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CONVEXIFYING POSITIVE POLYNOMIALS

AND SUMS OF SQUARES APPROXIMATION

KRZYSZTOF KURDYKA, STANISŁAW SPODZIEJA

Abstract. We show that if a polynomial f ∈ R[x1, . . . , xn] is nonnegative
on a closed basic semialgebraic set X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0},

where g1, . . . , gr ∈ R[x1, . . . , xn], then f can be approximated uniformly on
compact sets by polynomials of the form σ0 + ϕ(g1)g1 + · · ·+ ϕ(gr)gr , where
σ0 ∈ R[x1, . . . , xn] and ϕ ∈ R[t] are sums of squares of polynomials. In
particular, if X is compact, and h(x) := R2 − |x|2 is positive on X, then
f = σ0 + σ1h + ϕ(g1)g1 + · · · + ϕ(gr)gr for some sums of squares σ0, σ1 ∈
R[x1, . . . , xn] and ϕ ∈ R[t], where |x|2 = x2

1
+ · · ·+ x2

n. We apply a quantita-
tive version of those results to semidefinite optimization methods. Let X be
a convex closed semialgebraic subset of Rn and let f be a polynomial which
is positive on X. We give necessary and sufficient conditions for the existence
of an exponent N ∈ N such that (1 + |x|2)Nf(x) is a convex function on X.
We apply this result to searching for lower critical points of polynomials on
convex compact semialgebraic sets.

Introduction

In the paper we study two types of problems for polynomials which are positive
(or nonnegative) on subsets of Rn. In the first part we prove stronger versions of
known approximation and representation theorems with sums of squares of poly-
nomials. Next we give quantitative versions of these results and explain some
applications to semidefinite optimization methods. In the second part we prove
that any polynomial f which is positive on a convex closed set X becomes strongly
convex when multiplied by (1 + |x|2)N with N large enough (the noncompact case
requires some extra assumptions). In fact we give an explicit estimate for N , which
depends on the size of the coefficients of f and on the lower bound of f on X . As
an application of our convexification method we propose an algorithm which for a
given polynomial f on a compact semialgebraic set X produces a sequence (starting
from an arbitrary point in X) which converges to a critical point of f on X . We
also relate convexity and positivity issues.

0.1. Notation and state of the art. We denote by R[x] or R[x1, . . . , xn] the ring
of polynomials in x = (x1, . . . , xn) with coefficients in R. Important problems of
real algebraic geometry are representations of nonnegative polynomials on closed
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semialgebraic sets. Recall Hilbert’s 17th problem (solved by E. Artin [2]): if f ∈
R[x] is nonnegative on Rn, then

(AH) fh2 = h21 + · · ·+ h2m for some h, h1, . . . , hm ∈ R[x], h 6= 0,

that is, f is a sum of squares of rational functions. With the additional assumptions
that f is homogeneous and f(x) > 0 for x 6= 0, B. Reznick [24, Theorem 3.12]
proved that there exists an integer r0 such that for any N ≥ r0 the polynomial
(x21 + · · ·+ x2n)

Nf(x) is a sum of even powers of linear functions.
Let X ⊂ Rn be a closed basic semialgebraic set defined by g1, . . . , gr ∈ R[x], i.e.,

(0.1) X = {x ∈ R
n : g1(x) ≥ 0, . . . , gr(x) ≥ 0}.

The preordering generated by g1, . . . , gr is defined to be

T (g1, . . . , gr) =
{

∑

e=(e1,...,er)∈{0,1}r

σeg
e1
1 · · · gerr : σe ∈

∑

R[x]2 for e ∈ {0, 1}r
}

,

where
∑

R[x]2 denotes the set of sums of squares (s.o.s.) of polynomials from
R[x]. Natural generalizations of the above theorem of Artin are the Stellensätze of
J.-L. Krivine [12], D. W. Dubois [9], and J.-J. Risler [26] (see also [7]). For refer-
ences and a more detailed discussion of this subject see for instance [28], [20], [22].
When the set X is compact, a very important result was obtained by K. Schmüdgen
(see [29], [8]): every strictly positive polynomial f on X belongs to the preorder-
ing T (g1, . . . , gr). M. Schweighofer [30] studied degree bounds in the Schmüdgen
Positivstellensatz representation

f =
∑

e∈{0,1}r

σeg
e1
1 · · · gerr ∈ T (g1, . . . , gr).

He obtained an upper bound for deg σeg
e1
1 · · · gerr in terms of deg f , f∗ := min{f(x) :

x ∈ X} and the coefficients of f , provided that f∗ > 0. As shown by C. Scheiderer
[27], there is no such bound in terms of deg f unless dim(X) ≤ 1. Under some
additional assumptions M. Putinar [23] proved that f belongs to the quadratic
module generated by g1, . . . , gr,

P (g1, . . . , gr) :=
{

σ0 + σ1g1 + · · ·+ σrgr : σi ∈
∑

R[x]2, i = 0, . . . , r
}

.

The above results concern strictly positive polynomials. In the case of nonnegative
polynomials C. Berg, J. P. R. Christensen and P. Ressel [4] and J. B. Lasserre and
T. Netzer [19, Corollary 3.3] proved that any polynomial f which is nonnegative
on [−1, 1]n can be approximated in the l1-norm by sums of squares of polynomials.
The l1-norm of a polynomial is defined to be the sum of the absolute values of its
coefficients (in the usual monomial basis). Hence we have

Fact 1. If a polynomial f ∈ R[x] is nonnegative on [−R,R]n, R > 0, then the
polynomial f(Rx) can be approximated in the l1-norm by sums of squares of poly-
nomials. In particular f(x) can be uniformly approximated on [−R,R]n by sums of
squares of polynomials.

D. Hilbert [11] proved that for n ≥ 2 there are nonnegative polynomials on
Rn which are not sums of squares of polynomials. T. S. Motzkin [21] gave an
explicit example of such a polynomial, f(x1, x2) = 1 + x21x

2
2(x

2
1 + x22 − 3), i.e., in

the representation (AH) of f the degree of h must be positive. So in general the
Schmüdgen Positivstellensatz does not hold on noncompact sets. For a polynomial
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f positive on a noncompact set X the problem arises of approximation of f by
elements of the preordering T (g1, . . . , gr) or of the quadratic module P (g1, . . . , gr).
In this connection J. B. Lasserre [17, Theorem 2.6] (see also [16]) proved that if
g1, . . . , gr are concave polynomials such that g1(z) > 0, . . . gr(z) > 0 for some z ∈ X ,
then any convex polynomial nonnegative on X can be approximated in the l1-norm
by polynomials from the set

Lc(g1, . . . , gr) :=
{

σ0 + λ21g1 + · · ·+ λ2rgr : σ0 ∈
∑

R[x]2 convex, λ1, . . . , λr ∈ R

}

.

For X = R
n the approximation is uniform on compact sets. J. B. Lasserre [16]

proved that if a polynomial f ∈ R[x] has a global minimum f∗ ≥ 0 then for every

ε > 0 there is N ∈ N such that the polynomial fε := f + ε
∑N

k=1

∑n
j=1

x2k
j

k! is a sum

of squares (see also [18] for polynomials on real algebraic sets).

0.2. Our contributions. In this article, we prove an analogue of the Schmüdgen
and Putinar theorems for a smaller cone. Namely for g ∈ R[x] we put

K(g, g1, . . . , gr) :=
{

σ0 + σ1g + ϕ(g1)g1 + · · ·+ ϕ(gr)gr : σ0, σ1 ∈
∑

R[x]2,

ϕ ∈
∑

R[t]2
}

,

where t is a single variable. Note that if we set

Φ(g1, . . . , gr) :=
{

ϕ(g1)g1 + · · ·+ ϕ(gr)gr : ϕ ∈
∑

R[t]2
}

,

then

K(g, g1, . . . , gr) = T (g) + Φ(g1, . . . , gr),

where A+B = {a+b : a ∈ A, b ∈ B}. In Section 1 we prove (Theorem 1.1) that for
a closed basic semialgebraic set X defined by g1, . . . , gr ∈ R[x] and a polynomial
f ∈ R[x] the following conditions are equivalent:

(i) f is nonnegative on X ,
(ii) f can be uniformly approximated on compact sets by polynomials from the

cone

S(g1, . . . , gr) :=
∑

R[x]2 +Φ(g1, . . . , gr).

Moreover, f can be approximated by polynomials from S(g1, . . . , gr) in the
l1-norm.

In particular, if X is a compact set and g(x) := R2 − |x|2 ≥ 0 for x ∈ X , then (see
Corollary 2.1)

(0.2) f is strictly positive on X =⇒ f ∈ K(g, g1, . . . , gr).

