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Abstract

This paper presents a novel approach to reduce the complexity of sim-
ulation based policy iteration methods for solving optimal stopping prob-
lems. Typically, Monte Carlo construction of an improved policy gives rise
to a nested simulation algorithm. In this respect our new approach uses
the multilevel idea in the context of the nested simulations, where each
level corresponds to a specific number of inner simulations. A thorough
analysis of the convergence rates in the multilevel policy improvement
algorithm is presented. A detailed complexity analysis shows that a sig-
nificant reduction in computational effort can be achieved in comparison
to the standard Monte Carlo based policy iteration. The performance of
the multilevel method is illustrated in the case of pricing a multidimen-
sional American derivative.
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1 Introduction

Solving high-dimensional stopping problems in an efficient way has been a chal-
lenge for decades, particularly due to the need of pricing high-dimensional
American derivatives in finance. For low or moderate dimensions, determin-
istic (PDE) based methods may be applicable, but for higher dimensions Monte
Carlo based methods are practically the only way out. Besides the dimension
independent convergence rates, Monte Carlo methods are also popular because
of their generic applicability. In the late nineties several regression methods for
constructing “good” exercise policies yielding lower bounds for the optimal value
were introduced in the financial literature (see Carriere (1996), Longstaff and
Schwartz (2001), and Tsistsiklis and Van Roy (1999), for an overview see also
Glasserman (2003)). Among many other approaches we mention that Broadie
and Glasserman (2004) developed a stochastic mesh method, Bally and Pages
(2003) introduced quantization methods, and Kolodko and Schoenmakers (2006)
considered a class of policy iterations. In Bender et al. (2008) it is demonstrated
that the latter approach can be effectively combined with the Longstaff-Schwartz
approach.

The methods mentioned above commonly provide a (generally suboptimal)
exercise policy, hence a lower bound for the optimal value (or for the price of
an American product). As a next breakthrough in Monte Carlo simulation of
optimal stopping problems in financial context, a dual approach was developed
by Rogers (2002) and independently by Haugh and Kogan (2004), related to
earlier ideas in Davis and Karatzas (1994). Due to the dual formulation one
considers “good” martingales rather than “good” stopping times. In fact, based
on a “good” martingale the optimal value can be bounded from above by an
expected path-wise maximum due to this martingale. Probably one of the most
popular numerical methods for computing dual upper bounds is the method of
Andersen and Broadie (2004). However, this method has a drawback, namely
a high computational complexity due to the need of nested Monte Carlo sim-
ulations. In a recent paper, Belomestny and Schoenmakers (2011) mend this
problem by considering a multilevel version of the Andersen and Broadie (2004)
algorithm.

In this paper we consider a new multilevel primal approach due to Monte
Carlo based policy iteration. The basic concept of policy iteration goes back
to Howard (1960) in fact (see also Puterman (1994)). A detailed probabilistic
treatment of a class of policy iterations (that includes Howard’s one as a special
case) as well as the description of the corresponding Monte Carlo algorithms
is provided in Kolodko and Schoenmakers (2006). In the spirit of Belomestny
and Schoenmakers (2011) (see also Belomestny et al. (2013) and Bujok et al.
(2012)) we here develop a multilevel estimator, where the multilevel concept is
applied to the number of inner Monte Carlo simulations needed to construct a
new policy, rather than the discretization step size of a particular SDE as in
Giles (2008). In this context we give a detailed analysis of the bias rates and
the related variance rates that are crucial for the performance of the multilevel
algorithm. In particular, as one main result, we provide conditions under which
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the bias of the estimator due to a simulation based policy improvement is of
order 1/M with M being the number of inner simulations needed to construct
the improved policy (Theorem 7). (Cf. the bias analysis of nested simulation
algorithms in portfolio risk measurement, see e.g. Gordy and Juneja (2010).)
The proof of Theorem 7 is rather involved and has some flavor of large deviation
theory. The amount of work (complexity) needed to compute, in the standard
way, a policy improvement by simulation with accuracy ε is equal to O(ε−2−1/γ)
with γ determining the bias convergence rate. As a result, the multilevel version
of the algorithm will reduce the complexity by a factor of order ε1/(2γ). In this
paper we restrict ourself to the case of Howard’s policy iteration (improvement)
for transparency, but, with no doubt the results carry over to the more refined
policy iteration procedure in Kolodko and Schoenmakers (2006) as well.

The contents of the paper is as follows. In Section 2 we recap some re-
sults on iterative construction of optimal exercise policies from Kolodko and
Schoenmakers (2006). A description of the Monte Carlo based policy iteration
algorithm, and a detailed convergence analysis is presented in Section 3. After
a concise assessment of the complexity of the standard Monte Carlo approach
in Section 4, we then introduce its multilevel version in Section 5 and provide
a detailed analysis of the multilevel complexity and the corresponding compu-
tational gain with respect to the standard approach. In Section 6 we present
a numerical example to illustrate the power of the multilevel approach. All
proofs are deferred to Section 7 and an Appendix (on convergent Edgeworth
expansions) concludes.

2 Policy iteration for optimal stopping

In this section we review the (probabilistic) policy iteration (improvement)
method for the optimal stopping problem in discrete time. For illustration,
we formalize this in the context of pricing an American (Bermudan) derivative.
We will work in a stylized setup where (Ω,F,P) is a filtered probability space
with discrete filtration F = (Fj)j=0,...,T for T ∈ N+. An American derivative on
a nonnegative adapted cash-flow process (Zj)j≥0 entitles the holder to exercise
or receive cash Zj at an exercise time j ∈ {0, ..., T} that may be chosen once.
It is assumed that Zj is expressed in units of some specific pricing numeraire N
with N0 := 1 (w.l.o.g. we may take N ≡ 1). Then the value of the American
option at time j ∈ {0, ..., T} (in units of the numeraire) is given by the solution
of the optimal stopping problem:

Y ∗j = ess.sup
τ∈T [j,...,T ]

EFj [Zτ ], (1)

provided that the option is not exercised before j. In (1), T [j, . . . , T ] is the set of
F-stopping times taking values in {j, . . . , T} and the process

(
Y ∗j
)
j≥0 is called

the Snell envelope. It is well known that Y ∗ is a supermartingale satisfying the
backward dynamic programming equation (Bellman principle)

Y ∗j = max
(
Zj ,EFj [Y ∗j+1]

)
, 0 ≤ j < T, Y ∗T = ZT .

3



An exercise policy is a family of stopping times (τj)j=0,...,T such that τj ∈
T [j, . . . , T ].

