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Abstract

We investigate the classes of functions whose minimization diagrams can be approximated
efficiently in IRd. We present a general framework and a data-structure that can be used to
approximate the minimization diagram of such functions. The resulting data-structure has near
linear size and can answer queries in logarithmic time. Applications include approximating the
Voronoi diagram of (additively or multiplicatively) weighted points. Our technique also works
for more general distance functions, such as metrics induced by convex bodies, and the nearest
furthest-neighbor distance to a set of point sets. Interestingly, our framework works also for
distance functions that do not comply with the triangle inequality. For many of these functions
no near-linear size approximation was known before.

1. Introduction

Given a set of functions F =
{
fi : IRd → IR

∣∣∣ i = 1, . . . , n
}

, their minimization diagram is the

function fmin(q) = min
i=1,...,n

fi(q), for any q ∈ IRd. By viewing the graphs of these functions as

manifolds in IRd+1, the graph of the minimization diagram, also known as the lower envelope
of F , is the manifold that can be viewed from an observer at −∞ on the xd+1 axis. Given a set
of functions F as above, many problems in Computational Geometry can be viewed as computing
the minimization diagram; that is, one preprocesses F , and given a query point q, one needs to
compute fmin(q) quickly. This typically requires nO(d) space if one is interested in logarithmic query
time. If one is restricted to using linear space, then the query time deteriorates to O

(
n1−O(1/d)

)

[Mat92, Cha10]. There is substantial work on bounding the complexity of the lower envelope in
various cases, how to compute it efficiently, and performing range search on them; see the book by
Sharir and Agarwal [SA95].

Nearest neighbor. One natural problem that falls into this framework is the nearest neighbor
(NN) search problem. Here, given a set P of n data points in a metric space X , we need to
preprocess P, such that given a query point q ∈ X , one can find (quickly) the point nq ∈ P closest
to q. Nearest neighbor search is a fundamental task used in numerous domains including machine
learning, clustering, document retrieval, databases, statistics, and many others.
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To see the connection to lower envelopes, consider a set of data points P = {p1, . . . , pn} in IRd.
Next, consider the set of functions F = {f1, . . . , fn}, where fi(q) = ‖q− pi‖, for i = 1, . . . , n. The
graph of fi is the set of points

{
(q, fi(q)) | q ∈ IRd

}
(which is a cone in IRd+1 with apex at (pi, 0)).

Clearly the NN problem is to evaluate the minimization diagram of the functions at a query point
q.

More generally, given a set of n functions, one can think of the minimization diagram defining
a “distance function”, by analogy with the above. The distance of a query point here is simply the
“height” of the lower envelope at that point.

Exact nearest neighbor. The exact nearest neighbor problem has a naive linear time algorithm
without any preprocessing. However, by doing some nontrivial preprocessing, one can achieve a
sub-linear query time. In IRd, this is facilitated by answering point location queries using a Voronoi
diagram [dBCvKO08]. However, this approach is only suitable for low dimensions, as the complexity
of the Voronoi diagram is Θ

(
ndd/2e

)
in the worst case. Specifically, Clarkson [Cla88] showed a

data-structure with query time O(log n) time, and O
(
ndd/2e+δ

)
space, where δ > 0 is a prespecified

constant (the O(·) notation here hides constants that are exponential in the dimension). One can
trade-off the space used and the query time [AM93]. Meiser [Mei93] provided a data-structure with
query time O

(
d5 log n

)
(which has polynomial dependency on the dimension), where the space used

is O
(
nd+δ

)
. These solutions are impractical even for data-sets of moderate size if the dimension is

larger than two.

Approximate nearest neighbor. In typical applications, however, it is usually sufficient to
return an approximate nearest neighbor (ANN). Given an ε > 0, a (1 + ε)-ANN, to a query
point q, is a point y ∈ P, such that

‖q− y‖ ≤ (1 + ε)
∥∥q− nq

∥∥ ,

where nq ∈ P is the nearest neighbor to q in P. Considerable amount of work was done on this
problem, see [Cla06] and references therein.

In high dimensional Euclidean space, Indyk and Motwani showed that ANN can be reduced to
a small number of near neighbor queries [IM98, HIM12]. Next, using locality sensitive hashing they
provide a data-structure that answers ANN queries in time (roughly) Õ

(
n1/(1+ε)

)
and preprocessing

time and space Õ
(
n1+1/(1+ε)

)
; here the Õ(·) hides terms polynomial in log n and 1/ε. This was

improved to Õ
(
n1/(1+ε)

2
)

query time, and preprocessing time and space Õ
(
n1+1/(1+ε)2

)
[AI08].

These bounds are near optimal [MNP06].
In low dimensions (i.e., IRd for small d), one can use linear space (independent of ε) and get ANN

query time O(log n + 1/εd−1) [AMN+98, Har11]. The trade-off for this logarithmic query time is
of course an exponential dependence on d. Interestingly, for this data-structure, the approximation
parameter ε is not prespecified during the construction; one needs to provide it only during the
query. An alternative approach, is to use Approximate Voronoi Diagrams (AVD), introduced by Har-
Peled [Har01], which is a partition of space into regions, of near-linear total complexity, typically
with a representative point for each region that is an ANN for any point in the region. In particular,
Har-Peled showed that there is such a decomposition of size O

(
(n/εd) log2 n

)
, such that ANN queries

can be answered in O(log n) time. Arya and Malamatos [AM02] showed how to build AVD’s of linear
complexity (i.e., O(n/εd)). Their construction uses Well-Separated Pair Decomposition [CK95].
Further trade-offs between query time and space for AVD’s were studied by Arya et al. [AMM09].
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Generalized distance functions: motivation. The algorithms for approximate nearest neigh-
bor, extend to various metrics in IRd, for example the well known `p metrics. In particular, previous
constructions of AVD’s extend to `p metrics [Har01, AM02] as well. However, these constructions
fail even for a relatively simple and natural extension; specifically, multiplicative weighted Voronoi
diagrams. Here, every site p, in the given point set P, has a weight ωp, and the “distance” of a query
point q to p is fp(q) = ωp ‖q− p‖. The function fp is the natural distance function induced by p.
As with ordinary Voronoi diagrams, one can define the weighted Voronoi diagram as a partition
of space into disjoint regions, one for each site p, such that in the region for p the function fp is
the one realizing the minimum among all the functions induced by the points of P. It is known
that, even in the plane, multiplicative Voronoi diagrams can have quadratic complexity, and the
minimizing distance function usually does not comply with the triangle inequality. Intuitively, such
multiplicative Voronoi diagrams can be used to model facilities where the price of delivery to a client
depends on the facility and the distance. Of course, this is only one possible distance function, and
there are many other such functions that are of interest (e.g., multiplicative, additive, etc.).

When fast proximity and small space is not possible. Consider a set of segments in the
plane, and we are interested in the nearest segment to a query point. Given n such segments and n
such query points, this is an extension of Hopcroft’s problem, which requires only to decide if there
is any of the given points on any of the segments. There are lower bounds (in reasonable models)
that show that Hopcroft’s problem cannot be solved faster than Ω

(
n4/3

)
time [Eri96]. This implies

that no multiplicative-error approximation for proximity search in this case is possible, if one insists
on near linear preprocessing, and logarithmic query time.

When is fast ANN possible. So, consider a set of geometric objects where each one of them
induces a natural distance function, measuring how far a point in space is from this object. Given
such a collection of functions, the nearest neighbor for a query point is simply the function that
defines the lower envelope“above”the query point (i.e., the object closest to the query point under its
distance function). Clearly, this approach allows a generalization of the proximity search problem.
In particular, the above question becomes, for what classes of functions, can the lower envelope be
approximated up to (1 + ε)-multiplicative error, in logarithmic time? Here the preprocessing space
used by the data structure should be near linear.

1.1. Our results

We characterize the conditions that are sufficient to approximate efficiently the minimization dia-
gram of functions. Using this framework, one can quickly, approximately evaluate the lower envelope
for large classes of functions that arise naturally from proximity problems. Our data-structure can
be constructed in near linear time, uses near linear space, and answers proximity queries in loga-
rithmic time (in constant dimension). Our framework is quite general and should be applicable to
many distance functions, and in particular we present the following specific cases where the new
data-structure can be used:

(A) Multiplicative Voronoi diagrams. Given a set of points P, where the ith point pi has
associated weight wi > 0, for i = 1, . . . , n, consider the functions fi(q) = wi ‖q− pi‖. The
minimization diagram for this set of functions, corresponds to the multiplicative weighted
Voronoi diagram of the points. The approach of Arya and Malamatos [AM02] to construct
AVD’s using WSPD’s fails for this problem, as that construction relies on the triangle inequality
that the regular Euclidean distance posseses, which does not hold in this case.
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We provide a near linear space AVD construction for this case. We are unaware of any previous
results on AVD for multiplicatively weighted Voronoi diagrams.

(B) Minkowski norms of fat convex bodies. Given a bounded symmetric convex body C
centered at the origin, it defines a natural metric; that is, for points u and v their distance,
as induced by C, denoted by ‖u− v‖C , is the minimum x such that xC + u contains v. So,
given a set of n data points P = {p1, . . . , pn} and n centrally symmetric and bounded convex
bodies C1, . . . , Cn, we define fi(q) = ‖pi − q‖Ci

, for i = 1, . . . , n. Since each point induces a
distance by a different convex body, this collection no longer defines a metric, and this makes
the problem significantly more challenging. In particular, existing techniques for AVD and
ANN cannot be readily applied. Intuitively, the fatness of the associated convex bodies turns
out to be sufficient to approximate the associated distance function, see Section 5.2. The
negative example for the case of segments presented above, indicates that this condition is also
necessary.

(C) Nearest furthest-neighbor. Consider a situation where the given input is uncertain; specif-
ically, for the ith point we are given a set of points Pi ⊆ IRd where it might lie (the reader
might consider the case where the ith point randomly chooses its location out of the points of
Pi). There is a growing interest in how to handle such inputs, as real world measurements are
fraught with uncertainty, see [DRS09, Agg09, AESZ12, AAH+13] and references therein. In
particular, in the worst case, the distance of the query point q to the ith point, is the distance
from q to the furthest-neighbor of q in Pi; that is, Fi(q) = maxp∈Pi

‖q− p‖. Thus, in the
worst case, the nearest point to the query is F(q) = miniFi(q). Using our framework we can
approximate this function efficiently, using space Õ(n), and providing logarithmic query time.
Note, that surprisingly, the space requirement is independent of the original input size, and
only depends on the number of uncertain points.

Paper organization. In Section 2 we define our framework and prove some basic properties.
Since we are trying to make our framework as inclusive as possible, its description is somewhat
abstract. In Section 4, we describe the construction of the AVD and its associated data-structure.
We describe in Section 5 some specific cases where the new AVD construction can be used. We
conclude in Section 6.

2. Preliminaries

For the sake of simplicity of exposition, throughout the paper we assume that all the “action” takes
place in the unit cube [0, 1]d. Among other things this implies that all the queries are in this region.
This can always be guaranteed by an appropriate scaling and translation of space. The scaling and
translation, along with the conditions on functions in our framework, implies that outside the unit
cube the approximation to the lower envelope can be obtained in constant time.

2.1. Informal description of the technique

Consider n points in the plane p1, . . . , pn, where the “distance” from the ith point to a query q, is
the minimum scaling of an ellipse Ei (centered at pi), till it covers q, and let fi denote this distance
function. Assume that these ellipses are fat. Clearly each function fi defines a deformed cone.
Given a query point q ∈ IR2, we are interested in the first function graph being hit by a vertical ray
shoot upward from (q, 0). In particular, let fmin(q) = min

i=1,...,n
fi(q) be the minimization diagram of

these functions.
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As a first step to computing fmin(q), consider the decision version of
this problem. Given a value r, we are interested in deciding if fmin(q) ≤ r.
That is, we want to decide if q ∈ ⋃i(pi + rEi). Of course, this is by itself
a computationally expensive task, and as such we satisfy ourselves with an
approximate decision to this procedure. Formally, we replace every ellipse
by a collection of grid cells (of the right resolution), such that approximately
it is enough to decide if the query point lies inside any of these grid cells – if
it does, we know that fmin(q) ≤ (1 + ε)r, otherwise fmin(q) > r. Of course,
as depicted in the right, since the ellipses are of different sizes, the grid cells
generated for each ellipse might belong to different resolutions, and might be of different sizes.
Nevertheless, one can perform this point-location query among the marked grid squares quickly
using a compressed quadtree.

