
Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

Vitaly Feldman
IBM Research - Almaden

San Jose, CA, USA
Email: vitaly@post.harvard.edu

Jan Vondrak
IBM Research - Almaden

San Jose, CA, USA
Email: jvondrak@us.ibm.com

Abstract—We investigate the approximability of several
classes of real-valued functions by functions of a small number
of variables (juntas). Our main results are tight bounds on
the number of variables required to approximate a function
f : {0, 1}n → [0, 1] within `2-error ε over the uniform
distribution:

• If f is submodular, then it is ε-close to a function of
O(1

ε2
log 1

ε
) variables. This is an exponential improvement

over previously known results [1]. We note that Ω(1
ε2

)
variables are necessary even for linear functions.

• If f is fractionally subadditive (XOS) it is ε-close to a
function of 2O(1/ε2) variables. This result holds for all
functions with low total `1-influence and is a real-valued
analogue of Friedgut’s theorem for boolean functions. We
show that 2Ω(1/ε) variables are necessary even for XOS
functions.

As applications of these results, we provide learning al-
gorithms over the uniform distribution. For XOS func-
tions, we give a PAC learning algorithm that runs in time
21/poly(ε)poly(n). For submodular functions we give an al-
gorithm in the more demanding PMAC learning model [2]
which requires a multiplicative (1 + γ) factor approximation
with probability at least 1− ε over the target distribution. Our
uniform distribution algorithm runs in time 21/poly(γε)poly(n).
This is the first algorithm in the PMAC model that can achieve
a constant approximation factor arbitrarily close to 1 for all
submodular functions (even over the uniform distribution). It
relies crucially on our approximation by junta result. As follows
from the lower bounds in [1] both of these algorithms are
close to optimal. We also give applications for proper learning,
testing and agnostic learning with value queries of these classes.

Keywords-submodular; fractionally-subadditive; approxima-
tion; junta; PAC learning; testing

I. INTRODUCTION

In this paper, we study the structure and learnability of
several classes of real-valued functions over the uniform
distribution on the Boolean hypercube {0, 1}n. The primary
class of functions that we consider is the class of submodular
functions. Submodularity, a discrete analog of convexity, has
played an essential role in combinatorial optimization [3],
[4], [5]. Recently, interest in submodular functions has been
revived by new applications in algorithmic game theory as
well as machine learning. In machine learning, several ap-
plications [6], [7] have relied on the fact that the information
provided by a collection of sensors is a submodular function.
In algorithmic game theory, submodular functions have

found application as valuation functions with the property of
diminishing returns [8]. Along with submodular functions,
other related classes have been studied in the context of
algorithmic game theory context: coverage functions, gross
substitutes, fractionally subadditive (XOS) functions, etc. It
turns out that these classes are all contained in a broader
class, that of self-bounding functions, introduced in the
context of concentration of measure inequalities [9]. We
refer the reader to Section II for definitions and relationships
of these classes.

Our focus in this paper is on structural properties of these
classes of functions, specifically on their approximability
by juntas (functions of a small number of variables) over
the uniform distribution on {0, 1}n. Approximations of
various function classes by juntas is one of the fundamental
topics in Boolean function analysis [10], [11], [12], [13]
with a growing number of applications in learning theory,
computational complexity and algorithms [14], [15], [16],
[17], [1]. A classical result in this area is Friedgut’s theorem
[11] which states that every boolean function f is ε-close
to a function of 2O(Infl(f)/ε2) variables, where Infl(f) is the
total influence of f (see Sec. IV-A for the formal definition).
Such result is not known for general real-valued functions,
and in fact one natural generalization Freidgut’s theorem is
known not to hold [16]. However, it was recently shown [1]
that every submodular function with range [0, 1] is ε close
in `2-norm to a 2O(1/ε2)-junta. Stronger results are known
in the special case when a submodular function only takes
k different values (for some small k). For this case Blais et
al. prove existence of a junta of size (k log(1/ε))O(k) [18]
and Feldman et al. give (2k/ε)5 bound [1].

As in [1], our interest in approximation by juntas is
motivated by applications to learning of submodular and
XOS functions. The question of learning submodular func-
tions from random examples was first formally considered
by Balcan and Harvey [2] who motivate it by learning of
valuation functions. Reconstruction of submodular up to
some multiplicative factor from value queries (which allow
the learner to ask for the value of the function at any point)
was also considered by Goemans et al. [19]. These works
and wide-spread applications of submodular functions have
recently lead to significant attention to several additional
variants of the problem of learning and testing submodular

functions as well as their structural properties [20], [21],
[22], [23], [24], [25], [1], [18]. We survey related work in
more detail in Sections I-A and I-B.

A. Our Results

Our work addresses the following two questions: (i) what
is the optimal size of junta that ε-approximates a submodular
function, and in particular whether the known bounds are
optimal; (ii) which more general classes of real-valued
functions can be approximated by juntas, and in particular
whether XOS functions have such approximations.

In short, we provide the following answers: (i) For
submodular functions, the optimal ε-approximating junta
has size O(1

ε2 log 1
ε). This is an exponential improvement

over the bounds in [1], [18] which shows that submodular
functions behave almost as linear functions (which are
submodular) and are simpler than XOS functions which
require a 2Ω(1/ε)-junta to approximate. This result is proved
using new techniques. (ii) All functions with range in [0, 1]
and constant total `1-influence can be approximated in `2-
norm by a 2O(1/ε2)-junta. We show that this captures sub-
modular functions, XOS and even self-bounding functions.
This result is a real-valued analogue of Friedgut’s theorem
and is proved using the same technique.

We now describe these structural results formally and then
describe new learning and testing algorithms that rely on
them.

1) Structural results: Our main structural result is ap-
proximation of submodular functions by juntas.

Theorem 1. For any ε ∈ (0, 1
2) and any submodular func-

tion f : {0, 1}n → [0, 1], there exists a submodular function
g : {0, 1}n → [0, 1] depending only on a subset of variables
J ⊆ [n], |J | = O(1

ε2 log 1
ε), such that ‖f − g‖2 ≤ ε.

In the special case of submodular functions that take
values in {0, 1, . . . , k} and ε being the disagreement proba-
bility our result can be simplified to give a junta of size
O(k log(k/ε)). This is an exponential improvement over
bounds in both [1] and [18] (see Corollary 15 for a formal
statement).

