
DIRAC CONES FOR POINT SCATTERERS ON A HONEYCOMB

LATTICE

MINJAE LEE

Abstract. We investigate the spectrum and the dispersion relation of the

Schrdinger operator with point scatterers on a triangular lattice and a hon-
eycomb lattice. We prove that the low-level dispersion bands have conic sin-

gularities near Dirac points, which are the vertices of the first Brillouin Zone.

The existence of such conic dispersion bands plays an important role in various
electronic properties of honeycomb-structured materials such as graphene. We

then prove that for a honeycomb lattice, the spectra generated by higher-level

dispersion relations are all connected so the complete spectrum consists of at
most three bands. Numerical simulations for dispersion bands with various

parameters are also presented.

1. Introduction

In this paper we investigate the spectral properties of the Schrdinger operator
with periodic point scatterers on the triangular lattice Λ ⊂ R2 and the honey-
comb lattice H ⊂ R2 (See Figure 1). The notion of point scatterers started with
the Kronig-Penny model [14] which describes the dispersion relation, or energy-
momentum relation, and the band structure of an electron on a 1-dimensional solid
crystal. This idea has been generalized to infinitely many point scatterers on a
periodic structure in Rd, d ≤ 3 [1, 10, 11] using Krein’s theory of self-adjoint ex-
tensions. We can borrow the notion of dispersion bands from the Floquet-Bloch
theory [9, 8, 12, 15] for a periodic potential to analyze the periodic point scatterers
as well. See Part III of [1] for the formulation of periodic point scatterers in detail.

Honeycomb lattices and regular periodic potentials with such symmetry struc-
ture have drawn considerable interest in the physics community due to the ground-
breaking fabrication technique for graphene [19], a two-dimensional single layer of
carbon atoms arranged in the honeycomb lattice structure. In 1947, using the tight-
binding model, P.R.Wallace [24] found that the dispersion relation of graphene have
conic singularities at the six corners of the First Brillouin Zone. These points and
singularities are called Dirac points and Dirac cones since the wave packet whose
momentum components concentrated near those points behaves as a solution of
two-dimensional Dirac wave equation, which describes the evolution of massless
relativistic fermions. In addition, P. Kuchment and O. Post [16] in 2007 general-
ized the tight-binding model as a quantum graph with potential on the edges of
the honeycomb lattice which also presents the conic singularities of the dispersion
relation.

Fefferman and Weinstein [7, 6] recently showed that generic smooth and real-
valued honeycomb lattice potentials have conical singularities (Dirac points) at
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the vertices of the Brillouine zone. Note that this result does not depend on the
magnitude of the potential. See also [3]. We extend these ideas to the honeycomb
lattice point scatterers, which can be formally considered as a singular potential
on R2 concentrated on a honeycomb lattice, and observe a similar type of conic
singularities regardless of the strength of the point scatterers as follows:

Theorem. (Theorem 3.9, Theorem 3.11) Let H be any self-adjoint operator on
L2(R2) acting as the Laplacian away from the honeycomb lattice H of (2.1). Sup-
pose that H satisfies the honeycomb symmetry condition as in Proposition 3.1.
Then there exists the Dirac cone on the dispersion relation of H. In addition, the
spectrum of H consists of at most three disjoint intervals on the real line.

In order to prove this theorem, we first investigate periodic point scatterers on a
triangular lattice, which are similar but simpler compared to those on a honeycomb
lattice. Then the spectral properties of point scatterers on a honeycomb lattice
follow by modifying those results. More precisely, for both lattices, the spectral
properties in terms of dispersion bands are studied locally near Dirac points and
globally over the Brillouin zone. In Section 3.1 for triangular lattice point scatterers,
Theorem 3.2 shows that the second and third dispersion bands form a pair of
conic singularities at Dirac points. Then we introduce Proposition 3.3 proving
that the corresponding band spectrum has at most one gap and it occurs between
the first and second dispersion bands. Similarly, in Section 3.2 for honeycomb
lattice point scatterers, Theorem 3.9 shows that the first, second, fourth and fifth
dispersion bands form two pairs of conic singularities at Dirac points. Furthermore,
Theorem 3.11 shows that the band spectrum has at most two gaps and they occur
between the second, third, and fourth dispersion bands. These results are illustrated
numerically by various figures and movies. See Figure 4 ,5, 6 and Supplemental
Materials for the conic dispersion bands and the corresponding spectra of periodic
point scatterers. In Appendix A, we briefly introduce the Floquet-Bloch theory
and the notion of periodic point scatterers.

2. Preliminaries

2.1. Lattice structures on a 2-dimensional space. We introduce three kinds of
lattice structures: a triangular lattice, a honeycomb lattice, and the dual lattice of

them. Let v1 = a
(√

3
2 ,

1
2

)
and v2 = a

(√
3

2 ,−
1
2

)
with a > 0. Then Λ = Zv1 ⊕ Zv2

is a triangular lattice with the fundamental domain Γ = R2/Λ. Note that the
fundamental domain Γ contains only one lattice point at x = 0.

The union of two triangular lattices generates a honeycomb lattice

(2.1) H = Λ ∪ (Λ + x0)

where x0 = 2
3 (v1 +v2). Note that Γ contains two points of H at x = 0 and x = x0.

The dual lattice Λ∗ = Zk1⊕Zk2 corresponding to the fundamental domain Γ is
spanned by two vectors k1,k2 satisfying

ki · vj = 2πδij , i, j = 1, 2

or equivalently,

k1 =
4π

a
√

3

(
1

2
,

√
3

2

)
, k2 =

4π

a
√

3

(
1

2
,−
√

3

2

)
,
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(a) Triangular lattice (b) Honeycomb lattice

Figure 1. Two kinds of lattice structures. Γ is the fundamental
domain of both lattices. The translated triangular lattice points
on the honeycomb lattice are marked as ×.

Figure 2. Brillouin Zone B corresponding to two lattices in Fig-
ure 1. Dual lattice points and Dirac points are marked as × and
◦, respectively. In this paper, we only consider K = 2

3k1 + 1
3k2 out

of six Dirac points without loss of generality.

A Brillouin Zone B is defined as a hexagon centered at the origin. (See Figure
2.) Note that the triangular lattice and the honeycomb lattice share the hexagonal
Brillouin zone since they have the same fundamental domain Γ. The six vertices of
B are called Dirac points.

2.2. Notation.

(1) (f, g) =
∫

Γ
f(x)g(x)dx, f, g ∈ L2(Γ)
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(2) mult(λ, P ) is the multiplicity of the eigenvalue λ for the operator P .
(3) k is a vector in Brillouin Zone B.
(4) vm = v(m1,m2) = m1v1 +m2v2 is a vector in the triangular lattice Λ.
(5) ξm = ξ(m1,m2) = m1k1 +m2k2 is a vector in the dual lattice Λ∗.

(6) L2
k(Γ) = {f ∈ L2(Γ) | f(x + vj) = eik·vjf(x), j = 1, 2}

(7) Hm
k (Γ) = {f ∈ Hm(Γ) | f(x + vj) = eik·vjf(x), j = 1, 2}

(8) ∆(k) is the Laplacian with Floquet boundary condition: D(∆(k)) = H2
k(Γ)

(9) ∆β,X is the self-adjoint operator in L2(R2) for point scatterers placed on
X = {x1,x2, · · · } ⊂ R2 with parameters β = (β1, β2, · · · ), where βj ∈
(−∞,∞], j = 1, 2, · · ·.

(10) ∆α,Y (k) is the decomposed self-adjoint operator in L2
k(Γ) for periodic

point scatterers placed on Y = {y1, · · · ,yN} ⊂ Γ with parameters α =
(α1, · · ·αN ) ∈ (−∞,∞]N .

In (9), ∆β,X is formally defined as a Schrdinger operator

−∆ +

∞∑
j=1

cjδ(x− xj),

on L2(R2) where cj is constant and δ(x) is the Dirac delta function supported
at 0 ∈ R2. However, a renormalization process is required to make this a self-
adjoint operator on a Hilbert space dense in L2(R2). Therefore, we construct the
periodic point scatterers with the following renormalization process: First, consider
a finite subset XM ⊂ X consisting of M points. Then we restrict the domain of
the Laplacian to the functions vanishing on XM ⊂ R2. According to the theory
of self-adjoint extension by von Neumann, such a symmetric operator has a family
of self-adjoint extensions parametrized by βj ∈ (−∞,∞], j = 1, · · · ,M . Then we
obtain ∆β,X as the limit case as M → ∞ in the norm resolvent sense. We are
following Albeverio’s notation [1] so that the point scatterer at xj gets stronger
when |βj | � ∞ and it disappears as βj → ∞. In particular, when βj = ∞, ∆β,X

acts as the Laplacian in the neighborhood of xj .
In (10), we may follow the same steps as in (9) to define ∆α,Y (k) as a renormal-

ization of

−∆ +

N∑
j=1

cjδ(x− yj)

on L2
k(Γ). The Floquet Laplacian restricted to the functions vanishing at Y ⊂ Γ

has a family of self-adjoint extension ∆α,Y (k) with parameters αj ∈ (−∞,∞]
determining the strength of the point scatterer at yj . See Appendix A for the
rigorous descriptions of ∆β,X and ∆α,Y (k).