If we were interested only in the case where fmin(q) is guaranteed to be in some interval
[α, β], then the problem would be easily solvable. Indeed, build a sequence of the above deciders
D1, . . . ,Dm, where Di is for the distance (1 + ε)iα, and m = log1+ε(β/α). Clearly, doing a binary
search over these deciders with the query point would resolve the distance query.

Sketchable. Unfortunately, in general, there is no such guarantee – which
makes the problem significantly more challenging. Fortunately, for truly “large”
distances a collection of such ellipses looks like a constant number of ellipse (at
least in the approximate case). In the example of the figure above, for large
enough distance, the ellipses looks like a single ellipse, as demonstrated in the
figure on the right. Slight more formally, if

⋃
i(pi + rEi) is connected, then the set

⋃
i(pi +REi)

can be (1 + ε)-approximated by a constant number of these ellipses, if R > Ω(nr/ε). A family
of functions having this property is sketchable. This suggests the problem is easy for very large
distances.

Critical values to search over. The above suggests that connectivity is the underlying property
that enables us to simplify and replace a large set of ellipses, by a few ellipses, if we are looking at
them from sufficiently far. This implies that the critical values when the level-set of the functions
changes its connectivity are the values we should search over during the nearest neighbor search.
Specifically, let ri be the minimal r when the set

⋃n
k=1(pk + riEk) has n− i connected components,

and let r1 ≤ r2 ≤ · · · ≤ rn be the resulting sequence. Using the above decision procedure, and
a binary search, we can find the index j, such that rjfmin(q) ≤ rj+1. Furthermore, the decision
procedure for the distance rj , reports which connected components of

⋃n
k=1(pk + rjEk) contains

the query point q. Assume this connected components is formed by the first t functions; that is,⋃t
k=1(pk + rjEk) is connected and contains q. There are two possibilities:

(A) If fmin(q) ∈
[
rj , ca(t/ε)rj

]
, then a binary search with the decision procedure would approxi-

mation fmin(q), where ca is some constant.
(B) If fmin(q) > (t/ε)rj then this whole cluster of functions can be sketched and replaced by

constant number of representative functions, and the nearest-neighbor search can now resolve
directly by checking for each function in the sketch, what is the distance of the query point
from it.

2.1.1. Challenges

There are several challenges in realizing the above scheme:
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(A) We are interested in more general distance functions. To this end, we carefully formalize
what conditions the underlying distance functions induced by each point has to fulfill so
that our framework applies.

(B) The above scheme requires (roughly) quadratic space to be realized. To reduce the space
to near linear, we need be more aggressive about replacing clusters of points/functions by
sketches. To this end, we replace our global scheme by a recursive scheme that starts with the
“median” critical value, and fork the search at this value using the decision procedure. Now,
when continuing the search above this value, we replace every cluster (at this resolution) by
its sketch.

(C) Computing this “median” value directly is too expensive. Instead we randomly select a func-
tion, we compute the connectivity radius of this single distance function with the remaining
functions. With good probability this value turns out to be good.

(D) We need to be very careful to avoid accumulation in the error as we replace clusters by
sketches.

2.2. Notations and basic definitions

Given q ∈ IRd and P ⊆ IRd a non-empty closed set, the distance of q to P is d(q,P) = min
x∈P
‖q− x‖.

For a number ` > 0, the grid of side-length `, denoted by G`, is the natural tiling of IRd, with
cubes of side-length ` (i.e. with a vertex at the origin). A cube � is canonical if it belongs to
G`, ` is a power of 2, and � ⊆ [0, 1]d. Informally, a canonical cube (or cell) is a region that might
correspond to a cell in a quadtree having the unit cube as the root region.

Definition 2.1. To approximate a set X ⊆ [0, 1]d, up to distance r, consider the set G≈r(X) of all

the canonical grid cells of G` that have a non-empty intersection with X, where ` = 2blog2(r/
√
d)c.

Let ∪G≈r(X) =
⋃

�∈G≈r(X)�, denote the union of cubes of G≈r(X).

Observe that X ⊆ ∪G≈r(X) ⊆ X ⊕B(0, r), where ⊕ denotes the Minkowski sum, and B(0, r) is
the ball of radius r centered at the origin.

Definition 2.2. For ` ≥ 0 and a function f : IRd → IR, the ` sublevel set of f is the set

f�` =
{
p ∈ IRd

∣∣∣ f(p) ≤ `
}

. For a set of functions F , let F�` =
⋃
f∈F f�`.

Definition 2.3. Given a function f and q ∈ IRd their distancef is d(q, f) = f(q). Given two
functions f and g, their distancef d(f, g) is the minimum l ≥ 0 such that f�l∩g�l 6= ∅. Similarly,
for two sets of function, F and G, their distancef is

d(F ,G) = min
f∈F ,g∈G

d(f, g) .

Example 2.4. To decipher these somewhat cryptic definitions, the reader might want to consider
the standard settings of regular Voronoi diagrams. Here, we have a set P of n points. The ith point
pi ∈ P induces the natural function fi(q) = ‖q− pi‖. We have:

(A) The graph of fi in IRd+1 is a cone “opening upwards” with an apex at (pi, 0).
(B) The ` sublevel set of fi (i.e., (fi)�`) is a ball of radius ` centered at pi.
(C) The distancef of q from fi is the Euclidean distance between q and pi.
(D) Consider two subsets of points X,Y ⊆ P and let FX and FY be the corresponding sets of

functions. The distancef ` = d(FX ,FY ) is the minimum radius of balls centered at points
of X and Y , such that there are two balls from the two sets that intersect; that is, ` is half
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the minimum distance between a point of X and a point of Y . In particular, if the union
of balls of radius ` centered at X is connected i.e. (FX)�` is connected, and similarly
for Y , then (FX ∪ FY )�` is connected. This is the critical value where two connected
components of the sublevel set merge.

The distancef function behaves to some extent like a distance function: (i) d(f, g) always exists,
and (ii) (symmetry) d(f, g) = d(g, f), Also, we have f�d(f,g) 6= ∅. We extend the above definition
to sets of functions. Note that the triangle inequality does not hold for d(·, ·).

Observation 2.5. Suppose that f and g are two functions such that d(f, g) > 0 and q ∈ IRd.
Then, max(d(q, f) ,d(q, g)) ≥ d(f, g).

Definition 2.6. Let B1, B2, . . . , Bm be n connected, nonempty sets in IRd. This collection of sets
is connected if ∪iBi is connected.

2.2.1. Sketches

A key idea underlying our approach is that is that any set of functions of interest should look like
a single (or a small number of functions) from “far” enough. Indeed, given a set of points P ⊆ IRd,
they look like a single point (as far as distance), if the distance from CH(P) is at least 2diam(P) /ε.

Definition 2.7 (cl(F)). Given a set of functions G, if G contains a single function then the con-
nectivity level cl(G) is 0; otherwise, it is the minimum ` ≥ 0, such that the collection of sets f�`
for f ∈ G is connected, see Definition 2.6.

Remark 2.8. It follows from Definition 2.7 that at level ` = cl(G), each of the sets f�` for f ∈ G
are nonempty and connected and further their union G�` is also connected. This can be relaxed to
require that the intersection graph of the sets f�` for f ∈ G is connected (this also implies they are
nonempty). Notice that, if at level `, the sublevel sets are connected, then the relaxed definition
is equivalent to Definition 2.7. However, the relaxed definition introduces more technical baggage,
and for all the interesting applications we have, the sublevel sets f�y are connected at all levels y
they are nonempty. Therefore, in the interest of brevity, and to keep the presentation simple, we
mandate that the sublevel sets be connected at `. In fact, it would not harm to assume that the
sublevel sets are connected whenever nonempty.

Definition 2.9. Given a set of functions G and δ ≥ 0, y0 ≥ 0, a (δ, y0)-sketch for G is a (hopefully
small) subset H ⊆ G, such that G�y ⊆ H�(1+δ)y, for all y ≥ y0.

It is easy to see that for any G, δ ≥ 0, y0 ≥ 0, if H ⊆ G is a (δ, y0)-sketch, then for any δ′ ≥ δ, y′0 ≥
y0,H′ ⊇ H it is true that H′ is a (δ′, y′0)-sketch for G. Trivially, for any δ ≥ 0, y0 ≥ 0, it is true that
H = G is a (δ, y0)-sketch.

2.3. Conditions on the functions

We require that the set of functions under consideration satisfy the following conditions.
(P1) Compactness. For any y ≥ 0 and i = 1, . . . , n, the set (fi)�y is compact.

(P2) Bounded growth. For any f ∈ F , there is a function λf : IR+ → IR+, called the growth
function , such that for any y ≥ 0 and ε > 0, if f�y 6= ∅, then λf (y) ≥ diam(f�y) /ζ, where
ζ is an absolute constant, the growth constant , depending only on the family of functions
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and not on n and such that if q ∈ IRd with d(q, f�y) ≤ ελf (y), then f(q) ≤ (1 + ε)y. This
is equivalent to f�y ⊕B(0, ελf (y)) ⊆ f�(1+ε)y, where B(u, r) is the ball of radius r centered
at u.

(P3) Existence of a sketch. Given δ > 0 and a subset G ⊆ F , there is a H ⊆ G with

|H| = O
(

1/δcsk
)

and y0 = O
(
cl(G)

(
|G|/δ

)csk) such that, H is an (δ, y0)-sketch, where csk is

some positive integer constant that depends on the given family of functions.

We also require some straightforward properties from the computation model:

(C1) ∀q ∈ IRd and 1 ≤ i ≤ n, the value fi(q) = d(q, fi) is computable in O(1) time.
(C2) For any y ≥ 0, r > 0 and i, the set of grid cells approximating the sublevel set (fi)�r of fi,

that is (fi)�y,≈r = G≈r
(
(fi)�y

)
(see Definition 2.1), is computable in linear time in its size.

(C3) For any fi, fj ∈ F , 1 ≤ i, j ≤ n the distancef d(fi, fj) is computable in O(1) time.

We also assume that the growth function λ(fi)(y) from Condition (P2) be in fact computable
easily i.e. in O(1) time.

Remark 2.10. We will use Condition (C2) for a given y and i only for r at least Ω
(
ελ(fi)(y)

)
i.e.

we will use a grid on the sublevel set at a low enough resolution typically ε times its growth function

value at that point, which by Condition (C2) is also Ω
(
εdiam

(
(fi)�y

))
. As such the number of

grid cells in the grid used is O(1/εd).

2.3.1. Properties

The following are basic properties that the functions under consideration have. Since these proper-
ties are straightforward but their proof is somewhat tedious, we delegate their proof to Appendix B.

In the following, let F be a set of functions that satisfy the conditions above.

(L1) For any f ∈ F , either f�0 = ∅ or f�0 consists of a single point. (See Lemma B.1p31.)
(L2) If cl(G) = 0 for any non-empty subset G then |G| = 1. (See Definition 2.7 and Observa-

tion B.2p32.)
(L3) Let f ∈ G and y ≥ 0. For any u, v ∈ f�y, we have uv ⊆ G�(1+ζ/2)y, where uv denotes the

segment joining u to v. (See Lemma B.3p32.)
(L4) Let A1, . . . , Am ⊆ IRd be compact connected sets, uv be a segment such that uv ∩ Ai 6=

∅, for i = 1, . . . , k and uv ⊆ ⋃k
i=1Ai. Then, the sets A1, . . . , Ak are connected. (See

Lemma B.4p32.)
(L5) For any H ⊆ G ⊆ F , δ ≥ 0 and y ≥ 0, such that H is a (δ, y)-sketch for G, we have that,

cl(H) ≤ (1 + δ)(1 + ζ/2) max(y, cl(G)). (See Lemma B.5p32.)
(L6) Let H ⊆ G ⊆ F , such that H is a (δ, y0)-sketch for G for some δ ≥ 0 and y0 ≥ 0. Let

q be a point such that d(q,G) ≥ y0. Then we have that d(q,H) ≤ (1 + δ)d(q,G). (See
Lemma B.6p33.)

2.3.2. Computing the connectivity level

We implicitly assume that the above relevant quantities can be computed efficiently. For example
given some δ > 0, and y0 as per the bound in condition (P3), a (δ, y0)-sketch can be computed in
time O(|G| /δcsk) time. We also assume that cl(G) can be computed efficiently without resorting
to the “brute force” method. The brute force method computes the individual distancef of the
functions and then computes a MST on the graph defined by vertices as the functions and edge
lengths as their distancef . Then cl(G) is the longest edge of this MST.
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3. Summary of results

Our main result is the following, the details of which are delegated to Section 4.