Our proof is based on a new procedure that selects
variables that are included in the approximating junta for a
submodular function f . We view the hypercube as subsets of
{1, 2, . . . , n} and refer to f(S∪{i})−f(S) as the marginal
value of variable i on set S. Iteratively, we add a variable
i if its marginal value is large enough with probability at
least 1/2 taken over sparse random subsets of the variables
that are already chosen. One of the key pieces of the proof
is the use a “boosting lemma1” on down-monotone events
of Goemans and Vondrak [26]. We use it to show that our
criterion for selection of the variables implies that, with

1The terminology comes from [26] and has no connection with the notion
of boosting in machine learning.

very high probability over a random and uniform choice
of a subset of selected variables, the marginal value of each
of the variables that are excluded is small. The probability
of having small marginal value is high enough to apply a
union bound over all excluded variables. Bounded marginal
values are equivalent to Lipschitzness of the function and
allow us to rely on concentration of Lipschitz submodular
functions to replace the functions of excluded variables by
constants. Concentration bounds for submodular functions
were first given by Boucheron et al. [9] and are also a crucial
component of some of the prior works in this area [2], [20],
[1].

One application of this procedure allows us to reduce the
number of variables from n to O(1

ε2 log n
ε). This process

can be repeated until the number of variables becomes
O(1

ε2 log 1
ε).

Using a more involved argument based on the same ideas
we show that monotone submodular functions can with
high probability be multiplicatively approximated by a junta.
Formally, g is an multiplicative (α, ε)-approximation to f
over a distribution D, if PrD[f(x) ≤ g(x) ≤ αf(x)] ≥ 1−ε.
In the PMAC learning model, introduced by Balcan and
Harvey [2] a learner has to output a hypothesis that mul-
tiplicatively (α, ε)-approximates the unknown function. It is
a relaxation of the worst case multiplicative approximation
used in optimization but is more demanding than the `1/`2-
approximation that is the main focus of our work. We prove
the following in the full version [27]:

Theorem 2. For every monotone submodular function f :
{0, 1}n → R+ and every γ, ε ∈ (0, 1), there is a monotone
submodular function h : {0, 1}J → R+ depending only on
a subset of variables J ⊆ [n], |J | = O(1

γ2 log 1
γε log 1

ε) such
that h is a multiplicative (1 +γ, ε)-approximation of f over
the uniform distribution.

We then show that broader classes of functions such as
XOS and self-bounding can also be approximated by juntas,
although of an exponentially larger size. We denote by
Infl1(f) the total `1-influence of f and by Infl2(f) the total
`22-influence of f (see Sec. IV-A for definitions). We prove
the result via the following generalization of the well-known
Friedgut’s theorem for boolean functions.

Theorem 3. Let f : {0, 1}n → R be any function
and ε > 0. There exists a function g : {0, 1}n → R
depending only on a subset of variables J ⊆ [n], |J | =
2O(Infl2(f)/ε2) · (Infl1(f))3/ε4 such that ‖f − g‖2 ≤ ε. For
a submodular, XOS or self-bounding f : {0, 1}n → [0, 1],
Infl2(f) ≤ Infl1(f) = O(1), giving |J | = 2O(1/ε2).

Friedgut’s theorem gives approximation by a junta of size
2O(Infl(f)/ε2) for a boolean f . For a boolean function total
influence Infl(f) (also referred to as average sensitivity) is
equal to both Infl1(f) and Infl2(f) (up to a fixed constant
factor). Previously it was observed that Friedgut’s theorem

is not true if Infl2(f) is used in place of Infl(f) in the
statement [16]. However we show that with an additional
factor which is just polynomial in Infl1(f) one can obtain
a generalization. O’Donnell and Servedio [16] generalized
the Friedgut’s theorem to bounded discretized real-valued
functions. They prove a bound of 2O(Infl2(f)/ε2) · γ−O(1),
where γ is the discretization step. This special case is easily
implied by our bound. Technically, our proof is a simple
refinement of the proof of Friedgut’s theorem.

The second component of this result is a simple proof that
self-bounding functions (and hence submodular and XOS)
have constant total `1-influence. An immediate implication
of this fact alone is that self-bounding functions can be
approximated by functions of O(1/ε2) Fourier degree. For
the special case of submodular functions this was proved
by Cheraghchi et al. also using Fourier analysis, namely, by
bounding the noise stability of submodular functions [22].
Our more general proof is also substantially simpler.

We show that this result is almost tight, in the sense that
even for XOS functions 2Ω(1/ε) variables are necessary for
an ε-approximation in `1 (see Thm. 21). Thus we obtain an
almost complete picture, in terms of how many variables
are needed to achieve an ε-approximation depending on the
target function — see Figure 1.

2) Applications: We provide several applications of our
structural results to learning and testing. These applications
are based on new algorithms as well as standard approaches
to learning over the uniform distribution.

For submodular functions our main application is a PMAC
learning algorithm over the uniform distribution.

Theorem 4. There exists an algorithm A that given γ, ε ∈
(0, 1] and access to random and uniform examples of a
submodular function f : {0, 1}n → R+, with probability
at least 2/3, outputs a function h which is a multiplicative
(1 + γ, ε)-approximation f (over the uniform distribution).
Further, A runs in time Õ(n2) · 2Õ(1/(εγ)2) and uses
log(n) · 2Õ(1/(εγ)2) examples.

The main building block of this algorithm is an algorithm
that finds an `2-approximating junta of size Õ(1/ε2) whose
existence is guaranteed by Theorem 1. The main challenge
here is that the criterion for including variables used in
the proof of Theorem 1 cannot be (efficiently) evaluated
using random examples alone. Instead we give a general
algorithm to find a larger approximating junta whenever an
approximating junta exists. This algorithm relies only on
submodularity of the function and in our case finds a junta
of size Õ(1/ε5). From there one can easily use brute force
to find a Õ(1/ε2)-junta in time 2Õ(1/ε2).

We show that using the function g returned by this
building block we can partition the domain into 2Õ(1/ε2)

subcubes such that on a constant fraction of those subcubes
g gives a multiplicative (1 + γ, ε) approximation. We then
apply the building block recursively for O(log(1/ε)) levels.

We remark that our PMAC algorithm does not use the
multiplicative approximation by a junta given in Theorem
2 since in this case we do not know how to find an
approximating junta from random examples and it only
applies to monotone submodular functions.

In addition, the algorithm for finding close-to-optimal
`2-approximating junta allows us to learn properly (by
outputting a submodular function) in time 2Õ(1/ε2)poly(n).
Using a standard transformation we can also test whether
the input function is submodular or ε-far (in `1) from
submodular, in time 2Õ(1/ε2) · poly(n) and using just
2Õ(1/ε2) + poly(1/ε) log n random examples. (Using earlier
results, this would have been possible only in time doubly-
exponential in ε.)

Using the junta and low Fourier degree approximation
for self-bounding functions (Theorem 3), we give a PAC
learning algorithm for XOS functions.

