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SINGULAR VALUE DECOMPOSITIONS FOR SINGLE-CURL

OPERATORS IN THREE-DIMENSIONAL MAXWELL’S EQUATIONS

FOR COMPLEX MEDIA∗

RUEY-LIN CHERN† , HAN-EN HSIEH‡ , TSUNG-MING HUANG§ , WEN-WEI LIN¶, AND

WEICHUNG WANG‖

Abstract. This article focuses on solving the generalized eigenvalue problems (GEP) arising in
the source-free Maxwell equation with magnetoelectric coupling effects that models three-dimensional
complex media. The goal is to compute the smallest positive eigenvalues, and the main challenge is
that the coefficient matrix in the discrete Maxwell equation is indefinite and degenerate. To overcome
this difficulty, we derive a singular value decomposition (SVD) of the discrete single-curl operator
and then explicitly express the basis of the invariant subspace corresponding to the nonzero eigenval-
ues of the GEP. Consequently, we reduce the GEP to a null space free standard eigenvalue problem
(NFSEP) that contains only the nonzero (complex) eigenvalues of the GEP and can be solved by the
shift-and-invert Arnoldi method without being disturbed by the null space. Furthermore, the basis of
the eigendecomposition is chosen carefully so that we can apply fast Fourier transformation (FFT)-
based matrix vector multiplication to solve the embedded linear systems efficiently by an iterative
method. For chiral and pseudochiral complex media, which are of great interest in magnetoelectric
applications, the NFSEP can be further transformed to a null space free generalized eigenvalue prob-
lem whose coefficient matrices are Hermitian and Hermitian positive definite (HHPD-NFGEP). This
HHPD-NFGEP can be solved by using the invert Lanczos method without shifting. Furthermore,
the embedded linear system can be solved efficiently by using the conjugate gradient method without
preconditioning and the FFT-based matrix vector multiplications. Numerical results are presented
to demonstrate the efficiency of the proposed methods.

Key words. Singular value decomposition, null space free method, discrete single-curl operator,
the Maxwell equation, chiral medium, pseudochiral medium.
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1. Introduction. Understanding the eigenstructure of the discrete single-curl
operator ∇× is key to developing efficient numerical simulations for complex ma-
terials that are modeled by the Maxwell equations. Biisotropic and bianisotropic
materials are two important classes of complex materials [25]. They have constantly
drawn intensive studies in physical properties and applications. For example, bian-
isotropic media are a special type of materials whose properties are characterized by
the magnetoelectric as well as the permittivity and permeability tensors [14, 19]. Due
to the strong modulation of the wave that arises from the magnetoelectric couplings,
counterintuitive features such as negative refraction and backward waves may ap-
pear in bianisotropic media [1, 5, 17, 23]. From the mathematical point of view, the
distinctive feature associated with bianisotropic media is the single-curl operator in
addition to the double-curl operator in the wave equation, which essentially changes
the characters of the eigenwaves.

∗Version February 21, 2018
†Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan

(chernrl@ntu.edu.tw)
‡Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

(D99221002@ntu.edu.tw).
§Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan

(min@ntnu.edu.tw).
¶Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

(wwlin@math.nctu.edu.tw).
‖Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Taiwan

(wwang@ntu.edu.tw).

1

http://arxiv.org/abs/1402.6297v1


Mathematically, the propagation of electromagnetic waves in biisotropic and bian-
isotropic materials is modeled by the three-dimensional frequency domain source-free
Maxwell equations [25] with a set of constitutive relations. In particular, we have

∇× E = ıωB, ∇ · (εE) = 0, (1.1a)

∇×H = −ıωD, ∇ ·H = 0. (1.1b)

where ω represents the frequency and ε represents the permittivity. E and H are the
electric and magnetic fields, respectively. Based on the Bloch theorem [13], we aim
to find the Bloch eigenfunctions E and H satisfying the quasi-periodic conditions

E(x + aℓ) = eı2πk·aℓE(x), H(x+ aℓ) = eı2πk·aℓH(x) (1.2)

for ℓ = 1, 2, 3 [18]. Here, a1, a2, and a3 are the lattice translation vectors. In this
paper, we consider the simple cubic lattice vectors aℓ = aeℓ, where eℓ is the ℓ-th unit
vector in R3 and a is a lattice constant. Note that all of the techniques developed here
can be applied to face-centered cubic lattice media. The Bloch wave vector in the
first Brillouin zone is denoted as 2πk [11]. B and D satisfy the constitutive relations

B = µH + ζE and D = εE + ξH, (1.3)

where µ represents the permeability, and ξ and ζ are magnetoelectric parameters.
Note that ε, µ, ξ, and ζ are 3-by-3 matrices in various forms for describing different
types of materials.

The Maxwell equations (1.1) can be rewritten as the following quadratic eigen-
value problems (QEP), which are separate wave equations in terms of E and H .

∇× µ−1∇× E − ıω
[
∇×

(
µ−1ζE

)
− ξµ−1∇× E

]
− ω2

(
ε− ξµ−1ζ

)
E = 0; (1.4a)

∇× ε−1∇×H − ıω
[
ζε−1∇×H −∇×

(
ε−1ξH

)]
− ω2

(
µ− ζε−1ξ

)
H = 0. (1.4b)

In the one-dimensional case, we can apply the quasi-periodic conditions (1.2) to (1.4)
and then explicitly define the relations between k and ω [2, 3, 4, 6, 15]. For higher
dimensions, however, solving Eq. (1.2) efficiently remains an open question. We illus-
trate the difficulty by the following example. An explicit eigendecomposition of the
discrete double-curl operator ∇ × ∇× is derived in [8]. Applying this eigendecom-
position and assuming µ = 1 and ζ = ξ = 0, we can explicitly derive the invariant
subspace of all nonzero eigenvalues corresponding to the (discrete) eigenvalue problem
(1.4a). Based on the invariant subspace, efficient numerical methods can be devel-
oped to solve (1.4a). However, it is not possible to apply this technique to solve the
quadratic eigenvalue problems (1.4) with ζ 6= 0 and ξ 6= 0 due to the following diffi-
culties. (i) The eigendecomposition of the discrete double-curl operator in [8] cannot
be applied to solving the QEP directly because Eq. (1.4) contains both double- and
single-curl operators. (ii) In general, the double- and single-curl operators in (1.4)
cannot be diagonalized simultaneously. Furthermore, should we find the eigendecom-
position of the single-curl operator, this decomposition cannot be applied to solve the
QEP directly because the single-curl operator terms in (1.4), e.g., ∇× (µ−1ζE) and
ξµ−1∇×E, are coupled with other terms such as µ−1ζ and ξµ−1. (iii) It is difficult to
find the invariant subspace corresponding to the nonzero eigenvalues in the quadratic
eigenvalue problems.