Theorem 3.1. Let F be a set of n functions in IRd that complies with our assumptions, see Sec-
tion 2.3, and has sketch constant csk ≥ d. Then, one can build a data-structure to answer ANN for
this set of functions, with the following properties:

(A) The query time is O(log n+ 1/εcsk).
(B) The preprocessing time is O

(
nε−2csk log2csk+1 n

)
.

(C) The space used is O
(
nε−d−1−csk log2 n

)
.

One can transform the data-structure into an AVD, and in the process improve the query time
(the space requirement slightly deteriorates). See Section 4 for details.

Corollary 3.2. Let F be a set of n functions in IRd that complies with our assumptions, see
Section 2.3, and has sketch constant csk ≥ d. Then, one can build a data-structure to answer ANN
for this set of functions, with the following properties:

(A) The improved query time is O(log n).
(B) The preprocessing time is O

(
n/εO(1) log2csk+1 n

)
.

(C) The space used is S = O
(
n/εO(1) log2 n

)
.

In particular, we can compute an AVD of complexity O(S) for the given functions. That is, one
can compute a space decomposition, such that every region has a single function associated with it,
and for any point in this region, this function is the (1 + ε)-ANN among the functions of F . Here,
a region is either a cube, or the set difference of two cubes.

3.1. Distance functions for which the framework applies

3.1.1. Multiplicative distance functions with additive offsets

We are given n points in IRd, where the point pi has weight wi > 0, and an offset αi ≥ 0 associated
with it, for i = 1, . . . , n. The multiplicative distance with offset induced by the ith point is
fi(q) = wi ‖q− pi‖ + αi. In Section 5.1 we prove that these distance functions comply with the
conditions of Section 2.3, and in particular we get the following result.

Theorem 3.3. Consider a set P of n points in IRd, where the ith point pi has additive weight αi ≥ 0
and multiplicative weight wi > 0. The ith point induces the additive/multiplicative distance function
fi(q) = wi ‖q− pi‖ + αi. Then one can compute a (1 + ε)-AVD for these distance functions, with
near linear space complexity, and logarithmic query time. See Theorem 3.1p9 for the exact bounds.

3.1.2. Scaling distance

Somewhat imprecisely, a connected body O centered at a point ρ is α-rounded fat if it is α-fat (that
is, there is radius r such that ball(ρ, r) ⊆ O ⊆ ball(ρ, αr)), and from any point p on the boundary of
O the “cone”CH(ball(ρ, r) ∪ p) is contained inside O (i.e., every boundary point sees a large fraction
of the “center” of the object). We also assume that the boundary of each object O has constant
complexity.

For such an object, its scaling distance to a point q from O is the minimum t, such that
q ∈ tO (where the scaling is done around its center ρ). Given n α-rounded fat objects, it is natural
to ask for the Voronoi diagram induced by their scaling distance.

These natural distance functions induced by such a set of objects complies with the framework
of Section 2.3, see Section 5.2 for details. As such, we get the following result.
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Theorem 3.4. Consider a set O of α-rounded fat objects in IRd, for some constant α. Then one
can compute a (1 + ε)-AVD for the scaling distance functions induced by O, with near linear space
complexity, and logarithmic query time. See Theorem 3.1p9 and Corollary 3.2 for the exact bounds.

3.1.3. Nearest furthest-neighbor

For a set of points S ⊆ IRd and a point q, the furthest-neighbor distance of q from S, is
FS(q) = maxs∈S ‖q− s‖; that is, it is the furthest one might have to travel from q to arrive to a
point of S. For example, S might be the set of locations of facilities, where it is known that one of
them is always open, and one is interested in the worst case distance a client has to travel to reach
an open facility. The function FS(·) is known as the furthest-neighbor Voronoi diagram, and
while its worst case combinatorial complexity is similar to the regular Voronoi diagram, it can be
approximated using constant size representation (in low dimensions), see [Har99].

Given n sets of points P1, . . . ,Pn in IRd, we are interested in the distance function F(q) =
miniFi(q), where Fi(q) = FPi

(q). This quantity arises naturally when one tries to model uncer-
tainty [AAH+13]; indeed, let Pi be the set of possible locations of the ith point (i.e., the location of
the ith point is chosen randomly, somehow, from the set Pi). Thus, Fi(q) is the worst case distance
to the ith point, and F(q) is the worst-case nearest neighbor distance to the random point-set
generated by picking the ith point from Pi, for i = 1, . . . , n. We refer to F(·) as the nearest
furthest-neighbor distance, and we are interested in approximating it.

We prove in Section 5.3 that the distance functions F1, . . . ,Fn comply with the conditions of
the framework, and we get the following result.

Theorem 3.5. Given n point sets P1, . . . ,Pn in IRd with a total of m points, and a parameter
ε > 0, one can preprocess the points into an AVD, of size Õ(n), for the nearest furthest-neighbor
distance defined by these point sets. One can now answer (1 + ε)-approximate NN queries for this
distance in O(log n) time. (Note, that the space and query time used, depend only on n, and not
on the input size.)

4. Constructing the AVD

The input is a set F of n functions satisfying the conditions of Section 2.3, and a number 0 <
ε ≤ 1. We preprocess F , such that given a query point q one can compute a f ∈ F , where
d(q,F) ≤ d(q, f) ≤ (1 + ε)d(q,F).

4.1. Building blocks

4.1.1. Near neighbor

Given a set of functions G, a real number α ≥ 0, and a parameter ε > 0, a near-neighbor data-
structure Dnear = Dnr(G, ε, α) can decide (approximately) if a point has distancef larger or smaller
than α. Formally, for a query point q a near-neighbor query answers yes if d(q,G) ≤ α, and no if

d(q,G) > (1 + ε)α. It can return either answer if d(q,G) ∈
(
α, (1 + ε)α

]
. If it returns yes, then it

also returns a function f ∈ G such that d(q, f) ≤ (1 + ε)α. The query time of this data-structure
is denoted by T≤(m), where m = |G|.

Lemma 4.1. Given a set of m functions G ⊆ F , α > 0 and ε > 0. One can construct a data
structure (which is a compressed quadtree), of size O

(
m/εd

)
, in O

(
mε−d log(m/ε)

)
time, such that
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given any query point q ∈ IRd one can answer a (1 + ε)-approximate near-neighbor query for the
distance α, in time T≤(m) = O(log(m/ε)).

Proof: For each f ∈ G consider the canonical grid set G≈rf (f�α), where rf = ελf (α) ≥ εdiam(f�α) /ζ,
where λf (·), ζ are the growth function and the growth constant, see (P2). The sublevel set of in-
terest is G�α and its approximation is C =

⋃
f∈G G≈rf (f�α), as the bounded growth condition (P2)

implies that f�α ⊆ G≈rf (f�α) ⊆ f�(1+ε)α. The set of canonical cubes C can be stored in a com-
pressed quadtree T , and given a query point we can decide if a point is covered by some cube of C
by performing a point location query in T .

By Remark 2.10,
∣∣G≈rf (f�α)

∣∣ = O
(
ε−d
)
. As such, the total number of canonical cubes in C is

O
(
m/εd

)
, and the compressed quadtree for storing them can be computed in O

(
mε−d log(m/ε)

)

time [Har11].
We mark a cell of the resulting quadtree by the function whose sublevel set it arose from (ties

can be resolved arbitrarily). During query, if q is found in one of the cells we return yes and the
function associated with the cell, otherwise we return no.

If we have that d(q,G) ≤ α, then the query point q will be found in one of the marked cells,
since they cover G�α. As such, the query will return yes. Moreover, if the query does return a yes,
then it belongs to a cube of C that is completely covered by G�(1+ε)α, as desired.

4.1.2. Interval data structure

Given a set of functions G, real numbers 0 ≤ α ≤ β, and ε > 0, the interval data structure
returns for a query point q, one of the following:

(A) If d(q,G) ∈
[
α, β

]
, then it returns a function g ∈ G such that d(q, g) ≤ (1 + ε)d(q,G). It

might also return such a function for values outside this interval.
(B) “d(q,G) < α”. In this case it returns a function g ∈ G such that d(q, g) < α.
(C) “d(q,G) > β”.

The time to perform an interval query is denoted by Tr(m,α, β).

Lemma 4.2. Given a set of m functions G, an interval [α, β] and an approximation parame-
ter τ > 0, one can construct an interval data structure of size O

(
mτ−d−1 log(4β/α)

)
, in time

O
(
mτ−d−1 log(4β/α) log(m/τ)

)
, such that given a query point q one can answer (1+τ)-approximate

nearest neighbor query for the distances in the interval [α, β], in time Tr(m,α, β, f) = O

(
log

m log(4β/α)

τ

)
.

Proof: Using Lemma 4.1, build a (1 + τ/4)-near neighbor data-structure Di for G, for distance

ri = (α/2)(1+ τ/4)i, for i = 0, . . . , L =
⌈
log1+τ/4(4β/α)

⌉
= O

(
τ−1 log(4β/α)

)
. Clearly, an interval

query can be answered in three stages:
(A) Perform a point-location query in D0. If the answer is yes then d(q,G) < α. We can also

return a function g ∈ G with d(q, g) < α.
(B) Similarly, perform a point-location query in DL. If the answer is no then d(q,G) > β and

we are done.
(C) It must be that d(q,G) ∈

[
ri, ri+1

]
for some i. Find this i by performing a binary search

on the data-structures D0, . . . ,DL, for the first i such that Di returns no, but Di+1 returns
yes. Clearly, Di+1 provides us with the desired (1 + τ/4)2-ANN to the query point.

To get the improved query time, observe that we can overlay these compressed quadtrees
D0, . . . ,DL into a single quadtree. For every leaf (or compressed node) of this quadtree we com-
pute the original node with the lowest value covering this node. Clearly, finding the desired dis-
tance can now be resolved by a single point-location query in this overlay of quadtrees. The total
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size of these quadtrees is S = O
(
L
(
m/τd

))
, and the total time to compute these quadtrees is

T1 = O
(
L
(
m/τd

)
log(m/τ)

)
, and the time to compute their overlay is O(S logL). The time to

perform a point-location query in the overlayed quadtree is O(logS).

Lemma 4.2 readily implies that if somehow a priori we know the nearest neighbor distancef lies
in an interval of values of polynomial spread, then we would get the desired data-structure by just
using Lemma 4.2. To overcome this unbounded spread problem, we would first argue that, under
our assumptions, there are only linear number of intervals where interesting things happen to the
distancef function.

4.1.3. Connected components of the sublevel sets

Given a finite set X and a partition of it into disjoint sets X = X1 ∪ · · · ∪Xk, let this partition be
denoted by 〈X1, . . . , Xk〉X . For 1 ≤ i ≤ k, each Xi is a part of the partition.

Definition 4.3. For two partitions PA = 〈A1, . . . , Ak〉X and PB = 〈B1, . . . , Bl〉X of the same set
X, PB is a refinement of PA, denoted by PB v PA, if for any Bi there exists a set Aji, such that
Bi ⊆ Aji. In the other direction, PA is a coarsening of PB.

Observation 4.4. Given partitions Π,Ξ of a finite set X, if Π v Ξ then |Ξ| ≤ |Π|.

Definition 4.5. Given partitions Π = 〈X1, . . . , Xk〉X v Ξ =
〈
X ′1, . . . , X

′
k′
〉
X

, let φ(Π,Ξ, i) be the
function that return the set of indices of sets in Π whose union is X ′i ∈ Ξ.

Observation 4.6. Given partitions Π v Ξ of a set X with n elements. The partition function
φ(Π,Ξ, ·) can be computed in O(n) time. For any 1 ≤ i ≤ |Ξ|, the set φ(Π,Ξ, i) can be returned in
O
(
|φ(Π,Ξ, i)|

)
time, and its size can be returned in O(1) time.

Definition 4.7. For G ⊆ F and ` > 0, consider the intersection graph of the sets f�`, for all
f ∈ G. Each connected component is a cluster of G at level `. And the partition of G by these
clusters, denoted by C(G, `), is the `-clustering of G.

The values ` at which the `-clustering of F changes are, intuitively, the critical values when
the sublevel set of F changes and which influence the AVD. These values are critical in trying to
decompose the nearest neighbor search on F into a search on smaller sets.

Observation 4.8. If 0 ≤ a ≤ b then C(G, a) v C(G, b).

The following lemma testifies that we can approximate the `-clustering quickly, for any number
`.