Theorem 5. There exists an algorithm A that given ε > 0
and access to random uniform examples of an XOS function
f : {0, 1}n → [0, 1], with probability at least 2/3, outputs a
function h, such that ‖f −h‖1 ≤ ε. Further, A runs in time
2O(1/ε4)poly(n) and uses 2O(1/ε4) log n random examples.

In this case the algorithm is fairly standard: we use
the fact that XOS functions are monotone and hence their
influential variables can be detected from random examples
(as for example in [29]). Given the influential variables we
can exploit the low Fourier degree approximation to find a
hypothesis using `1 regression over the low degree parities
(as done in [1]).

This algorithm naturally extends to any monotone real-
valued function of low total `1-influence, of which XOS
functions are a special case. Using the algorithm in Theorem
5 we also obtain a PMAC-learning algorithm for XOS
functions using the same approach as we used for sub-
modular functions. However the dependence of the running
time and sample complexity on 1/γ and 1/ε is doubly-
exponential in this case. To our knowledge, this is the
first PMAC learning algorithm for XOS functions that can
achieve constant approximation factor in polynomial time
for all XOS functions.

We give the details of these results and several additional
implications of our structural results to agnostic learning and
testing in the full version of this work [27].

B. Related Work

Reconstruction of submodular functions up to some multi-
plicative factor (on every point) from value queries was first
considered by Goemans et al. [19]. They show a polynomial-
time algorithm for reconstructing monotone submodular
functions with Õ(

√
n) factor approximation and prove a

nearly matching lower bound. This was extended to the class
of all subadditive functions in [23] which studies small-size
approximate representations of valuation functions (referred

Class of functions junta size lower bound junta size upper bound
linear Ω(1/ε2) [Folkl., see also [27]] O(1/ε2) [Folkl.]

coverage as above O(1/ε2) [28]
submodular as above O(1/ε2 · log(1/ε)) [Thm. 1]

XOS and self-bounding 2Ω(1/ε) [Thm. 21] 2O(1/ε2) [Thm. 3]
constant total `1-influence 2Ω(1/ε) [11] 2O(1/ε2) [Thm. 3]
constant total `22-influence Ω(n) [16] n

Figure 1. Overview of junta results: bounds on the size of a junta achieving an ε-approximation in `2 for a function with range [0, 1].

to as sketches). Theorem 2 shows that allowing an ε error
probability (over the uniform distribution) makes it possi-
ble to get a multiplicative (1 + γ)-approximation using a
poly(1/γ, log (1/ε))-sized sketch. This sketch can be found
in polynomial time using value queries.

Balcan and Harvey initiated the study of learning submod-
ular functions from random examples coming from an un-
known distribution and introduce the PMAC learning model
described above [2]. They give a factor

√
n PMAC learn-

ing algorithm and show an information-theoretic factor- 3
√
n

inapproximability for submodular functions. Subsequently,
Balcan et al. gave a distribution-independent PMAC learning
algorithm for XOS functions that achieves factor Õ(

√
n)

approximation and showed that this it is essentially optimal
[24]. They also give a PMAC learning algorithm in which
the number of clauses defining the target XOS function
determines the complexity and approximation factor that can
be achieved (for polynomial-size XOS functions it implies
O(nβ)-approximation factor in time nO(1/β) for any β > 0).

The lower bound in [2] also implies hardness of learning
of submodular function with `1(or `2)-error: it is impossible
to learn a submodular function f : {0, 1}n → [0, 1] in
poly(n) time within any nontrivial `1-error over general
distributions. We emphasize that these strong lower bounds
rely on a very specific distribution concentrated on a sparse
set of points, and show that this setting is very different
from the setting of uniform/product distributions which is
the focus of this paper.

For product distributions, Balcan and Harvey show that
1-Lipschitz monotone submodular functions of minimum
nonzero value at least 1 have concentration properties imply-
ing a PMAC algorithm with a multiplicative (O(log 1

ε), ε)-
approximation [2]. The approximation is by a constant func-
tion and the algorithm they give approximates the function
by its mean on a small sample. Since a constant is a function
of 0 variables, their result can be viewed as an extreme case
of approximation by a junta. Our result gives multiplicative
(1 + γ, ε)-approximation for arbitrarily small γ, ε > 0. The
main point of Theorem 2, perhaps surprising, is that the
number of required variables grows only polynomially in
1/γ and logarithmically in 1/ε.

Learning of submodular functions with additive rather
than multiplicative guarantees over the uniform distribution

was first considered by Gupta et al. who were motivated
by applications in private data release [20]. They show
that submodular functions can be ε-approximated by a
collection of nO(1/ε2) ε2-Lipschitz submodular functions.
Concentration properties imply that each ε2-Lipschitz sub-
modular function can be ε-approximated by a constant. This
leads to a learning algorithm running in time nO(1/ε2),
which however requires value queries in order to build the
collection. Cheraghchi et al. use an argument based on
noise stability to show that submodular functions can be
approximated in `2 by functions of O(1/ε2) Fourier degree
[22]. This leads to an nO(1/ε2) learning algorithm which
uses only random examples and, in addition, works in the
agnostic setting. Most recently, Feldman et al. show that the
decomposition from [20] can be computed by a low-rank
binary decision tree [1]. They then show that this decision
tree can then be pruned to obtain depth O(1/ε2) decision tree
that approximates a submodular function. This construction
implies approximation by a 2O(1/ε2)-junta of Fourier degree
O(1/ε2). They used these structural results to give a PAC
learning algorithm running in time poly(n) · 2O(1/ε4). Note
that our multiplicative (1 + γ, ε)-approximation in this case
implies O(γ+ε) `2-error (but `2-error gives no multiplicative
guarantees). In [1] it is also shown that 2Ω(ε−2/3) random
examples (or even value queries) are necessary to PAC
learn monotone submodular functions to `1-error of ε. This
implies that our learning algorithms for submodular and
XOS functions cannot be substantially improved.

In a recent work, Raskhodnikova and Yaroslavtsev con-
sider learning and testing of submodular functions taking
values in the range {0, 1, . . . , k} (referred to as pseudo-
Boolean) [25]. The error of a hypothesis in their framework
is the probability that the hypothesis disagrees with the
unknown function. They build on the approach from [20] and
obtain a poly(n) · kO(k log k/ε)-time PAC learning algorithm
using value queries. In this special case the results in [1]
give approximation of submodular functions by junta of
size poly(2k/ε) and poly(2k/ε, n) PAC learning algorithm
from random examples. In an independent work, Blais et
al. prove existence of a junta of size (k log(1/ε))O(k) and
use it to give an algorithm for testing submodularity using
(k log(1/ε))Õ(k) value queries [18].