0.3. Application to optimization. In [15] Lasserre gave a method of minimizing
a polynomial f on a compact basic semialgebraic set X of the form (0.1). More
precisely, let

f∗ := inf{f(x) : x ∈ X}.
Then f∗ = sup{a ∈ R : f(x)− a > 0 for x ∈ X}, and by Putinar’s result [23],

f∗ = sup{a ∈ R : f − a ∈ P (g1, . . . , gr)},
or equivalently

f∗ = inf{L(f) : L : R[x] → R is linear, L(1) = 1, L(P (g1, . . . , gr)) ⊂ [0,∞)}.
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Denote

Pk(g1, . . . , gr) :=
{

σ0g0 + · · ·+ σrgr ∈ P (g1, . . . , gr) : deg σigi ≤ k, i = 0, . . . , r
}

,

where we set g0 = 1. Lasserre considered the following optimization problems:

maximize a ∈ R : f − a ∈ Pk(g1, . . . , gr),

minimize L(f) for L : R[x]k → R, linear, L(1) = 1, L(Pk(g1, . . . , gr)) ⊂ [0,∞),

where R[x]k is the linear space of polynomials h ∈ R[x] such that deg h ≤ k. Set

a∗k := sup{a ∈ R : f − a ∈ Pk(g1, . . . , gr)},
l∗k := inf{L(f) : L : R[x]k → R is linear, L(1) = 1, L(Pk(g1, . . . , gr)) ⊂ [0,∞)},

for sufficiently large k ∈ N. Lasserre proved that (a∗k), (l
∗
k) are increasing sequences

that converge to f∗ and a∗k ≤ l∗k ≤ f∗ for k ∈ N.
We obtain a version of the Lasserre theorem for

Kk(g, g1, . . . , gr) := {σ0 + σ1g + ϕ(g1)g1 + · · ·+ ϕ(gr)gr ∈ K(g, g1, . . . , gr) :

deg σ0, deg σ1g, deg giϕ(gi) ≤ k}, k ∈ N.

The implication (0.2) allows us to apply the Lasserre algorithm of minimizing poly-
nomials on basic compact semialgebraic sets by using Kk(g, g1, . . . , gr) instead of
Pk(g, g1, . . . , gr) (see Remark 2.2). Consideration of the cones Kk(g, g1, . . . , gr) po-
tentially simplifies the problem of minimizing polynomials on the set X , since these
cones are properly contained in Pk(g, g1, . . . , gr).

In Proposition 2.3, we present another method of minimizing a polynomial f on
a compact basic semialgebraic set X , say X ⊂ {x ∈ Rn : |x| ≤ R}. Namely, for any
ǫ > 0, we give an effective procedure for calculating a polynomial h ∈ Φ(g1, . . . , gr)
such that

∀|y|≤R ∃x∈X f(y)− h(y) ≥ f(x)− h(x) − ǫ,

and |h(x)| < ǫ for x ∈ X . In particular,

f∗ − 2ǫ ≤ inf{f(y)− h(y) : |y| ≤ R} ≤ f∗ + 2ǫ.

Thus, the problem of approximate minimization of f can be reduced to the simpler
case when the set X is described by one inequality R2 − |x|2 ≥ 0 (see Remark 2.5).
In this case M. Schweighofer [30] gave the rate of convergence of the sequence

a∗∗k := sup{a ∈ R : f − h− a ∈ Pk(R
2 − |y|2)} → f∗∗, as k → ∞,

where f∗∗ := inf{f(y)− h(y) : |y| ≤ R}.
0.4. Convexifying positive polynomials. We will prove Theorem 5.5 which, we
believe, is of independent interest: for any polynomial f positive on a convex closed
set X , whose leading form is strictly positive in Rn \ {0}, there exists N0 ∈ N such
that for any integer N ≥ N0 the polynomial ϕN (x) = (1 + |x|2)Nf(x) is a strictly
convex function on X . In the case of homogeneous polynomials and X = Rn the
same result was obtained by Reznick [25, Theorem 4.6], [24, Theorem 3.12].

First in Section 3 we consider the univariate case, and we give an explicit bound
for N0 in terms of the coefficients of f and the infimum f∗. We also give an example
to show that N0 cannot be a function of the degree of f alone.

In Section 5 we prove that the convexity at infinity of ϕN (x) = (1 + |x|2)Nf(x)
for sufficiently large N is equivalent to the strict positivity of the leading form
of f (Proposition 5.3). Moreover, in Corollary 5.8 we obtain an interpretation of
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Reznick’s result [24, Theorem 3.12] in terms of convexity. As a consequence of
Theorem 5.5 we prove in Corollary 5.7 that, if X is a convex set containing at least
two points, and d > deg f is an even integer, then the following conditions are
equivalent:

(i) f is nonnegative on X ,
(iii) for any a, b > 0 there exists N0 ∈ N such that for any integer N ≥ N0

the polynomial ϕN (x) = (1 + |x|2)N (f(x) + a|x|d + b) is a strictly convex
function on X .

Finally, we propose the following algorithm. Given a compact convex semial-
gebraic set X and a polynomial f : Rn → R, assume that f is positive on X .
Then by our convexification result, there exists an integer N such that ϕN,ξ(x) :=
(1 + |x − ξ|2)Nf(x) is a convex function for any ξ ∈ X . (Actually one can take
N = 6.) Choose any a0 ∈ X , and then by induction set aν := argminX ϕN,aν−1

.
In Theorem 6.5 we state that the limit a∗ = limν→∞ aν exists; moreover, a∗ is a
critical point of f on X . The proof requires subtle estimates for the lengths of
gradient trajectories of f on X . Since the set of critical values is finite, this result
gives a method for finding the minimum of f on X .

1. Approximation of nonnegative polynomials

Let X ⊂ Rn be a closed basic semialgebraic set defined by g1, . . . , gr ∈ R[x], i.e.
of the form (0.1).

Theorem 1.1. Let f ∈ R[x] be nonnegative on the set X. Then there exists a
sequence fν ∈ P (g1, . . . , gr), ν ∈ N, that is uniformly convergent to f on compact
subsets. Moreover, fν can be chosen from the cone S(g1, . . . , gr) 1. In particular fν
converges to f in the l1-norm.

Proof. Take any positive constants ε, δ, A,B. By the Weierstrass Approximation
Theorem there exists a polynomial ϕε,δ,A,B ∈ R[t] such that

ϕε,δ,A,B(t) > B for t ∈ [−A,−δ],(1.1)

ϕε,δ,A,B(t) < ε for t ∈ [0, A].(1.2)

Taking ϕ2
ε,δ,A,B if necessary, we may additionally assume that

(1.3) ϕε,δ,A,B(t) ≥ 0 for t ∈ R.

Set

gi,ε,δ,A,B := gi · ϕε,δ,A,B ◦ gi for i = 1, . . . , r.

Every nonnegative univariate polynomial is a sum of squares of polynomials, hence
by (1.3) we have

(1.4) ϕε,δ,A,B ◦ gi ∈
∑

R[x]2 for i = 1, . . . , r.

Since the sequence hν = f + 1
ν , ν ∈ N, uniformly converges to f , we may assume

that f is positive on X .
Fix an arbitrary R > 1 and let M > 1 be a constant such that

(1.5) f(x) ≥ −M for x ∈ [−R,R]n.

1Recall that S(g1, . . . , gr) = {σ0 + ϕ(g1)g1 + · · ·+ ϕ(gr)gr : σ0 ∈
∑

R[x]2, ϕ ∈
∑

R[t]2}.
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Since f is positive on X , we have

X ∩ [−R,R]n ⊂ G1,

where the set G1 := {x ∈ [−R,R]n : f(x) > 0} is open in [−R,R]n. AsX∩[−R,R]n
is a compact set, there exists η > 0 such that

G2 := {x ∈ [−R,R]n : dist(x,X) ≤ η} ⊂ G1.

Since [−R,R]n \G2 = {x ∈ [−R,R]n : dist(x,X) ≥ η} is also compact, by the
definition of X there exists δ ∈ (0, 1] such that

(1.6) G3 := {x ∈ [−R,R]n : gi(x) ≥ −δ for i = 1, . . . , r} ⊂ G2.

Let

f∗
R := min{f(x) : x ∈ G2}.

Obviously f∗
R > 0.

Let A ≥ 1 be a constant such that

|gi(x)| ≤ A for x ∈ [−R,R]n, i = 1, . . . , r.

Take

(1.7) ε :=
f∗
R

(r + 1)A
, B := A

M + rε

δ
.

Lemma 1.2. For any x ∈ [−R,R]n we have f(x)−∑r
i=1 gi,ε,δ,A,B(x) > 0.

Proof. Take x ∈ [−R,R]n.
If x ∈ X , then gi(x) ≥ 0 for i = 1, . . . , r, and by (1.2),

gi,ε,δ,A,B(x) = gi(x) · ϕε,δ,A,B ◦ (gi(x)) ≤ Aε <
f∗
R

r
for i = 1, . . . , r.