3. Honeycomb lattice point scatterers

Consider periodic point scatterers placed on a triangular lattice Λ and on a
honeycomb lattice H. We will follow the notion of point scatterers defined in Ap-
pendix A in which we introduce Floquet theory and construct the point scatterers
on R2 using renormalization and the theory of self-adjoint extensions. For peri-
odic point scatterers, there exists the decomposition of an operator in L2(R2) into
“fibers” [21] in L2

k(Γ) that corresponds to the Floquet theory for a Schrdinger op-
erator −∆+V with a periodic potential V . See also Part III of [1] for more details.
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Note that the resolvent formula of ∆α,Y (k) and the decomposition of ∆β,Λ+Y intro-
duced in Proposition A.2 and A.3, respectively, play crucial role to study spectral
properties of periodic point scatterers.

In this section, we first compare the decomposed operator for the periodic point
scatterer −∆α,Y (k) to a decomposed linear Schrdinger operator −∆(k) + V when
Λ + Y , the set of scattering points, and the potential V share some symmetries
introduced in [7].

Definition 3.1 (Honeycomb lattice potentials). V ∈ C∞(R2;R) is a honeycomb
lattice potential if there exists y ∈ Γ such that

(1) V is Tv-invariant for all v ∈ Λ where TvV (x) = V (x + v) is the translation
along v, i.e. V (x + v) = V (x)

(2) V is Iy-invariant where IyV (x) = V (2y − x) is the inversion with respect
to y, i.e. V (2y − x) = V (x)

(3) V is Ry-invariant where RyV (x) = V (R(x − y) + y) is the 2π
3 -rotation

with respect to y with

(3.1) R =
1

2

[
−1 −

√
3√

3 −1

]
i.e. V (R(x− y) + y) = V (x)

Remark. Since the Laplacian is invariant under Tv, Iy and Ry, whenever V is a
honeycomb lattice potential, these operations affect only the Floquet boundary
condition. In other words, they modify the domain of the operator but not the
action of the operator itself.

Tv(−∆(k) + V )f = (−∆(k) + V )Tvf, v ∈ Λ

Iy(−∆(k) + V )f = (−∆(−k) + V )Iyf
Ry(−∆(k) + V )f = (−∆(R∗k) + V )Ryf

Similarly, we can construct a decomposed operator of periodic point scatterers
−∆α,X(k) with the same properties. Suppose that X = {x1, · · · ,xN} ⊂ Γ and
there exists y ∈ Γ such that Λ+X is inversion-symmetric and 2π

3 -rotation invariant
with respect to y, i.e.

(3.2) y − (Λ +X) = (Λ +X)− y

and

(3.3) R ((Λ +X)− y) = (Λ +X)− y

where R is given by (3.1). For example, a triangular lattice Λ = Λ + {0} and a
honeycomb lattice H = Λ + {0,x0} satisfy those conditions where y = 1

3 (v1 + v2).
In addition, suppose that for each j = 1, · · · , N , αj ∈ (−∞,∞] is invariant

under the inversion and the 2π
3 -rotation with respect to y, i.e.,

(3.4) 2y − xj − xj′ ∈ Λ implies αj = αj′ .

and

(3.5) R(xj − y) + y − xj′ ∈ Λ implies αj = αj′ .

Proposition 3.1. Let X = {x1, · · · ,xN} ⊂ Γ. Suppose that (3.2), (3.3), (3.4),
and (3.5) hold for some y ∈ Γ. Then for ψ ∈ D(−∆α,X(k)), we have

Tv∆α,X(k)ψ = ∆α,X(k)Tvψ, v ∈ Λ



6 MINJAE LEE

Iy∆α,X(k)ψ = ∆α,X(−k)Iyψ
Ry∆α,X(k)ψ = ∆α,X(R∗k)Ryψ

Proof. Let ψ ∈ D(−∆α,X(k)) and choose any λ /∈ σ(−∆(k)) ∪ σ(−∆α,X(k)). We
can define φλ ∈ H2

k(Γ) as in (A.20). Since gλ(•,k) ∈ L2
k(Γ) , for v ∈ Λ, we have

Tv(−∆α,X(k)− λ)ψ = Tv(−∆(k)− λ)φλ

= (−∆(k)− λ)Tvφλ = (−∆α,X(k)− λ)Tvψ.

For the inversion property, we observe

Iy(−∆α,X(k)− λ)ψ = Iy(−∆(k)− λ)φλ

= (−∆(−k)− λ)Iyφλ = (−∆α,X(−k)− λ)Iyφλ +
1

area(B)

N∑
j,j′=1

[
Γα,X(λ,k)−1

]
jj′

(Iyφλ)(xj)gλ (x− xj′ ,k)


= (−∆α,X(−k)− λ)Iyφλ +

1

area(B)

N∑
l,l′=1

[
Γα,X(λ,−k)−1

]
ll′
φλ(x′l)(Iy′gλ) (x− x′l′ ,−k)


= (−∆α,X(−k)− λ)Iyψ

by rearranging X = {x1, · · · ,xn} = {x′1, · · · ,x′n} so that

2y − xj − x′l ∈ Λ and 2y − xj′ − x′l′ ∈ Λ, j, j′, l, l′ = 1, · · · , N

Similarly, we prove the rotation property as in the inversion case by rearranging
X = {x1, · · · ,xn} = {x′1, · · · ,x′n} so that

R(xj − y) + y − x′l ∈ Λ and R(xj′ − y) + y − x′l′ ∈ Λ, j, j′, l, l′ = 1, · · · , N

Hence,

Ry(−∆α,X(k)− λ)ψ = (−∆α,X(R∗k)− λ)Ryψ

This concludes the proof. �

3.1. Point scatterers on the triangular lattice. As a preliminary step toward
point scatterers on the honeycomb lattice, we consider point scatterers on the tri-
angular lattice Λ. We first summarize several known results for point scatterers on
a periodic lattice with only one scatterer in the fundamental domain. See Chap-
ter III.4 of [1] for more details. Then we observe the spectral properties of the
triangular lattice point scatter as direct applications of those results.

Suppose there is one point scatterer on Γ, say at 0. Note that the strength of the
point scatterer is determined by α ∈ (−∞,∞] in terms of the resolvent operator
in Proposition A.2. We will exclude α =∞ from our consideration since the point
scatterers annihilate at α =∞; therefore,

−∆∞,{0}(k) = −∆(k).

For α ∈ R, we can group all the eigenvalues of −∆α,{0}(k) into two categories: the
perturbed eigenvalues

λ ∈ σ(−∆α,{0}(k)) \ σ(−∆(k))



DIRAC CONES FOR A HONEYCOMB POINT SCATTERER 7

and the unperturbed eigenvalues

λ ∈ σ(−∆α,{0}(k)) ∩ σ(−∆(k)).

By the resolvent formula of periodic point scatterers, the perturbed eigenvalues
λ of a triangular lattice point scatterer are given as the solutions to

Γα,{0}(λ,k) = 0

where Γα,{0}(λ,k) is defined in (A.16). In other words, λ is a perturbed eigenvalue
of −∆α,{0}(k) if and only if

(3.6) α = gλ(0,k)

with gλ in (A.15), or equivalently,

(3.7) area(Γ)α = lim
r→∞

 ∑
m∈Z2

|ξm+k|≤r

1

|ξm + k|2 − λ
− 2π

area(B)
ln r

.
See Figure 3a for schematic graph of RHS of (3.7) as a function of λ.

In addition, every perturbed eigenvalue λ satisfies mult(λ,−∆α,{0}(k)) = 1 with
the corresponding eigenfunction gλ(•,k).

Remark. We may use a simpler summation formula (3.8) equivalent to the limit
and partial sum notation (3.7):

(3.8) area(Γ)(α+ α0) =
∑
m∈Z2

[
1

|ξm + k|2 − λ
− |ξm|2

|ξm|4 + 1

]
with a constant α0 defined as

(3.9) α0 = lim
r→∞

 ln r

2π
− 1

area(Γ)

∑
m∈Z2

|ξm|≤r

|ξm|2

|ξm|4 + 1

.
On the other hand, the unperturbed eigenvalues λ are given as the eigenvalues

of −∆(k) with mult(λ,−∆(k)) > 1. More precisely, let µ = mult(λ,−∆(k)). Then
there exist m1, · · · ,mµ ∈ Z2 such that

λ = |ξm1 + k|2 = · · · = |ξmµ + k|2.

Then we have

(3.10) mult(λ,−∆α,{0}(k)) = mult(λ,−∆(k))− 1

with the corresponding eigenspacef : x 7→
µ∑
j=1

cje
i(ξmj+k)·x

∣∣∣∣∣∣ f(0) = 0, c1, · · · , cµ ∈ C


In particular, if mult(λ,−∆(k)) = 1, then λ /∈ σ(−∆α,{0}(k)).