Definition 1 An exercise policy (τj)j=0,...,T is said to be consistent if

τj > j =⇒ τj = τj+1, 0 ≤ j < T, and τT = T.

Definition 2 (standard) policy iteration
Given a consistent stopping family (τj)j=0,...,T we consider a new family (τ̂j)j=0,...,T
defined by

τ̂j = inf
{
k : j ≤ k < T,Zk > EFk [Zτk+1

]
}
∧ T, j = 0, ..., T (2)

with ∧ denoting the minimum operator and inf ∅ := +∞. The new family (τ̂j)
is termed a policy iteration of (τj) .

Definition 3 Let us introduce Ŷj := EFj [Zτ̂j ] and Yj = EFj [Zτj ].

The basic idea behind (2) goes back to Howard (1960) (see also Puterman
(1994)). The key issue is that (2) is actually a policy improvement due to the
following theorem.

Theorem 4 (i) It holds that

Y ∗j ≥ Ŷj ≥ Yj , j = 0, ..., T. (3)

(ii) If τ
(0)
j := τj , τ

(m+1)
j := τ̂

(m)
j (cf. (2)), Y

(0)
j := Yj , Y

(m)
j := EFj [Zτ(m)

j
],

j = 0, ..., T, m = 0, 1, 2, ..., then

Y
(T−j)
k = Y ∗k , k = j, ..., T.

Theorem 4 is in fact a corollary of Th. 3.1 and Prop. 4.3 in Kolodko and
Schoenmakers (2006), where a detailed analysis is provided for a whole class of
policy iterations of which (2) is a special case. See also Bender and Schoen-
makers (2006) for a further analysis regarding stability issues, and extensions
to policy iteration methods for multiple stopping. Due to Theorem 4, one may
iterate any consistent policy in finitely many steps to the optimal one. More-
over, the respective (lower) approximations to the Snell envelope converge in a
nondecreasing manner.

3 Simulation based policy iteration

In order to apply the policy iteration method in practice, we henceforth assume
that the cash-flow Zj is of the form (while slightly abusing of notation) Zj =
Zj(Xj) for some underlying (possibly high-dimensional) Markovian process X.
As a consequence, the Snell envelope process then has the Markovian form Y ∗j =
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Y ∗j (Xj), j = 0, ..., T, as well. Furthermore, it is assumed that a consistent
stopping family (τj) depends on ω only through the path X· in the following
way: For each j the event {τj = j} is measurable w.r.t. Xj , and τj is measurable
w.r.t. (Xk)j≤k≤T , i.e.

τj(ω) = hj(Xj(ω), ..., XT (ω)) (4)

for some Borel measurable function hj . A typical example of such a stopping
family is

τj = inf{k : j ≤ k ≤ T, Zk(Xk) ≥ fk(Xk)}

for a set of real valued functions fk(x). The next issue is the estimation of
the conditional expectations in (2). A canonical approach is the use of sub
simulations. In this respect we consider an enlarged probability space (Ω,F′,P),
where F′ = (F ′j)j=0,...,T and Fj ⊂ F ′j for each j. By assumption, F ′j specified
as

F ′j = Fj ∨ σ
{
Xi,Xi
· , i ≤ j,

}
with Fj = σ {Xi, i ≤ j} ,

where for a generic (ω, ωin) ∈ Ω, Xi,Xi
· := X

i,Xi(ω)
k (ωin), k ≥ i denotes a

sub trajectory starting at time i in the state Xi(ω) = X
i,Xi(ω)
i of the outer

trajectory X(ω). In particular, the random variables Xi,Xi
· and X

i′,Xi′
· are by

assumption independent, conditionally {Xi, Xi′}, for i 6= i′. On the enlarged
space we consider F ′j measurable estimations Cj,M of Cj := EFj

[
Zτj+1

]
as being

standard Monte Carlo estimates based on M sub simulations. More precisely,
for

Cj(Xj) := EXj
[
Zτj+1

]
define

Cj,M :=
1

M

M∑
m=1

Z
τ

(m)
j+1

(X
j,Xj ,(m)

τ
(m)
j+1

),

where the stopping times

τ
(m)
j+1 := hj+1(X

j,Xj ,(m)
j+1 , ..., X

j,Xj ,(m)
T )

(cf. (4)) are evaluated on sub-trajectories X
j,Xj ,(m)
· , m = 1, ...,M, all starting

at time j in Xj . Obviously, Cj,M is an unbiased estimator for Cj with respect
to EFj [·] . We thus end up with a simulation based version of (2),

τ̂j,M = min {k : j ≤ k < T, Zk > Ck,M} ∧ T.

Now set
Ŷj,M := EFj [Zτ̂j,M ].

Next we analyze the bias and the variance of the estimator Ŷ0,M .
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Proposition 5 Suppose that |Zj | < B for some B > 0. Let us further assume
that there exist a constant D > 0 and α > 0, such that for any δ > 0 and
j = 0, . . . , T − 1,

P(|Cj − Zj | ≤ δ) ≤ Dδα. (5)

It then holds,
P (τ̂0,M 6= τ̂0) ≤ D1M

−α/2 (6)

for some constant D1 > 0.

Corollary 6 Under the assumptions of Proposition 5, it follows immediately
by (6) that

Ŷ0,M − Ŷ0 = O(M−α/2) and E[
(
Zτ̂0,M − Zτ̂0

)2
] = O(M−α/2).

Proof. We have

Ŷ0,M − Ŷ0 = E[
(
Zτ̂0,M − Zτ̂0

)
1{τ̂0,M 6=τ̂0}] ≤ BP (τ̂0,M 6= τ̂0)

and

E[
(
Zτ̂0,M − Zτ̂0

)2
] = E[

(
Zτ̂0,M − Zτ̂0

)2
1{τ̂0,M 6=τ̂0}] ≤ B

2P (τ̂0,M 6= τ̂0) .

Under somewhat more restrictive assumptions than the ones of Proposition 5
we can prove the following theorem.

Theorem 7 Suppose that

(i) the transition kernels of the chain (Xi) are infinitely differentiable with
bounded derivatives of any order;

(ii) the cash-flow is bounded, i.e. there exists a constant B such that |Zj(x)| <
B a.s. for all x;

(iii) the function

σ2
j (x) := E

[(
Zτj+1(Xj,x

τj+1
)− Cj(x)

)2]
= Var

[
Zτj+1(Xj,x

τj+1
)
]

is bounded (due to (i)) and bounded away from zero uniformly in x and j;

(iv) the density of the random variable

Zj(Xj)− Cj(Xj)

conditional on Fj−1, i.e. given Xj−1 = xj−1, is of the form x→ h(x;xj−1),
where h(·;xj−1) is at least two times differentiable for each xj−1.