While solving (1.4) is not recommended, we focus instead on the original Maxwell
equations (1.1) and rewrite it as a coupled generalized eigenvalue problem (GEP)

[
∇× 0
0 ∇×

] [
E
H

]
= ıω

[
ζ µ
−ε −ξ

] [
E
H

]
. (1.5)
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For the two-dimensional photonic band structure, the electromagnetic transfer matrix
method [7] is applied to the coupled system, similar to (1.5). For the three-dimensional
case, to the best of our knowledge no method has yet been proposed to solve the
generalized eigenvalue problem (1.5) efficiently.

We make the following contributions to solve the discrete three-dimensional gen-
eralized eigenvalue problem based on Yee’s finite difference discretization scheme [26].

• We first derive the singular value decomposition (SVD) of the discrete single-
curl operator ∇× in (1.5).

• Using the SVD, we explore an explicit form of the basis for the invariant
subspace corresponding to the nonzero eigenvalues of the GEP. Applying
this basis, the GEP can be reduced to a null space free standard eigenvalue
problem (NFSEP). In this eigenvalue problem, the zero eigenvalues of the
GEP are deflated so that the null space does not degrade the computational
efficiency.

• We show that all eigenvalues ω of the GEP are real provided the permittivity,
permeability and magnetoelectric parameters satisfy particular assumptions.
These assumptions are applicable to a couple of important classes of complex
media.

• Under the same assumptions, we can reformulate the NFSEP as a null space
free generalized eigenvalue problem Brx = ω−1Arx, where Br is Hermitian
and Ar is Hermitian positive definite. We demonstrate that this problem can
be solved efficiently using the generalized Lanczos method algorithmically
and numerically.

This paper is outlined as follows. In Section 2, we derive the singular value
decomposition of the discrete single-curl operator. In Section 3, by applying the SVD,
we derive a null space free eigenvalue problem by deflating the zero eigenvalues and
keeping the nonzero eigenvalue unchanged. In Section 4, we discuss how to improve
the solution performance while simulating two important types of complex media. In
Section 5, we demonstrate numerical results to validate the correctness of proposed
schemes and to measure the performance of the schemes. Finally, we present our
conclusions in Section 6.

Throughout this paper, we use the superscripts ⊤ and ∗ to denote the transpose
and the conjugate transpose of a matrix, respectively. For the matrix operations,
we let ⊗ be the Kronecker product of two matrices. The imaginary number

√
−1 is

written as ı, and the identity matrix of dimension n is written as In.

2. Singular value decomposition of the discrete single-curl operator. In
this section, we derive an explicit expression of the SVD of the discrete single-curl
operator. Using this SVD, an efficient null space free method to solve the target
eigenvalue problem (1.5) is developed in Section 3.

We start from the derivation of the matrix representation of the discrete single-
curl operator. By using Yee’s scheme [26], the discrete single-curl operators ∇ × E
and ∇×H with aℓ = aeℓ, ℓ = 1, 2, 3 can be represented in the matrix form CE and
C∗H , respectively. Here,

C =




0 −C3 C2

C3 0 −C1

−C2 C1 0



 ∈ C
3n×3n, (2.1)

3



with

C1 = δ−1
x (In3

⊗ In2
⊗Ka1,n1

) ∈ C
n×n, (2.2a)

C2 = δ−1
y (In3

⊗Ka2,n2
⊗ In1

) ∈ C
n×n, (2.2b)

C3 = δ−1
z (Ka3,n3

⊗ In2
⊗ In1

) ∈ C
n×n, (2.2c)

and

Ka,m =




−1 1
. . .

. . .

−1 1
eı2πk·a −1


 ∈ C

m×m. (2.3)

We use n1, n2, and n3 to denote the numbers of grid points in the x, y, and z
directions, respectively, and we define n = n1n2n3. We use δx, δy, and δz to denote
the associated mesh lengths along the x, y, and z axial directions, respectively.

It is well known that the eigendecompositions of C∗C and CC∗ are closely related
to the SVD of C. Therefore, we start the derivation from the eigendecompositions
of C∗C and CC∗. First, we introduce the notations to be used later. Define θm,i =
ı2πi
m , θa,m = ı2πk·a

m ,

Da,m = diag
(
1, eθa,m , · · · , e(m−1)θa,m

)
, (2.4)

um,i =
[
1 eθm,i · · · e(m−1)θm,i

]⊤

for i = 0, . . . ,m− 1 and

Um =
[
um,0 · · · um,m−1

]
∈ C

m×m, (2.5)

Λa,m = diag
(
eθm,0+θa,m − 1 · · · eθm,m−1+θa,m − 1

)
.

By the definition of Ka,m in (2.3), it can be verified that

Ka,m (Da,mUm) = (Da,mUm) Λa,m. (2.6)

Denote

T =
1√
n
(Da3,n3

⊗Da2,n2
⊗Da1,n1

) (Un3
⊗ Un2

⊗ Un1
) , (2.7)

where Da,ni
and Uni

, i = 1, 2, 3, are given in (2.4) and (2.5), respectively. It is
straightforward to check that T is unitary. Using (2.6) and the property

(A1 ⊗A2 ⊗A3)(B1 ⊗B2 ⊗B3) = (A1B1)⊗ (A2B2)⊗ (A3B3), (2.8)

the eigendecompositions of Cℓ for ℓ = 1, 2, 3 can be obtained immediately from the
following theorem.

Theorem 2.1. C1, C2 and C3 can be diagonalized by the unitary matrix T in

the forms

C1T = δ−1
x T (In3

⊗ In2
⊗ Λa1,n1

) ≡ TΛ1, (2.9a)

C2T = δ−1
y T (In3

⊗ Λa2,n2
⊗ In1

) ≡ TΛ2, (2.9b)

C3T = δ−1
z T (Λa3,n3

⊗ In2
⊗ In1

) ≡ TΛ3. (2.9c)
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We now define two intermediate matrices Λp and Λq that are used in the eigen-
decompositions of C∗C and CC∗.

Lemma 2.2. Let Λ1, Λ2 and Λ3 be given in (2.9). Define

Λq = Λ∗

1Λ1 + Λ∗

2Λ2 + Λ∗

3Λ3, Λp =



βΛ3 − Λ2

Λ1 − αΛ3

αΛ2 − βΛ1


 (2.10)

with α, β 6= 0. Assume that the vector k = (k1, k2, k3)
⊤ in (1.2) is nonzero with

0 ≤ k1, k2, k3 ≤ 1
2 . Then, Λq is positive definite, and Λp is of full column rank,

provided that αδx 6= βδy and δz 6= βδy.
Proof. See the appendix.
Using the definitions of C and Λq in (2.1) and (2.10), respectively, and the eigen-

decompositions of Cℓ in Theorem 2.1, the null spaces of C∗C and CC∗ are derived as
follows.