Lemma 4.9. Given G ⊆ F , ` ≥ 0, and ε > 0, one can compute, in O
(
m
εd

log(m/ε)
)

time, a
partition Ψ = Ψε(G, `), such that C(G, `) v Ψ v C(G, (1 + ε)`), where m = |G|.

Proof: For each f ∈ G, tile the sublevel sets (f)�` by canonical cubes of small enough diameter,
such that bounded growth condition (P2) assures all cubes are inside (f)�(1+ε)`. To this end, for

f ∈ G, set rf = ελf (`) ≥ εdiam(f�`) /ζ, and compute the set Cf =
⋃
f∈G

(
G≈rf

(
(f)�`

))
, see

Definition 2.1. It is easy to verify that we have that

(G)�` ⊆ ∪Cf ⊆ (G)�(1+ε)`. (1)
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By assumption, we have that |Cf | = O(1/εd), and the total number of canonical cubes in all the
sets Cf for f ∈ G is O(m/εd). We throw all these canonical cubes into a compressed quadtree,
this takes O

(
(m/εd) log(m/ε)

)
time. Here, every node of the compressed quadtree is marked if it

belongs to some of these sets, and if so, to which of the sets. Two sets ∪Cf and ∪Cg intersect, if
and only if there are two canonical cubes, in these two sets, such that they overlap; that is, one of
them is a sub-cube of the other. Initialize a union-find data-structure, and traverse the compressed
quadtree using DFS, keeping track of the current connected component, and performing a union
operation whenever encountering a marked node (i.e., all the canonical nodes associated with it,
are unionized into the current connected component). Finally, we perform a union operation for
all the cells in Cf , for all f ∈ G. Clearly, this results in the desired connected components of the
intersection graph of ∪Cf (note, that we consider two sets as intersecting only if their interiors
intersect). Translating each such connected set of canonical cubes back to the functions that gave
rise to them, results in the desired partition.

Remark 4.10. The partition Ψ computed by Lemma 4.9 is monotone, that is, for ` ≤ `′ and
ε ≤ ε′, we have Ψε(G, `) v Ψε′(G, `′). Moreover, for each cluster C ∈ Ψε(G, `), we have that
cl(C) ≤ (1 + ε)`.

4.1.4. Computing a splitting distance

Definition 4.11. Given a partition Ψ = Ψε(G, `) of G, with m = |Ψ| clusters, a distance x is a
splitting distance if m/4 ≤ |Ψ1(G, x/4)| and |Ψ1(G, x)| ≤ (7/8)m.

Lemma 4.12. Given a partition Ψ = Ψε(G, `) of G, one can compute a splitting distance for it, in
expected O(n(log n+ t)) time, where n = |G| and t is the maximum cluster size in Ψ.

Proof: For each cluster C ∈ Ψ, let rC be its distancef from all the functions in G \ C; that is
rC = minf∈C ming∈G\C d(f, g). Note that rC ≥ `. Now, let r1 ≤ r2 ≤ · · · ≤ rm be these distancef
distances for the m clusters of Ψ. We randomly pick a cluster C ∈ Ψ and compute `′ = rC for it
by brute force – computing the distancef of each function of C with the functions of G \ C.

Let i be the rank of `′ = rC among r1, . . . , rm. With probability 1/2, we have that m/4 ≤ i ≤
(3/4)m. If so we have that:

(A) All the clusters that correspond to ri, . . . , rm are singletons in the partition Ψ1(G, `/4), as
the distancef of each one of these clusters is larger than `′. We conclude that |Ψ1(G, `′/4)| ≥
m/4.

(B) All the clusters of Ψ that correspond to r1, . . . , ri are contained inside a larger cluster
of Ψ1(G, `′) (i.e., they were merged with some other cluster). But then, the number of
clusters in Ψ1(G, `′) is at most (7/8)m. Indeed, put an edge between such a cluster, to the
cluster realizing the smallest distancef with it. This graph has at least e ≥ m/4 edges, and
it is easy to see that each component of size at least 2 in the underlying undirected graph
has the same number of edges as vertices. As such the number of singleton components
is at most m − e while the number of components of size at least 2 is at most e/2. It
follows that the total number of components is at most m− e/2 ≤ 7m/8. Since each such
component corresponds to a cluster in Ψ1(G, `′) the claim is proved.

Now, compute Ψ1(G, `′) and Ψ1(G, `′/4) using Lemma 4.9. With probability at least half they
have the desired sizes, and we are done. Otherwise, we repeat the process. In each iteration we
spend O(n(log n + t)) time, and the probability for success is half. As such, in expectation the
number of rounds needed is constant.
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Search( G, Υ, q )
// G: set of functions

// Υ = Ψ1(G, `) for some value `
// Invariant: d(q,G) > `N
if |Υ| = 1 then

return d(q,G) = minf∈G d(q, f) (*)
x← compute a splitting distance of Υ, see Lemma 4.12

// Perform an interval approximate nearest

// neighbor query on the interval [x/8N, x8N ]
// for the set G, see Lemma 4.2.

if d(q,G) ∈
[
x/8N, x8N2

]
or (1 + ε

4)-ANN found then

return nearest function found by the
(1 + ε/4)-approximate interval query.

if d(q,G) < x/8N then

f ← 2-approximate near neighbor query on G
and distance x/8, see Lemma 4.1.

Find cluster C ∈ Ψ1(G, x/4), such that f ∈ C,
see Lemma 4.9.

return Search( C, Υ[C], q )
if d(q,G) > x8N2 then

return Search( G, Ψ1(G, xN), q ) (**)

Figure 4.1: Search algorithm: We are given a query point q, and an approximation parameter
ε > 0. The quantity N is a parameter to be specified shortly. Initially, we call this procedure on
the set of functions F with Υ being the partition of F into singletons (i.e., ` = 0). Here, Υ[C]
denotes the partition of C induced by the partition Υ.

4.2. The search procedure

4.2.1. An initial “naive” implementation

The search procedure is presented in Figure 4.1.

Lemma 4.13. Search(G,Υ, q ) returns a function f ∈ G, such that d(q, f) ≤ (1 + ε)d(q,G). The
depth of the recursion of Search is h = O(log n), where n = |G|.

Proof: The proof is by induction on the size of Υ. If |Υ| = 1, then the function realizing d(q,G) is
returned, and the claim is true.

Let x be the computed splitting distance of Υ. Next, the procedure perform an (1 + ε/4)-
approximate interval nearest-neighbor query for q on the range [x/8N, x8N ]. If this computed the
approximate nearest neighbor then we are done.

Otherwise, it must be that either d(q,G) < x/8N or d(q,G) > 8Nx, and significantly, we know
which of the two options it is:

(A) If d(q,G) < x/8N then doing an approximate near-neighbor query on G and distance x/8,
returns a function f ∈ G such that d(q, f) ≤ x/4. Clearly, the nearest neighbor to q must be
in the cluster containing f in the partition Ψ1(G, x/4), and Search recurses on this cluster.
Now, by induction, the returned ANN is correct.
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Since x is a splitting distance of Υ, see Definition 4.11, we have |Υ| /4 ≤ |Ψ1(G, x/4)| and
Υ v Ψ1(G, x/4). As such, since C is one of the clusters of Ψ1(G, x/4), the induced partition
of C by Υ (i.e., Υ[C]), can have at most (1− 1/4) |Υ| clusters.

(B) Otherwise, we have d(q,G) > x·8N . Since x is a splitting distance, we have that |Ψ1(G, x)| ≤
(7/8) |Υ|, see Definition 4.11. We recurse on G, and a partition that has fewer clusters, and
by induction, the returned answer is correct.

In each step of the recursion, the partition shrunk by at least a fraction of 7/8. As such, after a
logarithmic number of recursive calls, the procedure is done.

4.2.2. But where is the beef? Modifying Search to provide fast query time

The reader might wonder how we are going to get an efficient search algorithm out of Search, as
the case that Υ is a single cluster, still requires us to perform a scan on all the functions in this
cluster and compute their distancef from the query point q. Note however, we have the invariant
that the distance of interest is polynomially larger than the connectivity level of each of the clusters
of Υ. In particular, precomputing for all the sets of functions such that (*) might be called on,
their ε/8-sketches, and answering the query by computing the distance on the sketches, reduces the
query time to O(1/εcsk + log2 n) (assuming that we precomputed all the data-structures used by
the query process). Indeed, an interval query takes O(log n) time, and there O(log n) such queries.
The final query on the sketch takes time proportional to the sketch size which is O(1/εcsk).

As such, the major challenge is not making the query process fast, but rather building the search
structure quickly, and arguing that it requires little space.

4.2.3. Sketching a sketch

To improve the efficiency of the preprocessing for Search, we are going to use sketches more
aggressively. Specifically, for each of the clusters of Υ, we can compute their δ-sketches, for δ =
ε/(8h) = O(ε/ log n), see Lemma 4.13. From this point on, when we manipulate this cluster, we do
it on its sketch. To make this work set N = n4csk , see (P3)p8 and Lemma B.5.

The only place in the algorithm where we need to compute the sketches, is in (**) in Figure 4.1.
Specifically, we compute Ψ1(G, xN), and for each new cluster C ∈ Ψ1(G, xN), we combine all the
sketches of the clusters D ∈ Υ such that D ⊆ C into a single set of functions. We then compute a δ-
sketch for this set, and this sketch is this cluster from this point on. In particular, the recursive calls
to Search would send the sketches of the clusters, and not the clusters themselves. Conceptually,
the recursive call would also pass the minimum distance where the sketches are active – it is easy
to verify that we use these sketches only at distances that are far away and are thus allowable (i.e.,
the sketches represent the functions they correspond to, well in these distances).

Importantly, whenever we compute such a new set, we do so for a distance that is bigger by a
polynomial factor (i.e., N) than the values used to create the sketches of the clusters being merged.
Indeed, observe that x > ` and as such xN is N times bigger than ` (an upper bound on the value
used to compute the input sketches).

As such, all these sketches are valid, and can be used at this distance (or any larger distance).
Of course, the quality of the sketch deteriorates. In particular, since the depth of recursion is h,
the worst quality of any of the sketches created in this process is at most (1 + δ)h ≤ 1 + ε/4.

Significantly, before using such a sketch, we would shrink it by computing a ε/8-sketch of it.
This would reduce the sketch size to O(1/εcsk). Note, however, that this still does not help us as
far as recursion - we must pass the larger δ-sketches in the recursive call of (**).

15



This completes the description of the search procedure. It is still unclear how to precompute
all the data-structures required during the search. To do that, we need to better understand what
the search process does.

4.3. The connectivity tree, and the preprocessing

Given a set of functions F , create a tree tracking the connected components of the MST of the
functions. Formally, initially we start with n singletons (which are the leafs of the tree) that are
labeled with the value zero, and we store them in a set F of active nodes. Now, we compute for
each pair of sets of functions X,Y ∈ F the distancef d(X,Y ), and let X ′, Y ′ be the pair realizing
the minimum of this quantity. Merge the two sets into a new set Z = X ′ ∪ Y ′, create a new node
for this set having the node for X ′ and Y ′ as children, and set its label to be d(X ′, Y ′). Finally,
remove X ′ and Y ′ from F and insert Z into it. Repeat till there is a single element in F. Clearly,
the result is a tree that tracks the connected components of the MST.

To make the presentation consistent, let d≈(X,Y ) be the minimum x such that Ψ1(X ∪ Y, x)
is connected. Computing d≈(X,Y ) can be done by computing d≈(f, g) for each pair of functions
separately. This in turn, can be done by first computing α = d(f, g) and observing that r is
between α/4 and α. In particular, r must be a power of two, so there are only 3 candidate values
to consider, and which is the right one can be decided using Lemma 4.9.

So, in the above, we use d≈(·, ·) instead of d(·, ·), and let H be the resulting tree. For a value `,
let LH(`) be the set of nodes such that their label is smaller than `, but their parent label is larger
than `. It is easy to verify that LH(`) corresponds to Ψ = Ψ1(F , `); indeed, every cluster C ∈ Ψ
corresponds to a node u ∈ LH(`), such that the set of functions stored in the leaves of the subtree
of u, denoted by F(u) is C. The following can be easily proved by induction.

Lemma 4.14. Consider a recursive call Search(G,Υ, q) made during the search algorithm execu-

tion. Then G = F(u), and Υ =
{

F(v)
∣∣∣ v ∈ LH(`) and v is in the subtree of u

}
.

That is, a recursive call of Search corresponds to a subtree of H.

Of course, not all possible subtrees are candidates to be such a recursive call. In particular,
Search can now be interpreted as working on a subtree T of H, as follows:

(A) If T is a single node u, then find the closet function to F(u). Using the sketch this can be
done quickly.