Then it holds ∣∣∣Ŷ0,M − Ŷ0∣∣∣ = O(M−1), M →∞.
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Discussion Theorem 7 controls the bias of the estimator Ŷ0,M for the lower

approximation Ŷ0 to the Snell envelope due to the improved policy (τ̂j) . Con-

cerning the difference between Ŷ0 and Y0, we infer from Kolodko and Schoen-
makers (2006), Lemma 4.5, that

0 ≤ Ŷ0 − Y0 ≤ E
τ̂0−1∑
k=τ0

[EFkYk+1 − Yk]

(where automatically τ̂0 ≥ τ0 when (τj) is consistent). Hence, for a bounded
cash-flow process with |Zj | < B we get

0 ≤ Ŷ0 − Y0 ≤ TBP(τj 6= τ̂j) ≤ TBP(τj 6= τ∗j ),

as τj = τ∗j implies τj = τ̂j = τ∗j . If P(τj 6= τ∗j ) = 0, we get Y0 = Ŷ0 = Y ∗0 .

4 Standard Monte Carlo approach

Within Markovian setup as introduced in Section 3, consider for some fixed
natural numbers N and M, the estimator:

ŶN,M :=
1

N

N∑
n=1

Z
(n)
τ̂M

(7)

for ŶM := Ŷ0,M with τ̂M := τ̂0,M , based on n realizations Z
(n)
τ̂M
, n = 1, ..., N, of

the stopped cash-flow Zτ̂M . Let us investigate the complexity, i.e. the required

computational costs, in order to compute Ŷ := Ŷ0 with a prescribed (root-
mean-square) accuracy ε, by using the estimator (7). Under the assumptions of
Corollary 6 we have with γ = α/2, or γ = 1 if Theorem 7 applies, for the mean
squared error,

E
[
ŶN,M − Ŷ

]2
≤ N−1Var [Zτ̂M ] +

∣∣∣Ŷ − ŶM ∣∣∣2 (8)

≤ N−1σ2
∞ + µ2

∞M
−2γ , M ≥M0,

for some constants µ∞ and σ2
∞ := supM≥M0

Var[Zτ̂M ] , where M0 denotes some
fixed minimum number of sub trajectories used for computing the stopping time
τ̂M . In order to bound (8) by ε2, we set

M =

⌈(
21/2µ∞

ε

)1/γ
⌉
, N =

⌈
2σ2
∞
ε2

⌉
with dxe denoting the smallest integer bigger or equal than x. For notational
simplicity we will henceforth omit the brackets and carry out calculations with
generally non-integer M,N. This will neither affect complexity rates nor the
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asymptotic proportionality constants. Thus the computational complexity for
reaching accuracy ε when ε ↓ 0 is given by

CN,Mstand (ε) := NM =
2σ2
∞
(
21/2µ∞

)1/γ
ε2+1/γ

, (9)

where, again for simplicity, it is assumed that both the cost of simulating one
outer trajectory and one sub trajectory is equal to one unit. In typical applica-
tions we have γ = 1 and the complexity of the standard Monte Carlo method
is of order O(ε−3). However, if γ = 1/2 the complexity is as high as O(ε−4).

5 Multilevel Monte Carlo approach

For a fixed natural number L and a sequence of natural numbers m : = (m0, ...,mL)
satisfying 1 ≤ m0 < ... < mL, we consider in the spirit of Giles (2008) the tele-
scoping sum:

ŶmL = Ŷm0 +

L∑
l=1

(
Ŷml − Ŷml−1

)
. (10)

Further we approximate the expectations Ŷml in (10). We take a set of natural
numbers n : = (n0, ..., nL) satisfying n0 > ... > nL ≥ 1, and simulate the initial
set of cash-flows {

Z
(j)
τ̂m0

, j = 1, ..., n0

}
,

due to the initial set of trajectories X
0,x,(j)
· , j = 1, ..., n0. Next we simulate

independently for each level l = 1, ..., L, a set of pairs{
(Z

(j)
τ̂ml

, Z
(j)
τ̂ml−1

), j = 1, ..., nl

}
due to a set of trajectories X

0,x,(j)
· , j = 1, ..., nl, to obtain a multilevel estimator

Ŷn,m :=
1

n0

n0∑
j=1

Z
(j)
τ̂m0

+

L∑
l=1

1

nl

nl∑
j=1

(
Z

(j)
τ̂ml
− Z(j)

τ̂ml−1

)
(11)

as an approximation to Ŷ (cf. Belomestny and Schoenmakers (2011)). Hence-
forth we always take m to be a geometric sequence, i.e., ml = m0κ

l, for some
m0, κ ∈ N, κ ≥ 2.

Complexity analysis

Let us now study the complexity of the multilevel estimator (11) under the
assumption that the conditions of Proposition 5 or Theorem 7 are fulfilled. For
the bias we have∣∣∣E [Ŷn,m]− Ŷ ∣∣∣ =

∣∣∣E [Zτ̂mL − Zτ̂]∣∣∣ ≤ µ∞m−γL , (12)
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and for the variance it holds

Var
[
Ŷn,m

]
=

1

n0
Var

[
Zτ̂m0

]
+

L∑
l=1

1

nl
Var

[
Zτ̂ml − Zτ̂ml−1

]
,

where due to Proposition 5, the terms with l > 0 may be estimated by

Var
[
Zτ̂ml − Zτ̂ml−1

]
≤ E

[(
Zτ̂ml − Zτ̂ml−1

)2]
≤ 2E

[(
Zτ̂ml − Zτ̂

)2]
+ 2E

[(
Zτ̂ml−1

− Zτ̂
)2]

≤ C
(
m−βl +m−βl−1

)
≤ Cm−βl

(
1 + κβ

)
≤ V∞m−βl , (13)

with β := α/2, and suitable constants C, V∞. In typical applications, we have
that Cj − Zj in (5) has a positive but non-exploding density in zero which
implies α = 1, hence β = 1/2. This rate is confirmed by numerical experiments.
Henceforth, we assume β < 1.

We are now going to analyze the optimal complexity of the multilevel algo-
rithm. Our optimization approach is based on a separate treatment of n0 and
ni, i = 1, ..., L. In particular, we assume that

nl = n1κ
(1+β)/2−l(1+β)/2, 1 ≤ l ≤ L,

where the integers n0 and n1 are to be determined, and for the sub-simulations
we take

ml = m0κ
l, 0 ≤ l ≤ L.