It is interesting to remark that several largely unrelated

methods point to approximating junta being of exponential
size, namely, pruned decision trees in [1]; Friedgut’s theorem
based analysis in this work; two Sunflower lemma-style
arguments in [18]. However, unexpectedly (at least for the
authors), polynomial-size junta suffices.

C. Organization

Following preliminaries in Section II we present the proof
of our main structural result (Thm. 1) in Section III. In
Section IV we give the proof of Thm. 3 and describe an
example of a function that proves tightness of our bound
for XOS functions. The rest of the results appear in the full
version of this work [27].

II. PRELIMINARIES

First, we define submodular, fractionally subadditive and
subadditive functions. These classes are well known in
combinatorial optimization and there has been a lot of recent
interest in these functions in algorithmic game theory, due to
their expressive power as valuations of self-interested agents.

Definition 6. A set function f : 2N → R is
• monotone, if f(A) ≤ f(B) for all A ⊆ B ⊆ N .
• submodular, if f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)

for all A,B ⊆ N .
• fractionally subadditive, if f(A) ≤

∑
βif(Bi) when-

ever βi ≥ 0 and
∑
i:a∈Bi

βi ≥ 1 ∀a ∈ A.
• subadditive, if f(A ∪ B) ≤ f(A) + f(B) for all A ⊆
B ⊆ N .

Submodular functions are not necessarily nonnegative, but
in many applications (especially when considering multi-
plicative approximations), this is a natural assumption. All
our additive approximations are shift-invariant and hence
also apply to submodular functions with range [−1/2, 1/2]
(and can also be scaled in a straightforward way). Fraction-
ally subadditive functions are nonnegative by definition (by
considering A = B1, β1 > 1). Fractionally subadditive func-
tions are known equivalently as XOS functions. This class
includes all (nonnegative) monotone submodular functions
(but does not contain non-monotone functions).

Next, we introduce self-bounding functions. Self-
bounding functions were defined by Boucheron, Lugosi and
Massart [9] as a unifying class of functions that enjoy
strong concentration properties. Self-bounding functions are
defined generally on product spaces Xn; here we restrict
our attention to the hypercube, so the reader can assume
that X = {0, 1}. We identify functions on {0, 1}n with set
functions on N = [n] in a natural way. By 0, we denote the
all-zeroes vector in {0, 1}n (corresponding to ∅).

McDiarmid and Reed [30] further generalized the notion
of self-bounding functions which we present here.

Definition 7. For a function f : {0, 1}n → R and any
x ∈ {0, 1}n, let minxi

f(x) = min {f(x), f(x⊕ ei)}. f is

(a, b)-self-bounding, if for all x ∈ {0, 1}n and i ∈ [n],

f(x)−min
xi

f(x) ≤ 1, (1)
n∑
i=1

(f(x)−min
xi

f(x)) ≤ af(x) + b. (2)

We remark that condition (1) forces self-bounding func-
tions to be 1-Lipschitz. This is not important for our results,
but we keep the definition from [9] for consistency with the
literature.

The class of (a, b)-self-bounding functions enjoys strong
(dimension-free) concentration bounds, with appropriate
quantitative adjustments depending on a, b [30]. In this
paper, we are primarily concerned with (a, 0)-self-bounding
functions, to which we also refer as a-self-bounding func-
tions. Note that the definition implies that f(x) ≥ 0
for every a-self-bounding function. Self-bounding functions
include (1-Lipschitz) fractionally subadditive functions. To
subsume 1-Lipschitz non-monotone submodular functions,
it is sufficient to consider the slightly more general 2-self-
bounding functions - see [31]. The 1-Lipschitz condition will
not play a role in this paper, as we normalize functions to
have values in the [0, 1] range.

The `1 and `2-norms of a f : {0, 1}n → R are defined
by ||f ||1 = Ex∼U [|f(x)|] and ||f ||2 = (Ex∼U [f(x)2])1/2,
respectively, where U is the uniform distribution.

Definition 8 (Discrete derivatives). For x ∈ {0, 1}n, b ∈
{0, 1} and i ∈ n, let xi←b denote the vector in {0, 1}n
that equals x with i-th coordinate set to b. For a function
f : {0, 1}n → R and index i ∈ [n] we define ∂if(x) =
f(xi←1)− f(xi←0). We also define ∂i,jf(x) = ∂i∂jf(x).

A function is monotone (non-decreasing) if and only if for
all i ∈ [n] and x ∈ {0, 1}n, ∂if(x) ≥ 0. For a submodular
function, ∂i,jf(x) ≤ 0, by considering the submodularity
condition for xi←0,j←0, xi←0,j←1, xi←1,j←0, and xi←1,j←1.

III. JUNTA APPROXIMATIONS OF SUBMODULAR
FUNCTIONS

Here we prove Theorem 1, a bound of Õ(1/ε2) on the
size of a junta needed to approximate a submodular function
bounded by [0, 1] within an additive error of ε. The core of
our proof is the following (seemingly weaker) statement. We
remark that logarithms in this paper are base 2.

Lemma 9. For any ε ∈ (0, 1
2) and any submodular function

f : {0, 1}J → [0, 1], there exists a submodular function
h : {0, 1}J → [0, 1] depending only on a subset of variables
J ′ ⊆ J , |J ′| ≤ 128

ε2 log 16|J|
ε2 , such that ‖f − h‖2 ≤ 1

2ε.

Note that if |J | = n and ε = Ω(1), Lemma 9 re-
duces the number of variables to O(log n) rather than a
constant. However, we show that this is enough to prove
Theorem 1, effectively by repeating this argument. In fact,
it was previously shown [1] that submodular functions can

be ε-approximated by functions of 2O(1/ε2) variables. One
application of Lemma 9 to this result brings the number
of variables down to Õ(1

ε4), and another repetition of the
same argument brings it down to O(1

ε2 log 1
ε). This is a

possible way to prove Theorem 1. Nevertheless, we do not
need to rely on this previous result, and we can easily derive
Theorem 1 directly from Lemma 9 (see full version for the
details). In the rest of this section, our goal is to prove
Lemma 9.

What we need. Our proof relies on two previously known
facts: a concentration result for submodular functions, and
a “boosting lemma” for down-monotone events.

Concentration of submodular functions. It is known that
a 1-Lipschitz nonnegative submodular function f is concen-
trated within a standard deviation of O(

√
E[f]) [9], [31].

This fact was also used in previous work on learning of
submodular functions [2], [20], [1]. Exponential tail bounds
are known in this case, but we do not even need this. We
quote the following result which follows from the Efron-
Stein inequality (see [1] for a proof).