Theorem 2.3. Assume k = (k1, k2, k3)
⊤ 6= 0 with 0 ≤ k1, k2, k3 ≤ 1

2 . Define

Q0 = (I3 ⊗ T )



Λ1

Λ2

Λ3


Λ−1/2

q ≡ (I3 ⊗ T )Π0, P0 = (I3 ⊗ T )Π0. (2.11)

Then, Q0 and P0 form orthogonal bases of the null spaces of C∗C and CC∗, respec-

tively.

Next, we apply the techniques developed in [8] to form the orthogonal bases for
the range spaces of C∗C and CC∗. First, by considering the full column rank matrix
T1 = [αT⊤, βT⊤, T⊤]⊤ with nonzero α and β, and taking the orthogonal projection
of T1 with respect to Q0 and P0, respectively, we have

Q1 = (I −Q0Q
∗

0)T1

(
Λ∗

pΛpΛ
−1
q

)−1/2

= (I3 ⊗ T )



(αΛ2 − βΛ1)Λ

∗
2 − (Λ1 − αΛ3)Λ

∗
3

(βΛ3 − Λ2)Λ
∗
3 − (αΛ2 − βΛ1)Λ

∗
1

(Λ1 − αΛ3)Λ
∗
1 − (βΛ3 − Λ2)Λ

∗
2


(

Λ∗

pΛpΛ
−1
q

)−1/2

≡ (I3 ⊗ T )Π1, (2.12a)

P1 = (I − P0P
∗

0 ) T1

(
Λ∗

pΛpΛ
−1
q

)−1/2
= (I3 ⊗ T )Π1. (2.12b)

Then, Q1 and P1 are orthogonal, and (C∗C)Q1 = Q1Λq and (CC∗)P1 = P1Λq.
Second, to form the remaining part of the orthogonal basis for the range spaces of
C∗C and CC∗, we apply the discrete curl and dual-curl operators on T1, respectively.
That is, we pre-multiply C∗ and C by T1 to obtain

Q2 = C∗T1

(
Λ∗

pΛp

)−1/2
= (I3 ⊗ T )




βΛ∗

3 − Λ∗
2

Λ∗
1 − αΛ∗

3

αΛ∗
2 − βΛ∗

1



(
Λ∗

pΛp

)−1/2

≡ (I3 ⊗ T )Π2, (2.13a)

P2 = CT1

(
Λ∗

pΛp

)−1/2
= (I3 ⊗ T )

(
−Π2

)
. (2.13b)

It holds that (C∗C)Q2 = Q2Λq and (CC∗)P2 = P2Λq. From (2.11) to (2.13), we
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define

Q ≡
[
Q1 Q2 Q0

]
= (I3 ⊗ T )

[
Π1 Π2 Π0

]
, (2.14a)

P ≡
[
P2 P1 P0

]
= (I3 ⊗ T )

[
−Π2 Π1 Π0

]
. (2.14b)

Then, the eigendecompositions of C∗C and CC∗ can be summarized as follows.
Theorem 2.4. Assume that the vector k = (k1, k2, k3)

⊤ in (1.2) is nonzero with

0 ≤ k1, k2, k3 ≤ 1
2 . Then, Q and P are unitary, and

C∗C = Q diag (Λq,Λq, 0)Q
∗, CC∗ = P diag (Λq,Λq, 0)P

∗. (2.15)

Motivated by (2.15), we derive the left and right singular vector matrices P and Q
for C in the following theorem.

Theorem 2.5 (Singular value decomposition of C). Let Λq and (Q,P ) be defined

in (2.10) and (2.14). Assume that the vector k = (k1, k2, k3)
⊤ in (1.2) is nonzero

with 0 ≤ k1, k2, k3 ≤ 1
2 . Then, the matrix C in (2.1) has the SVD

C = P diag
(
Λ1/2
q ,Λ1/2

q , 0
)
Q∗ = PrΣrQ

∗

r , (2.16)

where

Pr = [P2, P1], Qr = [Q1, Q2], Σr = diag
(
Λ1/2
q ,Λ1/2

q

)
.

Proof. From (2.9) and the definition of C, it follows that

CT1 = − (I3 ⊗ T ) Λp, C∗T1 = (I3 ⊗ T )Λp, CQ0 = 0, and P ∗

0C = 0. (2.17)

Combining (2.17) with (2.12) and (2.13), we have

P ∗

2CQ1 =
(
Λ∗

pΛp

)−1/2
T ∗

1C
∗C (I −Q0Q

∗

0) T1

(
Λ∗

pΛpΛ
−1
q

)−1/2

=
(
Λ∗

pΛp

)−1/2
T ∗

1C
∗CT1

(
Λ∗

pΛpΛ
−1
q

)−1/2
= Λ1/2

q ,

P ∗

1CQ1 =
(
Λ∗

pΛpΛ
−1
q

)−1/2
T ∗

1 (I − P0P
∗

0 )C (I −Q0Q
∗

0)T1

(
Λ∗

pΛpΛ
−1
q

)−1/2

=
(
Λ∗

pΛpΛ
−1
q

)−1/2
T ∗

1CT1

(
Λ∗

pΛpΛ
−1
q

)−1/2

= −
(
Λ∗

pΛpΛ
−1
q

)−1/2
T ∗

1 (I3 ⊗ T )Λp

(
Λ∗

pΛpΛ
−1
q

)−1/2

= −
(
Λ∗

pΛpΛ
−1
q

)−1/2 ([
αI βI I

]
Λp

) (
Λ∗

pΛpΛ
−1
q

)−1/2
= 0,

P ∗

1CQ2 =
(
Λ∗

pΛpΛ
−1
q

)−1/2
T ∗

1 (I − P0P
∗

0 )CC∗T1

(
Λ∗

pΛp

)−1/2

=
(
Λ∗

pΛpΛ
−1
q

)−1/2
T ∗

1CC∗T1

(
Λ∗

pΛp

)−1/2
= Λ1/2

q ,

P ∗

2CQ2 =
(
Λ∗

pΛp

)−1/2
T ∗

1C
∗CQ2 =

(
Λ∗

pΛp

)−1/2
T ∗

1Q2Λq

=
(
Λ∗

pΛp

)−1/2
T ∗

1C
∗T1

(
Λ∗

pΛp

)−1/2
Λq = 0.

Therefore, we obtain the SVD of C described in (2.16).
It is worth mentioning the specific choice of the singular vector matrices P and

Q in (2.14). The choice of these matrices is not unique because the multiplicities of
the nonzero eigenvalues of C∗C are even and may be large. We have carefully chosen
the P and Q defined in (2.14) to avoid the need to store these two matrices and
the computations involving P and Q can be performed efficiently. We discuss this
computational advantage in Section 4.2.
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3. The null space free eigenvalue problem. We have derived the SVD of C
in Theorem 2.5. In this section, we use the SVD to deflate the null space of the GEP
obtained by discretizing (1.5) so that we can develop a new solution process for the
target eigenvalue problem. The discretization of (1.5) based on Yee’s scheme leads to
the following discrete GEP

[
C 0
0 C∗

] [
E
H

]
= ω

(
ı

[
ζd µd

−εd −ξd

])[
E
H

]
. (3.1)

Here, C is the discrete single-curl operator defined in (2.1). The four 3n×3n complex
matrices ζd, ξd, εd, µd are the discrete counterparts of the matrices ζ, ξ, ε and µ,
respectively.