(B) Otherwise, computes a distance x, such that the number of nodes in the level LT (x) is
roughly half the number of leaves of T .

(C) Using interval data-structure determine if the distancef d(q,F(T )) is in the range [x/8N, x8N2].
If so, we found the desired ANN.

(D) If d(q,F(T )) > x8N2 then continue recursively on portion of T above LT (x).
(E) If d(q,F(T )) < x/8N then we know the node u ∈ LT (x) such that the ANN belongs to

F(u). Continue the search recursively on the subtree of T rooted at u.

That is, Search breaks T into subtrees, and continues the search recursively on one of the
subtrees. Significantly, every such subtree has constant fraction of the size of T , and every edge of
T belongs to a single such subtree.

The preprocessing now works by precomputing all the data-structures required by Search.
Of course, the most natural approach would be to precompute H, and build the search tree by
simulating the above recursion on H. Fortunately, this is not necessary, we simulate running
Search, and investigate all the different recursive calls. We thus only use the above H in analyzing
the preprocessing running time. See Figure 4.1p14.
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In particular, given a subtree T with m edges, the corresponding partition Υ would have at
most m sets. Each such set would have a δ-sketch, and we compute a ε/8-sketch for each one
of these sketches. Namely, the input size here is M = O(m/δcsk). Computing the ε/8-sketches
for each one of these sketches reduces the total number of functions to M ′ = O(m/εcsk), and
takes U1 = O(M/εcsk) = O

(
m(εδ)−csk

)
time, see Section 2.3.2. Computing the splitting distance,

using Lemma 4.12, takes U2 = O(M ′ logM ′ + 1/εcsk) = O(mε−csk logm) time. Computing the
interval data-structure Lemma 4.2 takes U3 = O

(
M ′ε−d−1 log n logM ′

)
time, and requires S1 =

O
(
M ′ε−d−1 log n

)
space. This breaks T into edge disjoint subtrees T1, . . . , Tt, and we compute the

search data-structure for each one of them separately (each one of these subtrees is smaller by a
constant fraction of the original tree). Finally, we need to compute the δ-sketches for the clusters
sent to the appropriate recursive calls, and this takes U4 = O(M/δcsk), by Section 2.3.2.

Every edge of the tree T gets charged for the amount of work spent in building the top level
data-structure. That is, the top level amortized work each edge of T has to pay is

O
(

(U1 + U2 + U3 + U4) /m
)

= O
(
(εδ)−csk + ε−csk logm+ ε−d−1−csk log2 n+ δ−2csk

)

= O
(
ε−2csk log2csk n

)
,

assuming csk ≥ 2. Since an edge of T gets charged at most O(log n) times by this recursive
construction, we conclude that the total preprocessing time is O

(
nε−2csk log2csk+1 n

)
.

As for the space, we have by the same argumentation, that each edge requiresO(log n · (S1/m)) =(
ε−d−1−csk log2 n

)
. As such, the overall space used by the data-structure is

(
nε−d−1−csk log2 n

)
. As

for the query time, it boils down to O(log n) interval queries, and then scanning one O(ε)-sketch.
As such, this takes O

(
log2 n+ 1/εcsk

)
time.

4.4. The result

Restatement of Theorem 3.1p9. Let F be a set of n functions in IRd that complies with our
assumptions, see Section 2.3, and has sketch constant csk ≥ d. Then, one can build a data-structure
to answer ANN for this set of functions, with the following properties:

(A) The query time is O(log n+ 1/εcsk).
(B) The preprocessing time is O

(
nε−2csk log2csk+1 n

)
.

(C) The space used is O
(
nε−d−1−csk log2 n

)
.

Proof: The query time stated above is O
(
log2 n+ 1/εcsk

)
. To get the improved query time, we

observe that Search, performs a sequence of point-location queries in a sequence of interval near
neighbor data-structures (i.e., compressed quadtrees), and then it scans a set of functions of size
O(1/εcsk) to find the ANN. We take all these quadtrees spread through our data-structure, and
assign them priority, where a quadtree Q1 has higher priority than a compressed quadtree T2 if
Q1 is queried after Q2 for any search query. This defines an acyclic ordering on these compressed
quadtrees. Overlaying all these compressed quadtrees together, one needs to return for the query
point, the leaf of the highest priority quadtree that contains the query point. This can be easily
done by scanning the compressed quadtree, and for every leaf computing the highest priority leaf
that contains it (observe, that here we are overlaying only the nodes in the compressed quadtrees
that are marked by some sublevel set – nodes that are empty are ignored).

A tedious but straightforward induction implies that doing a point-location query in the re-
sulting quadtree is equivalent to running the search procedure as described above. Once we found
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the leaf that contains the query point, we scan the sketch associated with this cell, and return the
computed nearest-neighbor.

Restatement of Corollary 3.2p9. Let F be a set of n functions in IRd that complies with our
assumptions, see Section 2.3, and has sketch constant csk ≥ d. Then, one can build a data-structure
to answer ANN for this set of functions, with the following properties:

(A) The improved query time is O(log n).
(B) The preprocessing time is O

(
n/εO(1) log2csk+1 n

)
.

(C) The space used is S = O
(
n/εO(1) log2 n

)
.

In particular, we can compute an AVD of complexity O(S) for the given functions. That is, one
can compute a space decomposition, such that every region has a single function associated with it,
and for any point in this region, this function is the (1 + ε)-ANN among the functions of F . Here,
a region is either a cube, or the set difference of two cubes.

Proof: We build the data-structure of Theorem 3.1, except that instead of linearly scanning the
sketch during the query time, we preprocess each such sketch for an exact point-location query;
that is, we compute the lower envelope of the sketch and preprocess it for vertical ray shooting
[AE98]. This would require O

(
1/εO(1)

)
space for each such sketch, and the linear scanning that

takes O(1/εO(1)) time, now is replaced by a point-location query that takes O
(
log 1/εO(1)

)
=

O(log 1/ε) = O(log n), as desired.
As for the second part, observe that every leaf of the compressed quadtree is the set difference

of two canonical grid cells. The lower envelope of the functions associated with such a leaf, induce
a partition of this leaf into regions with total complexity O

(
1/εO(1)

)
.

5. Applications

We present some concrete classes of functions that satisfy our framework, and for which we construct
AVD’s efficiently.

5.1. Multiplicative distance functions with additive offsets

As a warm-up we present the simpler case of additively offset multiplicative distance functions. The
results of this section are almost subsumed by more general results in Section 5.2. Here the sublevel
sets look like expanding balls but there is a time lag before the balls even come into existence i.e.
sublevel sets are empty up-to a certain level, this corresponds to the additive offsets. In Section 5.2
the sublevel sets are more general fat bodies but there is no additive offset. The results in the
present section essentially give an AVD construction of approximate weighted Voronoi diagrams.
More formally, we are given a set of points P = {p1, . . . , pn}. For i = 1, . . . , n, the point pi has
weight wi > 0, and a constant αi ≥ 0 associated with it. We define fi(q) = wi ‖q− pi‖ + αi. Let

F = {f1, . . . , fn}. We have, (fi)�y = ∅ for y < αi and (fi)�y = B
(
pi,

y−αi

wi

)
for y ≥ αi. Checking

conditions (C1) and (C2) is trivial. As for (C3) we have the following easy lemma,

Lemma 5.1. For any 1 ≤ i, j ≤ n we have

d(fi, fj) = max

(
max(αi, αj), ‖pi − pj‖

wiwj
wi + wj

+
αiwj + αjwi
wi + wj

)
.
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Proof: The ith distance function is fi(q) = wi ‖q− pi‖ + αi. As such, for y < max(αi, αj) either
(fi)�y = ∅, or (fj)�y = ∅ and (fi)�y ∩ (fj)�y = ∅. For y ≥ max(αi, αj), we have

fi(q) ≤ y =⇒ wi ‖q− pi‖+ αi ≤ y =⇒ ‖q− pi‖ ≤
y − αi
wi

,

which implies that q ∈ B
(
pi,

y−αi

wi

)
; that is, we have (fi)�y = B

(
pi,

y−αi

wi

)
and (fj)�y = B

(
pj ,

y−αj

wj

)
.

Now, if pi = pj then the distancef distance between the two functions is the minimal value such
that their sublevel sets are not empty, and this is max(αi, αj). In particular, the given expression

α = max

(
max(αi, αj), ‖pi − pj‖

wiwj
wi + wj

+
αiwj + αjwi
wi + wj

)

evaluates to max(αi, αj), as desired.

If pi 6= pj the sublevel sets intersect for the first time when the balls B
(
pi,

y−αi

wi

)
and B

(
pj ,

y−αj

wj

)

touch at a point that belongs to the segment pipj . Clearly then we have

‖pi − pj‖ =
y − αi
wi

+
y − αj
wj

=⇒ wiwj ‖pi − pj‖ = wj(y − αi) + wi(y − αj)

=⇒ (wj + wj) y = wiwj ‖pi − pj‖+ wjαi + wiαj

=⇒ y = ‖pi − pj‖
wiwj
wi + wj

+
αiwj + αjwi
wi + wj

Lemma 5.2. Given 1 ≤ i, j ≤ n such that wi ≤ wj. Suppose y ≥ max(αi, αj). Then, (fj)�y ⊆
(fi)�(1+δ)y if and only if y ≥ ‖pi−pj‖+αi/wi−αj/wj

(1+δ)/wi−1/wj
.

Proof: For y ≥ max(αi, αj) we have that (fi)�y = B
(
pi,

y−αi

wi

)
and (fj)�y = B

(
pj ,

y−αj

wj

)
. If

pi = pj then for any y such that (1+δ)y−αi

wi
≥ y−αj

wj
we will have that (fj)�y ⊆ (fi)�(1+δ)y. Clearly

this condition is also necessary. It is easy to verify that this is equivalent to the desired expression.

Consider the case pi 6= pj . Sufficiency: Notice that for any u ∈ B
(
pj ,

y−αj

wj

)
we have ‖u− pi‖ ≤

‖pi − pj‖ + ‖pj − u‖ ≤ ‖pi − pj‖ +
y−αj

wj
by the triangle inequality. Therefore, if (1+δ)y−αi

wi
≥

‖pi − pj‖ +
y−αj

wj
, then B

(
pj ,

y−αj

wj

)
⊆ B

(
pi,

(1+δ)y−αi

wi

)
. This is exactly the stated condition.

Indeed, by rearrangement,

y((1 + δ)/wi − 1/wj) ≥ ‖pi − pj‖+ αi/wi − αj/wj .

Necessity: Notice that B
(
pj ,

y−αj

wj

)
has a boundary point at distance

y−αj

wj
from pj on the directed

line from pi to pj on the other side of pj as pi, while B
(
pi,

(1+δ)y−αi

wi

)
has the intercept of (1+δ)y−αi

wi
−

‖pi − pj‖. For the condition to hold it must be true that (1+δ)y−αi

wi
− ‖pi − pj‖ ≥ y−αj

wj
, which is

also the stated condition.

It is easy to see that compactness (P1) and bounded growth (P2) hold for the set of functions
F (for (P2) we can take the growth function λ(fi)(y) = (y − αi)/wi for y ≥ αi and the growth
constant ζ to be 2). The following lemma proves the sketch property (P3).
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Lemma 5.3. For any G ⊆ F and δ > 0 there is a (δ, y0)-sketch H ⊆ G with |H| = 1 and y0 =
3cl(G) |G| /δ.

Proof: If |G| = 1 we can let H = G and the result is easily seen to be true. Otherwise, let l = cl(G)
for brevity. Observe that l ≥ max

i:fi∈G
αi, as otherwise some (fi)�l = ∅ and cannot be part of a

connected collection of sets. Let |G| = m ≥ 2 and let G = {f1, . . . , fm}, and assume that we have
w1 ≤ wi, 1 ≤ i ≤ m. We let H = {f1}, the function with the minimum associated weight. We are

restricted to the range l ≥ αi, 1 ≤ i ≤ m so, (fi)�l is the ball B
(
pi,

l−αi
wi

)
for each 1 ≤ i ≤ m. Since

G�l is connected, it must be true that for 2 ≤ j ≤ m there exist a sequence of distinct indices,

1 = i1, i2, . . . , ik−1, ik = j such that B
(
pir ,

l−αir
wir

)
∩ B

(
pir+1 ,

l−αir+1

wir+1

)
6= ∅ for 1 ≤ r ≤ k − 1. By

Lemma 5.1 we can write that,

l ≥
∥∥pir − pir+1

∥∥+
αir
wir

+
αir+1

wir+1

1
wir

+ 1
wir+1

.