Lemma 10. For any α-Lipschitz monotone submodular
function f : {0, 1}n → R+,

Var[f] ≤ αE[f].

For any α-Lipschitz (nonmonotone) submodular function f :
{0, 1}n → R+,

Var[f] ≤ 2αE[f].

Boosting lemma for down-monotone events. The follow-
ing was proved as Lemma 3 in [26].

Lemma 11. Let F ⊆ {0, 1}X be down-monotone (if x ∈ F
and y ≤ x coordinate-wise, then y ∈ F). For p ∈ (0, 1),
define

σp = Pr[X(p) ∈ F]

where X(p) is a random subset of X , each element sampled
independently with probability p. Then

σp = (1− p)φ(p)

where φ(p) is a non-decreasing function for p ∈ (0, 1).

The proof of Lemma 9: Given a submodular function
f : {0, 1}J → [0, 1], let F : [0, 1]J → [0, 1] denote the
multilinear extension of f : F (x) = E[f(x̂)] where x̂ has
independently random 0/1 coordinates with expectations xi.
We also denote by 1S the characteristic vector of a set S.

Algorithm 12. Given f : {0, 1}J → [0, 1], produce a small
set of important coordinates J ′ as follows (for parameters
α, δ > 0):
• Set S = T = ∅.
• As long as there is i /∈ S such that Pr[∂if(1S(δ)) >
α] > 1/2, include i in S.

(This step is sufficient for monotone submodular func-
tions.)

• As long as there is i /∈ T such that Pr[∂if(1J\T (δ)) <
−α] > 1/2, include i in T .
(This step deals with non-monotone submodular func-
tions.)

• Return J ′ = S ∪ T .

The intuition here (for monotone functions) is that we in-
clude greedily all variables whose contribution is significant,
when measured at a random point where the variables chosen
so far are set to 1 with a (small) probability δ. The reason
for this is that we can bound the number of such variables,
and at the same time we can prove that the contribution of
unchosen variables is very small with high probability, when
the variables in J ′ are assigned uniformly at random (this
part uses the boosting lemma). This is helpful in estimating
the approximation error of this procedure.

First, we bound the number of variables chosen by the
procedure. The argument is essentially that if the procedure
had selected too many variables, their expected cumulative
contribution would exceed the bounded range of the func-
tion. This argument would suffice for monotone submodular
functions. The final proof is somewhat technical because of
the need to deal with potentially negative discrete derivatives
of non-monotone submodular functions.

Lemma 13. The number of variables chosen by the proce-
dure above is |J ′| ≤ 4

αδ .

Proof: For each i ∈ S, let S<i be the subset of variables
in S included before the selection of i. For a set R ⊆ S let
R<i denote R ∩ S<i. Further, for R ⊆ S, let us define R+

to be the set where i ∈ R+ iff i ∈ R and ∂if(1R<i
) > α;

in other words, these are all the elements in R that have a
marginal contribution more than α to the previously included
elements.

For each variable i included in S, we have by defini-
tion Pr[∂if(1S<i(δ)) > α] > 1/2. Since each i ∈ S
appears in S(δ) with probability δ, and (independently)
∂if(1S<i(δ)) > α with probability at least 1/2, we get
that each element of S appears in S(δ)+ with probability
at least δ/2. In expectation, E[|S(δ)+|] ≥ 1

2δ|S|. Also, for
any set R ⊆ S and each i ∈ R+, submodularity implies that
∂if(1R+

<i
) ≥ ∂if(1S<i

) > α, since R+
<i ⊆ R<i ⊆ S<i.

Now we get that

f(R+) = f(0) +
∑
i∈R+

∂if(1R+
<i

) > α|R+|.

From here we obtain that

E[f(S(δ)+)] > αE[|S(δ)+|] ≥ 1

2
αδ|S|.

This implies that |S| ≤ 2
αδ , otherwise the expectation would

exceed the range of f , which is [0, 1].

To bound the size of T we observe that the function f̄
defined as f̄(1R) = f(1J\R) for every R ⊆ J is submodular
and for every i ∈ J , ∂if̄(1R) = −∂if(1J\R). The criterion
for including the variables in T is the same as criterion of
including the variables in S used for function f̄ in place of
f . Therefore, by an analogous argument, we cannot include
more than 2

αδ elements in T , hence |J ′| = |S ∪T | ≤ 4
αδ .

The next step in the analysis replaces the condition used
by Algorithm 12 by a probability bound exponentially small
in 1/δ. The tool that we use here is the “boosting lemma”
(Lemma 11) which amplifies the probability bound from 1/2
to 1/21/(2δ), as the sampling probability goes from δ to 1/2.

Lemma 14. With the same notation as above, if δ ≤ 1/2,
then for any i ∈ J \ J ′

Pr[∂if(1J′(1/2)) > α] ≤ 2−1/(2δ)

and
Pr[∂if(1J\J′(1/2)) < −α] ≤ 2−1/(2δ).

Proof: Let us prove the first inequality; the second one
will be similar. First, we know by the selection rule of the
algorithm that for any i /∈ J ′,

Pr[∂if(1S(δ)) > α] ≤ 1/2.

By submodularity of f we get that for any i /∈ J ′,

Pr[∂if(1J′(δ)) > α] ≤ 1/2.

Denote by F ⊆ {0, 1}J′ the family of points x such
that ∂if(x) > α. By the submodularity of f , which is
equivalent to partial derivatives being non-increasing, F is
a down-monotone set: if y ≤ x ∈ F , then y ∈ F . If we
define σp = Pr[J ′(p) ∈ F] as in Lemma 11, we have
σδ ≤ 1/2. Therefore, by Lemma 11, σp = (1 − p)φ(p)

where φ(p) is a non-decreasing function. For p = δ, we
get σδ = (1 − δ)φ(δ) ≤ 1/2, which implies φ(δ) ≥ 1/(2δ)
(note that (1−δ)1/(2δ) ≥ 1/2 for any δ ∈ [0, 1/2]). As φ(p)
is non-decreasing, we must also have φ(1/2) ≥ 1/(2δ).
This means σ1/2 = (1/2)φ(1/2) ≤ 1/21/(2δ). Recall that
σ1/2 = Pr[J ′(1/2) ∈ F] = Pr[∂if(1J′(p)) > α] so this
proves the first inequality.

For the second inequality, we denote similarly F = {F ⊆
J ′ : ∂if(1J\F) < −α}. Again, this is a down-monotone
set by the submodularity of f . By the selection rule of the
algorithm, σδ = Pr[J ′(δ) ∈ F] = Pr[∂if(1J\J′(δ)) <
−α] ≤ Pr[∂if(1J\T (δ)) < −α] ≤ 1/2. This implies by
Lemma 11 that σ1/2 = Pr[J ′(1/2) ∈ F] ≤ 1/21/(2δ). This
proves the second inequality.