From Theorem 2.5, we can see that the GEP (3.1) has 2n zero eigenvalues. This
null space not only affects the convergence of iterative eigensolvers but also increases
the challenge of solving the eigenvalue problem. In this section, we apply the SVD
of C in (2.16) to reduce the GEP (3.1) to the null space free eigenvalue problem
(3.6) equipped with the following two advantages. (i) The dimension of the coefficient
matrix is dramatically reduced from 6n in (3.1) to 4n in (3.6). (ii) The two eigenvalue
problems share the same 4n nonzero eigenvalues.

To derive the NFSEP, we first rewrite (3.1) as

diag (Pr, Qr) diag (Σr,Σr) diag (Q
∗

r , P
∗

r )

[
E
H

]
= ω

(
ı

[
ζd µd

−εd −ξd

])[
E
H

]
(3.2)

by applying the SVD of C described in (2.16). We can then explicitly define the
invariant subspace of (3.1) in the following theorem using the matrices Pr, Qr, and
Σr defined in Theorem 2.5.

Theorem 3.1. Assume the matrix

B ≡ ı

[
ζd µd

−εd −ξd

]
(3.3)

is nonsingular. Then

span
{
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)}

is an invariant subspace of (3.1) corresponding to all nonzero eigenvalues. Further-

more, it holds that

{
ω
∣∣∣ diag

(
Σ

1

2

r Q
∗

r ,Σ
1

2

r P
∗

r

)
B−1 diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)
y = ωy

}

= {ω | diag (C,C∗)x = ωBx, ω 6= 0} . (3.4)

Proof. From Theorem 2.5, we have

diag (C,C∗)
{
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)}

= {diag (PrΣrQ
∗

r , QrΣrP
∗

r )}
{
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)}

= B
{
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)}{
diag

(
Σ

1

2

r Q
∗

r ,Σ
1

2

r P
∗

r

)
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)}
.

(3.5)

7



From (3.2), (3.5), and the fact that diag
(
Σ

1

2

r Q∗
r ,Σ

1

2

r P ∗
r

)
B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)
∈

C
4n×4n is nonsingular, we can see that span{B−1diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)
} is an invariant

subspace of the GEP (3.1) corresponding to all nonzero eigenvalues, and therefore the
result in (3.4) holds.

From Theorem 3.1, the null space free eigenvalue problem is derived straightfor-
wardly in the following theorem.

Theorem 3.2 (The null space free eigenvalue problem). For any nonsingular

B defined in (3.3), the GEP (3.1) can be reduced to the following null space free

eigenvalue problem

diag
(
Σ

1

2

r Q
∗

r ,Σ
1

2

r P
∗

r

)
B−1 diag

(
PrΣ

1

2

r , QrΣ
1

2

r

)
y = ωy. (3.6)

Furthermore, the GEP (3.1) and the NFSEP (3.6) have the same nonzero eigenval-

ues.

We have reduced the GEP (3.1) to the NFSEP (3.6), and the NFSEP can be
solved by the iterative eigensolvers without being disturbed by the null space. Further
computational considerations are discussed in the next section. Finally, we note how
the C3n×3n matrices ζd, ξd, εd, and µd are determined. In Yee’s scheme, E and H are
evaluated at the edge centers and the face centers, respectively. However, CE and
C∗H are evaluated at the face centers and the edge centers, respectively. To match
these evaluation points, we can average the corresponding discrete entry values of ζ,
ξ, ε and µ on the neighbor grid points to form the matrices ζd, ξd, εd, µd in (3.1).
Consequently, ζdE + µdH and εdE + ξdH are evaluated at the face centers and the
edge centers, respectively.

4. Computational and application considerations. The NFSEP defined in
(3.6) can actually be applied to various complex media settings as long as the corre-
sponding matrixB is nonsingular. Such media include general and Tellegen biisotropic
media [24], lossless and reciprocal bianisotropic media [20], and general bianisotropic
media [12]. To solve the NFSEP, shift-and-invert type iterative eigensolvers (e.g.,
Arnoldi method, Jacobi-Davidson method) can be applied to compute the desired
eigenpairs of (3.1) from (3.6) without being affected by zero eigenvalues. Despite the
wide applications on complex media, the process for solving the NFSEP (3.6) can be
can further accelerated under the mild assumption described in Section 4.1. It is worth
mentioning that two important types of media, i.e., chiral media [3, 4, 16, 21, 24, 27]
and pseudochiral media [2, 5, 6, 12, 22], satisfy this assumption and can thus be solved
by the accelerated eigensolvers. See Sections 4.2 and 4.3 for more details and some
computational remarks.

4.1. Sufficient conditions for Hermitian and Hermitian positive definite

generalized eigenvalue problems. The coefficient matrix in the NFSEP (3.6) is
in a general form, and the NFSEP can therefore be solved using, for example, the
Arnoldi method. However, under an assumption, we can rewrite the NFSEP (3.6)
as a generalized eigenvalue problem with Hermitian and Hermitian positive definite
coefficient matrices. We can then take advantage of the matrix structure to acceler-
ate the solution process by solving this rewritten eigenvalue problem via the invert
Lanczos method and the associated conjugate gradient linear system solver.

The acceleration scheme is motivated from the following observations regarding
the matrix B in (3.3). If µd is nonsingular and we let Φ represent the matrix εd −
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ξdµ
−1
d ζd, we have

B = ı

[
0 µd

−Φ −ξd

] [
I3n 0

µ−1
d ζd I3n

]
.

Furthermore, if Φ is nonsingular, we have

B−1 = −ı

[
I3n 0

−µ−1
d ζd I3n

] [
−Φ−1ξdµ

−1
d −Φ−1

µ−1
d 0

]
. (4.1)

In other words, the properties of B−1 are closely related to µd, Φ, ξd and ζd. In
particular, we consider the assumption

µd ≻ 0,Φ ≡ εd − ξdµ
−1
d ζd ≻ 0, and ξ∗d = ζd. (4.2)

The notations µd ≻ 0 and Φ ≻ 0 suggest that µd and Φ are Hermitian positive definite.
Under this assumption, we show that the GEP (3.1) can be transformed to a standard
Hermitian eigenvalue problem (so that all of the eigenvalues are real) in Theorem 4.1.
We then rewrite the NFSEP (3.6) in the new form (4.9) in Theorem 4.2. Consequently,
the corresponding coefficient matrix Ar to be defined in (4.10) is Hermitian and
positive definite. We can then use the Lanczos method, which consumes less storage
and computation than Arnoldi-type methods, to solve (4.9).