Now we observe the conic singularities of dispersion bands near Dirac point due
to the symmetry property of the triangular lattice.
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Theorem 3.2. Let ν1(k, α) ≤ ν2(k, α) ≤ · · · be the eigenvalues of −∆α,{0}(k). As
|k−K| → 0,

ν2(k, α) = |K|2 − 4π

3a
|k−K|+ o(|k−K|)(3.11)

ν3(k, α) = |K|2 +
4π

3a
|k−K|+ o(|k−K|)(3.12)

Proof. We have ν2(K, α) = ν3(K, α) = |K|2 by (3.10), whereas ν1(K, α) < |K|2 is
obtained by (3.6). Consider δk with |δk| � 1 such that |K + δk|, |K + Rδk|, and
|K + R2δk| have distinct values where R is defined by (3.1). Then we decompose
the direction vector u = δk

|δk| ∈ S1 into

u = u1
k1

|k1|
+ u2

k2

|k2|
where

(3.13) u2
1 + u2

2 − u1u2 = 1.

and

(3.14) |k1| = |k2| =
4π

a
√

3
.

Therefore,

(3.15)

|K + δk|2 = |K|2 + u1|k1||δk|+ |δk|2

|K +Rδk|2 = |K|2 + (u2 − u1)|k1||δk|+ |δk|2

|K +R2δk|2 = |K|2 − u2|k1||δk|+ |δk|2

Suppose λ′ = |K|2 + δλ solves (3.6) at k = K + δk, namely,

(3.16) area(Γ)α = lim
r→∞

 ∑
m∈Z2

|ξm+K+δk|≤r

1

|ξm + K + δk|2 − λ′
− 2π

area(B)
ln r

.
To simplify the notation, let

M0 = {m ∈ Z2 | |ξm + K| = |K|} = {(0, 0), (−1, 0), (−1,−1)}

and let

C0 = lim
r→∞

 ∑
m∈Z2\M0

|ξm+K|≤r

1

|ξm + K|2 − λ′
− 2π

area(B)
ln r


Then due to the assumption on δk, (3.16) reads

area(Γ)α− C0 =
1

|K + δk|2 − λ′
+

1

|K +Rδk|2 − λ′
+

1

|K +R2δk|2 − λ′

=
1

|k1||δk|u1 − |δk|2 − δλ
+

1

|k1||δk|(−u1 + u2)− |δk|2 − δλ

+
1

|k1||δk|(−u2)− |δk|2 − δλ
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Multiplying |δk| on both sides, we obtain as |δk| → 0,

1

|k1|u1 −
δλ

|δk|

+
1

|k1|(u2 − u1)− δλ

|δk|

+
1

|k1|(−u2)− δλ

|δk|

→ 0

By (3.13) and (3.14),

lim
|δk|→0

δλ

δk
= ±|k1|√

3
= ±4π

3a

By the continuity of each dispersion band, we can extend this result to any
direction u ∈ S1. So we obtain the directional derivative of k 7→ νj(k, α) at k = K,
j = 2, 3 as follows:

∇uν2(K, α) = −4π

3a
, ∇uν3(K, α) = +

4π

3a

�

Note that the second and third dispersion bands described in Theorem 3.2 are
not the only pair of conic dispersion bands. Using the same argument, we ob-
serve infinitely many additional pairs of dispersion bands with a (3n−1)-fold conic
singularity at each (K, λ′) where

λ′ ∈ {|ξm + K|2 | m ∈ Z2} = σ(−∆(K))

and

(3.17) n =
1

3

(
#{m ∈ Z2 | |ξm + K| = λ′}

)
Furthermore, these are the only conic singularities at Dirac point since all the other
perturbed eigenvalues λ′ ∈ σ(−∆α,{0}(K)) \ σ(−∆(K)) have multiplicity 1 which
does not allow dispersion bands to meet at the eigenvalue. Note that n ≥ 1 in
(3.17) is an integer since for any m ∈ Z2, we have

|ξm + K| = |R̃ξm + K| = |R̃2ξm + K|

where R̃ : R2 → R2 is a 2π
3 -rotation around a Dirac Point −K. For instance, the

j-th dispersion bands with j = 2, 3 and j = 8, · · · , 12 form a 2-fold and a 5-fold
conic singularity, respectively. (See Figure 4.)

Now we investigate the dispersion bands globally over Brillouin zone and the
corresponding band spectra. A similar model has been already examined in [1]
for rectangular two-dimensional lattices with one scatterer in each fundamental
domain. Here we introduce an application to the triangular lattice Λ. The proof is
similar to that of Theorem III.4.7 in [1].

Proposition 3.3. Let ν1(k, α) ≤ ν2(k, α) ≤ · · · be the eigenvalues of −∆α,{0}(k).
For α ∈ R and β = (α, α, · · · ), the spectrum of the operator −∆β,Λ is purely
absolutely continuous and equals

(3.18) σ(−∆β,Λ) = [ν1(α,0), ν1(α,K)] ∪ [ν2(α),∞)

where

(3.19) ν2(α) = min

{
ν2(0, α), ν2

(
k1 + k2

2
, α

)}
> 0 α ∈ R
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In addition, α 7→ νj(k, α) is strictly increasing on R, namely,

(3.20)
∂νj(k, α)

∂α
> 0, α ∈ R, k ∈ B, j = 1, 2, · · · .

Hence, there exists α1 such that

(3.21) σ(−∆β,Λ) = [ν1(α,0),∞), α ≥ α1

See Figure 5a and Supplement Material #1 for the global view of first five dis-
persion bands with a fixed α and various α’s, respectively. See also Figure 6a for
the graph of spectral bands σ(−∆β,Λ) versus α where β = (α, α, · · · ).

3.2. Point scatterers on the honeycomb structure. Consider the honeycomb
structure H = Λ + Y defined in Section 2.1 with

Y = {0,x0}, Λ = Zv1 ⊕ Zv2.

Suppose the parameters for two scatterers at 0 and x0 are the same, say α.

α = (α, α).

This is a legitimate assumption for the model of crystal structure comprised of
only one element, such as carbon atoms in graphene. Then the set of perturbed
eigenvalues, σ(−∆α,Y (k)) \ σ(−∆(k)), is determined as follows:

Proposition 3.4. Suppose λ′ /∈ σ(−∆(k)). Then λ′ ∈ σ(−∆α,{0,x0}(k)) if and
only if

(3.22) α = gλ′(0,k) + |gλ′(x0,k)|
or

(3.23) α = gλ′(0,k)− |gλ′(x0,k)|
In addition,

(3.24) mult(λ′,−∆α,Y (k)) = dim ker(Γα,{0,x0}(λ
′,k))

Proof. Suppose λ′ ∈ σ(−∆α,{0,x0}(k)) \ σ(−∆(k)). By (A.16), Γα,{0,x0}(λ,k) is
Hermitian for all λ /∈ σ(−∆(k)). So we can decompose Γα,{0,x0}(λ,k) into

Γα,{0,x0}(λ,k) = Uα,{0,x0}(λ,k)Γ̃α,{0,x0}(λ,k)U∗α,{0,x0}(λ,k)

where

(3.25) Uα,{0,x0}(λ,k) =



1√
2

 1 − gλ(x0,k)

|gλ(x0,k)|
gλ(x0,k)

|gλ(x0,k)|
1

 if gλ(x0,k) 6= 0

[
1 0
0 1

]
if gλ(x0,k) = 0

and
(3.26)

Γ̃α,{0,x0}(λ,k) = diag
(
γ̃1,α,{0,x0}(λ,k), γ̃2,α,{0,x0}(λ,k)

)
= diag (α− gλ(0,k) + |gλ(x0,k)|, α− gλ(0,k)− |gλ(x0,k)|)

Then for λ /∈ σ(−∆α,{0,x0}(k)), we can rewrite (A.18) as
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(3.27)
(
−∆α,{0,x0}(k)− λ

)−1
f(x)

= (−∆(k)− λ)
−1
f(x) +

1

area(B)

N∑
j=1

γ̃−1
j,α,{0,x0}(λ,k)

(
g̃j,λ (•,k), f

)
g̃j,λ (x,k)

where g̃j,λ(x,k) is the j-th entry of the vector

U∗α,{0,x0}(λ,k)

[
gλ (x,k)

gλ (x− x0,k)

]
.

In addition, we observe from (3.26) that

∂λγ̃j,α,{0,x0}(λ,k) < 0, j = 1, 2

which implies for λ′ ∈ σ(−∆α,{0,x0}(k)) \ σ(−∆(k)),

γ̃j,α,{0,x0}(λ
′,k) = 0 if and only if Resλ=λ′

(
γ̃−1
j,α,{0,x0}(λ,k)

)
6= 0, j = 1, 2.

Therefore, we obtain the multiplicity of λ = λ′ as follows: For ε > 0 sufficiently
small,

mult(λ′,−∆α,{0,x0}(k))

= rank

∮
|λ−λ′|=ε

(
−∆α,{0,x0}(k)− λ

)−1
dλ

= rank

∮
|λ−λ′|=ε

1

area(B)

2∑
j=1

γ̃−1
j,α,{0,x0}(λ,k)

(
g̃j,λ (k), •

)
g̃j,λ (k) dλ

= #
{
j = 1, 2

∣∣∣ Resλ=λ′

(
γ̃−1
j,α,{0,x0}(λ,k)

)
6= 0
}

= #
{
j = 1, 2

∣∣ γ̃j,α,{0,x0}(λ
′,k) = 0

}
= dim ker(Γα,{0,x0}(λ

′,k))

In addition, the corresponding eigenspace is the range of the operator:

(3.28) span
{
g̃j,λ′(•,k)

∣∣ γ̃j,α,{0,x0}(λ
′,k) = 0, j = 1, 2

}
�

On the other hand, we observe that some eigenvalues of −∆(k) remain in the
spectrum of −∆α,{0,x0}(k) as unperturbed eigenvalues with multiplicity decreased
by 0, 1 or 2.