Rearranging,

∥∥pir − pir+1

∥∥ ≤ l
(

1

wir
+

1

wir+1

)
−
(
αir
wir

+
αir+1

wir+1

)

≤ 2l

w1
,

as w1 ≤ wi, for 1 ≤ i ≤ m. It follows by the triangle inequality and the above, that ‖pi1 − pim‖ ≤∑m−1
r=1

∥∥pir − pir+1

∥∥ ≤ 2(m−1)l
w1

≤ 2ml
w1
. Thus we have,

‖p1 − pj‖ ≤
2ml

w1
, (2)

for j = 1, . . . ,m. Let y0 = 3l|G|
δ = 3ml

δ . Then, for y ≥ y0 we have that,

y ≥ 3ml

δ
=

2ml
w1

+ ml
w1

δ
w1

≥
2ml
w1

+ l
w1

δ
w1

,

for m ≥ 2. Using Eq. (2) and the above, we have for y ≥ y0 since l ≥ α1,

y ≥
‖p1 − pj‖+ l

w1

δ
w1

≥
‖p1 − pj‖+ α1

w1

δ
w1

.

It follows that for y ≥ y0,

y ≥
‖p1 − pj‖+ α1

w1

δ
w1

≥
‖p1 − pj‖+ α1

w1
− αj

wj

δ
w1

+ ( 1
w1
− 1

wj
)

=
‖p1 − pj‖+ α1

w1
− αj

wj

(1+δ)
w1
− 1

wj

,

as w1 ≤ wj for 1 ≤ j ≤ m. Thus, by Lemma 5.2, B
(
pj ,

y−αj

wj

)
⊆ B

(
p1,

(1+δ)y−α1

w1

)
, for y ≥ y0 and

therefore by definition, H is a (δ, y0)-sketch for G.
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O

∂O

ρ

p ∈ ∂O

R ≤ αr

r

CH(ball(ρ, r) ∪ p)

Figure 5.1: Being α-rounded fat.

We thus get the following result.

Restatement of Theorem 3.3p9. Consider a set P of n points in IRd, where the ith point pi
has additive weight αi ≥ 0 and multiplicative weight wi > 0. The ith point induces the addi-
tive/multiplicative distance function fi(q) = wi ‖q− pi‖+αi. Then one can compute a (1+ε)-AVD
for these distance functions, with near linear space complexity, and logarithmic query time. See
Theorem 3.1p9 for the exact bounds.

5.2. Scaling distance – generalized polytope distances

Let O ⊆ IRd be a compact set homeomorphic to B(0, 1) and containing a “center” point ρ in its
interior. Then O is star shaped if for any point v ∈ O the entire segment ρv is also in O. Naturally,
any convex body O with any center ρ ∈ O is star shaped. The t-scaling of O with a center ρ is

the set tO =
{
t (v − ρ) + ρ

∣∣∣ v ∈ O
}

.

Given a star shaped object O with a center ρ, the scaling distance of a point q from O is
the minimum t, such that p ∈ tO, and let FO(q) denote this distance function. Note that, for any
y ≥ 0, the sublevel set (FO)�y is the y-scaling of O, that is (FO)�y = yO.

Note, that for a point p ∈ IRd, if we take O = B(p, 1) with center p, then FO(q) = ‖p− q‖.
That is, this distance notion is a strict extension of the Euclidean distance.

Henceforward, for this section, we assume that an object O contains the origin in its interior
and the origin is the designated center, unless otherwise stated.

Definition 5.4. Let O ⊆ IRd be a star shaped object centered at ρ. We say that O is α-fat if there
is a number r such that, ball(ρ, r) ⊆ O ⊆ ball(ρ, αr).

Definition 5.5. Let O be a star shaped object centered at ρ. We say that O is α-rounded fat if
there is a radius r such that, (i) ball(ρ, r) ⊆ O ⊆ ball(ρ, αr) and, (ii) For every point p in the
boundary of O, the cone CH(ball(ρ, r) ∪ p), lies within O, see Figure 5.1.

By definition any α-rounded fat object is also α-fat. However, it is not true that a α-fat object
is necessarily α′-rounded fat for any α′, that is even allowed to depend on α. The following useful
result is easy to see, also see Figure 5.2 for an illustration.
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0

p

R ≤ αr

r

CH(ball(0, r) ∪ p)

O

Figure 5.2: A α-fat convex body is α-rounded fat.

Lemma 5.6. Let O be a α-fat object. If O is convex then O is also α-rounded fat.

Given a set O = {O1, O2, . . . , On} of n star shaped objects, consider the set F of n scaling
distance functions, where the ith function, for i = 1, . . . , n is fi = FOi . We assume that the
boundary of each object Oi has constant complexity.

We next argue that F complies with the framework of Section 2.3. Using standard techniques,
we can compute the quantities required in conditions (C1)–(C3)p8 including the diameter of the
sublevel set diam(yOi) = ydiam(Oi). Also, trivially we have that condition (P1)p7 is satisfied as
the sublevel sets are dilations of the Oi and are thus compact by definition. The next few lemmas
establish that both bounded growth (P2) and the sketch property (P3) are also true, if the objects
are also α-rounded fat for some constant α.

Lemma 5.7. Given α > 0, suppose O is a star shaped object that is α-rounded fat. Then for
any c ≥ 2α and any y ≥ 0, ε > 0 we have that yO ⊕ B(0, (ε/c)diam(yO)) ⊆ (1 + ε)yO; that is,

(FO)�y ⊕ B
(

0, (ε/c)diam
(

(FO)�y

))
⊆ (FO)�(1+ε)y.

Proof: Since (FO)�y = yO we show that yO ⊕ B(0, (ε/c)diam(yO)) ⊆ (1 + ε)yO. Let r be the
radius guaranteed by Definition 5.5 for O. Clearly diam(yO) = ydiam(O) ≤ 2yαr. We show that
for every p ∈ ∂yO we have that p+B(0, (ε/c)diam(yO)) ⊆ (1+ε)yO 1. Let p ∈ ∂yO. It is sufficient
to show that, B(p, (2εyαr/c)) ⊆ (1 + ε)yO. Clearly p′ = (1 + ε)p ∈ ∂(1 + ε)yO. Since the cone,
CH(B(ρ, (1 + ε)yr) ∪ p′) is in (1 + ε)yO, it is clear that the ball of radius,

x =
∥∥p′ − p

∥∥ ‖p′‖
(1 + ε)yr

=
∥∥p′ − p

∥∥ ‖p‖
yr

is completely within (1 + ε)yO, see Figure 5.3. Now, ‖p− p′‖ = ε ‖p‖ ≥ εyr, and ‖p‖ ≥ yr. It
follows that x ≥ εyr. If we choose c ≥ 2α, the claimed result is easily seen to hold.

1 Topological arguments can show that for objects homeomorphic to balls, if this is true for boundary points p,
then for any p ∈ O, p+ B(0, (ε/c)diam(yO)) ⊆ (1 + ε)yO. We omit the technical argument here.
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p p′

(FO)�y = yO

(FO)�(1+ε)y = (1 + ε)yO

yr

(1 + ε)yr

x

x = ‖p′ − p‖ ‖p′‖
(1+ε)yr

Figure 5.3: The (1 + ε) expansion of yO contains B(p, x).

By the above lemma we can take the growth function λFOi
(y) = diam

(
(FOi)�y

)
= ydiam(Oi)

and the growth constant, see (P2)p7, for the set of functions FOi to be ζ = c = 2α. If the object
O is α-fat but not α′-rounded fat for any constant α′ > 0 then it may be that its scaling distance
function grows arbitrarily quickly and thus fails to comply with our framework, see Figure 5.4.
It is not hard to see that Lemma 5.7 implies that bounded growth (P2) is satisfied for all the
functions f1, . . . , fn when the objects under consideration O1, . . . , On are α-rounded fat. To show
that condition (P3) is satisfied, is slightly harder.

Lemma 5.8. Let O be a set of n star shaped objects O1, O2, . . . , On. Let α ≥ 1 be any constant.
Suppose that O1, . . . , On are α-rounded fat. Then, for any δ > 0, there is a subset I ⊆ {1, 2, . . . , n}
with |I| = O(δ−d), such that for all y ≥ 0, we have

⋃

i∈[n]

yOi ⊆
⋃

i∈I
(1 + δ)yOi.

Moreover, for every i ∈ I we have that diam(Oi) = Ω(maxi diam(Oi)).

Proof: Recall our convention, that here all the bodies are centered at the origin. Clearly it is
sufficient to show this for y = 1. Let ri for i = 1, . . . , n be the radius of the ball satisfying the
conditions of Definition 5.5 for object Oi. Assume that r1 ≥ r2 · · · ≥ rn. If αrj ≤ r1 for some j,
then Oj , . . . , On are contained in O1, we can add 1 to the set I. From now we assume that for each
1 ≤ j ≤ n, αrj > r1 i.e. we can ignore the sufficiently small objects. Our index set I is a subset of
these prefix indices for which, αri ≥ r1. As such,

diam(Oi) ≥ 2ri ≥
2

α
r1 ≥

4

α2
(2αr1) ≥

4

α2
max
1≤i≤n

diam(Oi) ,

for any i ∈ I. It is easy to see that,
⋃
i∈[n]Oi ⊆

⋃
i∈[n] B(0, αri) ⊆ B(0, αr1) . We tile the ball

B(0, αr1) with cubes of diameter at most δαr1/c
′ where c′ is a constant that we determine shortly.

Notice that the number of such cubes is O(δ−d). Let C denote the set of these cubes. If c∩Oi 6= ∅ for
some 1 ≤ i ≤ n and c ∈ C then we add c to a set A and i to our index set I. Notice that we choose
at most one object among all objects that might intersect c. Now,

⋃
i∈[n]Oi ⊆

⋃
c∈A c, as

⋃
c∈A c

23



(1 + ε)O

O

O ⊕ B
(
0, ε

cdiam(O)
)

p u

Figure 5.4: The object O is α-fat but not α′-rounded fat. In particular, the point p is in O ⊕
B(0, (ε/c)diam(O)) but not in (1+ε)O. In particular, the scaling distance function is discontinuous
at u.

covers B(0, αr1). Observe, |I| ≤ |A| ≤ |C| = O
(
δ−d
)
. We show that it is possible to choose c′ so

large that,
⋃

c∈A c ⊆ ⋃i∈I(1 + δ)Oi. Since c∩Oi 6= ∅ and diam(c) ≤ δαr1/c′, c ⊆ Oi⊕B(0, δαr1/c
′).

We choose c′ large enough so that δαr1/c
′ ≤ δdiam(Oi) /c where c = 2α is the constant from

Lemma 5.7. Then we will have by Lemma 5.7,

c ⊆ Oi ⊕ B
(
0, δαr1/c

′) ⊆ Oi ⊕ B(0, δdiam(Oi) /c)

⊆ (1 + δ)Oi,

proving the claim. Now,

δαr1/c
′ ≤ δα2ri/c

′ ≤ δα2diam(Oi)

2c′
≤ δdiam(Oi)

c
,

if c′ = cα2/2 = α3.

Lemma 5.9. Let α ≥ 1 be any constant. Let O be a star shaped object that is α-rounded fat, and
let δ > 0. Let u ∈ IRd with ‖u‖ ≤ δdiam(O) /c where c = 2α. Then we have that O+ u ⊆ (1 + δ)O.

Proof: We have, O+ u ⊆ O⊕B(0, ‖u‖) ⊆ O⊕B(0, δdiam(O) /c) as ‖u‖ ≤ δdiam(O) /c. The result
follows by appealing to Lemma 5.7.

Lemma 5.10. For i = 1, . . . , n, let Oi be a star shaped object in IRd centered at a point pi. Let

O = {O1, . . . , On}, P = {p1, . . . , pn}, and F =
{
fi

∣∣∣ 1 ≤ i ≤ n
}

, where fi = FOi, for i = 1, . . . , n.

For i = 1, . . . , n, let ri denote the radius of the ball for Oi from Definition 5.5, and let r = maxi ri.
Then, cl(F) ≥ diam(P)/(2nαr).