We begin the derivation from the following theorem.
Theorem 4.1. Under Assumption (4.2), all eigenvalues ω of the GEP (3.1) are

real.

Proof. Let
[
Eζ

Hζ

]
=

[
I3n 0

µ−1
d ζd I3n

] [
E
H

]
. (4.3)

Substituting (4.3) into (3.1) and pre-multiplying (3.1) by

[
I3n 0

ξdµ
−1
d I3n

]
, it holds that

[
C 0

ξdµ
−1
d C − C∗µ−1

d ζd C∗

] [
Eζ

Hζ

]
= ıω

[
0 µd

−Φ 0

] [
Eζ

Hζ

]
, (4.4)

where Φ is defined in Assumption (4.2). By the assumptions that µd ≻ 0 and Φ ≻ 0,
we then let

µd = µcµ
∗

c , Φ = ΦcΦ
∗

c (4.5)

be the Cholesky decompositions of µd and Φ, respectively. Define
[
Ẽ

H̃

]
=

[
Φ∗

c 0
0 µ∗

c

] [
Eζ

Hζ

]
. (4.6)

Substituting (4.6) into (4.4) and pre-multiplying (4.4) by

[
0 −Φ−1

c

µ−1
c 0

]
, we have

Ax = ωx, (4.7)

where x = [Ẽ⊤, H̃⊤]⊤ and

A = (−ı)

[
−Φ−1

c

(
ξdµ

−1
d C − C∗µ−1

d ζd
)
(Φ∗

c)
−1 −Φ−1

c C∗ (µ∗
c)

−1

µ−1
c C (Φ∗

c)
−1

0

]
. (4.8)
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Because A is Hermitian, all eigenvalues ω of the GEP (3.1) are real.
We have shown that all eigenvalues of (3.1) are real under Assumption (4.2).

However, the coefficient matrix of the NFSEP in (3.6) is not Hermitian. We reformu-
late the NFSEP (3.6) in the following theorem to obtain a Hermitian and Hermitian
positive definite generalized eigenvalue problem (HHPD-GEP).

Theorem 4.2. Under Assumption (4.2), the GEP (3.1) can be reduced to a null

space free generalized eigenvalue problem

(
ı

[
0 Σ−1

r

−Σ−1
r 0

])
yr = ω−1Aryr, (4.9)

where

Ar ≡ diag (P ∗

r , Q
∗

r)

[
µ−1
d ζd −I3n
I3n 0

] [
Φ−1 0
0 µ−1

d

] [
ξdµ

−1
d I3n

−I3n 0

]
diag (Pr, Qr) (4.10)

is Hermitian and positive definite.

Proof. Let

yr = diag
(
Σ1/2

r ,Σ1/2
r

)
y.

Rewrite (3.6) as

diag (Q∗

r, P
∗

r )B
−1diag (Pr, Qr) yr = ω diag

(
Σ−1

r ,Σ−1
r

)
yr,

which is equivalent to

ı diag (P ∗

r , Q
∗

r)

[
0 I3n

−I3n 0

]
B−1diag (Pr, Qr) yr = ω

(
ı

[
0 Σ−1

r

−Σ−1
r 0

])
yr. (4.11)

From (4.1), it holds that

ı

[
0 I3n

−I3n 0

]
B−1 =

[
µ−1
d ζd −I3n
I3n 0

] [
Φ−1ξdµ

−1
d Φ−1

−µ−1
d 0

]

=

[
µ−1
d ζd −I3n
I3n 0

] [
Φ−1 0
0 µ−1

d

] [
ξdµ

−1
d I3n

−I3n 0

]
,

which is Hermitian and positive definite if Assumption (4.2) holds. That is, the
coefficient matrix on the left hand side of (4.11) is equal to Ar. Therefore, the
equation (4.11) can be rewritten as (4.9).

We have now asserted the sufficient conditions that lead to the Hermitian and
Hermitian positive definite null space free generalized eigenvalue problem (HHPD-
NFGEP) (4.9). Next, we discuss some considerations in applying and solving the
HHPD-NFGEP.

4.2. The eigenvalue and associated linear system solvers. In the HHPD-
NFGEP (4.9), the coefficient matrix Ar is Hermitian and positive definite. We can
use the generalized Lanczos method to solve (4.9) and obtain the smallest positive
eigenvalues that are of interest in complex media. In each step of the generalized
Lanczos method, we must solve the linear systems

Aru ≡
[
P ∗
r

Q∗
r

] [
ζd −I3n
I3n 0

] [
Φ−1 0
0 I3n

] [
ζ∗d I3n

−I3n 0

] [
Pr

Qr

]
u = b (4.12)
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for a given vector b. Because Ar is Hermitian positive definite, the linear system
(4.12) can be solved efficiently by using the conjugate gradient method. Furthermore,
the matrix-vector multiplications of the forms (T ∗p, Tq) for computing (P ∗

r p̂1, Q
∗
rp̂2)

and (Prq̂1, Qrq̂2), which are the most costly parts of solving (4.12), can be computed
efficiently by the three-dimensional FFT because of the periodicity of T , as shown in
(2.7).

4.3. Application remarks. Intensive research has been conducted on chiral
and pseudochiral media. In this section, we assert that the corresponding magneto-
electric matrices satisfy the assumptions given in (4.2), and we can therefore solve the
HHPD-NFGEP using the Lanczos method. This solution procedure can thus act as a
useful numerical tool for simulating three-dimensional chiral and pseudochiral media.

First, we introduce the magnetoelectric matrices in chiral and pseudochiral me-
dia. For chiral media (also called Pasteur or reciprocal chiral media), the associated
magnetoelectric matrices ζd and ξd in (3.1) are of the forms

ξd = ıγĨ3n and ζd = −ıγĨ3n. (4.13)

Here, γ is the chirality parameter, and Ĩm ∈ Rm×m is a diagonal matrix whose entries
are equal to 0 (outside of the medium) or 1 (within the medium) depending on the
corresponding grid point locations. For pseudochiral media, the associated matrices
are

ξd =




0 0 ıγĨn
0 0 0

ıγĨn 0 0


 and ζd =




0 0 −ıγĨn
0 0 0

−ıγĨn 0 0


 . (4.14)

Now, we analyze these magnetoelectric matrices. For chiral and pseudochiral
media, ε are of the form of 3-by-3 diagonal block matrix that ε = diag(ǫ, ǫ, ǫ). Here,
ǫ is a piecewise constant function that is equal to εi and εo inside and outside the
medium, respectively. Thus, the associated matrix εd in (3.1) is a diagonal matrix with
εo or εi on diagonal entries. On the other hand, the permeability µ is usually taken as
I3, so the matrix µd in (3.1) is equal to an identity. Combining the diagonal matrices
εd and µd with (ξd, ζd) in (4.13) and (4.14), we have that Φ = εd−ξdµ

−1
d ζd = εd−ξdζd

is a diagonal matrix with the entries εo, εi, or εi− γ2. Because εo and εi are positive,
Φ is a positive diagonal matrix, provided γ ∈ (0,

√
εi).