We further reuse the sub-simulations related to ml−1 for the computation of

Ŷml so that the multilevel complexity becomes

Cn,mML = n0m0 +

L∑
l=1

nlml

= n0m0 + n1m0κ
κL(1−β)/2 − 1

κ(1−β)/2 − 1
. (14)

Theorem 8 The asymptotic complexity of the multilevel estimator Ŷn,m for
0 < β < 1 is given by

C∗ML := CML (n∗0, n
∗
1, L
∗,m0, ε) :=

(1− β)V∞µ(1−β)/γ
∞

2γ
(
1− κ−(1−β)/2

)2 (1 + 2γ/ (1− β))
1+(1−β)/(2γ)

(
1 +O

(
ε(1−β)/(2γ)

))
ε−2−(1−β)/γ ,

(15)
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where the optimal values n∗0, n
∗
1, L

∗ have to be chosen according to

n∗0 := n∗0 (L∗,m0, ε) :=

σ∞V1/2
∞ µ

(1−β)/(2γ)
∞ (1− β)

2γm
1/2
0

(
1− κ−(1−β)/2

) (1 + 2γ/ (1− β))
1+(1−β)/(4γ)×

ε−2−(1−β)/(2γ)
(

1 +O
(
ε(1−β)/(2γ)

))
and, (16)

n∗1 := n∗1 (L∗,m0, ε) :=

V∞µ(1−β)/(2γ)
∞ (1− β)

2γm
(1+β)/2
0

(
1− κ−(1−β)/2

) (1 + 2γ/ (1− β))
1+(1−β)/(4γ)

κ−(1+β)/2×

ε−2−(1−β)/(2γ)
(

1 +O
(
ε(1−β)/(2γ)

))
and, (17)

L∗ :=
ln ε−1 + ln

[
µ∞
mγ0

(1 + 2γ/ (1− β))
1/2
]

γ lnκ
+O

(
ε(1−β)/(2γ)

)
. (18)

Note that, asymptotically, the optimal complexity C∗ML is independent of
m0. We therefore propose to choose m0 by experience. In typical numerical
examples m0 = 100 turns out to be a robust choice.

Discussion For the standard algorithm given optimally chosen M∗, N∗ we
have the complexity given by (9), so the gain ratio of the multilevel approach
over the standard Monte Carlo algorithm is asymptotically given by

R∗ (ε) :=
C∗ML (ε)

CN∗,M∗stan (ε)

∼ (1− β) (1 + 2γ/ (1− β))
1+(1−β)/(2γ) V∞

22+1/(2γ)γ
(
1− κ−(1−β)/2

)2
σ2
∞µ

β/γ
∞

εβ/γ , ε ↓ 0. (19)

For the variance and bias rate β and γ, respectively, cf. (13) and (12). Typically,
we have that β = 1/2 and that γ ≥ 1/2, where the value of γ depends on whether
Theorem 7 applies or not. In any case we may conclude that the smaller γ the
larger the complexity gain.

6 Numerical comparison of the two estimators

In this section we will compare both algorithms in a numerical example. The
usual way would be to take both algorithms, take optimal parameters and com-
pare the complexities given an accuracy ε, like we did in the previous section
in general. The optimal parameters depend on knowledge of some quantities,
e.g. the coefficients of the bias rates. This knowledge might be gained by pre-
computation (based on relatively smaller sample sizes) for instance. Here we
propose a more pragmatic and robust approach (cf. Belomestny and Schoen-
makers (2011)).
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Let us assume that a practitioner knows his standard algorithm well and
provides us with his ”optimal” M (inner simulations), N (outer simulations).
So his computational budget amounts to MN. Given the same budget MN we
are now going to configure the multilevel estimator such that mL = M, i.e. the
bias is the same for both algorithms. We next show that n0, n1, and L can be
chosen in such a way that the variance of the multilevel estimator is significantly
below the variance of the standard one. Although this approach will not achieve
the optimal gain (19) for ε ↓ 0 (hence for M → ∞), it has the advantage that
we may compare the accuracy of the multilevel estimator with the standard one
for any fixed M and arbitrary N. The details are spelled out below.

Taking
M = mL = m0κ

L (20)

we have for the biases

E
[
Ŷn,m − Ŷ

]
= E

[
ŶN,M − Ŷ

]
≤ µ∞
Mγ

.

As stated above we assume the same computational budget for both algorithms
leading to the following constraint (see (14))

NM = n0m0 + n1m0κ
κL(1−β)/2 − 1

κ(1−β)/2 − 1
.

Let us write for ξ ∈ R+,

n1 := ξn0,

n0 =
NM

m0 + ξm0κ
κL(1−β)/2−1
κ(1−β)/2−1

. (21)

With (20) and (21) we have for the variance estimate (32)

Var
[
Ŷn,m

]
≤ σ2

∞
n0

+
V∞κ−β

ξn0Mβκ−βL
κL(1−β)/2 − 1

κ(1−β)/2 − 1

=
σ2
∞κ
−L

N

(
1 +
V∞κ−β+βL

ξMβσ2
∞

κL(1−β)/2 − 1

κ(1−β)/2 − 1

)
×
(

1 + ξκ
κL(1−β)/2 − 1

κ(1−β)/2 − 1

)
=
σ2
∞κ
−L

N

(
1 +

a

ξ

)
(1 + bξ) (22)

Expression (22) attains its minimum at

ξ◦ :=

√
a

b
=
V1/2
∞ κ(−β−1+βL)/2

Mβ/2σ∞
, (23)

which gives the “optimal” values n◦0 and n◦1 via (21), and
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Var
[
Ŷn◦,m

]
≤ σ2

∞κ
−L

N

(
1 +
√
ab
)2

=
σ2
∞κ
−L

N

(
1 +

κL(1−β)/2 − 1

κ(1−β)/2 − 1

V1/2
∞ κ(1−β+βL)/2

Mβ/2σ∞

)2

.

The ratio of the corresponding standard deviations is thus given by

R◦ (M,L) =

√
Var

[
Ŷn◦,m

]
√

Var
[
ŶN,M

] (24)

= κ−L/2 +
V1/2
∞

Mβ/2σ∞

1− κ−(1−β)L/2

1− κ−(1−β)/2
.

Note that the ratio (24) is independent of N. By setting the derivative of (24)
w.r.t. L equal to zero we solve,

L◦ :=
2

β lnκ
ln

[
Mβ/2σ∞

V1/2
∞ (1− β)

(
1− κ−(1−β)/2

)]
. (25)

Since L◦ > 0, we require

M >

(
V1/2
∞ (1− β)

σ∞
(
1− κ−(1−β)/2

))2/β

. (26)

It is easy to see that (24) attains its minimum for L◦ given by (25) and M
satisfying (26). It then holds R◦ (M,L◦) < 1, hence the multilevel estimator
outperforms the standard in terms of the variance.