So

f(x)−
r

∑

i=1

gi,ε,δ,A,B(x) > f∗
R − r

f∗
R

r
≥ 0,

and the assertion holds.
Let x ∈ G3 \X . Without loss of generality we may assume that

g1(x), . . . , gk(x) ≥ 0 and gk+1(x), . . . , gr(x) < 0

for some 0 ≤ k < r. Then by (1.2),

gi,ε,δ,A,B(x) ≤ Aε <
f∗
R

r
for i = 1, . . . , k,

and by (1.3),

gi,ε,δ,A,B(x) < 0 for i = k + 1, . . . , r.

Consequently, f(x)−∑r
i=1 gi,ε,δ,A,B(x) > f∗

R − k
f∗

R

r > 0, and the assertion holds.
Let now x ∈ [−R,R]n \G3. Without loss of generality we may assume that

g1(x), . . . , gk(x) ≥ 0, 0 > gk+1(x), . . . , gl(x) ≥ −δ, gl+1(x), . . . , gr(x) < −δ,
where 0 ≤ k ≤ l < r. Then

gi,ε,δ,A,B(x) <
f∗
R

r + 1
for i = 1, . . . , k,

and

gi,ε,δ,A,B(x) < 0 for i = k + 1, . . . , l.
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By (1.1) we see that

gi,ε,δ,A,B(x) < A(−M − rε) ≤ −M − rf∗
R

r + 1
for i = l+ 1, . . . , r.

Summing up,

f(x)−
r

∑

i=1

gi,ε,δ,A,B(x) > −M − k
f∗
R

r + 1
+ (r − l)

(

M +
rf∗

R

r + 1

)

> 0,

as desired. �

Remark 1.3. The polynomial ϕε,δ,A,B(t) in the above proof can be chosen of the
form

ϕ(t) =

(

1

A
t− 1 +

δ

2A

)2N

with N log(1 − δ
2A )2 < log ε, N log( δ

2A )2 < log ε and N log(1 + δ
2A )2 > logB.

M. Schweighofer [31, Lemma 2.3] in a similar problem proposes a polynomial ϕ of
the form ϕ(t) = as(at− 1)2N for some s ∈ N and a > 0.

By Lemma 1.2, for any R > 0 there exists ϕR ∈ ∑

R[t]2 such that

f(x) −
r

∑

i=1

ϕR(gi(x))gi(x) > 0 for x ∈ [−R,R]n.

By Fact 1 in the Introduction, it is easy to see that f(x) − ∑r
i=1 ϕR(gi(x))gi(x)

can be approximated in the l1-norm by sums of squares of polynomials and it
can be approximated uniformly on [−R,R]n by sums of squares of polynomials.
Consequently, f can be approximated uniformly on [−R,R]n (in particular in the
l1-norm) by polynomials from the cone S(g1, . . . , gr). Hence we deduce the assertion
of Theorem 1.1. �

2. Quantitative aspects of Theorem 1.1

In order to estimate the rate of convergence in Lasserre’s relaxation method [15]
we show how to bound the degree of the polynomial ϕ in Theorem 1.1. The key
point is to find a lower bound for δ which satisfies the inclusion (1.6).

Assume now that X is a compact set of the form

(2.1) X = {x ∈ R
n : g1(x) ≥ 0, . . . , gr(x) ≥ 0},

where g1, . . . , gr ∈ R[x]. Choose R > 0 large enough so that g0(x) = R2 − |x|2 is
nonnegative polynomial on X . We now define a cone

K(g0, . . . , gr) :=
{

σ0 + σ1g0 +

r
∑

i=1

ϕ(gi)gi : σ0, σ1 ∈
∑

R[x]2, ϕ ∈
∑

R[t]2
}

.

By the argument in the proof of Theorem 1.1 we obtain

Corollary 2.1. If f ∈ R[x] is strictly positive on the set X, then f ∈ K(g0, . . . , gr).

Proof. By Lemma 1.2, there exists ϕ ∈ ∑

R[t]2 such that

h(x) = f(x)−
r

∑

i=1

ϕ(gi(x))gi(x) > 0
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for |x| ≤ R. Since {x ∈ Rn : |x| ≤ R} = {x ∈ Rn : g0(x) ≥ 0}, Putinar’s Posi-
tivstellensatz (or Schmüdgen’s Positivstellensatz, because P (g0) = T (g0)) yields

h ∈
{

σ0 + σ1g0 : σ0, σ1 ∈
∑

R[x]2
}

= K(g0),

which completes the proof. �

Corollary 2.1 also follows from Schweighofer’s result [31, Lemma 2.3] and the
Putinar theorem.

Remark 2.2. We may use the Lasserre algorithm for minimization of a polyno-
mial f on a compact basic semialgebraic set X by using K(g, g1, . . . , gr) instead
of P (g, g1, . . . , gr). In fact, we can use the set Kk(g, g1, . . . , gr) consisting of all
σ0 + σ1g +

∑r
i=1 ϕ(gi)gi ∈ K(g, g1, . . . , gr) such that deg σ0 ≤ k, deg σ1g ≤ k and

degϕ(gi)gi ≤ k for i = 1, . . . , r. Consider the following optimization problems:

• maximize a ∈ R such that f − a ∈ Kk(g, g1, . . . , gr),
• minimize L(f) for L : R[x]k → R, linear, L(1) = 1, L(Kk(g,g1, . . . , gr)) ⊂
[0,∞).

Denote

u∗k := sup{a ∈ R : f − a ∈ Kk(g,g1, . . . , gr)},
v∗k := inf{L(f) : L : R[x]k → R is linear, L(1) = 1, L(Kk(g,g1, . . . , gr)) ⊂ [0,∞)},

for sufficiently large k ∈ N. We see that (u∗k), (v
∗
k) are increasing sequences that

converge to f∗ (by Corollary 2.1) and u∗k ≤ v∗k ≤ f∗ for k ∈ N. �

2.1. Quantitative Łojasiewicz inequality. Let g1, . . . , gr ∈ R[x], and let G :
Rn → R be defined by

(2.2) G(x) = max{0,−g1(x), . . . ,−gr(x)}, x ∈ R
n.

Then X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} = G−1(0). Moreover,

graphG = Y0 ∪ Y1 ∪ · · · ∪ Yr,
where Y0 = X × {0},

Yi = {(x, y) ∈ R
n × R : y = −gi(x), gi(x) ≤ 0, gi(x) ≤ gj(x) for j 6= i},

for i = 1, . . . , r. Note that each set Yi, i = 0, . . . , r, is defined by r inequalities
and one equation. Let d = max{deg g1, . . . , deg gr}. We now state the well-known
Łojasiewicz inequality in a quantitative version proved in [14, Corollary 2.3] (see
also [13, Corollary 10]): there exist C,L > 0 such that

(2.3) G(x) ≥ C

(

dist(x,X)

1 + |x|d
)L

, x ∈ R
n,

with

(2.4) L ≤ d(6d− 3)n+r−1.

It follows from (2.3) that for every ρ > 0 there exists Cρ > 0 such that

(2.5) G(x) ≥ Cρ dist(x,X)L for any x ∈ B(ρ),

where B(ρ) = {x ∈ Rn : |x| ≤ ρ}. Fix R > 0 such that X ⊂ B(R). Assume that
(2.5) holds with fixed C′ = CR and L.
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Fact 2. Let η > 0. Set δ0 = C′ηL. Then for any 0 < δ ≤ δ0,

{x ∈ B(R) : gi(x) ≥ −δ for i = 1, . . . , r} ⊂ {x ∈ B(R) : dist(x,X) ≤ η}.

Indeed, take x ∈ B(R) \X such that gi(x) ≥ −δ for i = 0, . . . , r. Let G be the
function defined by (2.2). Hence by (2.5),

δ ≥ max{−g1(x), . . . ,−gr(x)} = G(x) ≥ C′ dist(x,X)L.

Thus for 0 < δ ≤ δ0 we deduce the assertion of Fact 2. �

2.2. Approximation. For ν = (ν1, . . . , νn) ∈ Nn we set |ν| = ν1 + · · · + νn and
aν = aν11 · · · aνnn , where a = (a1, . . . , an) ∈ Rn. For h ∈ R[x] of the form

h(x) =
d

∑

j=0

∑

|ν|=j

aνx
ν ,

we define

A(h,R) =

d
∑

j=0

∑

|ν|=j

|aν |Rj, B(h,R) =

d
∑

j=1

∑

|ν|=j

j|aν |Rj−1 for R > 0.

Then for x ∈ B(R) we have |h(x)| ≤ A(h,R) and by the Euler formula for
homogeneous functions, |∇h(x)| ≤ B(h,R).