4.4. A short summary. In Table 4.1, we summarize all of the eigenvalue prob-
lems and eigensolver strategies that have been discussed in the previous sections.
From the algorithmic viewpoint, we propose and outline the Null Space Free method
(NSF) in Algorithm 1.

5. Numerical results. In the numerical experiments, we consider three-dimensional
reciprocal chiral materials, in which ζ = −ıγ. The goals of our numerical experiments
are threefold: to verify the correctness of the proposed algorithms and the code im-
plementation, to compare the performance of the proposed algorithm with an existed
algorithm, and to study the performance of the proposed method in terms of iteration
numbers and execution time. The details of the numerical experiments are as follows.

For the medium structure, we consider a simple cubic lattice consisting of spheres
with radius r and circular cylinders with radius s, as shown in Figure 5.1. In par-
ticular, we assume the lattice constant a = 1, r/a = 0.345, and s/a = 0.11. We
use the triplet (εi, εo, γ) to represent the associated permittivity inside the structure,
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(a) GEP (1.5) NFSEP (3.6) HSEP (4.7) HHPD-NFGEP (4.2)
(b) Generalized Standard Standard Generalized

non-Hermition non-Hermition Hermition Hermition & HPD
(c) Complex Complex Real (Thm. 4.1) Real
(d) 6n× 6n 4n× 4n 6n× 6n 4n× 4n
(e) 2n (Thm. 2.5) 0 (Thm. 3.2) 2n 0
(f) S.I. Arnoldi S.I. Arnoldi S.I. Lanczos S.I. Lanczos
(g) Hard to choose Zero Hard to choose Zero
(h) (5.1) - - (4.12)
(i) LU or GMRES - - CG with FFT

(not efficient) Mtx-Vec Mult.
(j) Hard to find None (well-cond.) Harder to find None (well-cond.)
(k) Media without Media without Media without Media satisfying

Assum. (4.2) Assum. (4.2) Assum. (4.2) Assum. (4.2)
(Thm. 4.2)

Table 4.1
A summary of the eigenvalue problems and solvers considered in this article. The table lists (a)

names of the eigenvalue problems, (b) type of the eigenvalue problems, (c) type of eigenvalues, (d)
problem dimensions, (e) number of zero eigenvalues, (f) eigenvalue solver, (g) choice of shift σ for
the smallest eigenvalues, (h) embedded linear systems, (i) linear system solvers, (j) preconditioners
for the linear system solvers, and (k) the applicable complex media.

a

Fig. 5.1. A schema of three-dimensional chiral medium with a simple cubic lattice within a
single primitive cell.

the permittivity outside the structure, and the chirality parameter, respectively. The
perimeter of the irreducible Brillouin zone for the sample cubic lattice is formed by the

corners G = [0, 0, 0]⊤, X = 2π
a

[
1
2 , 0, 0

]⊤
, M = 2π

a

[
1
2 ,

1
2 , 0

]⊤
, and R = 2π

a

[
1
2 ,

1
2 ,

1
2

]⊤
.

For the implementation, the MATLAB function eigs is used to solve the HHPD-
NFGEP (4.9), and pcg (without preconditioning) is used to solve the associated linear
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Algorithm 1 The null space free method (NSF) for solving the GEP (3.1)

1: Compute Λ1, Λ2 and Λ3 in Theorem 2.1;
2: Compute Λq and Λp in (2.10);
3: Compute Π1 and Π2 in (2.12a) and (2.13a), respectively;
4: if µd and Φ are Hermitian positive definite and ξ∗d = ζd then

5: Solve the HHPD-NFGEP
(
ı

[
0 Σ−1

r

−Σ−1
r 0

])
y = ω−1Ary,

where Ar is defined in (4.10);
6: else

7: Solve the NFSEP

diag
(
Σ1/2

r Q∗

r ,Σ
1/2
r P ∗

r

)
B−1diag

(
PrΣ

1/2
r , QrΣ

1/2
r

)
y = ωy.

8: Update y = diag
(
Σ

1/2
r ,Σ

1/2
r

)
y;

9: end if

10: Compute

x = B−1diag (Pr, Qr) y.

system (4.12). The stopping criteria for eigs and pcg are 104×ǫ/(2
√
δ−2
x + δ−2

y + δ−2
z )

and 10−14, respectively. The constant ǫ (≈ 2.2× 10−16) is the floating-point relative
accuracy in MATLAB. In eigs, the maximal number of Lanczos vectors for the restart
is 3ℓ, where ℓ = 10 is the number of desired eigenvalues of the GEP (3.1). The MAT-
LAB functions fftn and ifftn are applied to compute the matrix-vector products
T ∗p and Tq, respectively. The MATLAB commands tic and toc are used to measure
the elapsed time. All computations are performed in MATLAB 2011b.

For the hardware configuration, we use a HP workstation equipped with two Intel
Quad-Core Xeon X5687 3.6GHz CPUs, 48 GB of main memory, and RedHat Linux
operating system Version 5.

5.1. Numerical correctness validation. We validate the correctness of the
proposed algorithm and MATLAB implementation by solving the following three sets
of benchmark problems.

First, we consider a special case (εi, εo, γ) = (13, 1, 0), whose corresponding band
structure has been reported in [10]. In this case, because of γ = 0 and (1.4a), we can
see that the GEP (3.1) and the eigenvalue problem AE = ω2εdE (for the photonic
crystal as shown in [10]) lead to the same band structure. The computed band
structure due to (3.1) and n1 = n2 = n3 = 50 is shown in Figure 5.2(a). The
figure is identical (up to numerical precision) to Figure 1(a) in [10].

Second, we consider (εi, εo, γ) = (1, 1, 0), for which some theoretical results are
known. In this case, we know that (3.1) and AE = ω2E have the same band struc-
ture and, from Theorem 2.4, {Λq,Λq} are the nonzero eigenvalues of A. That is,

{Λ1/2
q ,Λ

1/2
q } are the eigenvalues of (3.1). Comparing the computed eigenvalues shown

in Figure 5.2(b) (for n1 = n2 = n3 = 50) with the exact eigenvalues, our numerical
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(b) (εi, εo, γ) = (1, 1, 0)

Fig. 5.2. The band structure with (εi, εo, γ) = (13, 1, 0) and (1, 1, 0).
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(b) (εi, εo, γ) = (1, 1, 0.8)

Fig. 5.3. The convergent eigenvalues for (εi, εo, γ) = (13, 1, 0.5) and (εi, εo, γ) = (1, 1, 0.8) with
various matrix sizes 4n.

results show that the maximal relative error of all computed eigenvalues in the figure
is 3.65× 10−14.