Remark 9 Suppose the practitioner using the standard algorithm makes up his
mind and changes his choice of N to N ′, connected with the number of inner
simulations M. He so chooses a new budget M × N ′ say. Then with this new
budget we can adapt the parameters accordingly, yielding the same variance
reduction (24) with the same (25), as the latter are independent of N.

6.1 Numerical example: American max-call

We now proceed to a numerical study of multilevel policy iteration in the context
of American max-call option based on d assets. Each asset is assumed to be
governed by the following SDE

dSit = (r − δ)Sitdt+ σSitdW
i
t , i = 1, ..., d,

under the risk- neutral measure, where
(
W 1
t , ...,W

d
t

)
is a d-dimensional standard

Brownian motion. Further, T0, T1, ..., Tn are equidistant exercise dates between

12



T0 = 0 and Tn. For notational convenience we shall write Sj instead of STj . The
discounted cash-flow process of the option is specified by

Zk = e−rk
(

max
i=1,...,d

Sik −K
)+

.

We take the following benchmark parameter values (see Andersen and Broadie
(2004))

r = 0.05, σ = 0.2, δ = 0.1, K = 100, d = 5, n = 9, Tn = 3

and Si0 = 100, i = 1, ..., d. For the input stopping family (τj)0≤j≤T we take

τj = inf {k : j ≤ k < T : Zk > EFk [Zk+1]} ∧ T,

where EFk [Zk+1] is the (discounted) value of a still-alive one period European
option. The value of a European max-call option can be computed via the
Johnson’s formula (1987) (Johnson (1987)),

E

[
e−rT

(
max
i=1,...,5

SiT −K
)+
]

=

5∑
i=1

Si0
e−δT√

2π

∫ di+

−∞
exp

[
−1

2
z2
] 5∏
i′=1,i′ 6=i

N

 ln

(
Si0

Si
′

0

)
σ
√
k
− z + σ

√
T

 dz

−Ke−rT +Ke−rT
5∏
i=1

(
1−N

(
di−
))

with

di+ :=
ln
(
Si0
K

)
+
(
r − δ + σ2

2

)
T

σ
√
T

, di− = di+ − σ
√
T .

For evaluating the integrals we use an adaptive Gauss-Kronrad procedure (with
31 points).

For this example we follow the approach of Section 6. We see that the final
gain (24) due to the multilevel approach depends on κ as well. Our general
experience is that an “optimal” κ for our method is typically larger than two.
In this example we took κ = 5. A pre-simulation based on 103 trajectories yield
the following estimates,

γ = 1, β = 0.5,

Var [Zτ̂m ] =: σ2 (m) ≤ σ2
∞ = 350,

√
mlVar

[
Zτ̂ml − Zτ̂ml−1

]
≤ V∞ = 645, (27)

13
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Figure 1: The SD ratio function R◦(M,L) for different M, measuring the vari-
ance reduction due to the ML approach.
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where we used antithetic sampling in (27). This yields Figure 1, where R (M,L)
is plotted for different M as a function of L. For each particular M one may
read off the optimal value of L◦ from this figure.

Assume, for example, that the user of the standard algorithm decides to
calculate the value of the option with M = 7500 inner trajectories. From Figure
1 we see that L = 4 is for this M the best choice (that doesn’t depend on N).
For the present illustration we take N = 1000 and then compute n◦0, n

◦
1 from

(21) and (23), where V∞ is replaced by the estimate

max
l=1,...,4

{
√
mlv̂ (ml,ml−1)}

with

v̂ (ml,ml−1) :=
1

n

n∑
r=1

[
Z

(r)
τ̂ml
− Z(r)

τ̂ml−1
−
(
Zτ̂ml − Zτ̂ml−1

)]2
,

for n = 103 and the bar denoting the corresponding sample average, where
antithetic variables are used in the simulation of inner trajectories. Let us
further define

σ̂m := v̂ (m, 0) :=
1

n

n∑
r=1

[
Z

(r)
τ̂m
− Zτ̂m

]2
with n = 103 again. Table 1 shows the resulting values n◦l , the approximative
level variances v̂ (ml,ml−1) , l = 1, . . . , 4, as well as the option prices estimates.

As can be seen from the table, the variance of the multilevel estimate Ŷn◦,m
with the “optimal” choice L◦ = 4 (cf. (25) and Figure 1) is significantly smaller

than the variance of the standard Monte Carlo estimate Ŷ1000,7500.

Table 1: The performance of the ML estimator with the optimal choice of n◦l ,
l = 0, . . . , 4, compared to standard policy iteration

l n◦l ml
1
n◦l

n◦l∑
n=1

[
Z

(n)
τ̂ml
− Z(n)

τ̂ml−1

]
v̂ (ml,ml−1)

0 47368 12 25.5772 350
1 5223 60 0.0668629 53.4224
2 1847 300 −0.0623856 37.2088
3 653 1500 0.201612 15.8769
4 231 7500 −0.0319232 5.19074

Ŷn◦,m = 25.7513661
sd
(
Ŷn◦,m

)
=

0.2820887804

ST
N =
1000

M =
7500

ŶN,M = 25.2373
sd
(
ŶN,M

)
=

0.5899033819
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Concluding remarks

One may argue that the variance reduction demonstrated in the above example
looks not too spectacular. In this respect we underline that this variance reduc-
tion is obtained via a pragmatic approach (Section 6), where detailed knowledge
of the optimal allocation of the standard algorithm (in particular the precise de-
cay of the bias) is not necessary. However, in a situation where the bias decay
is additionally known (from some additional pre-computation for example), one
may may parameterize the multilevel algorithm following the asymptotic com-
plexity analysis in Section 5, and thus end up with an (asymptotically) optimized
complexity gain (19) that blows up when the required accuracy gets smaller and
smaller.

7 Proofs

7.1 Proof of Proposition 5

Let us write {τ̂0,M 6= τ̂0} = {τ̂0,M > τ̂0} ∪ {τ̂0,M < τ̂0} . It then holds

{τ̂0,M > τ̂0} ⊂
T−1⋃
j=0

{Cj < Zj ≤ Cj,M} ∩ {τ̂0 = j}

=:

T−1⋃
j=0

AM+
j ∩ {τ̂0 = j} ,

and similarly,

{τ̂0,M < τ̂0} ⊂
T−1⋃
j=0

{Cj ≥ Zj > Cj,M} ∩ {τ̂0 = j}

=:

T−1⋃
j=0

AM−j ∩ {τ̂0 = j} .