Using a similar argument to the one for Theorem 1.1 we obtain the following

Proposition 2.3. Let f ∈ R[x], let X be a semialgebraic set of the form (0.1) such
that X ⊂ B(R), R > 0, and let g1, . . . , gr ∈ R[x] be polynomials satisfying (2.5)
with fixed C,L > 0. Take M,A ∈ R such that

M ≥ max{1,A(f,R),B(f,R)}, A ≥ max{1,A(gi, R)} for i = 1, . . . , r.

Take ǫ > 0, and set

ϕ(t) =

(

1

A
t− 1 +

δ

2A

)2N

,

where

0 < δ ≤ min

{

A,C
( ǫ

2M

)L
}

, N ≥ max

{

(r − 1)A− 1

2
,
A(2M + 1− δ)

δ2
,
2rA− ǫ

2ǫ

}

.

Then the function

h(x) =

r
∑

i=1

ϕ(gi(x))gi(x) ∈ Φ(g1, . . . , gr)

satisfies the following conditions:

0 ≤ h(x) < ǫ for x ∈ X,(2.6)

∀|y|≤R ∃x∈X f(y)− h(y) ≥ f(x)− h(x)− ǫ.(2.7)

Proof. It is easy to see that for the function

φ(t) = t

(

1

A
t− 1 +

δ

2A

)2N

,
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where 0 < δ < A, N > (r−1)A−1
2 , N > A(2M+1−δ)

δ2 , we have

φ(t) <
A

2N + 1
for t ∈ [0, A],(2.8)

φ(t) ≤ −2M − (r − 1)A

2N + 1
for t ≤ −δ.(2.9)

From the assumptions of M and A we have |f(x)| ≤ M , |∇f(x)| ≤ M and
|gi(x)| ≤ A for i = 1, . . . , r and x ∈ Rn such that |x| ≤ R.

Take any ǫ > 0. Let

Y := {y ∈ R
n : |y| ≤ R ∧ ∃x∈X f(y) ≥ f(x)− ǫ/2},

η :=
ǫ

2M
,

Y1 := {y ∈ R
n : |y| ≤ R ∧ dist(y,X) ≤ η}.

By the Mean Value Theorem, Y1 ⊂ Y . From Fact 2, for 0 < δ ≤ CηL we have

Y2 := {x ∈ R
n : |x| ≤ R ∧ gi(x) ≥ −δ for i = 0, . . . , r} ⊂ Y1 ⊂ Y.

Obviously h(x) ≥ 0 for x ∈ X . Since h(x) =
∑r

i=1 φ(gi(x)) and gi(x) ∈ [0, A]

for x ∈ X , by (2.8) and the assumption N ≥ 2rA−ǫ
2ǫ ≥ rA−ǫ

2ǫ we obtain (2.6).
Now we prove (2.7). Obviously it holds for y ∈ X .
Take y ∈ Y2 \X . Without loss of generality we may assume that

g1(y), . . . , gk(y) ≥ 0 and gk+1(y), . . . , gr(y) < 0

for some 0 ≤ k < r. Then there exists x ∈ X such that f(y) ≥ f(x)− ǫ
2 . So, (2.8)

and the assumption N ≥ 2rA−ǫ
2ǫ give

f(y)−h(y) ≥ f(x)− ǫ

2
−h(y) ≥ f(x)− ǫ

2
−

k
∑

i=1

φ(gi(y)) ≥ f(x)−ǫ ≥ f(x)−h(x)−ǫ.

This proves (2.7) for y ∈ Y2 \X .
Let now y ∈ {x ∈ Rn : |x| ≤ R, x 6∈ Y2}. Without loss of generality we may

assume that

g1(y), . . . , gk(y) ≥ 0, 0 > gk+1(y), . . . , gl(y) ≥ −δ, gl+1(y), . . . , gr(y) < −δ,
where 0 ≤ k ≤ l < r. Then, by the choice of M , the assumption N ≥ A(2M+1−δ)

δ2

and (2.9) we see that h(y) ≤ −2M , and so for any x ∈ X we have

f(y)− h(y) ≥ −M + 2M ≥ f(x) ≥ f(x)− h(x) ≥ f(x)− h(x) − ǫ.

This gives (2.7) in the case under consideration and ends the proof. �

Remark 2.4. If we assume that g1, . . . , gr are µ-strongly concave polynomials, i.e.,

gi(y) ≤ gi(x) + 〈y − x,∇gi(x)〉 −
µ

2
|y − x|2 for x, y ∈ R

n,

where µ > 0 and 〈· , ·〉 is the standard scalar product, then the assertion of Fact 2

holds with δ0 = η2µ/2. Hence, Proposition 2.3 holds with 0 < δ ≤ min
{

A, ǫ2µ
8M2

}

.

Remark 2.5. We can use Proposition 2.3 to minimize a polynomial f on a compact
basic semialgebraic set X . Let X ⊂ {x ∈ Rn : |x| ≤ R}. Then for any ǫ > 0, we can
effectively compute a polynomial h(x) =

∑r
i=i ϕ(gi(x))gi(x), where ϕ ∈ ∑

R[t]2,
such that

f∗ − 2ǫ ≤ inf{f(y)− h(y) : |y| ≤ R} ≤ f∗ + 2ǫ.
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To approximate f∗, we can minimize f − h on B(R). To this end we may compute

a∗∗k := sup{a ∈ R : f − h− a ∈ Pk(R
2 − |y|2)} for k ∈ N.

By the Putinar Theorem (or the Schmüdgen Theorem) we see that

a∗∗k → f∗∗ as k → ∞,

where f∗∗ := inf{f(y)− h(y) : |y| ≤ R}.
Minimization of f − h on B(R) is much simpler than minimizing f on X , be-

cause the set B(R) is described by one inequality R2 − |x|2 ≥ 0. In this case
M. Schweighofer [30] gave the rate of convergence of the sequence a∗∗k :

f∗∗ − a∗∗k ≤ c
d
√
k

for some constant c ∈ N depending on f and R2 − |y|2 and some constant d ∈ N

depending on R2 − |y|2.

3. Convex polynomials in one variable

We denote by N
∗ the set of strictly positive integers. In this section x denotes a

single variable. Let f ∈ R[x] be a nonzero polynomial. For any N ∈ N∗ we define
the following polynomial:

(3.1) ϕN (x) := (1 + x2)Nf(x).

We will find N0 ∈ N∗ such that for N ≥ N0 the polynomial ϕN is strongly convex
on a closed interval I ⊂ R, provided f is positive on I.

For positive numbers m,R,D we set

(3.2) N (m,R,D) := max

{

D

m
+

m

16D
,
(1 +R2)D

Rm
+ 1,

4D2

m2
+ 2,

(1 +R2)D

2m

}

.

We first prove that if f is a C2 function positive on a bounded interval I, then
ϕN (x) = (1 + x2)Nf(x) is convex for every N sufficiently large. We formulate this
lemma for C2 functions because restricting to polynomials does not simplify the
proof considerably.

Lemma 3.1. Let f be a C2 function positive on an interval I = [a, b] ⊂ R, and let
R ≥ max{|a|, |b|}. If m,D > 0 satisfy the conditions

(3.3) m ≤ min{f(x) : x ∈ I},

(3.4) |f ′(x)| ≤ D, |f ′′(x)| ≤ D for |x| ≤ R,

then for any N ∈ N satisfying

(3.5) N > N (m,R,D)

we have ϕ′′
N (x) > 0 for x ∈ I, thus ϕN (x) is strongly convex on I.

Proof. Denote PN = AN +BN +QN + TN , where

AN (x) = 4N(N − 1)x2f(x), BN (x) = 2N(1 + x2)f(x),

QN (x) = 4N(1 + x2)xf ′(x), TN (x) = (1 + x2)2f ′′(x).

Then

(3.6) ϕ′′
N (x) = (1 + x2)N−2PN (x).
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Let N ∈ N satisfy (3.5). To prove that ϕN is convex on I we will proceed in
several steps. From (3.3) and (3.4) we obtain

AN (x) ≥ 4N(N − 1)x2m for x ∈ I,(3.7)

BN (x) ≥ 2N(1 + x2)m for x ∈ I,(3.8)

QN (x) ≥ −4N(1 + x2)|x|D for |x| ≤ R,(3.9)

TN(x) ≥ −(1 + x2)2D for |x| ≤ R.(3.10)

Since N satisfy (3.5), we have

(3.11) N ≥ D

m
+

m

16D
.

Note that then

(3.12)
m

4D
≤

√

Nm−D

D
.

Assume now that x ∈ I, |x| < m
4D . Then obviously AN (x) ≥ 0. By (3.8) and (3.9)

we have
1

2
BN (x) +QN (x) > 0.

Also by (3.8), (3.10) and (3.12),

1

2
BN (x) + TN (x) > 0.

So for N satisfying (3.11) we have PN (x) > 0, and consequently by (3.6),

(3.13) ϕ′′
N (x) > 0 for x ∈ I, |x| < m

4D
.