Third, we check the convergence of the eigenvalues in terms of the grid point num-
bers. In particular, we set n1 = n2 = n3 = 2k for k = 3, . . . , 7, and the corresponding
matrix sizes 4n = 4 × 23k of the NFSEP (4.9) range from 2, 048 to 8, 388, 608. The
three smallest positive eigenvalues λ1,k, λ2,k and λ3,k for (εi, εo, γ) = (13, 1, 0.5) and
(εi, εo, γ) = (1, 1, 0.8) are shown in Figure 5.3 for the wave vector k = [0.5, 0, 0]⊤. The
figure shows that {λ1,k}, {λ2,k} and {λ3,k} are convergent as k increases.

5.2. Comparison with the shift-and-invert Arnoldi method. The GEP
(3.1) can be solved using the shift-and-invert Arnoldi method. In the shift-and-invert
Arnoldi method, the computational cost is dominated by solving the 6n × 6n linear
system

([
C 0
0 C∗

]
− σ

[
ζd I3n
−εd −ξd

])
y = b, (5.1)

for a certain vector b and a shift σ. In contrast, the performance of the null space
free method (Algorithm 1) is dominated by solving the 4n× 4n linear system (4.12).

14



10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

6*n

C
P

U
 ti

m
es

 (
s)

 

 

GMRES+SSOR
A\b
PCG
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k (14 , 0, 0) (12 ,
1
2 , 0) (12 ,

1
2 ,

1
2 ) (14 ,

1
4 ,

1
4 )

S.I. Arnoldi+LU 18, 821 10, 533 16, 628 20, 758
Algorithm 1 155 140 198 155

Table 5.1
CPU time in seconds for solving the GEP (3.1). S.I. Arnoldi+LU stands for the shift-and-

invert Arnoldi method with LU based linear system solver. We take n1 = n2 = n3 = 32 and
(εi, εo, γ) = (13, 1, 0.5).

We thus compare the performance for solving these two linear systems. Here, we
take (εi, εo, γ) = (13, 1, 1) and k = [0.5, 0.5, 0]⊤. To solve (5.1), we use (i) a direct
method based on LU factorization and (ii) the GMRES with SSOR preconditioner.
To solve (4.12), we use the MATLAB pcg without preconditioning. Note that the
chirality parameter γ = 1 implies that the coefficient matrix is Hermitian and positive
definite. The timing results for solving (5.1) and (4.12) are shown in Figure 5.4. The
results suggest that the performance of the pcg for solving (4.12) outperforms the two
solvers for solving (5.1) remarkably.

In Table 5.1, we further compare the performance of the two eigenvalue solvers:
(i) the shift-and-invert Arnoldi method with direct linear system solver and (ii) the
null space free method (Algorithm 1) with pcg. It is clear that Algorithm 1 is much
faster. Consequently, we do not recommend solving the GEP (3.1) by the shift-
and-invert Arnoldi method unless we can develop a good preconditioning scheme for
solving the linear system (5.1). However, it is important to note that, even with a
good preconditioner, the effect of a large null space (with rank 2n) can downgrade
the performance significantly [9].

5.3. Performance of Algorithm 1. We now concentrate on the performance,
in terms of iteration numbers and timing, of the null space free method (Algorithm 1)
in finding the 10 smallest positive eigenvalues of the GEP (3.1) with various combi-
nations of the parameters εi, γ, and k. We take n1 = n2 = n3 = 128, and the size of
the coefficient matrix in (4.9) is 4n3

1 = 8, 388, 608. The Lanczos method is applied to
solve the HHPD-NFGEP (4.9).
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In the first test problem set, we vary the wave vector 2πk along the segments
connectingG, X ,M , R, and G in the first Brillouin zone to plot the band structure. In
each of the segments, ten uniformly distributed sampling wave vectors are chosen. The
results are shown in Figure 5.5 for (εi, εo, γ) = (13, 1, 0.5) or (εi, εo, γ) = (1, 1, 0.8).
In the second test problem set, we change the chirality parameter γ from 0.25 to 3
for εi = 13 (from γ = 0.05 to 0.9 for εi = 1). Note that the condition number of
the linear system (4.12) increases from εi

εo
= 13 to ∞ (singular) as γ varies from 0 to√

εi ≈ 3.61. We fix k = [0.5, 0, 0]⊤. The results are shown in Figure 5.6. Based on
Figures 5.5 and 5.6, we highlight the following performance results.

• The iteration numbers are very small. Figures 5.5(c), 5.5(d) 5.6(c), and
5.6(d) show the iteration numbers of the Lanczos method for solving (4.9)
with different parameter combinations. In all cases, the iteration numbers are
substantially smaller than the matrix size 8, 388, 608. Note that some higher
iteration numbers in Figures 5.5(c) and 5.5(d) are due to the corresponding
multiplicity of eigenvalues. The higher iteration numbers in Figures 5.6(c)
and 5.6(d) are due to the clustering of the eigenvalues.

• The timing is satisfactory. Figures 5.5(e) and 5.5(f) show the CPU times
for solving (3.1). These results suggest that our approach is efficient for
computing 10 (interior) eigenvalue problems as large as 8, 388, 608. This
efficiency is mainly due to the highly efficient linear system solver for (4.12).

• The linear systems in the form of (4.12) are well-conditioned for the

tested γ’s. We take a close look of the behavior of pcg for solving the linear
systems (4.12) with various γ’s. As shown in Figures 5.6(g) and 5.6(h), the
(average) pcg iteration numbers for solving linear system (4.12) in the tested
eigenvalue problems increase from 39 to 90 for εi = 13 and increase from 9
to 59 for εi = 1. This behavior is parallel to the increase in the condition
number of the linear system (4.12) from εi

εo
= 13 to ∞ (singular) as γ varies

from 0 to
√
εi ≈ 3.61. We fix k = [0.5, 0, 0]⊤. A more important observation

is that the timing results are quite satisfactory in the following sense. For
problems as large as 8.4 million and a stopping tolerance as small as 10−14,
these small iteration numbers suggest that the coefficient matrix in (4.12) is
quite well-conditioned.

6. Conclusions. In this paper, we focus on the generalized eigenvalue problems
(GEP) arising in the source-free Maxwell equation with magnetoelectric coupling ef-
fects in the three-dimensional chiral media. Solving the GEP is a computational
challenge. We have proposed a promising theoretical framework for efficiently solving
the eigenvalue problem. First, we derive the singular value decomposition (SVD) of
the discrete single-curl operator. Using this SVD, we explore an explicit form of the
basis for the invariant subspace corresponding to nonzero eigenvalues of the GEP.
By applying the basis, the GEP is reduced to a null space free standard eigenvalue
problem (NFSEP), which involves only the eigenspace associated with the nonzero
eigenvalues of the GEP and excludes the zero eigenvalues so that they do not de-
grade the computational efficiency. Next, we show that all nonzero eigenvalues of the
GEP are real if µd and εd − ξdµ

−1
d ζd are Hermitian positive definite and ξ∗d = ζd.