So we have

P (τ̂0,M 6= τ̂0) ≤
T−1∑
j=0

P
(
AM+
j ∪AM−j

)
.
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By the conditional version of the Bernstein inequality we have,

PFT
(
AM+
j

)
= PXj

(
0 < Zj − Cj ≤

1

M

M∑
m=1

(
Z
τ

(m)
j+1

(X
j,Xj(m)

τ
(m)
j+1

)− Cj
))

≤ 1{|Zj−Cj |≤M−1/2} +

∞∑
k=1

1{2k−1M−1/2<|Zj−Cj |≤2kM−1/2}·

· PXj

(
2k−1M−1/2 <

1

M

M∑
m=1

(
Z
τ

(m)
j+1

(X
j,Xj ,(m)

τ
(m)
j+1

)− Cj
))

≤ 1{|Zj−Cj |≤M−1/2} +

∞∑
k=1

1{2k−1M−1/2<|Zj−Cj |≤2kM−1/2}·

· exp

[
− 22k−3M

MB2 +B2k−1M1/2/3

]
≤ 1{|Zj−Cj |≤M−1/2} +

∞∑
k=1

1{|Zj−Cj |≤2kM−1/2}·

· exp

[
− 22k−2

B2 +B2k−1/3

]
.

So by assumption (5),

P
(
AM+
j

)
≤ DM−α/2 +D

∞∑
k=1

2αkM−α/2 exp

[
− 22k−2

B2 +B2k−1M−1/2/3

]
≤ B1M

−α/2

for B1 depending on B, and α. After obtaining a similar estimate P
(
AM−j

)
≤

B2M
−α/2, we finally conclude that

P (τ̂0,M 6= τ̂0) ≤M−α/2T max(B1, B2) =: D1M
−α/2.

7.2 Proof of Theorem 7

Define τ̂M := τ̂0,M , τ̂ := τ̂0, and use induction to the number of exercise dates
T. For T = 0 the statement is trivially fulfilled. Suppose it is shown that

E (Zτ̂M − Zτ̂ ) = O(
1

M
)

for T exercise dates. Now consider the cash-flow process Z0, ..., ZT+1. Note that
the filtration (Fj) is generated by the outer trajectories. Note, since T + 1 is
the last exercise date, the event {τ̂ = T + 1} = Ω\ {τ̂ ≤ T} is FT -measurable.
Further, the event {τ̂M = T + 1} = Ω\ {τ̂M ≤ T} is measurable with respect
to the information generated by the inner simulated trajectories starting from
an outer trajectory at time T, and so, in particular, does not depend on the
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information generated by the the outer trajectories from T until T + 1. That is,
we have

EFT+1
[(1τ̂M=T+1 − 1τ̂=T+1)] = EFT [(1τ̂M=T+1 − 1τ̂=T+1)]

and so

E [ZT+1 (1τ̂M=T+1 − 1τ̂=T+1)] = E
[
ZT+1EFT+1

(1τ̂M=T+1 − 1τ̂=T+1)
]

E [ZT+1EFT [(1τ̂M=T+1 − 1τ̂=T+1)]] . (28)

By (28) and applying the induction hypothesis to the modified cash-flow Zj1j≤T ,
it then follows that

|E (Zτ̂M − Zτ̂ )| = |E (Zτ̂M 1τ̂M≤T + ZT+11τ̂M=T+1 − Zτ̂1τ̂≤T − ZT+11τ̂=T+1)|
= |E (Zτ̂M 1τ̂M≤T − Zτ̂1τ̂≤T ) + E (ZT+1 (1τ̂M=T+1 − 1τ̂=T+1))|

≤ O(
1

M
) + |E (ZT+1EFT (1τ̂M=T+1 − 1τ̂=T+1))| . (29)

Let us estimate the second term E [ZT+1EFT [1τ̂M=T+1 − 1τ̂=T+1]] .Denote εM,j =
1Zj≤Cj,M − 1Zj≤Cj for j = 0, ..., T, and εM,j = EFj

[
1Zj≤Cj,M − 1Zj≤Cj

]
. Then

by the identity (i0 := +∞)

n∏
i=1

ai −
n∏
i=1

bi =

n∑
l=1

∑
il<il−1<···<i0

l∏
r=1

(air − bir ) ·
∏

j 6=il,j 6=il−1,...,j 6=i1

bj

it holds

EFT [1τ̂M=T+1 − 1τ̂=T+1] = EFT

 T∏
j=0

1Zj≤Cj,M −
T∏
j=0

1Zj≤Cj

 = R1 +R2,

where

R1 = EFT

 T∑
j=0

εM,j

∏
i 6=j

1Zi≤Ci

 =

T∑
j=0

εM,j

∏
i6=j

1Zi≤Ci

and

R2 = EFT

∑
j2<j1

εM,j1εM,j2

∏
i 6=j1,j2

1Zi≤Ci


+ EFT

 ∑
j3<j2<j1

εM,j1εM,j2εM,j3

∏
i6=j1,j2,j3

1Zi≤Ci

+ . . .

=
∑
j2<j1

εM,j1εM,j2

∏
i6=j1,j2

1Zi≤Ci

+
∑

j3<j2<j1

εM,j1εM,j2εM,j3

∏
i6=j1,j2,j3

1Zi≤Ci + . . .
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were we note that conditional FT the εM,j are independent. It is easy to show
that

εM,j = OP

(
1√
M

)
, hence E[ZT+1R2] = O

(
1

M

)
.

Let us write

E[ZT+1R1] =

T∑
j=0

E

ZT+1εM,j

∏
i 6=j

1Zi≤Ci


=

T∑
j=0

E

εM,jEFj

ZT+1

∏
i 6=j

1Zi≤Ci


=:

T∑
j=0

E [εM,jWj ] .

