equation (5) under certain conditions. A simple counter example is provided to demonstrate that the solutions of these

two problems are not necessarily the same. The second-orderoptimality conditions of (3) are examined based on

the assumption of the existence of the second-order derivative of the exchange correlation functional [16, 29]. For a

specialized exchange correlation functional, we prove that a global solution of (3) is a solution of (5) if the gap between

the pth and(p + 1)st eigenvalues of the HamiltonianH(X) is sufficiently large. The equivalence between a local

minimizer of (3) and the solution (5) needs an additional assumption that the corresponding charge densities are all

positive. For a strong local minimizerX∗ which is defined based on the second-order sufficient optimality conditions

of (3), we show that the nonzero charge densities atX∗ are bounded below by a positive constant uniformly.

Our second purpose is the analysis of the most widely used approach, the self-consistent field (SCF) iteration,

for solving the KS equation (5). The SCF iteration is based oncomputing a sequence of linear eigenvalue problems

iteratively. It is well known that the basic version of SCF iteration often converges slowly or fails to converge [18] even

with the help of various heuristics. A convergence analysisof the SCF iteration for solving the Hartree-Fock equations

according to the optimal damping algorithm (ODA) is established in [6] and an analysis of gradient-based algorithms

for the Hartree-Fock equations is proposed in [21] using Lojasiewiscz inequality. The interested reader is referred to

[2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 20, 26] for discussion on ODA, the gradient-based algorithms and numerical analysis of

DFT. A condition is identified in [30] such that the SCF iteration is a contractive fixed point iteration under a specific

form of the Hamiltonian without involving any exchange correlation term. Global and local convergence of the SCF

iteration for general Kohn-Sham DFT is established in [24] from an optimization point of view. Their assumptions

include that the second-order derivative of the exchange correlation energy functional is uniformly bounded from

above and the gap between thepth and(p+ 1)st eigenvalues of the HamiltonianH(X) is sufficiently large.
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We improve the convergence results of the SCF iteration fromthe following three perspectives. (i) The KS equation

(5) is formulated as a nonlinear system of equations (fixed point maps) respect to either the charge density or potential.

Applying the differentiability of spectral operators, theJacobian of these fixed point map is derived explicitly and

analyzed. (ii) Global convergence (i.e., convergence to a stationary point from any initial solution) of the simple

mixing scheme can be established when there exists a gap betweenpth and(p + 1)st eigenvalues of the Hamiltonian

H(X). This assumption can be relaxed for local convergence analysis, i.e., convergence behavior if the initial point is

selected in a neighborhood sufficiently close to the solution of (5). If the charge density is computed using the Fermi-

Dirac distribution, the assumption on the gap is not needed as long as a suitable step size for simple mixing is chosen.

Our results requires much weaker conditions than the previous analysis in [24]. (iii) We propose two approximate

Newton methods according to the structure of the Jacobian ofthe fixed point maps. The second type of our approaches

is exactly the method of elliptic preconditioner proposed in [23]. Preliminary convergence results are also established

for them. Although our assumption on the gap between eigenvalues of the Hamiltonian in the above three perspectives

is very stringent and is almost never satisfied in reality, our analysis is still valuable for a better understanding of the

KS equation and the SCF iteration.

The rest of this paper is organized as follows. A counter example between the equivalence of the KS minimization

and KS equation is presented in subsection 2.1. The optimality conditions of the KS minimization problem under

smoothness assumptions on the exchange functional is provided in subsection 2.2. The necessary conditions for the

equivalence between a local minimizer of the KS minimization and the KS equation is established in subsection 2.3.

The corresponding analysis for a global minimizer is established in subsection 2.4. Lower bounds for the charge

density at local minimizers are presented in subsection 2.5. In subsection 3.1, we view the KS equation as fixed point

maps with respect to the charge density or potential. The Jacobian of these fixed point maps is presented in subsection

3.2. In section 4, we establish both local and global convergence for the SCF iteration with simple mixing schemes.

Two approximate Newton approaches and their convergence properties are discussed in section 5.

2 Equivalence Between the KS Total Energy Minimization and the KS Equa-

tion

2.1 A Counter Example

The following three-dimensional toy example shows that a solution of the KS equation is not necessary a global

optimal solution of the KS total energy minimization problem. Letn = 3, p = 1 and choose

L =







1.4299 −0.2839 −0.4056

−0.2839 1.1874 0.2678

−0.4056 0.2678 1.3826






, Vion = 0, andǫxc(ρ) = 0.

It can be verified numerically thatX∗ =
(

0.3683 −0.6188 0.6939
)T

is a global minimizer of (3). On the other

hand, we have

H(X∗) =
1

2
L+Diag(L†ρ(X∗)) =







0.9735 −0.1419 −0.2028

−0.1419 0.8955 0.1339

−0.2028 0.1339 1.0569






,

andX∗ is an eigenvector associated with the second smallest eigenvalue ofH(X∗). Therefore, the equivalence

between the KS total energy minimization and the KS equationonly holds under certain assumptions. For this counter
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example, our assumptions in subsections 2.3 and 2.4 do not hold because the gap between the eigenvalues ofH(X∗)

is δ = 0.046 and it is smaller than||L†||2 = 1. We should point out that the above example may not exist in the

practice of DFT.

2.2 Optimality Conditions Under Smoothness Assumptions onǫ
xc
(ρ)

The Lagrangian function of the minimization problem (3) is

L(X,Λ) := E(X)− 1

2
tr(Λ(XTX − I)).

SupposeX is a local minimizer of (3). It follows fromXTX = I that the linear independence constraint qualification

is satisfied. Hence, there exists a Lagrange multiplierΛ such that the first-order optimality conditions hold:

∇XL(X,Λ) = H(X)X −XΛ = 0 andXTX = I. (6)

Multiplying both sides of the first equality in (6) byXT and usingXTX = I, we haveΛ = XTH(X)X , which is

a symmetric matrix. Note thatE(XQ) = E(X) andH(XQ) = H(X) hold for any orthogonal matrixQ ∈ Rp×p.

Hence, ifX is a stationary point, any matrix in the set{XQ | Q ∈ Rp×p andQTQ = I} is also a stationary point,

and their objective values are the same. LetQ̃Λ̃Q̃T be the eigenvalue decomposition ofXTH(X)X andX̃ := XQ̃.

Then the Lagrangian multiplier̃Λ = X̃TH(X̃)X̃ is a diagonal matrix whose entries are the eigenvalues ofH(X).

Let L(Rn×p,Rn×p) denote the space of linear operators which mapRn×p to Rn×p. The Fréchet derivative of

∇E(X) is defined as the (unique) function∇2E : Rn×p → L(Rn×p,Rn×p) such that

lim
‖S‖F→0

‖∇E(X + S)−∇E(X)−∇2E(X)(S)‖F
‖S‖F

= 0.

The next lemma shows an explicit form of the Hessian operator, if the exchange correlation energy is second-order

differentiable.

Lemma 2.1 (Lemma 2.1 in [29]). Suppose thatǫxc(ρ(X)) is twice differentiable with respect toρ(X). Given a

directionS ∈ Rn×p, the Hessian-vector product ofE(X) is

∇2E(X)[S] = H(X)S + 2Diag
(

J(ρ)diag(SXT)
)

X, (7)

where

J(ρ) := L† + ∂µxc(ρ)e. (8)

Consequently, the second-order necessary and sufficient optimality conditions can be obtained from Theorems

12.5 and 12.6 in [25], respectively.

Theorem 2.2.1) Suppose thatX is a local minimizer of problem(3) andǫxc(ρ(X)) is twice differentiable with respect

to ρ(X). Then, for allS ∈ T (X), it holds

tr(STH(X)S − ΛSTS) + 2diag(XST)TJdiag(XST) ≥ 0, (9)

whereΛ = XTH(X)X and

T (X) := {S | XTS + STX = 0}. (10)
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2) Suppose thatX ∈ Rn×p satisfies(6) with a symmetric matrixΛ and (9) holds with a strict inequality for all

0 6= S ∈ T (X). ThenX is a strict local minimizer for problem(3).

Proof. It follows from Theorem 12.5 in [25] that the second-order necessary condition forX to be a local minimizer

of (3) is

〈

S,∇2
XXL(X,Λ)[S]

〉

≥ 0, for all S ∈ T (X). (11)

Using Lemma 2.1 and the fact that

tr(XTDiag(y)Z) = yTdiag(ZXT), for all X,Z ∈ R
n×p, y ∈ R

n,

we obtain

〈

S,∇2
XXL(X,Λ)[S]

〉

= tr(ST∇2E(X)[S]− ΛSTS)

= tr
(

STH(X)S + 2STDiag
(

Jdiag(SXT)
)

X − ΛSTS
)

= tr(STH(X)S − ΛSTS) + 2diag(XST)TJdiag(XST),

which together with (11) yields (9). The second part is a direct application of Theorem 12.6 in [25].