Based on this property, we reformulate the NFSEP to a null space free generalized
eigenvalue problem whose coefficient matrices are Hermitian and Hermitian positive
definite (HHPD-NFGEP). We can then use the invert Lanczos method to solve the
HHPD-NFGEP and the conjugate gradient (CG) method to solve the embedded linear
systems. The numerical results validate the correctness of the proposed algorithms
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and the computer code implementation. The results also suggest that the proposed
methods are efficient in terms of iteration and timing.

Appendix. Proof of Lemma 2.2:
(a). By the definition of Λq, Λq is singular if and only if Λa1,n1

, Λa2,n2
and Λa3,n3

are
singular if and only if

eθn1,i
+θa1,i − 1 = 0,

eθn2,j
+θa2,j − 1 = 0,

eθn3,k
+θa3,k − 1 = 0

for some i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} and k ∈ {1, . . . , n3}. That is
i+ k · a1

n1
=

i+ ak1
n1

,
j + k · a2

n2
=

j + ak2
n2

,
k + k · a3

n3
=

k + ak3
n3

are integers for some i, j, k. By the assumption 0 ≤ k1, k2, k3 ≤ 1
2a , we have i = n1,

j = n2, k = n3 and k1 = k2 = k3 = 0 which contradict to k 6= 0. Therefore, Λq is
nonsingular.

(b). By the definitions of Λ1, Λ2 and Λ3 in (2.9), the ((k−1)n1n2+(j−1)n1+i)th
elements of Λ1, Λ2 and Λ3 are

δ−1
x (eθi − 1), δ−1

y (eθj − 1), δ−1
z (eθk − 1),

respectively, where

θi = ı2π

(
i+ k1
n1

)
, θj = ı2π

(
j + k2
n2

)
, θk = ı2π

(
k + k3
n3

)
,

for i = 1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , n3. Assume that Λp does not have full
column rank. Then there exists some i, j and k such that

βδ−1
z (eθk − 1) = δ−1

y (eθj − 1),

δ−1
x (eθi − 1) = αδ−1

z (eθk − 1),

βδ−1
x (eθi − 1) = αδ−1

y (eθj − 1),

which implies that

β sin θk
δz

=
sin θj
δy

,
sin θi
δx

=
α sin θk

δz
,

β sin θi
δx

=
α sin θj

δy

and

β(cos θk − 1)

δz
=

cos θj − 1

δy
,

cos θi − 1

δx
=

α(cos θk − 1)

δz
,

β(cos θi − 1)

δx
=

α(cos θj − 1)

δy

or equivalent to

β sin θi
αδx

=
sin θj
δy

=
β sin θk

δz
(6.1)
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and

β(cos θi − 1)

αδx
=

cos θj − 1

δy
=

β(cos θk − 1)

δz
. (6.2)

From (6.1) and (6.2), it holds that

(
β sin θi
αδx

)2

+

(
β(cos θi − 1)

αδx

)2

=

(
sin θj
δy

)2

+

(
cos θj − 1

δy

)2

=

(
β sin θk

δz

)2

+

(
β(cos θk − 1)

δz

)2

and then

β2(2− 2 cos θi)

α2δ2x
=

2− 2 cos θj
δ2y

=
β2(2− 2 cos θk)

δ2z
.

Therefore,

β(cos θi − 1)

αδx
=

αδx
βδy

cos θj − 1

δy
,

β(cos θk − 1)

δz
=

δz
βδy

cos θj − 1

δy
. (6.3)

From (6.2) and (6.3), we can see that if αδx 6= βδy and δz 6= βδy, then

cos θi = cos θj = cos θk = 1.

That is i+k1

n1

, j+k2

n2

and k+k3

n3

must be integers. This contradicts to the assumption
for k. Therefore, Λp has full column rank.
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realization and matching of backward-wave metamaterial slabs. Physical Review B,
75(15):153104, 2007.

[24] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M Soukoulis. Chiral metamaterials:
simulations and experiments. J. Opt. A: Pure Appl. Opt. , 11:114003, 2009.

[25] W. S. Weiglhofer and A. Lakhtakia. Introduction to Complex Mediums for Optics and
Electromagnetics. Washington, DC:SPIE, 2003.

[26] K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations
in isotropic media. IEEE Trans. Antennas and Propagation, 14:302–307, 1966.

[27] R. Zhao, T. Koschny, and C.M. SoukSoukoulis. Chiral metamaterials: retrieval of the effective
parameters with and without substrate. Optics Express, 18:14553–14567, 2010.

19



G X M R G
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
 (λ

 a
 / 

2π
)

(a) Band structure for (εi, εo, γ) = (13, 1, 0.5)
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(b) Band structure for (εi, εo, γ) = (1, 1, 0.8)

G X M R G
120

130

140

150

160

170

180

190

Ite
ra

tio
n 

nu
m

be
rs

 o
f L

an
cz

os
 m

et
ho

d

(c) Iteration numbers ranging from 120 to 190
with average 143 for (εi, εo, γ) = (13, 1, 0.5)
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(d) Iteration numbers ranging from 100 to 200
with average 136 for (εi, εo, γ) = (1, 1, 0.8)
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(e) CPU time ranging from 2.75 to 4 hours with
average 3.2 hours for (εi, εo, γ) = (13, 1, 0.5)
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(f) CPU time ranging from 2.1 to 4.1 hours with
average 2.8 hours for (εi, εo, γ) = (1, 1, 0.8)

Fig. 5.5. The band structures of three-dimensional chiral media, iteration number of the Lanc-
zos method and the elapsed times of the NSF (Algorithm 1) for solving (3.1) associated with various
wave vectors k.
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(a) Band structure for (εi, εo, γ) = (13, 1, γ)
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(b) Band structure for (εi, εo, γ) = (1, 1, γ)
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(c) Iteration numbers ranging from 124 to 147 for
(εi, εo, γ) = (13, 1, γ)
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(d) Iteration numbers ranging from 140 to 260 for
(εi, εo, γ) = (1, 1, γ)
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(e) CPU time increasing from 2.5 to 6.5 hours for
(εi, εo, γ) = (13, 1, γ)
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(f) CPU time increasing from 1.4 to 4.5 hours for
(εi, εo, γ) = (1, 1, γ)
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(g) Iteration numbers of CG for (εi, εo, γ) =
(13, 1, γ)
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(h) Iteration numbers of CG for (εi, εo, γ) =
(1, 1, γ)

Fig. 5.6. The band structures of three-dimensional chiral media, the average of iteration number
of pcg, the iteration numbers of the Lanczos method and the elapsed times of the NSF for solving
(3.1) associated with various chirality parameters γ.
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