We have to show now that PN (x) > 0 for x ∈ I, m
4D ≤ |x| ≤ R. By (3.5) we have

(3.14) N > max

{

(1 +R2)D

Rm
+ 1,

4D2

m2
+ 2

}

.

By (3.7) and (3.9) we see that

(3.15) AN (x) +QN(x) ≥ (−D|x|2 + (N − 1)m|x| −D)4N |x| for x ∈ I, |x| ≤ R,

and by (3.14),

−D
( m

4D

)2

+ (N − 1)m
m

4D
−D > 0

and
−DR2 + (N − 1)mR−D > 0.

Hence −D|x|2 + (N − 1)m|x| −D > 0 for m
4D ≤ |x| ≤ R, and (3.15) gives

(3.16) AN (x) +QN(x) > 0 for x ∈ I,
m

4D
≤ |x| ≤ R.

By (3.5) we have

N >
(1 +R2)D

2m
;

then, by (3.8) and (3.10), we obtain

(3.17) BN (x) + TN (x) > 0 for x ∈ I,
m

4D
≤ |x| ≤ R.

Consequently, by (3.16), (3.17) and (3.6), we have

(3.18) ϕ′′
N (x) > 0 for x ∈ I,

m

4D
≤ |x| ≤ R.
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Summing up, for N satisfying (3.5), by (3.13) and (3.18), we have ϕ′′
N (x) > 0,

x ∈ I, which means that ϕN is strongly convex on I and Lemma 3.1 is proved. �

Remark 3.2. Lemma 3.1 was proved under the assumption that the function f
is C2. If we assume that f is a polynomial which is positive except possibly at
0 ∈ R, then an analogous argument leads to a strictly convex function ϕN . More
precisely, let f ∈ R[x] be a polynomial positive on I = [a, b] except possibly at
0 ∈ R, where 0 ∈ (a, b). Then there exists N0 ∈ N such that for any N ∈ N with
N ≥ N0 the polynomial ϕN (x) is strictly convex on I.

For a polynomial of degree d of the form

(3.19) f =
d

∑

i=0

aix
d−i, a0, . . . , ad ∈ R, a0 6= 0,

and R > 0, we set

D(f,R) := max

{

1,

d−1
∑

i=0

(d− i)|ai|Rd−i−1,

d−2
∑

i=0

(d− i)(d− i− 1)|ai|Rd−i−2

}

.

We easily see that for any D ≥ D(f,R) the assumption (3.4) of Lemma 3.1 holds.
If d > 0, we define

K(f) = 1 + 2 max
1≤i≤d

∣

∣

∣

∣

ai
a0

∣

∣

∣

∣

1/i

.

Obviously K(f) > 0. It is known that if f(z) = 0, z ∈ C then |z| < K(f). Since for
d ≥ 2 the complex zeroes of f ′ and f ′′ lie in the convex hull of the set of complex
zeroes of f ,

(3.20) f , f ′ and f ′′ have no zeroes x ∈ R such that |x| ≥ K(f).

We prove a version of Lemma 3.1 for a polynomial on an arbitrary interval.
(A version of this lemma, without explicit bound for N , has been proven in the
M.Sc. thesis of I. Fau [10].)

Lemma 3.3. Let f ∈ R[x] be positive on a closed interval I ⊂ R. Let m > 0 satisfy
(3.3), and let R ≥ K(f) and D ≥ D(f,R) (or let D satisfy (3.4)). Then for any
integer N > N (m,R,D) the polynomial ϕN (x) is strongly convex on I.

Proof. By the same argument as for (3.20), we deduce that ϕ′′
N (x) for x ≤ −R has

the same sign as ϕ′′
N (−R). Analogously, ϕ′′

N (R) and ϕ′′
N (x) for x ≥ R have the

same sign. Moreover, ϕ′′
N (−R) 6= 0 and ϕ′′

N (R) 6= 0. So considering the sign of ϕ′′
N

on the intervals J1 = I ∩ [−R,R], J2 = I ∩ [R,+∞) and J3 = I ∩ (−∞,−R] we
deduce the assertion by Lemma 3.1. Note that the strong convexity of ϕN is due
to the fact that f is a polynomial. �

Remark 3.4. Under the assumptions of Lemma 3.1, and with the same argument,
we obtain the assertion of this lemma for the function ϕN,ξ(x) = (1+(x−ξ)2)Nf(x)
instead of ϕN , where ξ ∈ [−R,R], with the boundN > N (m, 2R,D). Hence, the as-
sertion of Lemma 3.3 holds for the function ϕN,ξ with the bound N > N (m, 2R,D).

The exponent N in Lemma 3.3 actually depends on the coefficients of f even
when the degree of f is fixed.
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Example 3.5. Let fk(x) = (x − k)2 + 1. Obviously fk is a convex function. We
have ϕN (x) = ((x − k)2 + 1)(1 + x2)N and ϕN (k) = (1 + k2)N , ϕ(0) = k2 + 1,

ϕN (k2 ) = (k
2

4 + 1)N+1. Assume that ϕN is convex. Then
(

k2

4
+ 1

)N+1

≤ 1

2
(k2 + 1) +

1

2
(k2 + 1)N .

So the number N (in Lemma 3.3) such that the function ϕN is convex tends to
infinity as k → ∞.

Remark 3.6. By a similar argument to that for Lemmas 3.1 and 3.3 one can prove
(see [10]): for any f ∈ R[x] positive on R and any g ∈ R[x] such that g(x) > 0 and
g′′(x) > 0 for x ∈ R there exists N0 ∈ N such that for any N ≥ N0 the polynomial
fgN is strictly convex on R.

4. Convexifying polynomials on compact sets

Let x = (x1, . . . , xn) be a system of variables and let f ∈ R[x] be a polynomial
of the form

(4.1) f =

d
∑

j=0

∑

|ν|=j

aνx
ν .

For R ≥ 0 define D(f,R) :=

max
{

1,
√

1 +R2

d
∑

j=1

∑

|ν|=j

j|aν |Rj−1, (1 + R2)

d
∑

j=2

∑

|ν|=j

j(j − 1)|aν |Rj−2
}

.

This will be a bound for the first and the second derivatives in (4.5) below.

Theorem 4.1. Let f ∈ R[x] be positive on a compact convex set X ⊂ Rn containing
at least two points. Set R = max{|x| : x ∈ X}, and let

(4.2) 0 < m ≤ min{f(x) : x ∈ X}.
Then for any D ≥ D(f,R) and any integer N ≥ N (m,R,D) the polynomial
ϕN (x) = (1 + x21 + · · ·+ x2n)

Nf(x) is strongly convex in X.

Proof. Let
A = {(α, β) ∈ R

n × R
n : 〈α, β〉 = 0, |β| = 1},

and let

(4.3) γα,β(t) :=
√

1 + |α|2βt+ α.

Clearly the family of all γα,β with (α, β) ∈ A parametrizes all affine lines in Rn.
Denote by B ⊂ A the set of all (α, β) ∈ A for which the line parametrized by γα,β
intersects X . It is easy to see that B is a compact set and

(4.4) B ⊂ {(α, β) ∈ A : |α| ≤ R}.
It suffices to prove that for any (α, β) ∈ B andN ≥ N (m,R,D) the function f ◦γα,β
is strictly convex on Iα,β = {t ∈ R : γα,β(t) ∈ X}. Since X is a compact convex
set, Iα,β is a compact interval or a point.

It is obvious that for (α, β) ∈ B the set {t ∈ R : |γα,β(t)| ≤ R} is an in-
terval centered at 0 (or a point), say [−Rα,β, Rα,β ]. Moreover, we have Iα,β ⊂
[−Rα,β, Rα,β ] ⊂ [−R,R].



CONVEXIFYING POSITIVE POLYNOMIALS AND S.O.S. APPROXIMATION 15

If f is of the form (4.1), then we easily see that for t ∈ R such that |γα,β(t)| ≤ R
we have

|(f ◦ γα,β)′(t)| ≤
√

1 +R2

d
∑

j=1

∑

|ν|=j

j|aν |Rj−1

and

|(f ◦ γα,β)′′(t)| ≤ (1 +R2)

d
∑

j=2

∑

|ν|=j

j(j − 1)|aν |Rj−2,

so

(4.5) |(f ◦ γα,β)′(t)| ≤ D, |(f ◦ γα,β)′′(t)| ≤ D for t ∈ [−Rα,β , Rα,β].