Proposition 3.5. Suppose λ′ = λm1
= · · · = λmµ

is an eigenvalue of the unper-

turbed operator −∆(k) of multiplicity µ where λm = |ξm + k|2. Then

(3.29) mult(λ′,−∆α,{0,x0}(k)) =

µ− 2 if µ 6=
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣ (Case 1)

µ− 1 if µ =
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣
and α 6= limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|) (Case 2)

µ if µ =
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣
and α = limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|) (Case 3)
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(a) RHS of (3.7)
(b) RHS of (3.22) (dashed) and (3.23)
(solid)

Figure 3. RHS of (3.7), (3.22) and (3.23) as a function of λ. The
dashed vertical lines represent λ ∈ σ(−∆(k)).

with the corresponding eigenspaces in the same order

(3.30)

f : x 7→
µ∑
j=1

cje
i(ξmj+k)·x

∣∣∣∣∣∣ f(0) = f(x0) = 0, c1, · · · , cµ ∈ C


(3.31)

f : x 7→
µ∑
j=1

cje
i(ξmj+k)·x

∣∣∣∣∣∣ f(0) = 0, c1, · · · , cµ ∈ C


(3.32)f : x 7→

µ∑
j=1

cje
i(ξmj+k)·x

∣∣∣∣∣∣ f(0) = 0, c1, · · · , cµ ∈ C

⊕ span
{
g̃2,λ′−

(•,k)
}

with g̃2,λ′−
(•,k) = limλ↗λ′ g̃2,λ(•,k) as in (3.28). Note that

mult(λ′,−∆α,{0,x0}(k)) = 0

means λ′ /∈ σ(−∆α,{0,x0}(k)).

Proof. First, consider the Laurent expansion of gλ as λ→ λ′.

area(Γ)gλ(x,k) = −
µ∑
j=1

eiξmj ·x0(λ− λ′)−1 +Rλ′(x,k) +O(|λ− λ′|), λ→ λ′

with the remainder term Rλ(x,k) = O(1). Also, suppose f ∈ L2
k(Γ) has the

expansion

f(x) =
∑

m∈Z2

fme
i(ξm+k)·x, fm =

1

area(B)

∫
B
f(x)e−i(ξm+k)·xdx

Then we can rewrite the integral kernel of (A.18) for −∆α,{0,x0}(k) using the matrix
and vector notation.

(3.33)
(
−∆α,{0,x0}(k)− λ

)−1
(x,x′) =



DIRAC CONES FOR A HONEYCOMB POINT SCATTERER 13

gλ(x− x′) +
1

area(B)

[
~gλ(x′,k)

]T [
Γα,{0,x0}(λ,k)

]−1
[~gλ(x,k)]

where each term has the Laurent expansion

~gλ(x,k) =

[
−
∑µ
j=1 e

i(ξmj+k)·x

−
∑µ
j=1 e

i(ξmj+k)·(x−x0)

]
(λ− λ′)−1 +

[
Rλ′(x,k)

Rλ′(x− x0,k)

]
+O(|λ− λ′|)

adj Γα,{0,x0}(λ,k) =

[
µ −

∑µ
j=1 e

i(ξmj+k)·x0

−
∑µ
j=1 e

−i(ξmj+k)·x0 µ

]
(λ− λ′)−1

+

[
α−Rλ′(0,k) Rλ′(x0,k)
Rλ′(−x0,k) α−Rλ′(0,k)

]
+O(|λ− λ′|)

det Γα,{0,x0}(λ,k) =

µ2 −

∣∣∣∣∣∣
µ∑
j=1

eiξmj ·x0

∣∣∣∣∣∣
2
 (λ− λ′)−2

+ 2

µ(α−Rλ′(0)) + Re

 µ∑
j=1

e−iξmj ·x0Rλ′(x0)

 (λ− λ′)−1

+O(1)

=C−2(λ− λ′)−2 + C−1(λ− λ′)−1 + C0 +O(|λ− λ′|)

Case 1: Suppose µ 6=
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣. Consider an operator P : L2
k(Γ)→ L2

k(Γ)

as the norm limit

P = lim
λ→λ′

(λ− λ′)
(
−∆α,{0,x0}(k)− λ

)−1
.

Then P is a projection onto the eigenspace corresponding to the eigenvalue λ = λ′.
Since C−2 6= 0, for all f ∈ L2

k(Γ),

Pf(x) =

µ∑
j=1

ei(ξmj+k)·xfmj −
1

C−2

[ ∑
fmj∑

fmje
i(ξmj+k)·x0

]T
[

µ −
∑
ei(ξmj+k)·x0

−
∑
e−i(ξmj+k)·x0 µ

][ ∑
ei(ξmj+k)·x∑

ei(ξmj+k)·(x−x0)

]

Hence, we can show that P is the projection of f onto the eigenspace (3.30) since

Pf(0) = 0, Pf(x0) = 0



14 MINJAE LEE

Case 2: Suppose µ =
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣ and α 6= limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|).
Since C−2 = 0 and C−1 6= 0,

Pf(x) =

µ∑
j=1

ei(ξmj+k)·xfmj
− 1

C−1

(∑
fmj

)[ 1
ei(ξm1

+k)·x0

]T
[
α−Rλ′(0,k) Rλ′(x0,k)
Rλ′(−x0,k) α−Rλ′(0,k)

] [
1

e−i(ξm1
+k)·x0

](∑
ei(ξmj+k)·x

)
=

µ∑
j=1

ei(ξmj+k)·xfmj
−

 µ∑
j=1

fmj

 µ∑
j=1

ei(ξmj+k)·x


Hence, P is the projection onto (3.31).

Case 3: Suppose µ =
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣ and α = limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|).
Since C−2 = 0, C−1 = 0 and C0 6= 0,

Pf(x) =

µ∑
j=1

ei(ξmj+k)·xfmj
− 1

C0

[ (
Rλ′(•,k), f

)(
Rλ′(• − x0,k), f

)]T
[

µ −
∑µ
j=1 e

i(ξmj+k)·x0

−
∑µ
j=1 e

−i(ξmj+k)·x0 µ

] [
Rλ′(x,k)

Rλ′(x− x0,k)

]

− 1

C0

(∑
fmj

)[ 1
ei(ξm1

+k)·x0

]T [−R2
λ′(0) R2

λ′(x0)
−R2

λ′(0) R2
λ′(x0)

]
[

1
e−i(ξm1

+k)·x0

](∑
ei(ξmj+k)·x

)
=

µ∑
j=1

ei(ξmj+k)·xfmj −

 µ∑
j=1

fmj

 µ∑
j=1

ei(ξmj+k)·x


+ C

(
g̃2,λ′−

(•,k), f
)
g̃2,λ′−

(x,k), for some C 6= 0

Hence, P is the projection onto (3.32). �

Although the conditions for Case 2 and Case 3 seem restrictive in some sense,
we can observe various cases satisfying those conditions. For example, suppose
k = (kx, 0) ∈ B, kx > 0 and choose λ′ as

λ′ = |ξ(0,−1) + k| = |ξ(−1,0) + k|

so that λ′ is an eigenvalue of −∆(k) of multiplicity µ = 2. Then we have∣∣eiξ(0,−1)·x0 + eiξ(−1,0)·x0
∣∣ =

∣∣∣2e−i 4π3 ∣∣∣ = 2,

which falls into either Case 2 or Case 3 of (3.29) depending on the value of α.
Hence,

mult
(
λ′,−∆α,{0,x0}(k)

)
=

{
1 if α 6= limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|)
2 if α = limλ↗λ′ (gλ(0,k)− |gλ(x0,k)|)

.

On the other hand, suppose k = (0, ky) ∈ B, ky > 0 and choose λ′ as

λ′ = |ξ(0,1) + k| = |ξ(−1,0) + k|.
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so that µ = 2. Then we observe∣∣eiξ(0,1)·x0 + eiξ(−1,0)·x0
∣∣ =

∣∣∣ei 4π3 + e−i
4π
3

∣∣∣ 6= 2,

which corresponds to Case 1 of (3.29). Therefore, mult
(
λ′,−∆α,{0,x0}(k)

)
= 0,

which implies

λ′ /∈ σ
(
−∆α,{0,x0}(k)

)
, α ∈ R.

Remark. If mult (λ,−∆(k)) = 1, then
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣ =
∣∣eiξm1

·x0
∣∣ = 1 so this falls

into either Case 2 or Case 3.
λ /∈ σ(−∆α,{0,x0}(k)) if α 6= lim

λ↗λ′
(gλ(0,k)− |gλ(x0,k)|)

λ ∈ σ(−∆α,{0,x0}(k)) if α = lim
λ↗λ′

(gλ(0,k)− |gλ(x0,k)|)

On the other hand, if mult (λ,−∆(k)) ≥ 3, then

λ ∈ σ(−∆α,{0,x0}(k)).