Proof of Lemma 9: Given a submodular function
f : {0, 1}J → [0, 1], we construct a set of coordinates
J ′ ⊆ J as described above, with parameters α = 1

16ε
2 and

δ = 1/(2 log 16|J|
ε2). Lemma 13 guarantees that |J ′| ≤ 4

αδ =
128
ε2 log 16|J|

ε2 .

Let us use xJ′ to denote the |J ′|-tuple of coordinates of
x indexed by J ′. Consider the subcube of {0, 1}J where the
coordinates on J ′ are fixed to be xJ′ . In the following, all
expectations are over a uniform distribution on the respective
subcube, unless otherwise indicated. We denote by fxJ′ the
restriction of f to this subcube, fxJ′ (xJ̄′) = f(xJ′ , xJ̄′).
We define h : {0, 1}J → [0, 1] to be the function obtained
by replacing each fxJ′ by its expectation over the respective
subcube:

h(x) = E[fxJ′] = Ey
J̄′

[f(xJ′ , yJ̄′)].

Obviously h depends only on the variables in J ′ and it is
easy to see that it is submodular with range in [0, 1]. It
remains to estimate the distance of h from f . Observe that

‖f − h‖22 = Ex[(f(x)− h(x))2]

= ExJ′EyJ̄′ [(f(xJ′ , yJ̄′)− h(xJ′ , yJ̄′))
2]

= ExJ′EyJ̄′ [(fxJ′ (yJ̄′)−E[fxJ′])
2]

= ExJ′ [Var[fxJ′]].

We partition the points xJ′ ∈ {0, 1}J
′

into two classes:

1) Call xJ′ bad, if there is i ∈ J \ J ′ such that
• ∂if(xJ′) > α, or
• ∂if(xJ′ + 1J\J′) < −α.
In particular, we call xJ′ bad for the coordinate i where
this happens.

2) Call xJ′ good otherwise, i.e. for every i ∈ J \ J ′ we
have
• ∂if(xJ′) ≤ α, and
• ∂if(xJ′ + 1J\J′) ≥ −α.

Consider a good point xJ′ and the restriction of f to the
respective subcube, fxJ′ . The condition above means that
for every i ∈ J \ J ′, the marginal value of i is at most
α at the bottom of this subcube, and at least −α at the
top of this subcube. By submodularity, it means that the
marginal values are between [−α, α], for all points of this
subcube. Hence, fxJ′ is a α-Lipschitz submodular function.
By Lemma 10,

Var[fxJ′] ≤ 2αE[fxJ′] ≤
1

8
ε2

considering that α = 1
16ε

2 and fxJ′ has values in [0, 1].
If xJ′ is bad, then we do not have a good bound on the

variance of fxJ′ . However, there cannot be too many bad
points xJ′ , due to Lemma 14: Observe that the distribution
of xJ′ , uniform in {0, 1}J′ , is the same as what we denoted
by 1J′(1/2) in Lemma 14, and the distribution of xJ′+1J\J′
is the same as 1J\J′(1/2). By Lemma 14, we have that for
each i ∈ J \ J ′, the probability that xJ′ is bad for i is at
most 2·21/(2δ) = ε2

8|J| . By a union bound over all coordinates
i ∈ J \ J ′, the probability that xJ′ is bad is at most 1

8ε
2.

Now we can estimate the `2-distance between f and h:

‖f − h‖22 = ExJ′∈{0,1}J
′ [Var[fxJ′]]

≤ Pr[xJ′ is bad] · 1 + Pr[xJ′ is good] ·
·Egood xJ′∈{0,1}J

′ [Var[fxJ′]]

≤ Pr[xJ′ is bad] + max
good xJ′∈{0,1}J

′
[Var[fxJ′]]

≤ 1

8
ε2 +

1

8
ε2 =

1

4
ε2.

Hence, we conclude that ‖f − h‖2 ≤ 1
2ε as desired.

We now briefly examine the special case of a submodular
function taking values in {0, 1

k ,
2
k , . . . , 1} for some integer

k. This is just a scaled version of the pseudo-boolean case
considered in [25] and [18]. By choosing α = 1

k+1 and
δ = 1/ log (2|J |/ε) in the proof above we will obtain that
α-Lipschitz function must be a constant (and, in particular,
independent of all the variables in J \ J ′). This means that
we obtain exact equality for all but the “bad” values of xJ′ .
The fraction of such values is at most 2 · 21/δ · |J | ≤ ε
and therefore the submodular function h(x) = f(xJ ,1J\J′)
equals f with probability at least 1− ε. As before, after one
application we get a O(k · log (n/ε))-junta and by repeating
the application we can obtain a O(k · log (k/ε))-junta.

Corollary 15. For any integer k ≥ 1, ε ∈ (0, 1
2) and any

submodular function f : {0, 1}n → {0, 1, . . . , k}, there
exists a submodular function g : {0, 1}n → {0, 1, . . . , k}
depending only on a subset of variables J ⊆ [n], |J | =
O(k log k

ε), such that PrU [f 6= g] ≤ ε.

IV. APPROXIMATION OF LOW-INFLUENCE FUNCTIONS
BY JUNTAS

Here we show how structural results for submodular
(weaker than the one in Section III), XOS and self-bounding
functions can be proved in a unified manner using the notion
of total influence.

A. Preliminaries: Fourier Analysis

We rely on the standard Fourier transform representation
of real-valued functions over {0, 1}n as linear combina-
tions of parity functions. For S ⊆ [n], the parity func-
tion χS : {0, 1}n → {−1, 1} is defined by χS(x) =
(−1)

∑
i∈S xi . The Fourier expansion of f is given by

f(x) =
∑
S⊆[n] f̂(S)χS(x). The degree of highest degree

non-zero Fourier coefficient of f is referred to as the Fourier
degree of f . Note that Fourier degree of f is exactly the
polynomial degree of f when viewed over {−1, 1}n instead
of {0, 1}n and therefore it is also equal to the polynomial
degree of f over {0, 1}n. Let f : {0, 1}n → R and
f̂ : 2[n] → R be its Fourier transform. The spectral `1-norm
of f is defined as ||f̂ ||1 =

∑
S⊆[n] |f̂(S)|.

Observe that ∂if(x) = 2
∑
S3i f̂(S)χS\{i}(x), and

∂i,jf(x) = 4
∑
S3i,j f̂(S)χS\{i,j}(x).

We use several notions of influence of a variable on a
real-valued function which are based on the standard notion
of influence for Boolean functions (e.g. [32], [33]).