An equivalent formulation of the tangent space (10) is

T (X) = {S := XK +P
⊥
XZ | K = −KT ∈ R

p×p, Z ∈ R
n×p}, (12)

whereP⊥
X := I −XXT. Hence, the second-order optimality conditions in Theorem2.2 can be presented in terms of

an arbitraryZ ∈ Rn×p similar to the analysis of maximization of the sum of the trace ratio on the Stiefel Manifold in

[31].

Theorem 2.3.1) Suppose thatX is a local minimizer of problem(3) andǫxc(ρ(X)) is twice differentiable with respect

to ρ(X). Then for allZ ∈ R
n×p, it holds

tr(ZTH(X)Z) + tr(XTZΛZTX)− tr(ZTXΛXTZ)− tr(ZΛZT)

+ 2diag(XZT
P

⊥
X)TJdiag(XZT

P
⊥
X) ≥ 0. (13)

2) Suppose thatX ∈ R
n×p satisfies(6) with a symmetric matrixΛ and (13) holds with a strict inequality for all

P
⊥
XZ 6= 0. ThenX is a strict local minimizer for problem(3).

Proof. Using (6) and the definition ofP⊥
X , we obtainP⊥

XP
⊥
X = P

⊥
X , P⊥

XX = 0 andP⊥
XH(X)X = 0. For any

S = XK +P
⊥
XZ, it holds

tr(STH(X)S) = tr(KTXTH(X)XK) + tr(ZT
P

⊥
XH(X)P⊥

XZ)

= tr(KTΛK) + tr(ZTH(X)Z)− tr(ZTH(X)XXTZ)

= tr(KTΛK) + tr(ZTH(X)Z)− tr(ZTXΛXTZ). (14)

It can be verified thatSTS = KTK + ZT
P

⊥
XZ, which yields

tr(ΛSTS) = tr(KTKΛ) + tr(ZTZΛ)− tr(ZTXXTZΛ)

5



= tr(KTΛK) + tr(ZΛZT)− tr(XTZΛZTX), (15)

where the last equality holds because ofK = −KT. Since it holds

diag(XKTXT) =
1

2
(diag(XKTXT) + diag(XKXT)) =

1

2
diag(X(K +KT)XT) = 0,

we obtain

diag(XST) = diag(XKTXT) + diag(XZT
P

⊥
X) = diag(XZT

P
⊥
X),

which together with (14) and (15) gives (13). The proof of thesecond part follows directly from Theorem 2.2.

2.3 Necessary Condition for Local Minimizers

In this subsection, we establish a necessary condition under which a local minimizer of (3) is a solution of a modifica-

tion of the KS equation (5). Our discussion is restricted to aspecial exchange correlation functional

eTǫxc(ρ) = −3

4
γρTρ

1
3 , (16)

whereγ = 2
(

3
π

)1/3
andρ

1
3 denotes the component-wise cubic root of the vectorρ. The next result shows that the

charge densityρ is bounded.

Lemma 2.4. LetX ∈ Rn×p satisfyXTX = I, andρ be defined by(1). We have

0 ≤ ρi ≤ 1, for all i = 1, . . . , n. (17)

Proof. The inequality (17) holds fromXTX = I and the fact thatρi =
∑p

j=1 X
2
ij for all i = 1, . . . , n.

Our analysis relies on the gap between thepth and(p+ 1)st eigenvalues ofH(X).

Assumption 2.5. Letλ1 ≤ . . . ≤ λp ≤ λp+1 ≤ . . . ≤ λn be the eigenvalues of a given symmetric matrixH ∈ Rn×n.

There exists a positive constantδ such thatλp+1 − λp ≥ δ.

Note thatE(X) may not be second-order differentiable since some componentsρi(X) can be zero. LetI be the

collection of indices of the nonzero components ofρ(X), i.e.,

I = {i | ρi(X) 6= 0, i = 1, . . . , n}. (18)

Then the complement set̄I of I is the set of indices of the zero components ofρ(X). Let r be the cardinality ofI.

We haver ≥ p by the orthogonality ofX . If I = {α1, . . . , αr}, we define the submatricesXI andLII as

XI =







Xα1,1, . . . , Xα1,p

. . .

Xαr,1, . . . , Xαr,p






, andLII =







Lα1,1, . . . , Lα1,αr

. . .

Lαr,1, . . . , Lαr,αr






.

The notations(Vion)II , L†
II, HII(X) andΛII are defined similar toLII.

The following theorem shows that a local minimizerX∗ of the KS total energy minimization (3) is a solution of

KS equation (5) if all rows ofX∗ are nonzero and Assumption 2.5 holds with a sufficiently large gapδ.
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Theorem 2.6. Suppose thatX∗ is a local minimizer of(3) using (16) andΛ∗ = (X∗)⊤H(X∗)X∗ is a diagonal

matrix. LetI∗ be the index set ofX∗ defined as(18). If Assumption 2.5 holds atH(X∗) with a constantδ satisfying

δ > 2
(

||L†||2 −
γ

3

)

, (19)

then it holds
HI∗I∗(X∗)X∗

I∗ = X∗
I∗Λ∗,

(X∗
I∗)TX∗

I∗ = I,
(20)

and the diagonal ofΛ∗ consists of thep smallest eigenvalues ofHI∗I∗(X∗).

Proof. It can be verified thatX∗ is a local minimizer of the restricted problem

min
X∈Rn×p

E(X)

s.t. XTX = I, XĪ∗ = 0.
(21)

Hence,X∗
I∗ is a local minimizer of the reduced problem

min
X̂∈Rr×p

Ê(X̂) :=
1

4
tr(X̂TLI∗I∗X̂) +

1

2
tr(X̂T(Vion)I∗I∗X̂) +

1

4
ρ(X̂)⊤L†

I∗I∗ρ(X̂)− 3

4
γρ(X̂)Tρ(X̂)

1
3 ,

s.t. X̂TX̂ = I.

(22)

The structure of the energy functionalE(X) implies∇Ê(X∗
I∗) = HI∗I∗(X∗)X∗

I∗ and(X∗
I∗)THI∗I∗(X∗

I∗)X∗
I∗ =

Λ∗. These facts together with the first-order optimality of (22) atX∗
I∗ yield (20).

It is obvious that the diagonal entries ofΛ∗ are the eigenvalues ofHI∗I∗(X∗). Suppose that they are not thep

smallest eigenvalues ofHI∗I∗(X∗). For convenience, we denote the eigenvalues ofHI∗I∗(X∗) in an ascending order

asλ̂1 ≤ ... ≤ λ̂r and their corresponding eigenvectors areui, i = 1, . . . , r, wherer = |I∗|. Letxi, 1 ≤ i ≤ p, be the

ith column forX∗
I∗ . Without loss of generality, letx1 be associated with an eigenvalue greater thanλ̂p, andui (i ≤ p)

be an eigenvector associated with an eigenvalue less than orequal toλ̂p but not be a column ofX∗
I∗ . The Assumption

2.5 implies thatui /∈ span{X∗
I∗}. LetV be a matrix whose columns satisfy

vj =







ui if j = 1,

xj if j = 2, . . . , p.

Since the function̂E(X̂) is twice differentiable atX∗
I∗ according to the definition ofI∗. Therefore, an application of

Theorem 2.3 gives

∆ := tr(V THI∗I∗(X∗
I∗)V ) + tr((X∗

I∗)TV Λ∗V TX∗
I∗)− tr(V TX∗

I∗Λ∗(X∗
I∗)TV )− tr(V Λ∗V T)

+2diag(X∗
I∗V T

P
⊥
X∗

I∗
)T
(

L†
I∗I∗ −

γ

3
Diag

(

ρ(X∗
I∗)−

2
3

))

diag(X∗
I∗V T

P
⊥
X∗

I∗
)

≥ 0. (23)

It follows from thatV is an orthonormal eigenbasis ofHI∗I∗(X∗
I∗) and Assumption 2.5 that

tr(V THI∗I∗(X∗)V )− tr((X∗
I∗)THI∗I∗(X∗)X∗

I∗) ≤ λ̂i − λ̂p+1 ≤ −δ. (24)

7



Sinceui /∈ span{X∗
I∗}, we obtain

(X∗
I∗)TV = V TX∗

I∗ = I − e1e
T
1 , (25)

X∗
I∗V T

P
⊥
X∗

I∗
= x1u

T
i , (26)

which further give

∆ = tr(V THI∗I∗(X∗
I∗)V )− tr(Λ∗) + 2diag(x1u

T
i )

T
(

L†
I∗I∗ −

γ

3
Diag

(

ρ(X∗
I∗)−

2
3

))

diag(x1u
T
i )

≤ −δ + 2max
{

λmax

(

L†
I∗I∗ −

γ

3
Diag

(

ρ(X∗
I∗)−

2
3

))

, 0
}

≤ −δ + 2max
{

λmax

(

L†
I∗I∗ −

γ

3
I
)

, 0
}

≤ −δ + 2max
{(

||L†
I∗I∗ ||2 −

γ

3

)

, 0
}

< 0, (27)

where the first inequality uses (24) and the fact that||diag(x1u
T
i )||22 ≤ 1, the second inequality follows fromρ ∈ [0, 1],

the third inequality uses the fact that||L†
I∗I∗ ||2 ≤ ||L†||2 since the largest/smallest eigenvalue of a matrix is no

less/greater than the largest/smallest eigenvalue of its any principal submatrix, and the last inequality (27) is due to

(19). However, (27) is a contradiction to (23). This completes the proof.