Also, we can easily show that the dispersion bands λ1(k, α) ≤ λ2(k, α) ≤ · · ·
given as functions of k by Theorem 3.4 and Theorem 3.5 are continuous and B-
periodic so they are literally ”surfaces” over the Brillouin Zone. Now consider the
spectrum as a function of α. Note that α =∞ corresponds to the free Hamiltonian
−∆(k).

Proposition 3.6. Let λ1(k, α) ≤ λ2(k, α) ≤ · · · and λ∞1 (k) ≤ λ∞2 (k) ≤ · · · be
the eigenvalues of −∆α,{0,x0}(k) and −∆(k), respectively. Then α 7→ λj(k, α) is
increasing for all j and

λj(k, α) ≥ λ∞1 (k) ≥ 0, j ≥ 3, ∀α ∈ (−∞,∞]

λj(k, α)→ −∞ as α→ −∞ j = 1, 2

In addition,

lim
α→∞

λj(k, α) = lim
α→−∞

λj+2(k, α) = λ∞j (k) for all j ≥ 1

Proof. First, λ 7→ gλ(0,k)± |gλ(x0,k)| is continuous and increasing for both signs
for λ ∈ (−∞, λ∞1 (k)). In addition, we observe that

lim
λ→−∞

gλ(0,k)± |gλ(x0,k)| = −∞

Therefore, by (3.23) and (3.22), there exist exactly two perturbed eigenvalues
λ1(k, α) and λ2(k, α) in (−∞, λ∞1 (k)) whenever

α ≤ lim
λ↗λ∞1 (k)

(gλ(0,k)− |gλ(x0,k)|) .

This also implies that

lim
α→−∞

λj(k, α)→ −∞, j = 1, 2

On the other hand, consider the other eigenvalues near an arbitrary λ′ ∈ σ(−∆(k)).
Since gλ(0,k)± |gλ(x0,k)| is finite for λ /∈ σ(−∆(k)), we observe that lim

α→∞
λj(k, α) ∈ σ(−∆(k))

lim
α→−∞

λj+2(k, α) ∈ σ(−∆(k))
for all j ≥ 1
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Therefore, it suffices to show that those two limits agree with the same multiplicity
at λ = λ′ for all j ≥ 1. Note that as λ→ λ′,

gλ(0,k) = − µ

area(Γ)
(λ− λ′)−1 +O(1)

|gλ(x0,k)| = 1

area(Γ)

∣∣∣∣∣∣
µ∑
j=1

eiξmj ·x0

∣∣∣∣∣∣ |λ− λ′|−1 +O(1)

Let µ = mult(λ′,−∆(k)). We consider two cases as follows:

Case 1: If µ 6=
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣, then the unperturbed eigenvalue λ′ satisfies

mult(λ′,−∆α,{0,x0}(k)) = µ− 2

according to Theorem 3.5. We also observe

lim
λ↗λ′

gλ(0,k) + |gλ(x0,k)| =∞

lim
λ↗λ′

gλ(0,k)− |gλ(x0,k)| =∞

lim
λ↘λ′

gλ(0,k) + |gλ(x0,k)| =∞

lim
λ↘λ′

gλ(0,k)− |gλ(x0,k)| = −∞

which imply by Theorem 3.4 that there exists exactly two perturbed eigenvalues
converging to λ = λ′ as α → ±∞. So the multiplicity of λ = λ′ is conserved for
both cases when α = +∞ and α = −∞.

Case 2: If µ =
∣∣∣∑µ

j=1 e
iξmj ·x0

∣∣∣, then the unperturbed eigenvalue λ′ satisfies

mult(λ′,−∆α,{0,x0}(k)) = µ− 1

for |α| sufficiently large according to Theorem 3.5. We also observe

lim
λ↗λ′

gλ(0,k) + |gλ(x0,k)| =∞

lim
λ↗λ′

gλ(0,k)− |gλ(x0,k)| = C

lim
λ↘λ′

gλ(0,k) + |gλ(x0,k)| = C

lim
λ↘λ′

gλ(0,k)− |gλ(x0,k)| = −∞

, C is finite

which imply by Theorem 3.4 that there exists exactly one perturbed eigenvalue
converging to λ′ as α → ±∞. So the multiplicity of λ′ is conserved for both cases
when α→ +∞ and α→ −∞.

This concludes the proof. �

3.2.1. Eigenvalues near Dirac points. Now we investigate local behavior of disper-
sion bands near Dirac points, which are located at the vertices of the Brillouin Zone
boundary. (See Figure 2.) Without loss of generality, we choose one Dirac point

K =
2

3
k1 +

1

3
k2

out of six points and observe the conic dispersion bands generated by −∆α,{0,x0}(k)
near k = K.
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Proposition 3.7. At Dirac point K, the perturbed eigenvalues of −∆α,{0,x0}(K)
has multiplicity 2 and coincides with those of the triangular lattice operator −∆α,{0}(K),
namely,

σ(−∆α,{0,x0}(K)) \ σ(−∆(K)) = σ(−∆α,{0}(K) \ σ(−∆(K))

and for all λ′ ∈ σ(−∆α,{0,x0}(K)) \ σ(−∆(K)),

mult(λ′,−∆α,{0,x0}(K)) = 2

Proof. We use the symmetry of the honeycomb structure and dual lattice as in
Section 2.4 of [7].Let R̃ : R2 → R2 be a 2π

3 -rotation around a Dirac Point −K.
Then we see

(3.34)

R̃ξm = R̃ξ(m1,m2) = ξ(−m1+m2−1,−m1−1)

R̃2ξm = R̃2ξ(m1,m2) = ξ(−m2−1,m1−m2)

R̃3ξm = Id ξ(m1,m2) = ξ(m1,m2)

Here we abuse the notation and write R̃ξm = ξR̃m so that

R̃m = R̃(m1,m2) = (−m1 +m2 − 1,−m1 − 1)

R̃2m = R̃2(m1,m2) = (−m2 − 1,m1 −m2)

R̃3m = Id (m1,m2) = (m1,m2)

So we can decompose Z2 into three disjoint subsets S, R̃S, and R̃2S where

Z2 = S ∪ R̃S ∪ R̃2S

For instance, {(0, 0), (−1,−1), (−1, 0)} is an orbit of R̃. So we choose exactly
one of them, say (0, 0), as an element of S. (See Definition 2.4 of [7].) Since
x0 = 2

3 (v1 + v2), we obtain

ξm · x0 =
2π

3
(m1 +m2)

ξR̃m · x0 =
2π

3
(−2m1 +m2 − 2) =

2π

3
(m1 +m2)− (2πm1 +

4π

3
)

ξR̃2m · x0 =
2π

3
(m1 − 2m2 − 1) =

2π

3
(m1 +m2)− (2πm2 +

2π

3
)

Therefore,

eiξm·x0 + eiξR̃m·x0 + eiξR̃2m·x0 = ei
2π
3 (m1+m2)

(
1 + ei

2π
3 + ei

4π
3

)
= 0

In addition, note that

|ξm + K| = |ξR̃m + K| = |ξR̃2m + K|
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We can conclude that

gλ′(x0,K) =
∑

m∈Z2

eiξm·x0

|ξ2
m + K|2 − λ′

=
∑
m∈S

[
eiξm·x0

|ξ2
m + K|2 − λ′

+
eiξR̃m·x0

|ξ2
R̃m

+ K|2 − λ′
+

eiξR̃2m·x0

|ξ2
R̃2m

+ K|2 − λ′

]

=
∑
m∈S

eiξm·x0 + eiξR̃m·x0 + eiξR̃2m·x0

|ξ2
m + K|2 − λ′

= 0

Hence, (3.23) and (3.22) become two identical formulae and

mult(λ′,−∆α,{0,x0}(K)) = 2 ∀λ′ ∈ σ(−∆α,{0,x0}(K)) \ σ(−∆(K)).

Moreover, (3.23) and (3.22) coincide with (3.7) of the triangular lattice case.

σ(−∆α,{0,x0}(K)) \ σ(−∆(K)) = σ(−∆α,{0}(K) \ σ(−∆(K))

�

In addition, those eigenvalues of multiplicity 2 given in the previous proposition
are the conic points on pairs of dispersion bands.

Lemma 3.8. For each λ′ ∈ σ(−∆α,{0,x0}(K)) \ σ(−∆(K)), there exist a pair of
dispersion bands k 7→ λ−(k) and k 7→ λ+(k) of the operator −∆α{0,x0}(k) such
that

λ′ = λ−(K) = λ+(K).

