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MULTI-LEVEL MONTE CARLO APPROXIMATION OF
DISTRIBUTION FUNCTIONS AND DENSITIES

MIKE GILES, TIGRAN NAGAPETYAN, AND KLAUS RITTER

Abstract. We construct and analyze multi-level Monte Carlo methods for the approxi-

mation of distribution functions and densities of univariate random variables. Since, by

assumption, the target distribution is not known explicitly, approximations have to be

used. We provide a general analysis under suitable assumptions on the weak and strong

convergence. We apply the results to smooth path-independent and path-dependent func-

tionals and to stopped exit times of SDEs.

1. Introduction

Let Y denote a real-valued random variable with distribution function F and density ρ.
We study the approximation of F and ρ with respect to the supremum norm on a compact
interval [S0, S1], without assuming that the distribution of Y is explicitly known or that
the simulation of Y is feasible. Instead, we suppose that a sequence of random variables
Y (�) is at hand that converge to Y in a suitable way and that are suited to simulation.

We present a general approach, which is later on applied in the context of stochastic
differential equations (SDEs). In this specific setting we aim at the distribution of Lipschitz
continuous, path-independent or path-dependent functionals of the solution process, or
the distribution of stopped exit times from bounded domains.

In the general setting a naive Monte Carlo algorithm for the approximation of ρ works
as follows: Choose a level � ∈ N and a replication number n ∈ N, generate n independent
samples according to Y (�), and apply a kernel density estimator, say, to these samples.
For the approximation of F one proceeds analogously, and here the empirical distribution
function of the samples is the most elementary choice.

In this paper we develop the multi-level Monte Carlo approach, which relies on the
coupled simulation of Y (�) and Y (�−1) on a finite range of levels �. For the multi-level
approach to work well for the approximation of distribution functions or densities, a
smoothing step is necessary on every level. The smoothing is based on rescaled translates
of a suitable function g, which is meant to approximate either the indicator function of
]−∞, 0] or the Dirac functional at zero. In a first stage the multi-level algorithm provides
an approximation to F or ρ at discrete points, which is then extended to a function on
[S0, S1] in a standard and purely deterministic way.

For the approximation of F and ρ on [S0, S1] our assumptions are as follows:

(i) The density ρ of Y is r-times continuously differentiable,
(ii) The simulation of the joint distribution of Y (�) and Y (�−1) is possible at cost

O(M �) for every � ∈ N, where M > 1.
(iii) A weak error estimate

sup
s∈[S0,S1]

��E
�
g((Y − s)/δ) − g((Y (�) − s)/δ)

��� ≤ O
�
min

�
δ−α1 ·M−�·α2 ,M−�·α3

��
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holds for all positive, sufficiently small δ and all � ∈ N0, where α1 ≥ 0, α2 > 0,
and α2 ≥ α3 ≥ 0.

(iv) A strong error estimate

Emin((Y − Y (�))2/δ2, 1) ≤ O
�
δ−β4 ·M−�·β5

�

holds for all positive, sufficiently small δ and all � ∈ N0, where β4 ≥ 0 and β5 > 0.

We also study the approximation of the distribution function F at a single point s ∈
[S0, S1], and here (iv) is replaced by the following assumption:

(v) A strong error estimate

sup
s∈[S0,S1]

E
�
g((Y − s)/δ) − g((Y (�) − s)/δ)

�2 ≤ O
�
min

�
δ−β1 ·M−�·β2 ,M−�·β3

��

holds for all positive, sufficiently small δ and all � ∈ N0, where β1 ≥ 0, β2 > 0,
and β2 ≥ β3 ≥ 0.

The parameters of a multi-level algorithm A are the minimal and maximal level, the
replication numbers per level, the smoothing parameter δ, and the number of discrete
points to be used in the first stage. We derive upper bounds for error(A), the root mean
square error, and cost(A), the computational cost, in terms of these parameters and the
values of r, αi, and βi, and we present the asymptotically optimal choice of the parameters
with respect to our upper bounds. This leads to a final estimate of the form

cost(A) ≤ O
�
error(A)−θ+ε

�

for every ε > 0, where θ > 0. Roughly speaking, θ is the order of convergence of the
multi-level algorithm. See Theorems 1–3 for the precise statements involving also powers
of log error(A).