2.4 Necessary Condition for Global Minimizers

In this subsection, we consider whether a global minimizer of (3) is a solution of the KS equation (5) under the

exchange correlation functional (16). We first show the following inequality.

Lemma 2.7. It holds for alla, b ∈ [0, 1] that

(a− b)2(3a2 + 2ab+ b2) = 3a4 − 4a3b+ b4 ≥ 2

3
(a3 − b3)2.

Proof. The inequality holds fora = 0 or b = 0. Consider the case ona ≥ b > 0. Introducing the variable

t = b/a ∈ (0, 1] yields

a4(3− 4t+ t4)− 2

3
a6(1− t3)2 ≥ a6f(t),

wheref(t) = 3−4t+ t4− 2
3 (1− t3)2. Sincef ′(t) = (t3−1)(4−4t2) ≤ 0 for all t ∈ [0, 1], we havef(t) ≥ f(1) = 0

for all t ∈ [0, 1], and then the inequality is proved. The case onb ≥ a > 0 can be proved in a similar fashion.

The next theorem establishes the equivalence based on estimating the difference of total energy function values.

Theorem 2.8. Suppose thatX∗ is a global minimizer of(3) using(16). If Assumption 2.5 holds atH(X∗) with a

constantδ satisfying

δ > p
(

||L†||2 −
γ

3

)

, (28)

thenX∗ must be an orthonormal eigenbasis ofH(X∗) corresponding to itsp smallest eigenvalues, namely, a solution

of the KS equation(5).

8



Proof. Suppose thatX∗ is not butY is an orthonormal eigenbasis ofH(X∗) corresponding to itsp smallest eigenval-

ues. SinceX∗ must be an orthonormal eigenbasis ofH(X∗) and using Assumption 2.5, we have

∆H(Y,X∗) := tr(Y TH(X∗)Y )− tr((X∗)TH(X∗)X∗) ≤ λp(H(X∗))− λp+1(H(X∗)) ≤ −δ. (29)

Applying Lemmas 2.4 and 2.7 gives

n
∑

i=1

(

ρ(Y )
1
3
i − ρ(X∗)

1
3
i

)2 (

3ρ(Y )
2
3
i + 2ρ(Y )

1
3
i ρ(X

∗)
1
3
i + ρ(X∗)

2
3
i

)

≥ 2

3
||ρ(Y )− ρ(X∗)||22. (30)

It follows from Lemma 2.4 that

‖ρ(Y )− ρ(X∗)‖2 ≤ (1 − ρ(Y ))Tρ(X∗) + (1− ρ(X∗))Tρ(Y ) (31)

≤ 1Tρ(X∗) + 1Tρ(Y ) = tr(XXT) + tr(Y Y T)

= 2p.

Using the relationshiptr(Y TDiag(L†ρ(X∗))Y ) = ρ(Y )TL†ρ(X∗), the inequalities (29), (30) and (31), and the

assumption (28), we obtain

∆E(Y,X∗) = E(Y )− E(X∗)

=
1

2
∆H(Y,X∗) +

1

4

(

ρ(Y )TL†ρ(Y )− ρ(X∗)TL†ρ(X∗)
)

− 3γ

8

(

ρ(Y )Tρ(Y )
1
3 − ρ(X∗)Tρ(X∗)

1
3

)

−1

2
tr(Y TDiag(L†ρ(X∗)− γρ(X∗)

1
3 )Y ) +

1

2
tr(XTDiag(L†ρ(X∗)− γρ(X∗)

1
3 )X∗)

=
1

2
∆H(Y,X∗) +

1

4

(

ρ(Y )TL†ρ(Y )− ρ(X∗)TL†ρ(X∗)
)

− 3γ

8

(

ρ(Y )Tρ(Y )
1
3 − ρ(X∗)Tρ(X∗)

1
3

)

−1

2

(

ρ(Y )TL†ρ(X∗)− ρ(X∗)TL†ρ(X∗)
)

+
1

2
γ
(

ρ(Y )Tρ(X∗)
1
3 − ρ(X∗)Tρ(X∗)

1
3

)

=
1

2
∆H(Y,X∗) +

1

4
(ρ(Y )− ρ(X∗))TL†(ρ(Y )− ρ(X∗))

−γ

8

n
∑

i=1

(

ρ(Y )
1
3

i − ρ(X∗)
1
3

i

)2 (

3ρ(Y )
2
3

i + 2ρ(Y )
1
3

i ρ(X
∗)

1
3

i + ρ(X∗)
2
3

i

)

≤ − δ

2
+

( ||L†||2
4

− γ

12

)

||ρ(Y )− ρ(X∗)||22

≤ − δ

2
+

( ||L†||2
4

− γ

12

)

(2p)

< 0,

which is a contradiction to the fact thatX∗ is a global minimizer. This completes the proof.

Remark 2.9. When the exchange correlation functionǫxc(ρ) is equal to zero, our condition(28)becomesδ > p||L†||2,

which is much weaker than the conditionδ > 12p
√
n||L†||2 in Theorem 1 of [24].

2.5 Lower Bounds for the Charge Density of Local Minimizers

The exchange correlation energy functional is twice differentiable if all components ofρ(X) are positive. However,

the second-order derivative may not be bounded at an arbitrary pointX . In this subsection, we provides a few lower

9



bounds for the charge density at certain types local minimizers. These properties are useful for our analysis on the KS

equation.

Traditionally, a pointx∗ is called a strong local minimizer [1, 15] of a functionf : Rn 7→ R, if there exists a

constantκ > 0 and a neighborhoodU of x∗ such that the inequality

f(x) ≥ f(x∗) + κ||x− x∗||22 (32)

holds for anyx ∈ U . Here, we define a strong local minimizer based on the second-order optimality conditions.

Definition 2.10. A pointX∗ is called a strong local minimizer of(3) using(16) if and only ifX∗
I∗ is local minimizer

of (22) and there exists a constantκ > 0 such that, for allZ ∈ Rn×p,

tr(ZTHI∗I∗(X∗
I∗)Z) + tr((X∗

I∗)TZΛ∗ZTX∗
I∗)− tr(ZTX∗

I∗Λ∗(X∗
I∗)TZ)− tr(ZΛ∗ZT)

+ 2diag((X∗
I∗)ZT

P
⊥
X∗

I∗
)T
(

L†
I∗I∗ −

γ

3
Diag

(

ρ(X∗
I∗)−

2
3

))

diag((X∗
I∗)ZT

P
⊥
X∗

I∗
) ≥ κ‖Z‖2F , (33)

whereΛ∗ = (X∗
I∗)THI∗I∗(X∗)X∗

I∗ andI∗ is the index set ofX∗ defined as(18).

Our condition (33) is weaker than (32) applying to problem (3) when the total energyE(X) is twice differentiable.

The next result shows that the charge densities at a strong local minimizer are bounded below uniformly if they are

positive.

Theorem 2.11.Suppose thatL is positive semidefinite andX∗ is a strong local minimizer of(3) satisfying Definition

2.10. Let

c̄ := min{1, c1, ..., cn} andci := min
j 6=i

(

γ

3(L†
ii − 2L†

ij + L†
jj)

)
3
2

. (34)

Then it holds:

for anyi ∈ {1, 2, ..., n}, ρi(X
∗) ∈ [0, c̄) ⇒ ρi(X

∗) = 0. (35)

Proof. For convenience, we denoteρ∗I∗ = ρ(X∗
I∗). If there exists a rowj in X∗

I∗ such that either1 or −1 is an entry

of this row, then this row has only one nonzero entry according to the orthonormality ofX∗
I∗ . Hence,(ρ∗I∗)j = 1 and

(35) holds atj.

We next consider the components in the setJ := {j | j ∈ I∗ and|(X∗
I∗)js| < 1, s = 1, . . . , p}. For any given

j ∈ J , there exists a nonzero entry, denoted as(X∗
I∗)js, in thej-th row ofX∗

I∗ . Since|(X∗
I∗)js| < 1, there exists

at least another nonzero entry, denoted as(X∗
I∗)is, in thes-th column ofX∗

I∗ due to the orthonormality ofX∗
I∗ . For

simplicity, letxl, l = 1, ..., p, be thel-th column ofX∗
I∗ and setr = |I∗|, xjs = (X∗

I∗)js andxis = (X∗
I∗)is. Define

a vectorz ∈ Rr whosel-th component (l = 1, . . . , p) is

zl =















xis√
x2
is+x2

js

, if l = j;

−xjs√
x2
is+x2

js

, if l = i;

0, otherwise.