In addition, λ+ and λ− meet conically at (K.λ′) with the directional derivatives
independent of the direction u ∈ S1,

∇uλ±(K) = ±c(λ′)
where c(λ′) > 0 is defined by

(3.35) c(λ′) =
4π

a

∣∣∣∣∑m∈Z2

m1e
iξm·x0

(|ξm + K|2 − λ′)2

∣∣∣∣∑
m∈Z2

1

(|ξm + K|2 − λ′)2

, m = (m1,m2)

Proof. Suppose λ′ ∈ σ(−∆α,{0,x0}(K)) \ σ(−∆(K)). By Proposition 3.7, λ′ is
an eigenvalue of −∆α,{0,x0}(K) of multiplicity 2. So we can choose j such that
λ′ = λj(K, α) = λj+1(K, α). Since α is fixed, let

λ+(k) = λj+1(k, α)

λ−(k) = λj(k, α)

Now we prove the conic behavior of k 7→ λ+(k) near λ = λ′. Consider a small
perturbation δk and the corresponding δλ:

δk = |δk|u ∈ R2, |δk| � 1, u ∈ S1

δλ = λ+(K + δk)− λ+(K)

Then both (K, λ′) and (K + δk, λ′ + δλ) solve (3.23):

(3.36) α− gλ′(0,K) + |gλ′(x0,K)| = 0
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and

(3.37) α− gλ′+δλ(0,K + δk) + |gλ′+δλ(x0,K + δk)| = 0

Subtracting (3.36) from (3.37), we obtain

(3.38)
∑
m∈Z2

2(ξm + K) · δk− δλ
(|ξm + K|2 − λ′)2

+

∣∣∣∣∣ ∑
m∈Z2

eiξm·x0 (2(ξm + K) · δk− δλ)

(|ξm + K|2 − λ′)2

∣∣∣∣∣ = o(|δk|)

In addition, we observe that∑
m∈Z2

eiξm·x0

(|ξm + K|2 − λ′)2
= 0

and ∑
m∈Z2

ξm + K

(|ξm + K|2 − λ′)2
= 0

due to the symmetry property as in Proposition 3.7. So we can simplify (3.38) as

−
∑
m∈Z2

δλ

(|ξm + K|2 − λ′)2
+

∣∣∣∣∣ ∑
m∈Z2

2
eiξm·x0(ξm + K) · δk

(|ξm + K|2 − λ′)2

∣∣∣∣∣ = o(|δk|)

Hence, as |δk| → 0, we obtain the directional derivative of the upper dispersion
band,

∇uλ+(K) = +

∣∣∣∣∑m∈Z2

2eiξm·x0(ξm + K)

(|ξm + K|2 − λ′)2
· u
∣∣∣∣∑

m∈Z2

1

(|ξm + K|2 − λ′)2

.

Define c : R→ C2 by

c(λ′) =

∑
m∈Z2

2eiξm·x0(ξm + K)

(|ξm + K|2 − λ′)2∑
m∈Z2

1

(|ξm + K|2 − λ′)2

.

so that

∇uλ+(K) = |c(λ′) · u|.
Then we observe that

ei
π
3 c(λ′) · v1

a
= c(λ′) · v2

a

which implies for any u ∈ S1,

|c(λ′) · u| =
∣∣∣c(λ′) · v1

a

∣∣∣
=

4π

a

∣∣∣∣∑m∈Z2

m1e
iξm·x0

(|ξm + K|2 − λ′)2

∣∣∣∣∑
m∈Z2

1

(|ξm + K|2 − λ′)2

= c(λ′)

This concludes that the directional derivative is independent of the direction
u ∈ S1. We can show that ∇uλ−(K) = −c(λ′) by similar considerations. �
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Remark. The parameters α = (α, α) and the location of the point x0 = 2
3 (v1+v2) in

the fundamental domain Γ both play crucial roles in existence of conic singularities
on dispersion bands since perturbed eigenvalues λ′ ∈ σ(−∆α,Y (k)) \ σ(−∆(k)) of
multiplicity 2 can only be obtained when the matrix Γα,{0,x0}(λ

′,k) defined by
(A.16) is a 2×2 diagonal matrix with identical diagonal entries. In other words, x0

determines if Γα,{0,x0}(λ
′,k) is diagonal and the identical parameters α = (α, α)

make those diagonal entries equal to each other so that the two dispersion bands
meet at Dirac Point.

Now we introduce one of the main theorems about the conic singularities of a
honeycomb lattice point scatterer. We observe two pairs of conic surfaces above
and below the third dispersion bands as follows:

Theorem 3.9. For all α ∈ R and k ∈ B,

λ1(k, α) = λ2(k, α)

and
λ4(k, α) = λ5(k, α).

In addition, as k→ K,

λ1(k, α)− λ1(K, α) = −c(λ1(K, α)) |k−K|+ o(|k−K|)
λ2(k, α)− λ2(K, α) = c(λ1(K, α)) |k−K|+ o(|k−K|)
λ4(k, α)− λ4(K, α) = −c(λ4(K, α)) |k−K|+ o(|k−K|)
λ5(k, α)− λ5(K, α) = c(λ4(K, α)) |k−K|+ o(|k−K|)

Proof. By Proposition 3.5,

λ∞1 (K) = |ξ(0,0) + K| = |ξ(−1,−1) + K| = |ξ(−1,0) + K|
is an eigenvalue of −∆α,{0,x0}(K) of multiplicity 1. Then λ3(K, α) = λ∞1 (K)
since we obtain λ1(K, α) = λ2(K, α) and λ4(K, α) = λ5(K, α) by solving (3.7)
on (−∞, λ∞1 (K)) and on (λ∞1 (K), λ∞2 (K)), respectively. Then we obtain the de-
sired conclusion by applying Lemma 3.8 to λ1(K, α) = λ2(K, α) and λ4(K, α) =
λ5(K, α). �

Remark. In addition to the two pairs of conic singularities described in Theorem 3.9,
we observe by Lemma 3.8 that there exist infinitely many pairs of dispersion bands
sharing the same property. More precisely, for each perturbed eigenvalue λ′ ∈
σ(−∆α,{0,x0}(K))\σ(−∆(K)) at a Dirac point K, there exist two dispersion bands
passing through λ′ forming a pair of conic singularities. On the other hand, by
Proposition 3.5, we observe a different kind of (3n − 2)-fold conic singularities
at (K, λ′) where λ′ ∈ σ(−∆(K)) and n defined by (3.17) is greater than 1. For
instance, the j-th dispersion bands with j = 9, · · · , 12 form a 4-fold conic singularity
at Dirac point. See Figure 4 for both kinds of conic surfaces at Dirac point.

Due to the global asymptotic behavior of dispersion bands described in Theo-
rem 3.6, the conic points also approach other surfaces as α → ±∞. In particular,
as α→∞,

λ1(K, α) = λ2(K, α)↗ |K2|
where λ3(K, α) = λ∞1 (K) = |K2| is independent of α. On the other hand, as
α→ −∞,

λ1(K, α) = λ2(K, α)→ −∞
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(a) Triangular lattice, j = 2, 3 (b) Triangular lattice, j = 8, · · · , 12

(c) Honeycomb lattice, j = 1, 2 (d) Honeycomb lattice, j = 9, · · · , 12

Figure 4. Local view of the j-th dispersion band generated by
a triangular lattice point scatterer −∆0,{0}(k), and by a honey-
comb lattice point scatterer−∆0,{0,x0}(k) near Dirac Point K. See
Supplemental materials for the first five dispersion bands with α
moving from 100 to −100.

λ4(K, α) = λ5(K, α)↘ |K2|.
See Supplemental materials for continuous transition of dispersion bands where α
is moving from 100 to −100.

3.2.2. Spectral properties of the full Hamiltonian. By Proposition A.3, the full
Hamiltonian of the honeycomb lattice point scatterer −∆β,H , β = (α, α, · · · ) gener-
ates a spectrum given by the union of σ

(
−∆α,{0,x0}(k)

)
for all k ∈ B. Furthermore,

σ (−∆β,H) formulates a band structure due to the continuity of each dispersion
band. More precisely, we obtain a union of infinitely many intervals corresponding
to all dispersion bands:

(3.39) σ (−∆β,H) =
⋃
j≥1

[
min
k∈B

λj(k, α), max
k∈B

λj(k, α)

]
.

Although a generic dispersion band k 7→ λj(k, α) attains its maximum and
minimum at various points k ∈ B that depends on α, we observe a simple result at
least for the lowest level.
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Proposition 3.10. For any α ∈ (−∞,∞], the lowest eigenvalue of the first band
occurs at k = 0, namely,

min
k∈B

λ1(k, α) = λ1(0, α).

Proof. This can be proved easily when α =∞ since

λ1(k,∞) = λ∞1 (k) = |k|2.