By assumption, Zj = Zj(Xj), j = 0, . . . , T. Let us set

fj(x) := Zj(x)− E[Zτj+1(Xτj+1)|Xj = x] = Zj(x)− Cj(x)

and consider for fixed j,

Cj,M − Cj =
1

M

M∑
m=1

(
Z
τ

(m)
j+1

(X
j,x,(m)

τ
(m)
j+1

)− Cj(x)

)
=: σj(x)

∆j,M (x)√
M

where σj is defined in (iii), and denote by pj,M (·;x) the conditional density of
the r.v. ∆j,M (x) given Xj = x. Then

E[ZT+1R1] =

T∑
j=0

E
[
WjEFj

[
1Zj≤Cj,M − 1Zj≤Cj

]]
=

T∑
j=0

E
[
WjEFj

[
1{fj(Xj)≤Cj,M−Cj} − 1fj(Xj)≤0

]]
=

T∑
j=0

E
[
WjEFj

[
1{
fj(Xj)≤σj(x)

∆j,M (Xj)
√
M

} − 1fj(Xj)≤0

]]

=

T∑
j=0

E
[
Wj

∫
pj,M (z;Xj)

(
1{
fj(Xj)≤σj(Xj) z√

M

} − 1fj(Xj)≤0

)
dz

]

=

T∑
j=0

E
[
1fj(Xj)>0Wj

∫
pj,M (z;Xj)

(
1{
fj(Xj)≤σj(Xj) z√

M

} − 1fj(Xj)≤0

)
dz

]

+

T∑
j=0

E
[
1fj(Xj)≤0Wj

∫
pj,M (z;Xj)

(
1{
fj(Xj)≤σj(Xj) z√

M

} − 1fj(Xj)≤0

)
dz

]
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=

T∑
j=0

E
[
Wj

∫
pj,M (z;Xj)1{fj(Xj)≤σj(Xj) z√

M

}dz
]

+

T∑
j=0

E
[
1fj(Xj)≤0Wj

∫
pj,M (z;Xj)

(
1{
fj(Xj)≤σj(Xj) z√

M
≤0

} − 1

)
dz

]

=

T∑
j=0

E
[
Wj

∫
pj,M (z;Xj)1{0<fj(Xj)≤σj(Xj) z√

M

}dz
]

−
T∑
j=0

E
[
Wj

∫
pj,M (z;Xj)1{σj(Xj) z√

M
<fj(Xj)≤0

}dz
]

=

T∑
j=0

(I)j −
T∑
j=0

(II)j

Note that

Wj =
∏
i<j

1Zi≤CiEFj

ZT+1

∏
i>j

1Zi≤Ci


=:
∏
i<j

1Zi≤CiVj(Xj),

so

(I)j = E

∏
i<j

1Zi≤CiEFj−1
Vj(Xj)

∫
pj,M (z;Xj)1{0<fj(Xj)≤σj(Xj) z√

M

}dz
 ,

Consider

EFj−1
Vj(Xj)

∫
pj,M (z;Xj)dz1{0<fj(Xj)≤σj(Xj) z√

M

}
=:

∫
pj (x;Xj−1)Vj(x)dx

∫
pj,M (z;x)1{

0<fj(x)≤σj(x) z√
M

}dz
=

∫
dz

∫
pj,M (z;x)pj (x;Xj−1)Vj(x)1{

0<fj(x)≤σj(x) z√
M

}dx
Similarly,

(II)j = E

∏
i<j

1Zi≤CiEFj−1

(
Vj(Xj)

∫
pj,M (z;Xj)1{σj(Xj) z√

M
<fj(Xj)≤0

}) dz


where

EFj−1Vj(Xj)

∫
pj,M (z;Xj)1{σj(Xj) z√

M
<fj(Xj)≤0

}dz
=

∫
dz

∫
pj,M (z;x)pj (x;Xj−1)Vj(x)1{

σj(x)
z√
M
<fj(x)≤0

}dx,

20



yielding

(I)j − (II)j = E

∏
i<j

1Zi≤Ci

∫
dz

∫
pj,M (z;x)pj (x;Xj−1)Vj(x)1{

0<fj(x)≤σj(x) z√
M

}dx


− E

∏
i<j

1Zi≤Ci

∫
dz

∫
pj,M (z;x)pj (x;Xj−1)Vj(x)1{

σj(x)
z√
M
<fj(x)≤0

}dx


=

∫
dz

∫
pj,M (z;x)Vj(x)ψj(x)1{

0<fj(x)≤σj(x) z√
M

}dx
−
∫
dz

∫
pj,M (z;x)Vj(x)ψj(x)1{

σj(x)
z√
M
<fj(x)≤0

}dx
=: (∗)1 − (∗)2,

where

ψj(x) := E

∏
i<j

1Zi≤Cipj (x;Xj−1)


Now we assume that σj(x) is, uniformly in x and j, bounded and bounded away
from zero, and that

pj,M (z;x) = φ (z) (1 +
Dj,M (z;x)√

M
)

with φ being the standard normal density and with Dj,M satisfying for all x
and M the normalization condition∫

φ (w)Dj,M (w;x)dw = 0,

and the growth bound

Dx
j,M (w) = O(eaw

2/2) for some a < 1 uniformly in j,M and x. (30)

For example, (30) is fulfilled if the cash-flow Zj(x) is uniformly bounded in j
and x (see Appendix). We then have

(∗)1 =

∫
dz

∫
φ (z)Vj(x)ψj(x)1{

0<fj(x)/σj(x)≤ z√
M

}dx
+

∫
dz

∫
φ (z)

Dj,M (z;x)√
M

Vj(x)ψj(x)1{
0<fj(x)/σj(x)≤ z√

M

}dx
=: (∗)1a + (∗)1b

Let ξj(dy) be the image of the measure

Vj(x)ψj(x)dx
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under the map

x→ fj(x)

σj(x)

Then,

(∗)1a =

∫
dzφ (z) 1z>0ξj((0,

z√
M

])

=
√
M

∫
1t>0dt φ

(
t
√
M
)
ξj((0, t]).

Since ξj((0, 0]) = 0 and the fact Vj > 0 is infinitely differentiable, we have due
to assumptions (i)-(iv) that ξ has a density g(0) in t = 0, and that

ξj((−t, 0]) = tg(0) +O(t2) = ξj((0, t]), t > 0. (31)

Then by following the standard Laplace method for integrals (e.g. see de Bruijn
(1981)) we get

(∗)1a =

√
M

2π

∫
1t>0dte

− Mt2/2ξj((0, t])

= djM
−1/2 +O(M−1).

Further we have for some constant C

|(∗)1b| ≤
C√
M

∫
dz

∫
φ (z) eaz

2/2Vj(x)ψj(x)1{
0<

fj(x)

σj,x
≤ w√

M

}dx
=

C√
2πM

∫
dz

∫
e−

1
2 (1−a)z

2

ξj((0,
z√
M

])

=
C√
2π

∫
dt

∫
e−

1
2 (1−a)t

2Mξj((0, t]) = O(M−1).

Due to (31) we get in the same way (∗)2 = (∗)2a + (∗)2b,

(∗)2a =
√
M

∫
1t<0dtφ

(
t
√
M
)
ξj((t, 0]) =

∫
1t>0dtφ

(
t
√
M
)
ξj((−t, 0])

= djM
−1/2 +O(M−1)

and (∗)2b = O(M−1). Gathering all together we obtain (∗)1 − (∗)2 = O(M−1),
hence (I)j − (II)j = O(M−1) for all j, and we so finally arrive at

E [ZT+1(1τ̂M=T+1 − 1τ̂=T+1)] = O(M−1).