(36)

10



A short calculation gives||z||2 = 1, zTxs = 0 and

diag(zxT
s ) =

xisxjs
√

x2
is + x2

js

e(j,−i), (37)

wheree(j,−i) ∈ Rr has1 on itsj-th entry,−1 on itsi-th entry and0 elsewhere.

Fora ∈ [0, 1], letZa ∈ Rn×p be a matrix whoses-th column isaz +
√
1− a2xs and all other columns are zero.

Without loss of generality, let̂λ1 ≤ ... ≤ λ̂r be the eigenvalues ofHI∗I∗(X∗) in the ascending order, andxs be an

eigenvector ofHI∗I∗(X∗) associated witĥλs, s ∈ {1, ..., r}. Then, we obtain

tr(ZT
a HI∗I∗(X∗)Za) ≤ a2λ̂r + (1 − a2)λ̂s, (38)

tr(ZaΛ
∗ZT

a ) = tr(Λ∗ZT
a Za) = λ̂s, (39)

which yields

tr(ZT
a HI∗I∗(X∗)Za)− tr(ZaΛ

∗ZT
a ) ≤ a2λ̂r + (1− a2)λ̂s − λ̂s = a2(λ̂r − λ̂s). (40)

The definition ofZa gives

(ZT
a X

∗
I∗)pq =











azTxq, if p = s, q 6= s;√
1− a2, if p = s, q = s;

0, otherwise.

(41)

Hence, we have

tr((X∗
I∗)TZaΛ

∗ZT
a X

∗
I∗) = tr(Λ∗ZT

a X
∗
I∗(X∗

I∗)TZa) = λ̂s





p
∑

q=1,q 6=s

a2(zTxq)
2 + (1− a2)





= λ̂s

(

p
∑

q=1

a2(zTxq)
2 + (1− a2)− a2(zTxs)

2

)

= λ̂s(1 + a2||zTX∗
I∗ ||22 − a2) = a2λ̂s||zTX∗

I∗ ||22 + (1− a2)λ̂s. (42)

and

tr(ZT
a X

∗
I∗Λ∗(X∗

I∗)TZa) =





p
∑

q=1,q 6=s

a2(zTxq)
2λ̂q + (1− a2)λ̂s





≥





p
∑

q=1,q 6=s

a2(zTxq)
2λ̂1 + (1− a2)λ̂s





=

(

p
∑

q=1

a2(zTxq)
2λ̂1 + (1− a2)λ̂s

)

= a2λ̂1||zTX∗
I∗ ||22 + (1− a2)λ̂s. (43)
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Combining (42) and (43) together yields

tr((X∗
I∗)TZaΛ

∗ZT
a X

∗
I∗)− tr(ZT

a X
∗
I∗Λ∗(X∗

I∗)TZa)

≤ (a2λ̂s||zTX∗
I∗ ||22 + (1− a2)λ̂s)− (a2λ̂1||zTX∗

I∗ ||22 + (1− a2)λ̂s) = a2(λ̂s − λ̂1)||zTX∗
I∗ ||22

≤ a2(λ̂s − λ̂1). (44)

The equality (37) gives

diag(X∗
I∗ZT

a P
⊥
X∗

I∗
) = adiag(xsz

T) =
axisxjs

√

x2
is + x2

js

e(j,−i). (45)

LetZa with a =
√

κ

λ̂r−λ̂1
. Using (40) and (44), we have

tr(ZT
a HI∗I∗(X∗

I∗)Za) + tr((X∗
I∗)TZaΛI∗ZT

a X
∗
I∗)

−tr(ZT
a X

∗
I∗ΛI∗(X∗

I∗)TZa)− tr(ZaΛI∗ZT
a ) ≤ a2(λ̂r − λ̂1) = κ. (46)

It follows from our definition of strong local minimizers that

tr(ZT
a HI∗I∗(X∗)Za) + tr((X∗

I∗)TZaΛ
∗ZT

a X
∗
I∗)− tr(ZT

a X
∗
I∗Λ∗(X∗

I∗)TZa)− tr(ZaΛ
∗ZT

a )

+ 2diag(X∗
I∗ZT

a P
⊥
X)T

(

L†
I∗I∗ −

γ

3
Diag

(

(ρ∗I∗)−
2
3

))

diag(X∗
I∗ZT

a P
⊥
X∗

I∗
) ≥ κ, (47)

which together with (46) gives

diag(X∗
I∗ZT

a P
⊥
X∗

I∗
)T
(

L†
I∗I∗ −

γ

3
Diag

(

(ρ∗I∗)−
2
3

))

diag(X∗
I∗ZT

a P
⊥
X∗

I∗
) ≥ 0. (48)

Substituting (45) into (48), we obtain

eT(j,−i)

(

L†
I∗I∗ −

γ

3
Diag

(

(ρ∗I∗)−
2
3

))

e(j,−i) ≥ 0. (49)

Expending the terms of (49) yields

(L†
I∗I∗)jj − 2(L†

I∗I∗)ji + (L†
I∗I∗)ii −

γ

3
(ρ∗I∗)

− 2
3

j − γ

3
(ρ∗I∗)

− 2
3

i ≥ 0, (50)

which implies

(L†
I∗I∗)jj − 2(L†

I∗I∗)ji + (L†
I∗I∗)ii ≥

γ

3
(ρ∗I∗)

− 2
3

j . (51)

Therefore, we obtain

(ρ∗I∗)j ≥
(

γ

3((L†
I∗I∗)jj − 2(L†

I∗I∗)ji + (L†
I∗I∗)ii)

)
3
2

≥ cj , (52)

wherecj is defined in (34). Similarly, we can prove (52) holds for anyj ∈ J . This completes the proof.
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3 Analysis of the KS Equation

3.1 Formulating the KS Equation as a Fixed Point Map

The KS equation (5) constitutes a nonlinear system with respect toX . Note that the Hamiltonian matrix (4) is a

symmetric matrix function with respect toρ as

Ĥ(ρ) :=
1

2
L+ Vion +Diag(L†ρ) + Diag(µxc(ρ)

Te), (53)

and the KS equation becomes
{

Ĥ(ρ)X = XΛ,

XTX = I,
(54)

whereX ∈ Rn×p andΛ ∈ Rp×p is a diagonal matrix consisting of thep smallest eigenvalues of̂H(ρ). The eigenvalue

decomposition of̂H(ρ) is determined onceρ is given. Hence, we can writeX asX(ρ) to reflect the dependence onρ

and the KS equation (5) can be viewed as a system of nonlinear equations with respect to the charge densityρ as

ρ = diag(X(ρ)X(ρ)T). (55)

Alternatively, the function

V := V(ρ) = L†ρ+ µxc(ρ)
Te (56)

is called potential and the Hamiltonian matrix̂H(ρ), by convenient abuse of notation, can be expressed as

H(V ) :=
1

2
L+ Vion +Diag(V ). (57)

Obviously, it holdsĤ(ρ) = H(V (ρ)). Therefore,X can be interpreted as an implicit function ofV . Let X(V ) ∈
R

n×p be the eigenvectors corresponding to thep smallest eigenvalues ofH(V ). Then, the fixed point map (55) is a

system of nonlinear equations with respect toV as

{

V = V(Fφ(V )),

Fφ(V ) = diag(X(V )X(V )T).
(58)

The fixed point map (58) is well defined if there is a gap betweenthepth and(p + 1)st smallest eigenvalues of

H(V ). However, when these two eigenvalues are equal, there exists ambiguity on choosing the eigenvectorsX(V )

since the multiplicity is greater than one. A common approach is to reviseFφ(V ) in (58) by constructing a proper

filter function. Letq1(V ), . . . , qn(V ) be the eigenvectors ofH(V ) associated with eigenvaluesλ1(V ), . . . , λn(V ),

respectively. A particular choice of the filter function is the Fermi-Dirac distribution of the form

fµ(t) :=
1

1 + eβ(t−µ)
, (59)

whereµ is the solution of the equations
n
∑

i=1

fµ(λi(V )) = p. (60)

Since the left hand side of (60) is monotonic with respect toµ for a fixedβ, the solution to (60) is unique for any
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choice ofβ andλi. Then the fixed map (58) is replaced by the approximation















V = V(Ffµ (V )),

Ffµ(V ) = diag

(

n
∑

i=1

fµ(λi(V ))qi(V )qi(V )T

)

.
(61)

3.2 The Jacobian of the Fixed Point Maps

We first reformulate the functionsFφ(V ) in (58) andFfµ (V ) in (61) as the form of spectral operators. Using the dif-

ferentiability of spectral operators, they can be proved tobe differentiable under some conditions. Let{λi(V ), qi(V )}
be the eigenpairs ofH(V ) and assume that the eigenvaluesλ1(V ), . . . , λn(V ) are sorted in an ascending order,

λ1(V ) ≤ . . . ≤ λp(V ) ≤ λp+1(V ) ≤ . . . ≤ λn(V ).