Now suppose α ∈ R. Then λ1(k, α) is obtained by solving (3.22) on (−∞, λ∞1 (k))
where the RHS of the equation is continuous and increasing as a function of λ. Since
λ1(k, α) < λ∞1 (k), it suffices to show that

α ≥ gλ1(0,α)(0,k) +
∣∣gλ1(0,α)(x0,k)

∣∣
or equivalently,

gλ1(0,α)(0,0) +
∣∣gλ1(0,α)(x0,0)

∣∣ ≥ gλ1(0,α)(0,k) +
∣∣gλ1(0,α)(x0,k)

∣∣ .
By the Poisson summation formula (Lemma III.4.4) in [1], for Im

√
λ > 0 and

x ∈ Γ,

gλ(x,k) =



∑
v∈Λ

Gλ(x + v)e−ik·v if x ∈ Γ \ {0}

∑
v∈Λ
v 6=0

Gλ(v)e−ik·v +
1

2π
ln

(√
λ

i

)
if x = 0

Since λ1(0, α) < λ∞1 (0) = 0, we have Gλ1(0,α)(x) > 0 for x ∈ R2 \ {0}. So we
obtain

gλ1(0,α)(0,k) +
∣∣gλ1(0,α)(x0,k)

∣∣
=
∑
v∈Λ
v 6=0

Gλ1(0,α)(v)e−ik·v +
1

2π
ln

(√
λ1(0, α)

i

)
+

∣∣∣∣∣∑
v∈Λ

Gλ1(0,α)(x0 + v)e−ik·v

∣∣∣∣∣
≤
∑
v∈Λ
v 6=0

Gλ1(0,α)(v) +
1

2π
ln

(√
λ1(0, α)

i

)
+

∣∣∣∣∣∑
v∈Λ

Gλ1(0,α)(x0 + v)

∣∣∣∣∣
= gλ1(0,α)(0,0) +

∣∣gλ1(0,α)(x0,0)
∣∣

which implies

min
k∈B

λ1(k, α) = λ1(0, α)

�

Recall that the full Hamiltonian of a triangular lattice point scatterer has a
spectrum consisting of at most two intervals by Proposition 3.3. We now observe
an analogous result for honeycomb lattice point scatterers. See Figure 6b for the
graph of spectral bands σ(−∆β,H) versus α ∈ R where β = (α, α, · · · ).

Theorem 3.11. For α ∈ R and β = (α, α, · · · ), the spectrum of −∆β,H consists
of at most three disjoint intervals, namely,

σ(−∆β,H) = I1 ∪ I2 ∪ I3
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where

(3.40) I1 =

[
λ1(0, α), max

k∈B
λ2(k, α)

]

(3.41) I2 =

[
min
k∈B

λ3(k, α), max
k∈B

λ3(k, α)

]

(3.42) I3 =

[
min
k∈B

λ4(k, α), ∞
)

Proof. (3.41) is trivial due to the continuity of each dispersion band k 7→ λj(k, α).
(3.40) can also be easily shown since we have

min
k∈B

λ1(k, α) = λ1(0, α)

and λ1(K, α) = λ2(K, α) by Proposition 3.10 and Proposition 3.7, respectively.
Now we prove all spectral bands except the three lowest levels overlap with

adjacent band spectra to produce a single interval I3. Fix α ∈ R and assume that
there exists λ̃ /∈ σ(−∆α,{0,x0}(K)) such that

λ̃ > min
k∈B

λ4(k, α)

Then we can choose j′ ≥ 4 such that

λj′(k, α) < λ̃ < λj′+1(k, α), k ∈ B
Also, it was proved by S.Albeverio [2] that

(3.43) λ∞j−2(k) ≤ λj(k, α) ≤ λ∞j (k), k ∈ B, j ≥ 3

where λ∞j (k) is defined as in Theorem 3.6. So we have for all k ∈ B,

(3.44) λ∞j′−2(k) < λ̃ < λ∞j′+1(k).

On the other hand, we know by the symmetry property of the dual lattice Λ∗ that

(3.45) λ∞6j+2(0) = λ∞6j+3(0) = · · · = λ∞6j+7(0), j ≥ 0

and

(3.46) λ∞3j+1(K) = λ∞3j+2(K) = λ∞3j+3(K), j ≥ 0.

By (3.44) and (3.45), we can choose j′′ ≥ 1 such that

λ∞6j′′+1(0) < λ̃ < λ∞6j′′+2(0).

Then by the assumption on λ̃ and continuity of k 7→ λ∞j (k), we obtain

λ∞6j′′+1(K) < λ̃ < λ∞6j′′+2(K)

which contradicts (3.46). Hence,⋃
j≥4

{λj(k, α) | k ∈ B} =

[
min
k∈B

λ4 (k, α) ,∞
)

�
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(a) Triangular lattice (b) Honeycomb lattice

Figure 5. Front views of the first five dispersion bands generated
by a triangular lattice point scatterer−∆α,{0}(k) and a honeycomb
lattice point scatterer −∆(α,α),{0,x0}(k) with α fixed at −0.07. See
Supplemental materials for the first five dispersion bands with α
moving from 100 to −100.

(a) Triangular lattice (b) Honeycomb lattice

Figure 6. Spectrum of the triangular lattice point scatterer
−∆β,Λ and honeycomb lattice point scatterer −∆β,H with identi-
cal parameters β = (α, α, · · · ) where α ∈ R. The vertical section of
the shaded region at each α represents σ(−∆β,Λ) and σ(−∆β,H).

Appendix A. Introduction to Periodic Point Scatterers

In this section, we briefly introduce some important results already known for
periodic point scatterers. First, Floquet theory for smooth periodic potentials will
be discussed. See also [21] for a rigorous mathematical formulation and [12] for
a discussion in a more physical context. Then we summarize the corresponding
theory of periodic point scatterers in R2. See Part III of [1] for more details.
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A.1. Floquet Theory. Suppose V : R2 → R is smooth and periodic. Then we
can expand V in a Fourier series:

V (x) =
∑

m∈Z2

Vme
iξm·x

with the Fourier coefficients

Vm =
1

area(Γ)

∫
Γ

V (x)e−iξm·xdx.

Consider the Fourier transform of P = −∆ + V . ∆ denotes the Laplacian.

(A.1) P̂ f̂(ξ) = FPF−1f̂(ξ) = |ξ|2f̂(ξ) +
1

2π

∫
R2

V̂ (ξ − η)f̂(η)dη, ξ ∈ R2

By the Fourier inversion formula, we formally obtain

(A.2) V̂ (ξ) = 2π
∑

m∈Z2

Vmδ(ξ − ξm)

since
V (x) =

∑
m∈Z2

Vme
iξm·x

=
∑

m∈Z2

Vm

∫
R2

δ(ξ − ξm)eiξ·xdξ

=
1

2π

∫
R2

V̂ (ξ)eiξ·x

Combining (A.1) and (A.2), we obtain

(A.3) P̂ f̂(ξ) = |ξ|2f̂(ξ) +
∑

m∈Z2

Vmf̂(ξ − ξm)

Also, we can always decompose ξ ∈ R2 into a lattice point ξm ∈ Λ∗ and a remainder
k ∈ B so that

(A.4) ξ = ξm + k.

Hence, for each k ∈ B, the eigenvalue problem (P − λ)f = 0, λ ∈ R becomes an

algebraic problem for {f̂(ξm + k) | m ∈ Z2} as follows:

(A.5) (|ξm + k|2 − λ)f̂(ξm + k) +
∑

m′∈Z2

Vm′ f̂(ξm−m′ + k) = 0, m ∈ Z2

which is called the “central equation” [12] for Floquet-Bloch theory.
In order to study the spectrum of the full Hamiltonian −∆+V in detail using the

central equation, we consider a decomposition operator U : L2(R2)→
∫ ⊕
B dk `2(Λ∗)

defined as
U f̂(k, ξm) = f̂(ξm + k), f̂ ∈ L2(R2)

which corresponds to the decomposition of a vector in (A.4).
Then we obtain

(A.6)
(
U−1P̂U f̂

)
(k, ξm) =

(
P̂ (k)f̂(k, •)

)
(ξm)

with P̂ (k) : `2(Λ∗)→ `2(Λ∗) defined for each k ∈ B by

(A.7) P̂ (k)g(ξm) = |ξm + k|2g(ξm) +
∑

m′∈Z2

Vm′g(ξm − ξm′)
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Note that (A.6) can also be written

(A.8) U−1P̂U =

∫ ⊕
B
dkP̂ (k).

In addition, we obtain a similar result to (A.7) in the x-space. Define P (k) :

L2
k(Γ)→ L2

k(Γ) as the inverse Fourier transform of the operator P̂ (k), namely,

P (k) = F−1P̂ (k)F = −∆(k) + V

In particular, if V ≡ 0, we observe from (A.7) that the spectrum of the free

decomposed Hamiltonian −∆̂(k) is discrete. More precisely,

σ(−∆(k)) = σd(−∆(k)) =
{
|ξm + k|2 | m ∈ Z2

}
Similarly, the non-zero potentials also produce discrete spectra determined by

(A.7). Then we observe

σ(P ) = σ(P̂ ) =
⋃
k∈B

σ(P̂ (k)) =
⋃
k∈B

σ(P (k)).

Hence, the spectrum of P appears as a union of bands where the j-th band consists
of the j-th eigenvalue of P (k), k ∈ B if the dependence in k is continuous.

A.2. Point scatterers on periodic structures. We define the point scatterers
on a periodic structure using self-adjoint extension theory and renormalization pro-
cess. For simplicity’s sake, we will focus on formulating periodic point scatterers
on a honeycomb lattice

H = Λ + Y = {ỹ1, ỹ2, ỹ3, · · · }

with Λ = Zv1⊕Zv2, and Y = {y1,y2} = {0,x0} as defined in Section 2.1. However,
the whole process in this section can be also applied to the case of a lattice different
from Λ and a finite set different from Y in the fundamental domain of the lattice.
In particular, if we pick Y = {0} with the same Λ, then we can formulate periodic
point scatterers on a triangular lattice.