Definition 16 (Influences). For a real-valued f : {0, 1}n →
R, i ∈ [n], and κ ≥ 0 we define the `κκ-influence of variable i
as Inflκi (f) = ‖ 1

2∂if‖
κ
κ = E[| 12∂if |

κ]. We define Inflκ(f) =∑
i∈[n] Inflκi (f) and refer to it as the total `κκ-influence of

f . For a boolean function f : {0, 1}n → {0, 1}, Infl(f)
is defined as 2Infl1(f) and is also referred to as average
sensitivity.

The most commonly used notion of influence for real-
valued functions is the `22-influence which satisfies

Infl2
i (f) =

∥∥∥∥1

2
∂if

∥∥∥∥2

2

=
∑
S3i

f̂2(S) .

From here, the total `22-influence is equal to Infl2(f) =∑
S |S|f̂2(S).

B. Self-bounding Functions Have Low Total Influence

A key fact that we prove is that submodular, XOS and
self-bounding functions have low total `1-influence.

Lemma 17. Let f : {0, 1}n → R+ be an a-self-bounding
function. Then Infl1(f) ≤ a · ‖f‖1. In particular, for XOS
f : {0, 1}n → [0, 1], Infl1(f) ≤ 1. For a submodular f :
{0, 1}n → [0, 1], Infl1(f) ≤ 2.

Proof: We have

Infl1(f) =
1

2

n∑
i=1

E[|f(xi←1)− f(xi←0)|]

=

n∑
i=1

E[(f(x)− f(x⊕ ei))+]

where x ⊕ ei is x with the i-th bit flipped, and (•)+ =
max{•, 0} is the positive part of a number. (Note that each
difference |f(xi←1)− f(xi←0)| is counted twice in the first
expectation and once in the second expectation.) By using
the property of a-self-bounding functions, we know that∑n
i=1(f(x)− f(x⊕ ei))+ ≤ af(x), which implies

Infl1(f) =

n∑
i=1

E[(f(x)−f(x⊕ei))+] ≤ aE[|f(x)|] = a‖f‖1.

Finally, we recall that an XOS function is self-bounding and
a non-negative submodular function is 2-self-bounding (see
[31]).

We note that for functions with a [0, 1] range, Infl2(f) ≤
Infl1(f), hence the above lemma also gives a bound on
Infl2(f). It is well-known that functions of low total `22-
influence can be approximated by low-degree polynomials.
We recap this fact here.

Lemma 18. Let f : {0, 1}n → R be any function and
let d be any positive integer. Then

∑
S⊆[n],|S|>d f̂(S)2 ≤

Infl2(f)/d.

Proof: From the definition of Infl2
i (f), we get that

Infl2(f) =
∑
S⊆[n] |S|f̂(S)2. Hence∑
S⊆[n], |S|>d

f̂(S)2 ≤ 1

d
Infl2(f) .

This gives a simple proof that submodular and XOS
functions are ε-approximated in `2 by polynomials of degree
2/ε2 (which was proved for submodular functions in [22]).
We next show a stronger statement, that these functions
are ε-approximated by 2O(1/ε2)-juntas of Fourier degree
O(1/ε2).

C. Friedgut’s Theorem for Real-Valued Functions

As we have shown in Lemma 17, self-bounding functions
have low total `1-influence. A celebrated result of Friedgut
[11] shows that any Boolean function on {0, 1}n of low total
influence is close to a function that depends on few variables.
It is therefore natural to try and apply Friedgut’s result to our
setting. A commonly considered generalization of Boolean
influences to real-valued functions uses `22-influences which
can be easily expressed using Fourier coefficients (e.g.
[34]). However Friedgut-style result is not true for real-
valued functions when `22-influences are used [16], [27].
This issue also arises in the problem of learning real-valued
monotone decision trees by O’Donnell and Servedio [16].
They overcome the problem by first discretizing the function
and proving that Friedgut’s theorem can be extended to the
discrete case (as long as the discretization step is not too
small). The problem with using this approach for submod-
ular functions is that it does not preserve submodularity
and can increase total influence of the resulting function
to Ω(

√
n) with discretization parameter necessary for the

approach to work (consider for example a linear function
1
n

∑
i xi).

Here we instead prove a generalization of Friedgut’s
theorem to all real-valued functions. We show that Friedgut’s
theorem would hold for real-valued functions if the total `κκ-
influence is small in addition to total `22-influence for any
constant κ ∈ [1, 2). Self-bounding functions have low total
`1-influence and hence for our purposes κ = 1 would suffice.
We prove the slightly more general version as it could be
useful elsewhere (and the proof is essentially the same).

Theorem 19. Let f : {0, 1}n → R be any function and
ε, κ ∈ (0, 1). Let d = 2 · Infl2(f)/ε and let

I = {i ∈ [n] | Inflκi (f) ≥ α} for

α =
(
(κ− 1)d−1 · ε/(2Inflκ(f))

)κ/(2−κ)
.

Then for the set Id = {S ⊆ I | |S| ≤ d} we have∑
S 6∈Id f̂(S)2 ≤ ε.

To obtain Theorem 3 from this statement we use it with
ε2 error and note that g =

∑
S∈Id f̂(S)χS is a function of

Fourier degree d that depends only on variables in I . Further,
‖f − g‖22 ≤ ε2 and the set I has size of at most

|I| ≤ Inflκ(f)/α = 2O(Infl2(f)/ε2)·ε2κ/(2−κ)·(Inflκ(f))2/(2−κ).
(3)

Also note that Theorem 19 does not allow us to directly
bound |I| in terms of Infl1(f) since it does not apply to
κ = 1. However for every κ ∈ [1, 2], Inflκ(f) ≤ Infl1(f) +
Infl2(f) and therefore we can also bound |I| using equation
(3) for κ = 4/3 and then substituting Infl4/3(f) ≤ Infl1(f)+
Infl2(f). This gives the proof of Theorem 3 (first part). The
second part of Theorem 3 now follows from Lemma 17.

Our proof of Theorem 19 is a simple modification of the
proof of Friedgut’s theorem from [35] and can be found in
the full version of the work [27]. For functions that have
low total `1-influence we also easily obtain the following
corollary of Th. 19.

Corollary 20. Let f : {0, 1}n → [0, 1] be any function and
ε > 0. For d = 2 · Infl1(f)/ε2 and α = 2−4d let

I = {i ∈ [n] | Infl1
i (f) ≥ α}.

There exists a function p of Fourier degree d over variables
in I , such that ‖f − p‖2 ≤ ε and ‖p̂‖1 ≤ 2O(Infl1(f)2/ε4).