The eigenvalue decomposition ofH(V ) can be written as

H(V ) = Q(V )Π(V )Q(V )T, (62)

whereQ(V ) andΠ(V ) are

Q(V ) = [q1(V ), q2(V ), . . . , qn(V )] ∈ R
n×n and Π(V ) = Diag(λ1(V ), λ2(V ), . . . , λn(V )) ∈ R

n×n. (63)

Hence, the functionFφ(V ) in (58) is equivalent to

Fφ(V ) = diag(Q(V )φ(Π(V ))Q(V )T), (64)

whereφ(Π) = Diag(φ(λ1(V )), φ(λ2(V )), . . . , φ(λn(V ))) and

φ(t) :=







1 for t ≤ λp(V )+λp+1(V )
2 ,

0 for t > λp(V )+λp+1(V )
2 .

(65)

Similarly, the functionFfµ(V ) in (61) in the spectral operator form is

Ffµ (V ) = diag(Q(V )fµ(Π(V ))Q(V )T). (66)

Let µ1, · · · , µr(V ) be the distinct eigenvalues among{λ1(V ), · · · , λn(V )}, r(V ) be the total number of distinct

values andrp(V ) be the number of distinct eigenvalues no greater thanλp. For anyk = 1, · · · , r(V ), the set of

indicesi such thatλi = µk is denoted byαk := {i | λi = µk, i = 1, · · · , n}. The next lemma shows the directional

derivative ofFφ(V ) by using the differentiability of the spectral operators [11, 14, 22, 28, 27].

Lemma 3.1. Suppose that Assumption 2.5 holds atH(V ), i.e., λp+1(V ) > λp(V ). ThenFφ(V ) is continuously

differentiable and its directional derivative atV alongz ∈ Rn is

∂V Fφ(V )[z] = diag
(

Q(V )
(

gφ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
))

Q(V )T
)

, (67)

where “◦” denotes the Hadamard product between two matrices, andgφ(Π(V )) ∈ Rn×n is the so-called first divided
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difference matrix defined as

(gφ(Π(V )))ij =















1
λi(V )−λj(V ) if i ∈ αk, j ∈ αl, k ≤ rp(V ), l > rp(V ),

−1
λi(V )−λj(V ) if i ∈ αk, j ∈ αl, k > rp(V ), l ≤ rp(V ),

0 otherwise.

(68)

Proof. The chain rule gives

∂V Fφ(V )[z] =
ddiag

(

Qφ(Π)QT
)

dH
[∂V H(V )[z]] . (69)

By applying the continuous differentiability of the spectral operators in Proposition 2.10 of [14], the functionQφ(Π)QT

is differentiable with respect toH and its directional derivative is given by

dQφ(Π)QT

dH
[S] = Q

(

gφ(Π) ◦
(

QTSQ
))

QT, for all S ∈ S
n, (70)

where, for anyi, j = 1, ..., n,

(gφ(Π(V )))ij =







φ(λi(V ))−φ(λj(V ))
λi(V )−λj(V ) if i ∈ αk, j ∈ αl, k 6= l,

0 otherwise.
(71)

Substituting (65) into (71) yields the specific form ofgφ(π(V )) in (68). Sincediag(·) is a linear function, we obtain

ddiag
(

Qφ(Λ)QT
)

dH
[S] =

ddiag
(

Qφ(Λ)QT
)

dQφ(Λ)QT

dQφ(Λ)QT

dH
[S]

= diag
(

Q
(

gφ(Π) ◦
(

QTSQ
))

QT
)

, for all S ∈ S
n. (72)

It follows from (57) that

∂V H(V )[z] = Diag(z). (73)

Plugging (72) and (73) into (69), we obtain (67). This completes the proof.

Remark 3.2. Computing∂V Fφ(V )[z] requires all the eigenvectorsQ(V ) and all eigenvaluesΠ(V ). LetEj,p (Oj,p)

be thej × p matrix with ones (zeros) at all its entries. Then the matrixgφ(Π(V )) ∈ Rn×n takes the specific form

gφ(Π(V )) =

(

Op,p G

GT On−p,n−p

)

,

where

G =











1
µ1−µrp(V )+1

E|α1|,|αrp(V )+1| · · · 1
µ1−µr(V )

E|α1|,|αr(V )|
...

.. .
...

1
µrp(V )−µrp(V )+1

E|αrp(V )|,|αrp(V )+1| · · · 1
µrp(V )−µr(V )

E|αrp(V )|,|αr(V )|











.

The directional derivative ofFfµ (V )[z] can be assembled in a similar fashion.
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Lemma 3.3. The functionFfµ(V ) is continuously differentiable and its directional derivative atV alongz ∈ Rn is

∂V Ffµ (V )[z] = diag
(

Q(V )
(

gfµ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
))

Q(V )T
)

, (74)

wheregfµ(Π(V )) ∈ Rn×n is defined as, for anyi, j = 1, ..., n,

(gfµ(Π(V )))ij =







fµ(λi(V ))−fµ(λj(V ))
λi(V )−λj(V ) if i ∈ αk, j ∈ αl, k 6= l,

f ′
µ(λi(V )) otherwise.

(75)

We next compute the Jacobian ofV(Fφ(V )) andV(Ffµ(V )).

Theorem 3.4. LetJ(ρ) be defined as(8).

1. Suppose that Assumption 2.5 holds atH(V ), i.e.,λp+1(V ) > λp(V ). Then the Jacobian ofV(Fφ(V )) at V is

∂V V(Fφ(V ))[z] = J(Fφ(V ))∂V Fφ(V )[z], for all z ∈ R
n. (76)

2. The Jacobian ofV(Ffµ (V )) at V is

∂V V(Ffµ(V ))[z] = J(Ffµ (V ))∂V Ffµ (V )[z], for all z ∈ R
n. (77)

Proof. Note that

∂ρ(V(ρ))[z] = J(ρ)z, for all z ∈ R
n. (78)

Applying the chain rules to∂V V(Fφ(V ))[z] and using (78) and (67), we obtain (76). This completes the proof.

4 Convergence of the SCF iteration

4.1 The SCF Iteration and the Simple Mixing Scheme

Starting from an initial vectorV 0 ∈ Rn, the SCF iteration for solving the fixed point map (58) recursively computes

the eigenpairs{X(V i+1),Λ(V i+1)} as the solution of the linear eigenvalue problem:

H(V i)X(V i+1) = X(V i+1)Λ(V i+1),

X(V i+1)TX(V i+1) = I,

and then the potential is updated as

V i+1 = V(Fφ(V
i)). (79)

When the difference betweenV i andV i+1 is negligible, the system is said to be self-consistent and the SCF iteration

is terminated.

The SCF iteration often converges slowly or even fails to converge. One of the heuristics for accelerating and

stabilizing the SCF iteration is charge or potential mixing[17, 19]. Basically, the new potentialV i+1 is constructed

from a linear combination of the previously computed potential and the one obtained from certain schemes at current
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iteration. In particular, the simple mixing scheme replaces (79) by updating

V i+1 = V i − α(V i − V(Fφ(V
i))), (80)

whereα is a properly chosen step size. Similarly, the SCF iterationusing simple mixing for solving the fixed point

map (61) is

V i+1 = V i − α(V i − V(Ffµ (V
i))). (81)

4.2 Global Convergence Analysis

We first make the following assumptions.

Assumption 4.1. The second-order derivatives of the exchange correlation functionalǫxc(ρ) is uniformly bounded

from above. Without loss of generality, we assume that thereexists a constantθ such that

‖∂µxc(ρ)e‖2 ≤ θ, for all ρ ∈ R
n. (82)

Although we cannot verify Assumption 4.1 for anyX ∈ R
n×p, it holds at a strong local minimizer using our lower

bounds for nonzero charge densities in subsection 2.5 if theexchange correlation energy is (16).

It can be verified from the definition of the operator∂V Fφ(V )[·] in (67) that it is a linear map. The inducedℓ2-norm

of ∂V V(Fφ(V )) and∂V Fφ(V )[·] are defined as

‖∂V V(Fφ(V ))‖2 = max
z 6=0

‖∂V V(Fφ(V ))[z]‖2
‖z‖2

and‖∂V Fφ(V )‖2 = max
z 6=0

‖∂V Fφ(V )[z]‖2
‖z‖2

, (83)

respectively. The next lemma shows that theirℓ2-norms are bounded if Assumption 2.5 holds atH(V ).