Here we only present a particular application of these theorems for functionals

ϕ : C([0, T ],Rd) → R

of the solution process X of a d-dimensional system of SDEs, i.e., Y = ϕ(X). For simplicity
we take the Euler scheme with equidistant time-steps for the approximation of X in the
construction of the multi-level algorithm, and we assume that r ≥ 1 for the rest of the
introduction. Table 1 contains the values of θ for the approximation of F and ρ on [S0, S1]
as well as for the approximation of F at a single point s ∈ [S0, S1]. In the first row ϕ
is assumed to be Lipschitz continuous, and based on a well known upper bound for the
strong error of the Euler scheme we show that (iii)–(v) are satisfied with

α1 = 0, α2 = 1/2 − ε, α3 = 1/2 − ε

and

β1 = 1 + ε, β2 = 1 − ε, β3 = 1/2 − ε, β4 = 2, β5 = 1 − ε

for every ε > 0. In the second row

ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T

is a stopped exit time from a bounded domain D ⊂ Rd, and based on a recent result by
Bouchard, Geiss, Gobet (2013) we obtain

α1 = 1, α2 = 1/2, α3 = 1/4
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F ρ F (s)

smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1

Table 1. Orders of convergence of the multi-level algorithm

and

β1 = 1, β2 = 1/2, β3 = 1/4, β4 = 1, β5 = 1/2.

We add that in every case represented in Table 1 proper multi-level algorithms turn out
to be superior to single-level algorithms, as far as our upper bounds are concerned. We
do not achieve better upper bounds if we restrict considerations to path-independent
functionals, i.e., Y = ϕ(XT ) with ϕ : Rd → R being Lipschitz continuous; here, however,
the situation changes if the Euler scheme is replaced by the Milstein scheme (in dimension
d = 1 because of assumption (ii)), which yields θ = 2 + 1/(r + 1), θ = 2 + 3/r, and θ = 2
for the approximation of F , ρ, and F (s), respectively.

Corresponding results are available for the approximation of the expectation of ϕ(X)
by means of multi-level Euler algorithms. It is well known that θ = 2, if ϕ is Lipschitz
continuous, and θ = 3 holds for stopped exit times ϕ, see Higham et al. (2013). In the
limit r → ∞ we achieve the same values of θ for the approximation of the distribution
function or the density of ϕ(X).

Multi-level algorithms, which have been introduced by Heinrich (1998) and Giles (2008a),
see also Kebaier (2005) for the two-level construction, are meanwhile applied to rather
different computational problems. The approximation of distribution functions and den-
sities seems to be a new application, which exhibits, in particular, the following features:
a singularity, which is due to the presence of the indicator function or the Dirac func-
tional, and the fact that we approximate elements of function spaces instead of just real
numbers. The first issue is also investigated, without smoothing, by Avikainen (2009) and
Giles, Higham, Mao (2009), and with implicit smoothing through the use of conditional
expectations by Giles (2008b) and Giles, Debrabant, Rößler (2013). Furthermore, Alt-
mayer, Neuenkirch (2013) combine smoothing by Malliavin integration by parts with the
multi-level approach to approximate expectations of discontinuous payoffs in the Heston
model. The second issue has already been worked out by Heinrich (1998) in the general
setting of algorithms taking values in Banach spaces.

We stress that a two-level construction for the approximation of densities in the SDE
setting with Y = XT has already been proposed and analyzed by Kebaier, Kohatsu-Higa
(2008) in the case r = ∞, and their analysis yields θ = 5/2.

Optimality results, which do not just concern upper bounds for the error and cost
of specific families of algorithms, seem to be unknown for the problems studied in the
present paper. The situation is different for the approximation of expectations of Lipschitz
continuous functionals, and here suitable multi-level algorithms are almost worst case
optimal in the class of all randomized algorithms, see Creutzig et al. (2008).