Proof: The claim is trivially true if diam(P) = 0, i.e. all the points pi are the same. Let l = cl(F), for
brevity. As we have (fi)�l = lOi, where the scaling is done around its center pi, it follows that the
sets lOi for i = 1, . . . , n are connected. Since lOi ⊆ B(pi, lαri) ⊆ B(pi, lαr) it is easy to see that the
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balls B(pi, lαr) for i = 1, . . . , n are also connected. Let u, v ∈ P be such that ‖u− v‖ = diam(P).
There is a sequence of distinct i1, . . . , ik ∈ {1, . . . , n} such that u = pi1 , v = pik and we have
B(pir , lαr)∩B

(
pir+1 , lαr

)
6= ∅ for 1 ≤ r ≤ k− 1. It follows that

∥∥pir − pir+1

∥∥ ≤ 2lαr, 1 ≤ r ≤ k− 1.
By the triangle inequality,

diam(P) = ‖u− v‖ = ‖pi1 − pik‖ ≤
k−1∑

r=1

∥∥pir − pir+1

∥∥

≤
k−1∑

r=1

2lαr = 2(k − 1)lαr ≤ 2nlαr,

thus proving the claim.

We can now show that condition (P3)p8 holds for the FOi .

Lemma 5.11. Consider the setting of Lemma 5.10. Given δ > 0, there is a index set I ⊆
{1, . . . , n} with |I| = O

(
δ−d
)

and y0 = O(l · n/δ) such that the functions
{
fj

∣∣∣ j ∈ I
}

form a

(δ, y0)-sketch, where l = cl(F).

Proof: We provide a sketch of the proof as details are easy but tedious. For each 1 ≤ i, j ≤ n
we consider the set of objects Oij = Oi + pj − pi, i.e. Oij is Oi translated so that it is centered
at pj . By Lemma 5.8 there is an index set I ⊆ {1, . . . , n} with |I| = O

(
δ−d
)

such that for all y
and any fixed j with 1 ≤ j ≤ n we have that

⋃
i∈[n] yOij ⊆

⋃
i∈I(1 + δ/4)yOij . Let ri denote the

radius of the ball for Oi from Definition 5.5, and let r = maxi ri. By Lemma 5.10, we have that,
l ≥ diam(P)/(2nαr). Lemma 5.8 finds a I such that for all i ∈ I, ri ≥ Ω (r). A translated copy
Oij = Oi + pj − pi is a translation by a vector u = pj − pi. As l ≥ diam(P)/(2nαr), there is a
y0 = O(ln/δ) such that ‖pj − pi‖ ≤ δdiam(y0Oi) /4c for all 1 ≤ i, j ≤ n, where c = 2α. Thus using
Lemma 5.9, (1 + δ/4)y0Oi + (pj − pi) ⊆ (1 + δ/4)2y0Oi ⊆ (1 + δ)y0Oi. Clearly this also holds for
any y ≥ y0. Thus for y ≥ y0 we have (1 + δ)yOi, covers yOi + (pj − pi) for 1 ≤ i ≤ n. It is then

easy to see that
{
fi

∣∣∣ i ∈ I
}

is a (δ, y0)-sketch.

We conclude that for α-rounded fat objects, the scaling distance function they define falls under
our framework. We thus get the following result.

Restatement of Theorem 3.4p10. Consider a set O of α-rounded fat objects in IRd, for some
constant α. Then one can compute a (1 + ε)-AVD for the scaling distance functions induced by O,
with near linear space complexity, and logarithmic query time. See Theorem 3.1p9 and Corollary 3.2
for the exact bounds.

Note, that the result in Theorem 3.4 covers any symmetric convex metric. Indeed, given a
convex symmetric shape C centered at the origin, the distance it induces for any pair of points
p, u ∈ IRd, is the scaling distance of C centered p to u (or, by symmetry, the scaling distance of
p from C centered at u). Under this distance IRd is a metric space, and of course, the triangle
inequality holds. By an appropriate scaling of space, which does not affect the norm (except for
scaling it) we can make C fat, and now Theorem 3.4 applies. Of course, Theorem 3.4 is considerably
more general, allowing each of the points to induce a different scaling distance function, and the
distance induced does not have to comply with the triangle inequality.
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5.3. Nearest furthest-neighbor

For a set of points S ⊆ IRd and a point q, the furthest-neighbor distance of q from Q, is
FS(q) = maxs∈S ‖q− s‖; that is, it is the furthest one might have to travel from q to arrive to a
point of S. For example, S might be the set of locations of facilities, where it is known that one of
them is always open, and one is interested in the worst case distance a client has to travel to reach
an open facility. The function FS(·) is known as the furthest-neighbor Voronoi diagram, and
while its worst case combinatorial complexity is similar to the regular Voronoi diagram, it can be
approximated using a constant size representation (in low dimensions), see [Har99].

Given n sets of points P1, . . . ,Pn in IRd, we are interested in the distance function F(q) =
miniFi(q), where Fi(q) = FPi

(q). This quantity arises natural when one tries to model uncertainty;
indeed, let Pi be the set of possible locations of the ith point (i.e., the location of the ith point
is chosen randomly, somehow, from the set Pi). Thus, Fi(q) is the worst case distance to the ith
point, and F(q) is the worst-case nearest neighbor distance to the random point-set generated by
picking the ith point from Pi, for i = 1, . . . , n. We refer to F(·) as the nearest furthest-neighbor
distance, and we are interested in its approximation.

A naive solution to this problem would maintain a data structure for computing the furthest
neighbor approximately for each of the Pi and then just compute the minimum of those distances.
A data-structure to compute a 1 − ε approximation to the furthest neighbor takes O(1/εd) space
for O(1/εd) query time, see [Har99] although this was probably known before. Thus the entire data
structure would take up total space of O(n/εd) with a query time of O(n/εd). By using our general
framework we can speed up the computation. We will show that Fi, for i = 1, . . . , n satisfy the
conditions (P1) – (P3) and (C1)–(C3). By Theorem 3.1 we can prepare a data-structure of size
O(npolylog (n)) that allows us a query time of O(log n) to find the desired nearest furthest-neighbor
approximately. In order to facilitate the computations of distancef s we also maintain data structures
for (1 − ε/4)-approximate furthest neighbor search for each of the point sets Pi for i = 1, 2, . . . , n
where ε is the approximation parameter for approximating the nearest furthest-neighbor, i.e. the
approximation parameter for the problem we are trying to solve. Also, for µ = ε2/144 we also
maintain µ-coresets for computing the minimum enclosing ball (MEB) approximately for each Pi
for i = 1, 2, . . . , n. Each such coreset has O(1/ε2) points, see [BHI02, BC03b, BC03a]. For each i
with 1 ≤ i ≤ n, the radius of the MEB of the coreset points is a (1+µ)-approximation to the radius
of the MEB of Pi.

5.3.1. Satisfaction of the conditions

Observation 5.12. We have that (Fi)�y =
⋂

u∈Pi

B(u, y), and diam
(

(Fi)�y
)
≤ 2y.

Given the above observation, it is easy to see that Condition (P1) is true, as (Fi)�y is a finite
intersection of compact sets. The following Lemma shows that Condition (P2) is also true, by

letting the growth function λ(Fi)(y) = y. Since y ≥ diam
(

(Fi)�y
)
/2 by Observation 5.12, it

follows that we can choose the growth constant ζ to be 2.

Lemma 5.13. For any i with 1 ≤ i ≤ n, if (Fi)�y 6= ∅, it is true that,

(Fi)�y ⊕ B(0, εy) ⊆ (Fi)�(1+ε)y.

Proof: Consider any point q in (Fi)�y ⊕ B(0, εy). It is easy to see that B(q, (1 + ε)y) ⊇ Pi by the
triangle inequality, and so q ∈ (Fi)�(1+ε)y.
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Condition (P3) is implied by the following,

Lemma 5.14. Let G ⊆ {F1, . . . ,Fn} denote any set of functions. Then, given any δ > 0, there is
a subset H ⊆ G with |H| = 1 and a y0 with y0 = O(cl(G) |G| /δ) such that H is a (δ, y0)-sketch for
G.

Proof: Without loss of generality, let G = {F1, . . . ,Fm} where m = |G|. Let z = cl(G). Since
(Fi)�z for i = 1, . . . ,m are all connected, and by Observation 5.12, for each i with 1 ≤ i ≤ m we

have that diam
(

(Fi)�z
)
≤ 2z it follows that for any two points u ∈ Pj , v ∈ Pk with 1 ≤ j, k ≤ m

there are points u′ ∈ (Fj)�z, v′ ∈ (Fk)�z, such that ‖u− u′‖ ≤ z, ‖v − v′‖ ≤ z (by definition of
the function Fj and Fk respectively) and ‖u′ − v′‖ ≤ 2mz, by the bound on the diameter of the
sublevel sets and the condition of being connected, which is the same as the intersection graph of
the sets being connected. It follows by the triangle inequality that ‖u− v‖ ≤ 2(m+ 1)z ≤ 4mz i.e.
diam(P1 ∪ · · · ∪ Pm) ≤ 4mz. Let H be a set containing an arbitrary function from G say, H = {F1}.
It is not too hard to see (or one can apply Lemma 5.2 with the case αi = 0, wi = 1), that for every
i = 1, . . . ,m, B(v, y) ⊆ B(u, (1 + δ)y) for any points u, v ∈ P1 ∪ · · · ∪ Pm if y ≥ y0 = 4mz/δ, from
the bound on the diameter of P1 ∪ · · · ∪ Pm. Thus, for any i with 1 ≤ i ≤ m we have that,

(Fi)�y =
⋂

v∈Pi

B(v, y) ⊆ B(u, (1 + δ)y) ,

for all u ∈ P1 and y ≥ y0. As such,

(Fi)�y ⊆
⋂

u∈P1

B(u, (1 + δ)y) = (F1)�(1+δ)y,

and the result follows.

Remark 5.15. For G = {F1, . . . ,Fm}, notice that we can compute the above set H in O(1) time
and that we can compute a polynomial approximation to cl(G) in O(m) time, since we can compute
the diameter diam(P1 ∪ · · · ∪ Pm) approximately in O(m) time - we simply take an arbitrary point in
P1 and compute furthest distances approximately for each of Pi for 1 ≤ i ≤ m and take the maximum
of these. We can use the O(1) time query algorithm for furthest neighbor for this purpose.

We now consider the computability conditions (C1)– (C3). To compute d(q,Fi) we use the data
structure for approximate furthest neighbor queries to get a (1− ε/4)-approximation to this num-
ber. We run the preprocessing algorithm, see Section 4, with approximation parameter ε/4. By
Remark 2.10, we only tile the sublevel sets (Fi)�y with canonical cubes of size (rounded to a power
of two) ελ(Fi)(y)/4 = εy/4. Notice that the minimum y such that (Fi)�y is non-empty is clearly the
radius of the MEB of the point set Pi and for this value (Fi)�y just includes the center of the MEB.
Let ui and zi denote the center and radius of the exact MEB, and u′i and z′i denote those computed
by using the coreset. Since z′i ≤ (1 + µ)zi, it not too hard to see that ‖ui − u′i‖ ≤ 3

√
µzi = εzi/4.

This is implied for example by Lemma A.1, presented in Appendix A, which may also be of inde-
pendent interest (this assumes µ < 1 which is indeed true). We are required to tile the sublevel set
(Fi)�y for some y ≥ z′i/(1 + µ) using cubes of size roughly εy/4, but we use in fact cubes of size
roughly εy/c for some large constant c. One can consider such cubes at increasing distance from
the point u′i. Choosing any point within a cube one evaluates approximately the furthest neighbor
distance of Pi, and checks if it is at most y(1 + O(ε)). If so, one includes the cube. Since all such
cubes will intersect the ball around u′i of radius y, or a slight expansion of it, the number of such
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cubes is still O(1/εd). Now, the procedure in fact guarantees that all subcubes intersecting (Fi)�y
are found, but in fact there may be some that do not intersect it. However, this is not a problem as
such cells will still be inside (Fi)�(1+ε/4)y which is what is really required. To see that this works
should be intuitively clear. We omit the straightforward, but tedious proof. This settles Condition
(C2). Notice that the distancef between Fi and Fj is the radius of the minimum enclosing ball of
the point set Pi ∪ Pj . Using the (1 + µ)-coresets that we have for the MEB of Pi and Pj we can
compute a (1 + 2µ)-coreset for the MEB of Pi ∪ Pj by simply merging those coresets. This allows
us to approximately compute the distancef .

Remark 5.16. For the computability conditions (C1)–(C3) we only showed approximate results,
that is the distancef s were computed approximately. In fact, to be conservative, we used ε/4 as the
approximation parameter in the construction algorithm and the furthest neighbor data structure.
As a tedious but straightforward argument can show, the main lemmas Lemma 4.1 and Lemma 4.2
for near neighbor and interval range queries as well as the ones for computing the connectivity and
splitting radius Lemma 4.9 and Lemma 4.12 can work under such approximate computations, with
the same running times.