Lemma 4.2. If Assumption 2.5 holds atH(V ) for a givenV ∈ Rn, then it holds

‖∂V Fφ(V )‖2 ≤ 1

δ
and ‖∂V V(Fφ(V ))‖2 ≤ ‖L†‖2 + θ

δ
. (84)

Proof. For anyz ∈ Rn, we obtain

‖∂V Fφ(V )[z]‖2 = ‖diag
(

Q(V )
(

gφ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
))

Q(V )T
)

‖2
≤ ‖Q(ρ)

(

gφ(Π(ρ)) ◦
(

Q(ρ)TDiag(z)Q(ρ)
))

Q(ρ)T‖F
= ‖gφ(Π(ρ)) ◦

(

Q(ρ)TDiag(z)Q(ρ)
)

‖F

≤ 1

δ
‖Q(ρ)TDiag(z)Q(ρ)‖F

≤ 1

δ
‖z‖2, (85)

where the second inequality is due to|(gφ(Π(ρ)))ij | ≤ 1/δ. Then the first inequality in (84) holds from the definitions

(83) and (85). It follows from (76) and (85) that

‖∂V V(Fφ(V ))[z]‖2 ≤ ‖J(Fφ(V ))‖2‖∂V Fφ(V )[z]‖2 ≤ ‖L†‖2 + θ

δ
‖z‖2. (86)

This completes the proof.
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The set{H(V ) | V ∈ Rn} is called uniformly well posed (UWP) [2, 30] with respect to aconstantδ > 0 if

Assumption 2.5 holds atH(V ) with δ for anyV ∈ R
n. We next establish the convergence of the simple mixing

scheme (80) when UWP holds.

Theorem 4.3. Suppose that Assumption 4.1 holds and{H(V ) | V ∈ Rn} is UWP with a constantδ such that

b1 := 1− ‖L†‖2 + θ

δ
> 0. (87)

Let{V i} be a sequence generated by the simple mixing scheme(80) using a step sizeα satisfying

0 < α <
2

2− b1
. (88)

Then{V i} converges to a solution of the KS equation(5) with linear convergence rate no more than|1−α|+α(1−b1).

Proof. For anyV i, it follows from (86), (87) and (88) that

‖(1− α)I + α∂V V(Fφ(V
i))‖2

≤ |1− α|+ |α|‖∂V V(Fφ(V
i))‖2

≤
{

1− α+ α‖L†‖2+θ
δ = 1− αb1, if 0 < α < 1

α− 1 + α‖L†‖2+θ
δ = α(2 − b1)− 1, if α ≥ 1

< 1,

which completes the proof.

Remark 4.4. When the step sizeα = 1, the simple mixing scheme(80) becomes the SCF iteration(79) with the

convergence rate‖L
†‖2+θ
δ . Since neitherp nor n is involved in(87), it is much weaker than12k

√
n‖L†‖2+θ
δ < 1

required by Theorem 1 in [24].

We next establish convergence to the solutions of the modified fixed-point map (61) without assuming the UWP

properties.

Theorem 4.5. Suppose that Assumption 4.1 holds and

b2 := 1− β(‖L†‖2 + θ)

4
> 0. (89)

Let{V i} be a sequence generated by the simple mixing scheme(81) using a step sizeα satisfying

0 < α <
2

2− b2
. (90)

Then the sequence{V i} converges to a solution of(61)with linear convergence rate no less than|1−α|+α(1− b2).

Proof. Using the mean value theorem and the fact that

|f ′
µ(t)| =

∣

∣

∣

∣

−βeβ(t−µ)

(1 + eβ(t−µ))2

∣

∣

∣

∣

≤ β

4
,
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we obtain|(gfµ(Π(V )))ij | ≤ β/4, which yields

‖∂V V(Ffµ(V ))‖2 ≤ β(‖L†‖2 + θ)

4
.

Then, the convergence of (81) is proved similar to that of Theorem 4.3.

Remark 4.6. Suppose that UWP holds andfµ is chosen such that







1
1+eβ(λp−µ) ≥ 1− γ,

1

1+eβ(λp+1−µ) ≤ γ,
(91)

whereγ ≪ 1 is a constant. It can be shown thatβ ≥ 2
δ · ln 1−γ

γ . Hence, we haveβ4 ≥ 1
δ and the condition(87) is

implied by(89) whenln 1−γ
γ ≥ 2 or equivalentlyγ ≤ 1

e2+1 ≈ 0.12. On the other hand, the closerγ is to zero, the

closerfµ is toφ from (91). Therefore, the convergence rate of the fixed-point iteration usingFφ is better than that of

Ffµ whenFfµ is sufficiently close toFφ.

Remark 4.7. The convergence of the SCF iteration without simple mixing for solving a special KS equation without

the exchange correlation energy is established in [30] under the condition

n4β‖L†‖2
2

< 1. (92)

We can see that our condition is weaker than(92)sincen4 is not required.

4.3 Local Convergence Analysis

Suppose thatV ∗ is a solution of the fixed point map (80). LetB(V ∗, η) := {V | ||V −V ∗||2 ≤ η} be a neighborhood

of V ∗ for a givenη > 0. The Taylor expansion atV ∗ yields

V k+1 − V ∗ = V k − α(V k − V(Fφ(V
k)))− (V ∗ − α(V ∗ − V(Fφ(V

∗))))

= (I − α(I − ∂V V(Fφ(V
∗))))[V k − V ∗] + o(||V k − V ∗||2), for all V k ∈ B(V ∗, η). (93)

If the spectral radius of the operatorI − α(I − ∂V V(Fφ(V
∗))) is less than one, there must exist a sufficiently smallη

so that the simple mixing scheme (80) initiating from a pointin B(V ∗, η) converges toV ∗ linearly.

We first present a few properties of the linear operators. Denote the space of linear operators by

L(Rn,Rn) := {P | P : Rn 7→ R
n is a linear map}.

SinceL(Rn,Rn) is isomorphic toRn×n, the eigenvalue, eigenvector and the spectrum for any linear operator can be

defined similar to a matrix. For a givenP ∈ L(Rn,Rn), if a scalarλ ∈ C and a nonzero vectorz ∈ C
n satisfy

P [z] = λz, (94)

the scalarλ and the vectorz are called the eigenvalue and eigenvector ofP , respectively. The spectrum ofP , denoted

by λ(P), is the set consisting of all the eigenvalues ofP . The spectral radius, denoted by̺(P), is the largest absolute

value of all elements in its spectrum. The operatorP is called symmetric ifyTP [x] = xTP [y] for anyx, y ∈ Rn.
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Definition 4.8. GivenP ∈ L(Rn,Rn), the matrixP = (P [e1], . . . ,P [en]) is called the basic transformation matrix

ofP , whereei, i = 1, 2, ..., n, is theith column of the identity matrix. A linear operatorP∗ ∈ L(Rn,Rn) is called the

adjoint operator ofP if P∗[x] = PTx holds for allx ∈ Rn.

Let P be the basic transformation matrix ofP ∈ L(Rn,Rn). ThenP is symmetric if and only ifP is symmetric.

Moreover,P andP has the same spectrum sinceP [z] = Pz. Let M1,M2 ∈ Rn×n be two real matrices andP1

andP2 be the basic transformation matrices ofP1,P2 ∈ L(Rn,Rn), respectively. ThenM1P1 +M2P2 is the basic

transformation matrix of the linear operatorM1P1 + M2P2. A linear operatorP ∈ L(Rn,Rn) is called positive

semidefinite ifzTP [z] ≥ 0 for all z ∈ R
n. We next show that the eigenvalues of the product of a symmetric matrix

and a symmetric positive semidefinite linear operator are real.

Lemma 4.9. Suppose thatM ∈ R
n×n is a symmetric matrix, andP ∈ L(Rn,Rn) is a symmetric positive semidefinite

linear operator. Then all the eigenvalues of the linear operatorMP are real. Furthermore, it holds

λmax(MP) ≤







λmax(M)λmax(P), if λmax(M) ≥ 0,

λmax(M)λmin(P), otherwise,
(95)

λmin(MP) ≥







λmin(M)λmin(P), if λmin(M) ≥ 0,

λmin(M)λmax(P), otherwise.
(96)

Proof. LetP be the basic transformation matrix ofP . It suffices to prove the statements withP replaced byP . Since

P is symmetric positive semidefinite,P is also symmetric positive semidefinite. Hence, it can be diagonalized as

P = UDUT , whereU is orthogonal andD = Diag(µ1, . . . , µn) such thatµi ≥ 0. DefineD
1
2 := Diag(µ

1
2
1 , . . . , µ

1
2
n )

and writeP
1
2 = UD

1
2UT . Then we obtainP = P

1
2P

1
2 . We now prove that every eigenvalue ofR := P

1
2MP

1
2 is an

eigenvalue ofMP and vice versa. It is known that the eigenvalues of a matrix are continuous functions of the matrix

entries. LetDǫ := D + ǫI andPǫ := UDǫU
T for ǫ ≥ 0. ThenPǫ → P andP

1
2
ǫ := UD

1
2
ǫ UT → P

1
2 asǫ → 0.

Hence,MPǫ → MP andRǫ := P
1
2
ǫ MP

1
2
ǫ → R asǫ → 0. SinceP

1
2
ǫ is invertible, we haveRǫ = P

1
2
ǫ MPǫP

− 1
2

ǫ .

Therefore,Rǫ andMPǫ have the same eigenvalues. Asǫ → 0, these eigenvalues converge to those ofR andMP ,

respectively. Hence,R andMP have the same eigenvalues. The symmetry ofR further implies that the eigenvalues

of MP are real.