A simple computation gives

(4.6) 1 + |γα,β(t)|2 = (1 + |α|2)(1 + t2),

hence

ϕN ◦ γα,β(t) = (1 + |α|2)N (1 + t2)Nf ◦ γα,β(t).
Obviously ϕN ◦γα,β is a strongly convex function on Iα,β if and only if the function
Iα,β ∋ t 7→ (1 + t2)Nf ◦ γα,β(t) is strongly convex. Now applying Lemma 3.1 we
deduce the assertion. �

Remark 4.2. Under the assumptions of Theorem 4.1, and with the same argument,
we obtain the assertion of this theorem for the function ϕN,ξ(x) = (1+|x−ξ|2)Nf(x)
instead of ϕN , where ξ ∈ Rn, with the bound N > N (m, 2R,D).

5. Convexity at infinity

We briefly recall basic definitions. For a C2 function f in an open subset of Rn,
Hxf stands for the Hessian matrix of f at x. The associated quadratic form hx :
Rn → R reads

(5.1) hxf(y) = 〈Hxf(y), y〉.
Recall that the matrix Hxf is said to be positive semidefinite (respectively positive
definite) if hx(y) ≥ 0 for any y ∈ Rn (respectively hxf(y) > 0 for y 6= 0). Set, for
E ⊂ {1, . . . , n}, E 6= ∅,

∆f
E := det

[

∂2f

∂xi∂xj

]

i,j∈E

.

Recall a classical fact (Sylvester criterion):

Lemma 5.1. Hxf is positive semidefinite (respectively positive definite) if and only

if ∆f
E ≥ 0 (respectively ∆f

E > 0) for all nonempty E ⊂ {1, . . . , n}.
Let f ∈ R[x] and n ≥ 2. We call f locally convex (respectively locally strictly

convex or locally strongly convex ) in an open set G ⊂ Rn if any point x ∈ G has
a convex neighbourhood U ⊂ Rn such that the restriction f |U is convex (respec-
tively strictly convex or strongly convex). In particular f is locally convex in G
if and only if Hxf is positive for any x ∈ G. We say that f is convex at infinity
(respectively strictly convex at infinity or strongly convex at infinity) if there exists
R ≥ 0 such that f is locally convex (respectively locally strictly convex or locally
strongly convex) in G = {x ∈ Rn : |x| > R}. The analogous terminology will be
used for concave functions.
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Let d = deg f ≥ 0 and let f0, . . . , fd ∈ R[x] be homogeneous polynomials such
that fi = 0 or deg fi = i, and f = f0 + · · ·+ fd. Since d = deg f , we have fd 6= 0.

Lemma 5.2. If f is convex at infinity, then fd is a convex function.

Proof. Assume that fd is not convex. Then for some nonempty E ⊂ {1, . . . , n} and

x0 6= 0, ∆fd
E (x0) < 0. Since ∆fd

E is nonzero it must be a homogeneous polynomial
of degree k(d− 2), where k is the number of elements of E. Then

∆f
E(tx0) = tk(d−2)∆fd

E (x0) + F (t)

with some polynomial F (t) of degree less than k(d− 2). So ∆f
E(tx0) < 0 as t→ ∞,

hence f is not convex at infinity, which contradicts the assumption. �

To obtain the convexity of ϕN we will assume that fd(x) > 0 for x ∈ Rn \ {0}.
This assumption is natural, as the following proposition shows.

Proposition 5.3. The following conditions are equivalent:

(a) fd(x) > 0 for x ∈ Rn \ {0},
(b) there exist R > 0 and N0 ∈ N such that for any integer N ≥ N0 the

polynomial

ϕN (x) = (1 + x21 + · · ·+ x2n)
Nf(x)

is locally strongly convex on G = {x ∈ Rn : |x| > R},
(c) there exists N0 ∈ N such that for any integer N ≥ N0 the polynomial ϕN

is convex at infinity.

Proof. (a)⇒(b). We use the notations (4.3) of the proof of Theorem 4.1, namely

A = {(α, β) ∈ R
n × R

n : |β| = 1, 〈α, β〉 = 0} and γα,β(t) :=
√

1 + |α|2βt + α. We
shall use a convenient renormalization of f ◦ γα,β. For (α, β) ∈ A we set

(5.2) gα,β(t) := (
√

1 + |α|2)−df ◦ γα,β(t).
The next crucial lemma gives an estimate on the size of the coefficients of

f ◦ γα,β(t) =
d

∑

i=0

ci(α, β)t
d−i.

Lemma 5.4. There exists a constant C > 0 such that for any (α, β) ∈ A,

(5.3) |ci(α, β)| ≤ C(
√

1 + |α|2)d for i = 0, . . . , d.

Proof. It is enough to check the assertion for a monomial axk1

1 · · ·xkn
n with k1 +

· · ·+ kn ≤ d. �

Write gα,β(t) = (
√

1 + |α|2)−df ◦ γα,β(t) =
∑d

i=0 ai(α, β)t
d−i. Lemma 5.4 yields

a uniform estimate for the coefficients:

|ai(α, β)| ≤ C, i = 0, . . . , d.

By the assumption that fd(x) > 0 for x 6= 0 it follows that

a0(α, β) = fd(β) ≥ inf
|x|=1

fd(x) = e > 0,
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so for K = 1 + 2C/e we have K ≥ 1 + 2 sup(α,β)∈A maxi=1,...,d

∣

∣

ai(α,β)
a0(α,β)

∣

∣

1/i
. Take

R ≥ K and let

D ≥ max
{

1, C
d−1
∑

i=0

(d− i)Rd−i−1, C
d−2
∑

i=0

(d− i)(d− i− 1)Rd−i−2
}

.

Then g′α,β(t) ≤ D and g′′α,β(t) ≤ D for t ∈ [−R,R]. Again by the assumption that

fd(x) > 0 for x 6= 0, one can assume that there exists m > 0 such that for |x| ≥ R

we have f(x) ≥ m(
√

1 + |x|2)d. So

gα,β(t) ≥ (
√

1 + |α|2)−dm
(
√

1 + |γα,β(t)|2
)d

≥ m for |γα,β(t)| ≥ R.

To end the proof of the implication (a)⇒(b) it is enough to apply Lemma 3.3.
The implication (b)⇒(c) is trivial.
(c)⇒(a). Observe that

(5.4) fd(x) ≥ 0 for x ∈ R
n.

Indeed, suppose there exists x0 ∈ R
n \ {0} such that fd(x0) < 0. Let t ∈ R, t > 0,

be such that tx0 ∈ G. Since fd is the leading form of f , we may assume that
f(tx0) < 0. Let H ⊂ G be a compact convex neighbourhood of tx0 such that
f(x) < 0 for x ∈ H . By Theorem 4.1 there exists N0 ∈ N such that for N ≥ N0

the polynomial ϕN is strictly concave on H . This contradicts (c) and gives (5.4).
Assume to the contrary that (a) fails. Then by (5.4), f−1

d (0) 6= {0}. The leading
form of ϕN is equal to ψN (x) = (x21+· · ·+x2n)Nfd(x) and by Lemma 5.2 this form is
convex. So ψ−1

N ((−∞, 0]) is a convex set, and by (5.4), so is f−1
d (0) = f−1

d ((−∞, 0]).

Consequently, the level set f−1
d (0) is a linear subspace, say of dimension k > 0 (since

fd is a homogeneous polynomial). By choosing a suitable coordinate system, we
may assume that ψ−1

N (0) = f−1
d (0) = Rk × {0}. Since fd 6= 0, we have k < n. As

ψN |Rk+1×{0} for k+1 < n is also a convex function, we may assume that n = k+1,
and moreover that n = 2 and k = 1. Then

fd(x1, x2) = xs2f̃(x1, x2)

for some s ∈ N
∗ and a homogeneous polynomial f̃ such that f̃(x1, x2) > 0 for

(x1, x2) ∈ R2 \ {0}, and ψN (x1, x2) = xs2(x
2
1 + x22)

N f̃(x1, x2). Observe that for
ψN (x1, x2) = 1 we have x2 → 0 as x1 → ∞ or x1 → −∞. Consequently, the set
ψ−1
N ((−∞, 1]) is not convex, which contradicts the convexity of ψN . This gives (a)

and ends the proof of (c)⇒(a). The proof of Proposition 5.3 is complete. �

Theorem 5.5. Let X ⊂ Rn be a convex closed set. Assume that f is positive on X,

(5.5) f−1
d (0) = {0}

and there exists m ∈ R such that

(5.6) 0 < m ≤ inf{f(x) : x ∈ X}.
Then there exists N0 ∈ N such that for any integer N ≥ N0 the polynomial ϕN (x) =
(1 + x21 + · · ·+ x2n)

Nf(x) is strongly convex on X.

Proof. If fd(x) < 0 for some x 6= 0, then X is a compact set and the assertion
follows from Theorem 4.1.