We thus get the following result.

Restatement of Theorem 3.5p10. Given n point sets P1, . . . ,Pn in IRd with a total of m points,

and a parameter ε > 0, one can preprocess the points into an AVD, of size Õ(n), for the nearest
furthest-neighbor distance defined by these point sets. One can now answer (1 + ε)-approximate
NN queries for this distance in O(log n) time. (Note, that the space and query time used, depend
only on n, and not on the input size.)

Proof: We only need to show how get the improved space and query time. Observe that every one
of the sets Pi can be replaced by a subset Si ⊆ Pi, of size O(1/εd log(1/ε)), such that for any point
q ∈ IRd, we have that FSi(q) ≤ FPi

(q) ≤ (1+ε/4)FSi(q). Such a subset can be computed in O(|Pi|)
time, see [Har99]2. We thus perform this transformation for each one of the uncertain point sets
P1, . . . ,Pn, which reduces the input size to O(n/εd log(1/ε)). We now apply our main result to the
distance functions induced by the reduced sets S1, . . . ,Sn.

6. Conclusions

In this paper, we investigated what classes of functions have minimization diagrams that can be
approximated efficiently – where our emphasis was on distance functions. We defined a general
framework and the requirements on the distance functions to fall under it. For this framework,
we presented a new data-structure, with near linear space and preprocessing time. This data-
structure can evaluate (approximately) the minimization diagram of a query point in logarithmic
time. Surprisingly, one gets an AVD (approximate Voronoi diagram) of this complexity; that is, a
decomposition of space with near linear complexity, such that for every region of this decomposition
a single function serves as an ANN for all points in this region.

We also showed some interesting classes of functions for which we get this AVD. For example, ad-
ditive and multiplicative weighted distance functions. No previous results of this kind were known,
and even in the plane, multiplicative Voronoi diagrams have quadratic complexity in the worst
case (for which the AVD generated has near linear complexity for any constant dimension). The

2One computes an appropriate exponential grid, of size O(1/εd log(1/ε)), and pick from each grid cell one repre-
sentative point from the points stored inside this cell.
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framework also works for Minkowski metrics of fat convex bodies, and nearest furthest-neighbor.
However, our main result applies to even more general distance functions.

Several questions remain open for further research:
(A) Are the additional polylog factors in the space necessary? In particular, it seems unlikely that

using WSPD’s directly, as done by Arya and Malamatos [AM02], should work in the most
general settings, so reducing the logarithmic dependency seems quite interesting. Specifically,
can the Arya and Malamatos construction [AM02] be somehow adapted to this framework,
possibly with some additional constraints on the functions, to get a linear space construction?

(B) On the applications side, are constant degree polynomials a good family amenable to our
framework? Specifically, consider a polynomial τ(x) that is positive for all x ≥ 0. Given
a point u, we associate the distance function f(q) = τ(‖q− u‖) with u. Given a set of such
distance functions, under which conditions, can one build an AVD for these functions efficiently?
(It is not hard to see that in the general case this is not possible, at least under our framework.)
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[AM93] P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J.
Comput., 22:540–570, 1993.

[AM02] S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th
ACM-SIAM Sympos. Discrete Algs., pages 147–155, 2002.

[AMM09] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate
nearest neighbor searching. J. Assoc. Comput. Mach., 57(1):1–54, 2009.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J. Assoc.
Comput. Mach., 45(6):891–923, 1998.
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A. Bounding the size of intersection of balls of the same radius

Lemma A.1. Let u, z be the center and radius of the MEB for a set of points P = {p1, . . . , pm} ⊆
IRd. Let δ ≥ 0 be any number. Let p ∈ ⋂m

i=1 B(pi, (1 + δ)z). Then,

δz ≤ ‖p− u‖ ≤
√

4δ + 2δ2z.

Proof: The first inequality follows from the triangle inequality. We use the fact that there are
affinely independent points from P, on the surface of the MEB, such that u lies in their convex
hull. Thus, assume without loss of generality that there are points p1, . . . , pk ∈ P that are affinely
independent with ‖pi − u‖ = z and λi ≥ 0 for i = 1, 2, . . . , k such that,

u =

k∑

i=1

λipi,
k∑

i=1

λi = 1.

We restrict our attention only to the points p1, . . . , pk since the region
⋂k
i=1 B(pi, (1 + δ)z) contains

the region
⋂m
i=1 B(pi, (1 + δ)z). Consider an arbitrary point p ∈ ⋂k

i=1 B(pi, (1 + δ)z). Let p′ be the
projection of p to the affine subspace spanned by p1, . . . , pk. We first bound ‖p′ − u‖. It is easy to
see that p′−u satisfies 〈p′ − u, pi〉 ≤ 0 for some i with 1 ≤ i ≤ k. Without loss of generality assume
i = 1. It follows that,

∥∥p′ − p1
∥∥ ≥

√
‖p′ − u‖2 + ‖u− p1‖2 ≥

√
z2 + ‖p′ − u‖2.

On the other hand it must be the case that, ‖p′ − p1‖ ≤ ‖p− p1‖ ≤ (1 + δ)z. As such, (1 + δ)z ≥√
z2 + ‖p′ − u‖2, and we have that ‖p′ − u‖ ≤

√
2δ + δ2z. We also have that,

(1 + δ)2z2 ≥ ‖p− p1‖2 =
∥∥p− p′

∥∥2 +
∥∥p′ − p1

∥∥2 ≥
∥∥p− p′

∥∥2 + z2,

implying that ‖p− p′‖ ≤
√

2δ + δ2z. It follows by the Pythagorean theorem,

‖p− u‖2 =
∥∥p− p′

∥∥2 +
∥∥p′ − u

∥∥2 ≤ 2(2δ + δ2)z2,

and thus ‖p− u‖ ≤
√

4δ + 2δ2z.

B. Basic properties of the functions

Lemma B.1. Let F be a set of functions that satisfy the compactness (P1) and bounded growth
(P2) conditions. Then, for any f ∈ F , either f�0 = ∅ or f�0 consists of a single point.

Proof: If f�0 contains at least two points, then by compactness (P1) of f�0 there are two points
x, y ∈ f�0 such that ‖x− y‖ = diam(f�0) > 0. By the bounded growth (P2) it follows that

f�0 ⊆ f�0 ⊕ B

(
0,
‖x− y‖

ζ

)
⊆ f�0 ⊕ B(0, λf (0)) ⊆ f�0,

using ε = 1 and the fact that λf (0) ≥ diam(f�0) /ζ = ‖x− y‖ /ζ. Thus, f�0 ⊕ B
(

0, ‖x−y‖ζ

)
= f�0.

Clearly in y ⊕ B
(

0, ‖x−y‖ζ

)
there is some y′ such that ‖x− y′‖ > ‖x− y‖ which contradicts that x

and y is a diametrical pair in f�0.
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By the above lemma, we may assume that a symbolic perturbation guarantees that d(f, g) > 0
for f 6= g. With this convention we have the following,

Observation B.2. If cl(G) = 0 for any non-empty subset G then |G| = 1.

We also assume that the quantities d(f, g) are distinct for all distinct pairs of functions.

Lemma B.3. Let f ∈ G and y ≥ 0. Suppose u, v ∈ f�y. Then, uv ⊆ G�(1+ζ/2)y, where uv denotes
the segment joining u to v.

Proof: If u = v, the claim is obvious. Using bounded growth (P2) with ε = ζ/2, and the in-
equality λf (y) ≥ diam(f�y) /ζ, it follows that f�y ⊕ B(0, diam(f�y) /2) ⊆ f�(1+ζ/2)y. Thus,
u ⊕ B(0, diam(f�y) /2) ⊆ f�(1+ζ/2)y as well as B(v, diam(f�y) /2) ⊆ f�(1+ζ/2)y. Since ‖u− v‖ ≤
diam(f�y) it follows that the entire segment uv is in f�(1+ζ/2)y.

Lemma B.4. Let A1, . . . , Am ⊆ IRd be compact connected sets. Let uv be any segment. Suppose
that uv ∩Ai 6= ∅ for all 1 ≤ i ≤ k and uv ⊆ ⋃k

i=1Ai. Then, the sets Ai, 1 ≤ i ≤ k, are connected.

Proof: It is sufficient to prove the claim for Ai ⊆ uv, as the truth of the claim for compact sets
Ai ∩ uv implies the truth for Ai. Thus, assume Ai ⊆ uv. Suppose the claim is false. Consider the
intersection graph of the Ai, 1 ≤ i ≤ k. This graph has at least two components by assumption.
Let B1, . . . , Bl be the partition of [1, k] that define these components i.e. for each 1 ≤ i ≤ l, the
sets Aj , j ∈ Bi are connected, and Ax ∩ Ay = ∅ for 1 ≤ x, y ≤ k if x, y belong to different Bi.
Denote by Ci =

⋃
j∈Bi

Aj for 1 ≤ i ≤ l. Clearly each Ci is compact. By an easy compactness
argument, there are distinct 1 ≤ i1, i2 ≤ l such that for points s ∈ Ci1 , t ∈ Ci2 , we have that
0 < ‖s− t‖ = min

1≤x 6=y≤l,p∈Cx,q∈Cy

‖p− q‖. However, this is impossible as s, t are distinct points on

uv and the segment st is therefore covered by the Ci, 1 ≤ i ≤ l. It follows that a smaller distance
between distinct Ci must be attainable.

Lemma B.5. Suppose we are given H ⊆ G ⊆ F , δ ≥ 0 and y ≥ 0, and H is a (δ, y)-sketch for G.
Then, cl(H) ≤ (1 + δ)(1 + ζ/2) max(y, cl(G)).

Proof: Assume that G = {f1, . . . , fm} and H = {f1, . . . , fk} where k ≤ m. If m = 1 then k = 1 and
we have by definition cl(G) = cl(H) = 0 and the result clearly holds true. If m > 1, we need to show
that (fi)�y′ , for i = 1, . . . , k, are connected, where y′ = (1 + δ)(1 + ζ/2)l and l = max(y, cl(G)).
Now by definition, G�l is a connected set. Consider any 1 ≤ i 6= j ≤ k. Then there is a sequence
of distinct indices i = i1, i2, . . . , is = j such that (fir)�l ∩

(
fir+1

)
�l 6= ∅ for 1 ≤ r ≤ s − 1.

Consider any such index say ir such that ir > k i.e. fir /∈ H. Since, (fir)�l ∩
(
fir−1

)
�l 6= ∅ and

(fir)�l ∩
(
fir+1

)
�l 6= ∅ we can choose points u ∈

(
fir−1

)
�l ∩ (fir)�l and v ∈ (fir)�l ∩

(
fir+1

)
�l.

Now the entire segment uv ⊆ (fir)�(1+ζ/2)l by Lemma B.3. Since (1 + ζ/2)l ≥ y it follows by
the sketch property (P3), that uv ⊆ (fir)�(1+ζ/2)l ⊆ H�(1+ζ/2)(1+δ)l. By Lemma B.4 the sets
in the minimal cover of uv by the sublevel sets (fi)�(1+ζ/2)(1+δ)l, 1 ≤ i ≤ k, are connected. It
follows that (fir)�(1+ζ/2)l can be replaced by a sub-collection of the (fi)�(1+ζ/2)(1+δ)l, 1 ≤ i ≤ k
and the property of neighbor intersections is still valid in the chain. We replace each occurrence
of the set (fir)�(1+ζ/2)l for ir > k by the corresponding chain. It is easy to see that the resulting
chain connects up (fi1)�(1+ζ/2)(1+δ)l and (fis)�(1+ζ/2)(1+δ)l. Now, duplicate elements can be easily
removed without affecting the neighbor intersection property of the chain.

The following testifies that a sketch approximates the distancef of a set of functions.
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Lemma B.6. Let H ⊆ G be sets of functions, where H is a (δ, y0)-sketch for G for some δ ≥ 0 and
y0 ≥ 0. Let q be a point such that d(q,G) ≥ y0. Then we have that d(q,H) ≤ (1 + δ)d(q,G).

Proof: Let l = d(q,G) and let f ∈ G be a witness that q ∈ f�l. As l ≥ y0 we have that f�l ⊆⋃
g∈H g�(1+δ)l by the sketch property (Definition 2.9). As such there is some function g ∈ H such

that q ∈ g�(1+δ)l. It follows that d(q, g) ≤ (1 + δ)d(q,G).
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