Sinceλmax(M)I � M , we obtain

λmax(M)P = P
1
2 (λmax(M)−M)P

1
2 + P

1
2MP

1
2 � P

1
2MP

1
2 ,

which yields (95) since the eigenvalues ofR = P
1
2MP

1
2 andMP are the same. Similarly, (96) holds due to

M � λmin(M)I and

P
1
2MP

1
2 = P

1
2 (M − λmin(M))P

1
2 + λmin(M)P � λmin(M)P.

This completes the proof.

The next lemma shows that∂V Fφ(V )[·] is negative semidefinite.

Lemma 4.10. For anyz ∈ Rn, it holdszT∂V Fφ(V )[z] ≤ 0.

Proof. For anyz ∈ Rn, we have

zT∂V Fφ(V )[z] = zTdiag
(

Q(V )
(

gφ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
))

Q(V )T
)
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=
〈(

Q(V )TDiag (z)Q(V )
)

, gφ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
)〉

= eT
(

gφ(Π(V )) ◦
(

Q(V )TDiag (z)Q(V )
)

◦
(

Q(V )TDiag (z)Q(V )
))

e

≤ 0,

where the third equality uses the properties of the Hadamardproducts and the inequality is due to

(

Q(V )TDiag (z)Q(V )
)

◦
(

Q(V )TDiag (z)Q(V )
)

≥ 0 andgφ(Π(V )) ≤ 0.

This completes the proof.

We now establish the local convergence result for the simplemixing scheme.

Theorem 4.11. LetV ∗ be a solution of the KS equation(5). Suppose that Assumption 4.1 holds and Assumption 2.5

is valid atH(V ∗) with a constantδ satisfying

δ > −λ∗
min, (97)

whereλ∗
min := min{0, λmin(J(Fφ(V

∗)))}. There exists an open neighborhoodΩ ofV ∗, such that the sequence{V i}
generated by the simple mixing scheme(80)usingV 0 ∈ Ω and a step size

α ∈
(

0,
2δ

||L†||2 + θ + δ

)

(98)

converges toV ∗ with R-linear convergence rate no more than

max

{(

1− α
δ + λ∗

min

δ

)

,

(

α
||L†||2 + θ + δ

2δ
− 1

)}

.

Proof. The Taylor expansion (93) implies that local convergence ofthe scheme (80) holds if

̺(I − αA) < 1, (99)

whereA := I − J(Fφ(V
∗))∂V Fφ(V

∗). According to Lemma 4.10,−∂V Fφ(V
∗) is symmetric positive semidefinite.

Using Lemma 4.9, we conclude that all the eigenvalues ofA are real. Hence, (99) is guaranteed if

λmin(A) > 0; (100)

αλmax(A) < 2. (101)

Note thatλmin(A) = 1 + λmin(J(Fφ(V
∗))(−∂V Fφ(V

∗))). Using Lemma 4.9,λmax(−∂V Fφ(V
∗)) ≤ 1

δ from

Lemma 4.2 and the definition ofλ∗
min, we obtain

λmin(A)− 1 ≥







λmin(J(Fφ(V
∗)))λmin(−∂V Fφ(V

∗)), if λmin(J(Fφ(V
∗))) ≥ 0,

λmin(J(Fφ(V
∗)))λmax(−∂V Fφ(V

∗)), otherwise

≥







0, if λmin(J(Fφ(V
∗))) ≥ 0,

1
δλmin(J(Fφ(V

∗))), otherwise

≥ λ∗
min

δ
,

21



which yields (100) from the assumption (97).

Using Lemma 4.9 again, we have

λmax(A) ≤ 1 + λmax(J(Fφ(V
∗))(−∂V Fφ(V

∗)))

≤ 1 + max{0, λmax(J(Fφ(V
∗)))λmax(−∂V Fφ(V

∗))} ≤ 1 +
||L†||2 + θ

δ
, (102)

which together with (98) gives (101).

The condition (97) can be much weaker than‖L†‖2 + θ < δ required in Theorem 4.3.

Corollary 4.12. Suppose that Assumption 4.1 holds. Then the condition(97) holds if

max(θ − λmin(L
†), 0) < δ. (103)

Proof. It follows from (8) and Assumption 4.1 that

λmin(J(Fφ(V ))) = λmin(L
† + ∂µxc(Fφ(V ))e) ≥ λmin(L

†) + λmin(µxc(Fφ(V ))e) ≥ λmin(L
†)− θ.

Hence, (97) holds from the definition ofλ∗
min.

In particular, whenJ(Fφ(V
∗)) is positive semidefinite, we haveλ∗

min = 0 and (97) is a direct consequence of

Assumption 2.5.

Corollary 4.13. Suppose that Assumptions 2.5 holds atH(V ∗) andJ(Fφ(V
∗)) is positive semidefinite. Then the

condition(97)holds.

We can obtain the following local convergence result for themodified fixed-point map (61) in the same manner as

Theorem 4.5.

Corollary 4.14. Suppose that Assumption 4.1 holds and

4

β
> −λ∗

min, (104)

whereλ∗
min := min{0, λmin(J(Fφ(V

∗)))}. Let V ∗ be a solution of the KS equation(5). There exists an open

neighborhoodΩ of V ∗, such that the sequence{V i} generated by the simple mixing scheme(81) usingV 0 ∈ Ω and

a step size

α ∈
(

0,
8

(||L†||2 + θ)β + 4

)

(105)

converges toV ∗ with R-linear convergence rate no more than

max

{(

1− α
λ∗
minβ + 4

4

)

,

(

α
(||L†||2 + θ)β + 4

8
− 1

)}

.

5 Convergence Analysis of Approximate Newton Approaches

The generalized Jacobian∂V V(F (V )) in (76) suggests that Newton’s method for solving the fixed point map (58) is

V i+1 = V i − α
(

I − J(Fφ(V
i))∂V Fφ(V

i)
)−1 (

V i − V
(

Fφ(V
i)
))

,
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whereα is a step size. Obviously, this method is not computationally practical for solving the fixed-point maps due to

the presence of all eigenvectors and eigenvalues in∂V Fφ(V )[·]. In this section, we propose two approximate Newton

approaches in the form

V i+1 = V i − α
(

I −Di
)−1 (

V i − V
(

Fφ(V
i)
))

, (106)

whereα > 0 andDi ∈ Rn×n is a matrix for approximating the Jacobian∂V V(F (V i)).

Theorem 5.1. Suppose that Assumption 4.1 and UWP hold. Let{V i} be a sequence generated by(106)using{Di}
and a step sizeα such that

0 < α <
2

b2
, 0 < γmin ≤ σmin(I −Di) andσmax(I −Di) ≤ γmax,

whereb2 := 1 + ‖L†‖2+θ
δ , andσmin andσmax are the smallest and largest singular values ofI −Di, respectively. If

b1 := 1 − γmax

γmin

‖L†‖2+θ
δ > 0, then{V i} converges to a solution of the KS equation(5) with linear convergence rate

no more thanmax(1− αγ−1
maxb1, αγ

−1
minb2 − 1).

Proof. For anyV i, it follows from the definitions ofDi, α andb2 that

‖I − α(I −Di)−1(I − ∂V V(Fφ(V
i)))‖2

= ‖I − α(I −Di) + α(I −Di)−1∂V V(Fφ(V
i))‖2

≤ ‖I − α(I −Di)‖2 + |α|‖(I −Di)−1J(Fφ(V
i))J(V i)‖2

≤
{

1− αγ−1
max + αγ−1

min
‖L†‖2+θ

δ = 1− αγ−1
maxb1, if α < γmax;

αγ−1
min − 1 + αγ−1

min
‖L†‖2+θ

δ = αγ−1
minb2 − 1, otherwise,

< 1.

This completes the proof.

5.1 Approximate Newton Method I

Our first approach replaces the operator∂V Fφ(V
i)[·] by a diagonal matrixτ iI, whereτ i is a non-positive scalar.

It is chosen to be non-positive since∂V Fφ(V
i)[·] is negative semidefinite from Lemma 4.10. Consequently, we set

Di := τ iJ(ρ) and the scheme (106) becomes

V i+1 = V i − α
(

I − τ iJ(Fφ(V
i))
)−1 (

V i − V
(

Fφ(V
i)
))

. (107)

The next theorem presents the local convergence analysis for the method (107).

Theorem 5.2. LetV ∗ be a solution of the KS equation(5). Suppose that Assumption 4.1 holds with a constantθ and

Assumption 2.5 is valid atH(V ∗) with a constantδ satisfying

δ > −λ∗
min, (108)

whereλ∗
min := min{0, λmin(J(Fφ(V

∗)))}. Let{V i} be a sequence generated by the scheme(107)using lim
i→∞

τ i =

τ∗ ∈
(

− 1
δ , 0
)

and a step size

α ∈
(

0,
δ + λ∗

min

||L†||2 + θ + δ

)

. (109)
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If the initial point V 0 is selected in a sufficiently small open neighborhood ofV ∗, then{V i} converges toV ∗ with

R-linear convergence rate no more than

max

{(

1− α

(

δ

||L†||2 + θ + δ
+

λ∗
min

δ + λ∗
min

))

,

(

α
||L†||2 + θ + δ

δ + λ∗
min

− 1

)}

.