Assume that fd(x) > 0 for any x 6= 0. If X is a bounded set, then the assertion
immediately follows from Theorem 4.1. So assume that X is unbounded. Since
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fd(x) > 0 for x 6= 0, by Proposition 5.3 there are R ≥ 0 and N1 ∈ N such that
for N ≥ N1 the polynomial ϕN is strongly (locally) convex in {x ∈ Rn : |x| ≥ R}.
By Theorem 4.1 one can assume that for N ≥ N1, the polynomial ϕN is strongly
convex on {x ∈ X : |x| ≤ R + 1}. Summing up, for N ≥ N1 the polynomial ϕN is
strongly convex on X . �

Remark 5.6. If X = Rn then, for any N large enough, ϕN (x) is not only strictly
convex, but it is a sum of squares of polynomials. More precisely, if f satisfies
the assumptions of Theorem 5.5 with X = Rn, then its homogenization, denoted
by p, satisfies the assumption of Reznick’s theorem [24, Theorem 3.12]. So after
dehomogenization of (x20+x

2
1+ · · ·+x2n)Np(x) we see that our function ϕN is a sum

of even powers of affine functions. Hence ϕN is convex and it is a sum of squares
of polynomials. However, this method cannot be applied if X is a proper subset
of Rn.

Corollary 5.7. Let X ⊂ Rn be a closed convex semialgebraic set containing at least
two points, let f ∈ R[x], and let d > deg f be an even integer. Then the following
conditions are equivalent:

(1) f is nonnegative on X,
(2) for any a, b > 0 there exists N0 ∈ N such that for any integer N ≥ N0

the polynomial ϕN (x) = (1 + |x|2)N (f(x) + a|x|d + b) is a strongly convex
function on X.

Proof. The polynomial f(x) + a|x|d + b satisfies the assumptions of Theorem 5.5
if a, b > 0. Hence the implication (1)⇒(2) follows from Theorem 5.5. To prove
the converse assume that f(x0) < 0 for some x0 ∈ IntX . Note that X , being
convex and containing at least two points, has nonempty (relative) interior. Then
for sufficiently small a, b and N large enough, the function −ϕN is strictly convex
in a neighbourhood of x0. So ϕN is strongly concave in a neighbourhood of x0,
which is absurd. �

For homogeneous polynomials on Rn we obtain the following extension of Rez-
nick’s result mentioned in the Introduction. For a fixed f ∈ R[x] and a positive
integer N , we set ψN (x) := (x21 + · · ·+ x2n)

Nf(x).

Corollary 5.8. Let f ∈ R[x] be a nonzero homogeneous polynomial. The following
conditions are equivalent:

(a) f(x) > 0 for x ∈ Rn \ {0},
(b) there exists N1 ∈ N such that for any N ≥ N1 the polynomial ψN is a sum

of even powers of linear functions,
(c) there exists N2 ∈ N such that for any N ≥ N2 the polynomial ψN is a

convex function,
(d) there exists N3 ∈ N such that for any N ≥ N3 the polynomial ψN is a

strictly convex function.

Proof. The implication (a)⇒(b) is Reznick’s result (see [24, Theorem 3.12]). The
implications (b)⇒(c) and (d)⇒(c) are trivial. The implication (c)⇒(a) follows by
the same argument as (c)⇒(a) in Proposition 5.3.

To complete the proof it suffices to prove (a)⇒(d). We will investigate the
convexity of ψN on each line l in R

n. If 0 ∈ l then clearly ψN |l is convex, so we
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will check the convexity of ψN on lines l ⊂ Rn \ {0}. Since f is homogeneous, it
suffices to consider the convexity of ψN on lines of the form

l = {a+ bt : t ∈ R}, (a, b) ∈ A,

where A := {(a, b) ∈ Rn × Rn : |a| = |b| = 1, 〈a, b〉 = 0}. Clearly A is compact.
Denote g(t, a, b) = f(a+ bt) for t ∈ R, (a, b) ∈ A. Then

g(t, a, b) = g0(a, b)t
d + g1(a, b)t

d−1 + · · ·+ gd(a, b),

and g0(a, b) = f(b). So by (a) there exists m > 0 such that g0(a, b) > m for
(a, b) ∈ A. Moreover, f(x) ≥ m for x ∈ Rn, |x| ≥ 1, hence

g(t, a, b) ≥ m for t ∈ R and (a, b) ∈ A.

Take R,D ∈ R such that

R ≥ 1 + 2 max
(a,b)∈A

max
1≤i≤d

∣

∣

∣

∣

gi(a, b)

g0(a, b)

∣

∣

∣

∣

1/i

,

and

D ≥ max
(a,b)∈A

max
{

1,

d−1
∑

i=0

(d− i)|gi(a, b)|Rd−i−1,

d−2
∑

i=0

(d− i)(d− i− 1)|gi(a, b)|Rd−i−2
}

.

Since for (a, b) ∈ A,

ψN (a+ bt) = (1 + t2)Ng(t, a, b),

Lemma 3.3 implies that ψN is a strictly convex function provided N ≥ N (m,R,D).
This gives the implication (a)⇒(d) and completes the proof. �

Remark 5.9. Let N1, N2, N3 be the minimal values in Corollary 5.8. Obviously
N2 ≤ N1 and N2 ≤ N3. It is not clear to the authors whether the equalities
N1 = N2 = N3 hold.

By a result of Blekherman [5], [6] there exist strictly convex positive forms that
are not sums of squares. However, this does not answer our question, because we are
interested in the smallest numbers Ni such that for every N ≥ Ni the polynomials
ψN are respectively: sum of even powers of linear functions, convex and strictly
convex. Note that multiplying a convex form by (x21 + · · · + x2n)

N may produce
a nonconvex form.

For instance the polynomial f(x, y) = (x− ky)2 + y2 is a strictly convex sum of
squares of linear forms. However for sufficiently large k we can find N ≥ 1 such that
the polynomial ψN is not convex (cf. Example 3.5) and consequently not a sum of
even powers of linear functions.

6. A proximity algorithm for a polynomial on a convex set

Let X ⊂ Rn be a compact convex semialgebraic set. We consider a polynomial
f restricted to X . We propose an algorithm, based on our convexification method,
which produces a sequence converging to a critical point of f on X .

Using a translation and a dilatation we may assume that X is contained in a
ball of radius 1/2. Replacing f by f + c, where c is a constant large enough we
may assume that m = inf{f(x) : x ∈ X} = D > 0, where D is a bound for the
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absolute value of the first and the second directional derivatives of f (along vectors
of norm 1). Indeed, we may increase D in such a way that |f(x)| ≤ D for x ∈ X .
Then we put c = 2D, hence f(x)+c ≥ D for x ∈ X . Since now m = D and 2R = 1,
by (3.2) we have N (m, 2R,D) = 6.

By Remark 4.2, with N = 6 and some µ > 0 the function

ϕN,ξ(x) := (1 + |x− ξ|2)Nf(x)
is µ-strongly convex on X for any ξ ∈ X . This means that

(6.1) ϕN,ξ(y) ≥ ϕN,ξ(x) + 〈y − x,∇ϕN,ξ(x)〉+
µ

2
|y − x|2 for x, y ∈ X .

Recall that any strictly convex, hence in particular any strongly convex, function ϕ
on a convex closed set X admits a unique point, denoted by argminX ϕ, at which
ϕ attains its minimum on X .

Choose an arbitrary point a0 ∈ X , and by induction set

(6.2) aν := argminX ϕN,aν−1
.

Lemma 6.1. For any ν ∈ N we have

|aν+1 − aν | = dist(aν , f
−1(f(aν+1)) ∩X).

Proof. If |a′ − aν | < |aν+1 − aν | for some a′ ∈ f−1(f(aν+1)) ∩X , then by the defi-
nition of ϕN,aν

we have ϕN,aν
(a′) < ϕN,aν

(aν+1), which contradicts the definition
of aν+1. So, |aν+1 − aν | ≤ dist(aν , f

−1(f(aν+1)) ∩X). The opposite inequality is
obvious. �

Lemma 6.2. For any ν ∈ N we have

f(aν+1) ≤
f(aν)− µ

2 |aν+1 − aν |2
(1 + |aν+1 − aν |2)N

.

In particular the sequence f(aν) is decreasing.

Proof. Since ϕN,aν
is strongly convex, the definition of aν+1 implies that the func-

tion

[0, 1] ∋ t 7→ ϕN,aν
(aν + t(aν+1 − aν))

decreases, so 〈aν+1 − aν ,∇ϕN,aν
(aν+1)〉 ≤ 0. Thus, by (6.1) we see that

ϕN,aν
(aν) ≥ ϕN,aν

(aν+1) +
µ

2
|aν − aν+1|2.

Again, by the definition of ϕN,aν
we have

f(aν) ≥ (1 + |aν+1 − aν |2)Nf(aν+1) +
µ

2
|aν+1 − aν |2.