We first investigate a self-adjoint operator

−∆β,H , β = (β1, β2, · · · )

on L2(R2) for infinitely many point scatterers on H where the parameter βj ∈
(−∞,∞] describes the strength of the point scatterer at ỹj ∈ H. For those pa-
rameters, we will follow Albeverio’s notation in [1] so that the point scatterer at
ỹj gets strong when |βj | � ∞ while it vanishes and acts as the Laplacian near ỹj
when βj =∞.

More precisely, we formulate a self-adjoint operator for finitely many point scat-
terers in R2 using Von Neumann’s theory of self-adjoint extension [20] and Krein’s
formula [17]. Then we consider −∆β,H as the limit of such an operator in the norm
resolvent sense.

See Chapter III.4 of [1] for the complete formulation. Then the resolvent

(−∆β,H − λ)−1 : L2(R2)→ L2(R2)

reads for f ∈ L2(R2), x ∈ R2 and λ /∈ σ(−∆β,H) ∪ [0,∞),

(A.9) (−∆β,H − λ)−1f(x) =
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Gλf(x) +

∞∑
j,j′=1

[Γβ,H(λ)−1]jj′ (Gλ(•, ỹj′), f)Gλ(x, ỹj)

where Gλ = (−∆ − λ)−1 is the integral kernel of the free resolvent in L2(R2)
explicitly defined by

(A.10) Gλ(x,x′) =
i

4
H

(1)
0 (
√
λ|x− x′|), Im

√
λ ≥ 0, x 6= x′

where H
(1)
0 is the Hankel function of first kind of order zero and Γβ,H(λ) is a closed

operator in `2(H) given by

[Γβ,H(λ)]jj′ =

βj +
1

2π

(
ln

√
λ

2i

)
, if j = j′, j, j′ ∈ N

−Gλ(ỹj′ , ỹj), if j 6= j′, j, j′ ∈ N

See Theorem 4.1 in [1] for the complete proof. Note that βj in this section corre-
sponds to αj + γ

2π in [1].
In addition, if the parameters of point scatterers on each translated lattice Λ+yj ,

j = 1, 2 are identical, then we call them periodic point scatterers and the operator
can be decomposed into “fibers” [21]. More precisely, suppose that the parameters
at periodic points are identical, namely,

(A.11) αj = βj′ ∈ (−∞,∞], j = 1, 2, j′ ∈ N,
if and only if ỹj′ = yj + vm for some m ∈ Z2.

Then we can follow the idea of the Floquet theory with a periodic potential V
defined by

V (x) =

2∑
j=1

∑
v∈Λ

cjδ(x− v − yj), cj ∈ R,

which provides a simplified model of a crystal consisting of two kinds of atoms
whose nuclei are located on the honeycomb lattice H.

Then the corresponding Fourier coefficients become

(A.12) Vm = − 1

area(Γ)

2∑
j=1

cje
−iξm·yj , m ∈ Z2.

Hence, we obtain the central equation for a formal operator P = −∆ + V (x)
from (A.7). For g ∈ `20(Λ∗) =

{
h ∈ `2(Λ∗) | supp h is finite

}
,

(A.13)

P̂ (k)g(ξm) = |ξm + k|2g(ξm)− 1

area(Γ)

2∑
j=1

[
cje
−iξm·yj

∑
m′∈Z2

eiξm′ ·yjg(ξm′)

]
However, this is obviously not a well-defined self-adjoint operator in `2(Λ∗) since

the infinite sum on the right-hand side does not always converge for g ∈ `2(Λ∗).
So we propose a renormalization by the momentum cutoff |ξm + k| < r. Then we
consider the coefficients cj as a function of r so that they approach zero as r →∞.
In other words, this renormalization process will make the summation in (A.13)
converge by weakening the delta potentials in some sense so we can have the Fourier
transform of the point scatterer as a well-defined self-adjoint operator in `2(Λ∗).

So we obtain the resolvent of −∆̂α,Y (k), the Fourier transform of decomposed
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operator −∆α,Y (k), as in the following proposition. See Theorem III.1.4.1 and
Theorem III.4.3 in [1] for the proof. Note that αj in this proposition corresponds
to αj + γ

2π in [1].

Proposition A.1. Let P̂ r(k) be a self-adjoint operator such that

(P̂ r(k)g)(ξm) = |ξm + k|2g(ξm)− 1

area(Γ)

2∑
j=1

[
cj(r)(φ

r
yj (k), g)φryj (k)

]
where (•, •) is the inner product in `2(Λ∗) and φryj (k) is the function

φryj (k, ξm) = χr(ξm + k)e−i(ξm+k)·yj

with domain

D(P̂ r(k)) = D(−∆̂(k)) =

{
g ∈ `2(Λ∗)

∣∣∣∣∣ ∑
m∈Z2

|ξm + k|4g(ξm)2 <∞

}
.

If

cj(r) =

(
αj +

ln r − ln 2

2π

)−1

, αj ∈ (−∞,∞], r > 0

then for all k ∈ B, P̂ r(k) converges in norm resolvent sense as r → ∞ to a self-

adjoint operator −∆̂α,Y (k) with resolvent

(A.14)

(−∆̂α,Y (k)−λ)−1 = Gλ(k)+
1

area(Γ)

2∑
j=1

[Γα,Y (λ,k)−1]jj′(Fλ,yj (k), •)Fλ,yj′ (k),

λ /∈
{
|ξm + k|2 | ξm ∈ Λ∗

}
, α = (α1, α2)

where
(A.15)

gλ(x,k) =



1

area(Γ)

∑
m∈Z2

ei(ξm+k)·x

|ξ2
m + k|2 − λ

if x /∈ Λ

1

area(Γ)
lim
r→∞

 ∑
m∈Z2

|ξm+k|≤r

1

|ξm + k|2 − λ
− 2π

area(B)
ln r

 if x ∈ Λ

(A.16) [Γα,Y (λ,k)]jj′ = αjδjj′ − gλ(yj′ − yj ,k), j, j′ = 1, 2.

and

(A.17) Fλ,yj (k, ξm) =
e−i(ξm+k)·yj

|ξm + k|2 − λ
and Gλ(k) : `2(Λ∗)→ `2(Λ∗) is the multiplication operator

(Gλ(k)g)(ξm) = (|ξm + k|2 − λ)−1g(ξm)

Finally, we apply the inverse Fourier transform to −∆̂α,Y (k) and obtain the
resolvent of the decomposed operator −∆α,Y (k) on L2

k(Γ). See Theorem III.1.4.3
and Theorem III.4.3 in [1] for more details.



Proposition A.2. Let α = (α1, α2) ∈ (−∞,∞]2. For λ /∈ σ(−∆(k)), the resolvent

(−∆α,Y (k)− λ)
−1

: L2
k(Γ)→ L2

k(Γ) is defined by

(A.18) (−∆α,Y (k)− λ)
−1
f(x) = (−∆(k)− λ)

−1
f(x)

+
1

area(B)

2∑
j,j′=1

[
Γα,Y (λ,k)−1

]
jj′

(
gλ (• − yj ,k), f

)
gλ (x− yj′ ,k)

where gλ(x,k) and Γα,Y (λ,k) are defined in (A.15) and (A.16), respectively.

If the infinite sequence of parameters β satisfies the periodicity condition (A.11),

we can find unitary equivalence between −∆̂β,H , the Fourier transform of the full
Hamiltonian in (A.9), and the direct integral over B of the decomposed operator
in (A.14). Note that this result corresponds to the Floquet theory for smooth
potentials in Section A.1. See Theorem III.1.4.3 and Theorem III.4.5 in [1].

Proposition A.3. Suppose α and β satisfy (A.11). Then −∆̂β,H is unitarily

equivalent to
∫ ⊗
B −∆̂α,Y (k)dk so

(A.19)
⋃
k∈B

σ(−∆α,Y (k)) =
⋃
k∈B

σ(−∆̂α,Y (k)) = σ(−∆̂β,H) = σ(−∆β,H)

Note that the decomposed self-adjoint operator −∆α,Y (k) has a purely discrete
spectrum. Hence, as in the periodic potential case the eigenvalues of ∆β,H also
form a band structure if the dependence in k is continuous.

On the other hand, Proposition A.2 provides additional information about the
domain of −∆α,Y (k). The proof is similar to those of Theorem I.1.1.3 and Theorem
II.1.1.3 in [1].

Proposition A.4. Let ψ ∈ D(−∆α,Y (k)). Then for any

λ /∈ σ(−∆(k)) ∪ σ(−∆α,Y (k)),

there exists a unique φλ ∈ H2
k(Γ) such that

(A.20) ψ(x) = φλ(x) +
1

area(B)

2∑
j,j′=1

[
Γα,Y (λ,k)−1

]
jj′
φλ(yj)gλ (x− yj′ ,k).

In addition,
(−∆α,Y (k)− λ)−1ψ = (−∆(k))− λ)−1φλ.
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