Proof. The convergence of the iteration (107) is guaranteed by

̺(I − αM) < 1, (110)

whereM = (I − τ∗J(Fφ(V
∗)))−1(I − J(Fφ(V

∗))∂V Fφ(V
∗)). A direct linear algebraic calculation yields

M = (I − τ∗J(Fφ(V
∗)))−1 − (I − τ∗J(Fφ(V

∗)))−1J(Fφ(V
∗))∂V Fφ(V

∗)

= I + (I − τ∗J(Fφ(V
∗)))−1J(Fφ(V

∗))(τ∗I − ∂V Fφ(V
∗)). (111)

The symmetry ofJ(Fφ(V
∗)) implies that(I − τ∗J(Fφ(V

∗)))−1J(Fφ(V
∗)) is also symmetric, which together with

the fact thatτ∗I−∂V Fφ(V
∗) is positive definite and Lemma 4.9 shows that all the eigenvalues ofM are real. Similar

to the proof of Theorem 4.11, the inequality (110) holds if

λmin(M) > 0; (112)

αλmax(M) < 2. (113)

Using0 > τ∗ > − 1
δ and the definition ofλ∗

min, we have

λmin(I − τ∗J(Fφ(V
∗))) ≥ δ + λ∗

min

δ
> 0, (114)

λmax(I − τ∗J(Fφ(V
∗))) ≤ ||L†||2 + θ + δ

δ
. (115)

Using the fact that the smallest eigenvalue of a summation oftwo matrices is larger than the summation of the smallest

eigenvalues of these matrices, we obtain

λmin(M) ≥ λmin((I − τ∗J(Fφ(V
∗)))−1) + λmin((I − τ∗J(Fφ(V

∗)))−1J(Fφ(V
∗))(−∂V Fφ(V

∗))))

≥ δ

||L†||2 + θ + δ
+ λmin((I − τ∗J(Fφ(V

∗)))−1J(Fφ(V
∗))(−∂V Fφ(V

∗)))). (116)

Applying Lemma 4.9,λmax(−∂V Fφ(V
∗)) ≤ 1

δ from Lemma 4.2 and the definition ofλ∗
min, we have

λmin((I − τ∗J(Fφ(V
∗)))−1J(Fφ(V

∗))(−∂V Fφ(V
∗))))

≥







λmin((I − τ∗J(Fφ(V
∗)))−1)λmin(J(Fφ(V

∗)))λmin(−∂V Fφ(V
∗)), if λmin(J(Fφ(V

∗))) ≥ 0,

λmax((I − τ∗J(Fφ(V
∗)))−1)λmin(J(Fφ(V

∗)))λmax(−∂V Fφ(V
∗)), otherwise

≥







0, if λmin(J(Fφ(V
∗))) ≥ 0,

λmin(J(Fφ(V
∗)))

δ+λ∗
min

, otherwise

≥ λ∗
min

δ + λ∗
min

, (117)
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which together with (116) gives (112).

It follows from Lemma 4.9 and (114) that

λmax(M) ≤ λmax((I − τ∗J(Fφ(V
∗)))−1) + λmax((I − τ∗J(Fφ(V

∗)))−1λmax(J(Fφ(V
∗)))λmax(−∂V Fφ(V

∗)))

≤ ||L†||2 + θ + δ

δ + λ∗
min

. (118)

Combining (109) and (118) together yields (113).

Similar to Corollary (4.13), the condition (108) holds whenJ(Fφ(V
∗)) is positive semidefinite.

5.2 Approximate Newton Method II

The matrixJ(ρ) has to be calculated for eachρ in the approximate Newton method (107). If the computational

cost of second-order derivatives of the exchange correlation function is expensive, a simpler choice is to approximate

J(Fφ(V
∗)) byL† and∂V Fφ(V ) by τ iI, that is,Di = τ iL†. Hence, approximate Newton method (106) becomes

V i+1 = V i − α
(

I − τ iL†)−1 (
V i − V

(

Fφ(V
i)
))

, (119)

where{τ i} is negative. In fact, (119) is exactly the method of ellipticpreconditioner proposed in [23].

Theorem 5.3. LetV ∗ be a solution of the KS equation(5). Suppose that Assumption 4.1 holds with a constantθ and

Assumption 2.5 is valid atH(V ∗) with a constantδ satisfying

δ > θ. (120)

Let {V i} be a sequence generated by the scheme(107)using lim
i→∞

τi = τ∗ ∈
(

− 1
ξ , 0
)

such thatξ ≥ ||L†||2θ
δ−θ , and a

step size

α ∈
(

0,
2

||L†||2+ξ
ξ + θ

δ

)

. (121)

If the initial point V 0 is selected in a sufficiently small open neighborhood ofV ∗, then{V i} converges toV ∗ with

R-linear convergence rate no more than

max

{(

1− α

(

ξ

||L†||2 + ξ
− θ

δ

))

,

(

α

( ||L†||2 + ξ

ξ
+

θ

δ

)

− 1

)}

. (122)

Proof. Let M̄ = (I − τ∗L†)−1(I − ∂V V(Fφ(V
∗))). The convergence of the iteration (119) is guaranteed by

̺(I − αM̄) < 1. (123)

Using the formulation of∂V V(Fφ(V
∗)), we can decomposēM = M̄1 − M̄2, whereM̄1 = (I − τ∗L†)−1(I −

L†∂V Fφ(V
∗)) andM̄2 = (I − τ∗L†)−1(J(Fφ(V

∗)) − L†)∂V Fφ(V
∗). SinceL† is positive semidefinite, a similar

proof as Theorem 5.2 implies that all the eigenvalues ofM̄1 are real and

λmin(M1) >
ξ

||L†||2 + ξ
, (124)
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λmax(M1) ≤ ||L†||2 + δ

δ
. (125)

Using Assumption 4.1 and Lemma 4.2, we have

||M̄2||2 = ||(I − τ∗L†)−1(J(Fφ(V
∗))− L†)∂V Fφ(V

∗)||2

≤ ||(I − τ∗L†)−1||2||J(Fφ(V
∗))− L†||2||∂V Fφ(V

∗)||2 ≤ θ

δ
. (126)

Using (124) andξ ≥ ||L†||2θ
δ−θ , we obtain

λmin(M̄1) >
θ

δ
, (127)

which together with (126) yields

(1− αλmin(M̄1)) < 1− α||M̄2||2. (128)

On the other hand, it follows from (121), (125) and (126) that

(αλmax(M̄1)− 1) < 1− α||M̄2||2. (129)

Combining (128) and (129) together gives

̺(1− αM̄1) < 1− α||M̄2||2. (130)

which guarantees (123).

6 Conclusion

The equivalence between the KS total energy minimization problem and the KS equation is ambiguous in the current

literatures on KSDFT. A simple counter example shows that the solutions of these two problems are not necessarily

the same. We examine the equivalence based on the optimalityconditions for a specialized exchange correlation

functional. We prove that a global solution of the KS minimization problem is a solution of the KS equation if the gap

between thepth and(p + 1)st eigenvalues of the HamiltonianH(X) is sufficiently large. The equivalence of a local

minimizer requires that the corresponding charge densities are all positive. For strong local minimizers, the nonzero

charge densities are bounded below by a positive constant uniformly. These properties are summarized in Table 1.

We improve the convergence analysis on the SCF iteration forsolving the KS equation by analyzing the Jacobian

of the corresponding fixed point maps. Global convergence ofthe simple mixing scheme can be established when

there exists a gap betweenpth and(p + 1)st eigenvalues of the HamiltonianH(X). This assumption can be relaxed

for local convergence analysis and if the charge density is computed using the Fermi-Dirac distribution. Our results

requires much weaker conditions than the previous analysisin [24]. The structure of the Jacobian also suggests two

approximate Newton methods. In particular, the second one is exactly the method of elliptic preconditioner proposed

in [23]. Although our assumption on the gap is very stringentand is almost never satisfied in reality, our analysis is

helpful for a better understanding of the KS minimization problem, the KS equation and the SCF iteration. A summary

of our convergence results is presented in Table 2.
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Table 1: Equivalence between the KS total energy minimization and the KS equation using the exchange correlation
functioneTǫxc(ρ) = − 3

4γρ
Tρ

1
3

properties eigenvalue gapδ Other Assumptions
A global minimizerX∗

solves
the KS equation

Assumption 2.5 holds atH(X∗) with
δ > p

(

||L†||2 − γ
3

) –

A local minimizerX∗

solves
the KS equation

Assumption 2.5 holds atH(X∗) with
δ > 2

(

||L†||2 − γ
3

) ρi > 0, i = 1, . . . , n

ρi(X
∗) ∈ [0, c) ⇒

ρi(X
∗) = 0

– X∗ is a strong local minimizer
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[6] E. CANCÈS AND C. LE BRIS, On the convergence of SCF algorithms for the Hartree-Fock equations, Math.

Model. Numer. Anal., 34 (2000), pp. 749–774.
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