D. Lower Bound On Junta Size For XOS Functions

Here we prove that Theorem 3 is close-to-tight and, in
particular, Theorem 1 cannot be extended to XOS functions.
In fact, we show that 2Ω(1/ε) variables are necessary for an
ε-approximation to an XOS function. Our lower bound is
based on the Tribes DNF function studied by Ben-Or and
Linial [32] with AND replaced by a linear function. The
Tribes DNF was also used by Friedgut to prove tightness of
his theorem for boolean functions [11].

Theorem 21. Suppose that n = ab where b = 2a and
consider an XOS function

f(x) =
1

a
max

1≤j≤b

∑
i∈Aj

xi

where (A1, . . . , Ab) is a partition of [n] into sets of size
|Aj | = a. Then every function g : {0, 1}n → R that depends
on fewer than 2a−1 variables has ‖f − g‖1 = Ω(1/a).

ACKNOWLEDGEMENTS

We would like to thank Seshadhri Comandur, Pravesh
Kothari and the anonymous FOCS referees for their com-
ments and useful suggestions.

REFERENCES

[1] V. Feldman, P. Kothari, and J. Vondrák, “Representation,
approximation and learning of submodular functions using
low-rank decision trees,” COLT, 2013.

[2] M. Balcan and N. Harvey, “Submodular functions: Learnabil-
ity, structure, and optimization,” CoRR, vol. abs/1008.2159,
2012, earlier version in STOC 2011.

[3] J. Edmonds, “Matroids, submodular functions and certain
polyhedra,” Combinatorial Structures and Their Application.

[4] L. Lovász, “Submodular functions and convexity,” Mathemat-
ical Programmming: The State of the Art, pp. 235–257, 1983.

[5] A. Frank, “Matroids and submodular functions,” Annotated
Biblographies in Combinatorial Optimization, pp. 65–80,
1997.

[6] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor
placements in gaussian processes,” in ICML, 2005, pp. 265–
272.

[7] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-
optimal sensor placements: maximizing information while
minimizing communication cost,” in IPSN, 2006, pp. 2–10.

[8] D. J. L. B. Lehmann and N. Nisan, “Combinatorial auctions
with decreasing marginal utilities,” Games and Economic
Behavior, vol. 55, pp. 1884–1899, 2006.

[9] S. Boucheron, G. Lugosi, and P. Massart, “A sharp concentra-
tion inequality with applications,” Random Struct. Algorithms,
vol. 16, no. 3, pp. 277–292, 2000.

[10] N. Nisan and M. Szegedy, “On the degree of boolean func-
tions as real polynomials,” Computational Complexity, vol. 4,
pp. 462–467, 1992.

[11] E. Friedgut, “Boolean functions with low average sensitivity
depend on few coordinates,” Combinatorica, vol. 18, no. 1,
pp. 27–35, 1998.

[12] J. Bourgain, “On the distribution of the fourier spectrum
of boolean functions,” Israel Journal of Mathematics, vol.
131(1), pp. 269–276, 2002.

[13] E. Friedgut, G. Kalai, and A. Naor, “Boolean functions whose
Fourier transform is concentrated on the first two levels,” Adv.
in Appl. Math, vol. 29, 2002.

[14] I. Dinur and S. Safra, “On the hardness of approximating
minimum vertex cover,” Annals of Mathematics, vol. 162,
2005.

[15] R. Krauthgamer and Y. Rabani, “Improved lower bounds for
embeddings into L1,” in SODA, 2006, pp. 1010–1017.

[16] R. O’Donnell and R. Servedio, “Learning monotone decision
trees in polynomial time,” SIAM J. Comput., vol. 37, no. 3,
pp. 827–844, 2007.

[17] P. Gopalan, R. Meka, and O. Reingold, “DNF sparsification
and a faster deterministic counting algorithm,” in CCC, 2012,
pp. 126–135.

[18] E. Blais, K. Onak, R. Servedio, and G. Yaroslavtsev, “Con-
cise representations of discrete submodular functions,” 2013,
personal communication.

[19] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni, “Approx-
imating submodular functions everywhere,” in SODA, 2009,
pp. 535–544.

[20] A. Gupta, M. Hardt, A. Roth, and J. Ullman, “Privately
releasing conjunctions and the statistical query barrier,” in
STOC, 2011, pp. 803–812.

[21] C. Seshadhri and J. Vondrák, “Is submodularity testable?” in
Innovations in computer science, 2011, pp. 195–210.

[22] M. Cheraghchi, A. Klivans, P. Kothari, and H. Lee, “Submod-
ular functions are noise stable,” in SODA, 2012, pp. 1586–
1592.

[23] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg,
N. Nisan, and T. Roughgarden, “Sketching valuation func-
tions,” in SODA, 2012, pp. 1025–1035.

[24] M. Balcan, F. Constantin, S. Iwata, and L. Wang, “Learning
valuation functions,” COLT, vol. 23, pp. 4.1–4.24, 2012.

[25] S. Raskhodnikova and G. Yaroslavtsev, “Learning pseudo-
boolean k-DNF and submodular functions,” in SODA, 2013.

[26] M. Goemans and J. Vondrák, “Covering minimum spanning
trees of random subgraphs,” Random Struct. Algorithms,
vol. 29, no. 3, pp. 257–276, 2006.

[27] V. Feldman and J. Vondrák, “Optimal bounds on approxima-
tion of submodular and xos functions by juntas,” CoRR, vol.
abs/1307.3301, 2013.

[28] V. Feldman and P. Kothari, “Learning coverage functions,”
arXiv, CoRR, vol. abs/1304.2079, 2013.

[29] R. Servedio, “On learning monotone DNF under product
distributions,” Information and Computation, vol. 193, no. 1,
pp. 57–74, 2004.

[30] C. McDiarmid and B. Reed, “Concentration for self-bounding
functions and an inequality of talagrand,” Random structures
and algorithms, vol. 29, pp. 549–557, 2006.

[31] J. Vondrák, “A note on concentration of submodular func-
tions,” 2010, arXiv:1005.2791v1.

[32] M. Ben-Or and N. Linial, “Collective coin flipping, robust
voting schemes and minima of banzhaf values,” in FOCS,
1985, pp. 408–416.

[33] J. Kahn, G. Kalai, and N. Linial, “The influence of variables
on Boolean functions,” in FOCS, 1988, pp. 68–80.

[34] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell, “On the
Fourier tails of bounded functions over the discrete cube,” in
STOC, 2006, pp. 437–446.

[35] I. Dinur and E. Friedgut, “Lecture notes for analytical meth-
ods in combinatorics and computer-science (lect 5),” 2005,
available at http://www.cs.huji.ac.il/˜analyt/.