7.3 Proof of Theorem 8

First, we analyze the variance of the estimator Ŷn,m, that is given by

Var
[
Ŷn,m

]
=

1

n0
Var

[
Zτ̂m0

]
+

L∑
l=1

1

nl
Var

[
Zτ̂ml − Zτ̂ml−1

]
≤ σ2

∞
n0

+
V∞κ−β

n1m
β
0

κL(1−β)/2 − 1

κ(1−β)/2 − 1
, (32)
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cf. (8) and (13). Let us now minimise the complexity (14) over the parameters
n0 and n1, for given L, m0 and accuracy ε, that is (cf. (8)),(

µ∞
mγ

0κ
γL

)2

+
σ2
∞
n0

+
V∞κ−β

n1m
β
0

κL(1−β)/2 − 1

κ(1−β)/2 − 1
= ε2.

We thus have to choose L such that µ∞
mγ0κ

γL < ε, i.e.,

L > γ−1
ln ε−1 + ln (µ∞/m

γ
0)

lnκ
. (33)

With a Lagrangian optimization we find

n∗0 (L,m0, ε) =
σ2
∞ + σ∞V1/2

∞ m
−β/2
0

κL(1−β)/2−1
1−κ−(1−β)/2

ε2 −
(

µ∞
mγ0κ

Lγ

)2 , (34)

n∗1 (L,m0, ε) = n∗0 (L,m0, ε)σ
−1
∞ κ−(1+β)/2V1/2

∞ m
−β/2
0 . (35)

This results in a complexity (see (14))

CML (n∗0, n
∗
1, L,m0, ε) := n∗0 (L,m0, ε)m0 + n∗1 (L,m0, ε)m0κ

κL(1−β)/2 − 1

κ(1−β)/2 − 1

=

(
σ∞m

β/2
0 +

√
V∞ κL(1−β)/2−1

κ(1−β)/2−1 κ
(1−β)/2

)2
m1−β

0

ε2 −
(

µ∞
mγ0κ

Lγ

)2 . (36)

Next we are going to optimize over L. To this end we differentiate (36) to L
and set the derivative equal to zero, which yields,

ε2κ2Lγ =
µ2
∞

m2γ
0

(1 + 2γ/ (1− β))

+
2γ

1− β
µ2
∞

m2γ
0

(
1 + σ∞m

β/2
0 V−1/2∞

(
1− κ−(1−β)/2

))
κ−L(1−β)/2

=: p+ qκ−L(1−β)/2, with (37)

L =
ln ε−1

γ lnκ
+

ln p

2γ lnκ
+

ln
(
1 + qκ−L(1−β)/2/p

)
2γ lnκ

. (38)

From (37) we see that there is at most one solution in L, and since β < 1 we
see from (38) that L→∞ as ε ↓ 0. So we may write

L =
ln ε−1

γ lnκ
+

ln p

2γ lnκ
+O

(
κ−L(1−β)/2

)
, ε ↓ 0. (39)

Due to (39) we have that

L =
ln ε−1

γ lnκ
+O(1), ε ↓ 0, (40)
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hence by iterating (39) with (40) once, we obtain the asymptotic solution

L∗ :=
ln ε−1

γ lnκ
+

ln p

2γ lnκ
+O

(
ε(1−β)/(2γ)

)
, ε ↓ 0, (41)

that obviously satisfies (33) for ε small enough. We now are ready to prove the
following asymptotic complexity theorem. Due to (41) it holds for a > 0,

κaL
∗

= pa/(2γ)ε−a/γ
(

1 +O
(
ε(1−β)/(2γ)

))
, hence

κL
∗(1−β)/2 = p(1−β)/(4γ)ε−(1−β)/(2γ) +O (1) and (42)

κγL
∗

= p1/2ε−1
(

1 +O
(
ε(1−β)/(2γ)

))
. (43)

So by inserting (42), (43) with (37) in (36) we get after elementary algebraic and
asymptotic manipulations (15). By inserting (42), (43) with (37) in (34) and
(35) respectively we get in the same way (16) and (17), respectively. Finally,
combining (37) and (41) yields (18).

8 Appendix

Convergent Edgeworth type expansions

Let pM be the density of the square-root scaled sum:

∆1 + . . .+ ∆M√
M

,

where ∆1, . . . ,∆M are i.i.d. with E [∆m] = 0 and Var [∆m] = 1, m = 1, ...,M.
The density pM has a formal representation:

pM (z) = φ(z)

 ∞∑
j=0

hj(z)Γj,M
j!


with

hj(z) = (−1)j
[
dj

dzj
exp

(
−z2/2

)]
exp

(
z2/2

)
.

The coefficients Γj,M are found from

exp

 ∞∑
j=1

(κj,M − αj)βj/j!

 =

∞∑
j=1

Γj,Mβ
j/j!,

where κj,M are the cumulants of the distribution due to pM and αj are the
cumulants of the standard normal distribution. It is clear that

Γ0,M = 1
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and that

Γn,M =

n∑
k=1

k

n
Γn−k,M (κk,M − αk)

for n > 0. Note that α1 = κ1,M and αk = 0 for k > 1. Hence Γ1,M = Γ2,M = 0
and

Γn,M =

n∑
k=3

k

n
Γn−k,Mκk,M

for n > 2.

Lemma 10 Let the random variable ∆1 be bounded, i.e., |∆1| < A a.s., then

|Γn,M | ≤
Cn√
M

for some constant C depending on A.

Proof. First note that Γ3,M = κ3,M and

|κk,M | ≤ CkM1−k/2, k ∈ N,

for some constant C depending on A. Assume that the statement is proved for
all n ≤ n0. Then

|Γn0+1,M | ≤
Cn0+1

√
M

n0+1∑
k=3

k

n0 + 1
M1−k/2

≤ Cn0+1

√
M

n0+1∑
k=3

k

n0 + 1
M−k/6 ≤ Cn0+1

√
M

for M large enough.
Since

|hj(z)| ≤ Bj |z|j

for some B > 0, it holds

pM (z) = φ(z)

[
1 +

DM (z)√
M

]
,

where

|DM (z)| ≤

∣∣∣∣∣∣
∞∑
j=3

hj(z)
√
MΓj,M
j!

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑
j=3

|z|j (BC)j

j!

∣∣∣∣∣∣
≤ exp(BC|z|),

which implies (30).
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