This ends the proof of the lemma. �

Now we estimate from below the length of |aν − aν+1|, i.e., of the step in our
sequence. It is enough to consider only the one-dimensional case with aν = 0. By
a direct computation we obtain:

Lemma 6.3. Let f : [0, η] → R be a C1 function such that 0 <f ≤ C and f ′ ≤ −η
on [0, η] for some C ≥ 1

2 and η > 0. Assume that ϕN (x) = (1+x2)Nf(x) is strictly

convex on [0, η]. Then b1 := argmin[0,η] ϕN ≥ η
2NC . Hence f(0)− f(b1) ≥ η2

2NC .
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Let f be a C1 function in a neighborhood U of a closed set X ⊂ Rn. Recall that
a ∈ X is a lower critical point of f on X if

(6.3) 〈∇f(a), x− a〉 ≥ 0 for x ∈ X in a neighbourhood of a.

We denote by ΣXf the set of lower critical points of f on X , and by Σf := {x ∈
U : ∇f(x) = 0} the set of ordinary critical points of f . The following proposition
recalls all the necessary properties of these sets.

Proposition 6.4. Assume that X ⊂ R
n is closed and f : Rn → R is a C1 function.

Then:

(1) X ∩ Σf ⊂ ΣXf ;
(2) if f restricted to X has a local minimum at a, then a ∈ ΣXf ;
(3) if M ⊂ X is a smooth manifold and a ∈M ∩ΣXf , then for any z ∈ TaM ,

〈∇f(a), z〉 = 0;

(4) if f is a polynomial and X is semialgebraic, then ΣXf is a semialgebraic
set and f(ΣXf) is a finite set.

Proof. The first three statements follow immediately from the definition. If f is
a polynomial and X is semialgebraic then the set ΣXf is described by a first
order formula (in the language of ordered fields) so it is semialgebraic as well (see
e.g. [7, Chapter 2]). Hence ΣXf has finitely many connected components (in fact
connected by piecewise C1 semialgebraic arcs). Each such component is a finite
union of smooth manifolds, hence by condition (3) the function f is constant on it.
So f(ΣXf) is a finite set. �

Theorem 6.5. Let X ⊂ Rn be a compact convex semialgebraic set and f : Rn → R

a positive polynomial on X. Let aν be the sequence defined by (6.2) with a0 ∈ X.
Then the limit

a∗ = lim
ν→∞

aν

exists, and a∗ ∈ ΣXf .

Remark 6.6. Note that Lemmas 6.1 and 6.2 hold true for any function of class C2

in a neighborhood of X . However, they are not sufficient to prove the convergence
of the sequence aν (at least we have not been able to do this). For f polynomial the
convergence of the sequence aν will follow from some fine properties of the gradient
trajectories of polynomials.

Proof of Theorem 6.5. First, assuming that a∗ = limν→∞ aν exists, we shall prove
that a∗ ∈ ΣXf . Suppose that a∗ /∈ ΣXf , so there exists x ∈ X with 〈∇f(a∗), x −
a∗〉 < 0. Then there exists η > 0 such that 〈∇f(a∗ + t(x − a∗)), x − a∗〉 < −η for
t ∈ [0, η]. By continuity the same holds with a∗ replaced by aν for aν sufficiently

close to a∗. Moreover, we may assume that |f(aν)−f(a∗)| < η2

2NC , where C ≥ f(x)
for x ∈ X . Hence by continuity and Lemma 6.3 we obtain f(aν+1) < f(a∗), which
is a contradiction.

Recall now the Comparison Principle [1, Lemma 4.2]. Let f : Rn → R be a
polynomial and let M ⊂ Rn be a smooth bounded semialgebraic set. Let ∇f(x)
denote the gradient of f with respect to the standard Euclidean scalar product,
and ∇Mf(x) its projection on TxM , the tangent space to M at x.

Let ΓM ⊂M be a semialgebraic curve meeting each level set of f and such that
for every point y ∈ ΓM we have |∇Mf(y)| ≤ |∇Mf(x)| for all x ∈ f−1(f(y)) ∩M .
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By standard arguments (semialgebraic choice) such a curve always exists; it is called
a talweg or a ridge-valley line of f in X . Then the following lemma holds.

Lemma 6.7 (Comparison Principle). For every pair of values a < b taken by f , the
length of any trajectory of ∇Mf lying in f−1((a, b)) ∩M is bounded by the length
of ΓM ∩ f−1((a, b)).

To prove that limν→∞ aν exists recall first that by Lemma 6.2 we have

f(aν) ≥ f(aν+1) ≥ · · · ≥ f∗ := lim
ν→∞

f(aν).

By Proposition 6.4(4) the set f(ΣXf) of critical values of f on X is finite, so we
may assume that either the sequence f(aν) is eventually constant, or (f(aν), f∗) ∩
f(ΣXf) = ∅ for ν large enough. Clearly in the first case, by Lemma 6.2, also the
sequence aν is eventually constant. So we assume from now on that the sequence
f(aν) is strictly decreasing and (f(a0), f∗) ∩ f(ΣXf) = ∅.

The set X is semialgebraic, so there exists a stratification X =
⋃

i∈I Mi, i.e., a
finite disjoint union of connected smooth semialgebraic sets, called strata. Moreover
M i \Mi is a union of some of the Mj’s of dimension smaller than dimMi (cf. [3,
Chapter 2]). We can refine this stratification in such a way that f is of constant
rank on each Mi, i ∈ I; then our polynomial f restricted to Mi is either a constant
or a submersion. Let I∗ = {i ∈ I : rank f |Mi

= 1}; note that CXf =
⋃

i∈I\I∗ f(Mi)

is a finite set. Since the sequence f(aν) is strictly decreasing we may assume that
(f(a0), f∗) ∩CXf = ∅.

To each Mi, i ∈ I∗, we can associate a semialgebraic curve Γi := ΓMi
which is a

talweg of f in Mi. Set Γ :=
⋃

i∈I∗ Γi.

Recall that, by Lemma 6.1, aν+1 is the point closest to aν on the fiber f−1(f(aν+1))
∩X . To estimate |aν+1−aν | we will construct a continuous curve γν : [tν , tν+1] → X
such that γν(tν) = aν and f(γν(tν+1)) = f(aν+1). By Lemma 6.1 we will then have
|aν+1 − aν | ≤ length(γν). The curve γν will be a piecewise trajectory of −∇Mi

f
(more precisely, of −∇Mi

f/|∇Mi
f |). Hence, by the Comparison Principle,

|aν+1 − aν | ≤ length(γν) ≤ length(Γ ∩ f−1((f(aν+1), f(aν)))).

Recall that Γ, being a bounded semialgebraic curve, has finite length (see e.g. [32,
Corollary 5.2]); therefore

∞
∑

ν=0

|aν+1 − aν | ≤ length(Γ ∩ f−1((f∗, f(a0)))) <∞.

So the series
∑∞

ν=0 |aν+1 − aν | is convergent, which implies that a∗ = limν→∞ aν
exists.

Construction of the curve γν . Assume that aν belongs to a stratum Mi for some
i ∈ I∗. Let γν : [tν , t

1
ν) → Mi be a trajectory of Vi := −∇Mi

f/|∇Mi
f |. By a

trajectory we mean a maximal solution (to the right) of γ′ = Vi in Mi. Note that

b∗1 = lim
sրt1ν

γν(s) ∈M i \Mi

exists. Indeed, by Lemma 6.7 any maximal trajectory of Vi has finite length so it
has a limit in M i. But the vector field Vi does not vanish on Mi, hence this limit
belongs to M i \Mi, which is a union of strata of smaller dimension.

If f(b∗1) ≤ f(aν+1) then there exists tν+1 ∈ [tν , t
1
ν ] such that f(γν(tν+1)) =

f(aν+1), so γν restricted to [tν , tν+1] is the curve we are looking for. Now if f(b∗1) >
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f(aν+1), then b∗1 ∈ Mi1 for some i1 ∈ I∗ such that dimMi1 < dimMi. We repeat
the above construction on Mi1 starting from the point b∗1, then we glue it with
the previous one. In this way the dimension of the stratum in which our curve γν
stays is strictly decreasing, but this dimension is always at least 1. Finally we will
reach the level f−1(aν+1). Indeed, when our curve arrives at a point in a stratum
of dimension 1 we follow this stratum until we arrive at the level f−1(aν+1) since
(f(a0), f∗) ∩CXf = ∅. The estimate

length(γν) ≤ length(Γ ∩ f−1(f(aν+1), f(aν)))

follows from Comparison Principle. �

Remark 6.8. In the case when X is a closed ball (or more generally when X has a
smooth boundary) the length of the curve Γ can be effectively estimated (see [1]).
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