This paper is organized as follows. In Sections 2–4 we provide the general analysis
of the three approximation problem, namely, for distribution functions and densities on
compact intervals and for distribution functions at a single point. The structure and the
approach in each of these sections is similar: we discuss, in particular, the assumptions
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on the weak and the strong convergence, and we construct and analyze the respective
multi-level algorithms. Section 5 contains, in particular, the application of the results
from Sections 2–4 to functionals of the solutions of SDEs, which is complemented by
numerical experiments for simple test cases in Section 6.

2. Approximation of Distribution Functions on Compact Intervals

We consider a random variable Y , and we study the approximation of its distribution
function F on a compact interval [S0, S1], with S0 < S1 being fixed throughout this
section. We do not assume that the distribution of Y can be simulated exactly. Instead,
we assume that the simulation is feasible for random variables Y (�) that converge to Y in
a suitable way.

2.1. Smoothing. For the approximation of F a straight-forward application of the multi-
level Monte Carlo approach based on

F (s) = E(1]−∞,s](Y ))

could suffer from the discontinuity of 1]−∞,s], see Remark 8 below. This can be avoided by
a smoothing step, provided that a density exists and is sufficiently smooth. Specifically,
we assume that

(A1) the random variable Y has a density ρ on R that is r-times continuously differ-
entiable on [S0 − δ0, S1 + δ0] for some r ∈ N0 and δ0 > 0.

The smoothing is based on rescaled translates of a function g : R → R with the following
properties:

(S1) The cost of computing g(s) is bounded by a constant, uniformly in s ∈ R.
(S2) g is Lipschitz continuous.
(S3) g(s) = 1 for s < −1 and g(s) = 0 for s > 1.

(S4)
� 1

−1
sj · (1]−∞,0](s) − g(s)) ds = 0 for j = 0, . . . , r − 1.

Obviously, g is bounded due to (S2) and (S3).

Remark 1. Such a function g is easily constructed as follows. There exists a uniquely
determined polynomial p of degree at most r + 1 such that

� 1

−1

sj · p(s) ds = (−1)j/(j + 1), j = 0, . . . , r − 1,

as well as p(1) = 0 and p(−1) = 1. The extension g of p with g(s) = 1 for s < −1 and
g(s) = 0 for s > 1 has the properties as claimed. Since g − 1/2 is an odd function, the
same function g arises in this way for r and r + 1, if r is even.

We have the following estimate for the bias that is induced by smoothing with parameter
δ, i.e., by approximation of 1]−∞,s] by g((· − s)/δ).

Lemma 1. There exists a constant c > 0 such that

sup
s∈[S0,S1]

|F (s) − E(g((Y − s)/δ))| ≤ c · δr+1

holds for all δ ∈ ]0, δ0].
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Proof. Clearly

F (s) − E(g((Y − s)/δ)) =

� ∞

−∞
ρ(u) · (1]−∞,s](u) − g((u− s)/δ)) du

= δ ·
� 1

−1

ρ(δu + s) · (1]−∞,0](u) − g(u)) du,

so that the statement follows in the case r = 0. For r ≥ 1 the Taylor expansion

ρ(δu + s) =
r−1�

j=0

ρ(j)(s) · (δu)j/j! + R(δu, s)

yields

|F (s) − E(g((Y − s)/δ))| ≤ δ ·
� 1

−1

|R(δu, s)| · |1]−∞,0](u) − g(u)| du ≤ c · δr+1.

�
2.2. Assumptions on Weak and Strong Convergence. Our multi-level Monte Carlo
construction is based on a sequence (Y (�))�∈N0 of random variables, defined on a common
probability space together with Y , with the following properties for some constant c > 0:

(A2) There exists a constant M > 1 such that the simulation of the joint distribution
of Y (�) and Y (�−1) is possible at cost at most c ·M � for every � ∈ N.

(A3) There exist constants α1 ≥ 0, α2 > 0, and α2 ≥ α3 ≥ 0 such that the weak error
estimate

sup
s∈[S0,S1]

��E
�
g((Y − s)/δ) − g((Y (�) − s)/δ)

��� ≤ c · min
�
δ−α1 ·M−�·α2 ,M−�·α3

�

holds for all δ ∈ ]0, δ0] and � ∈ N0.
(A4) There exist constants β4 ≥ 0 and β5 > 0 such that the strong error estimate

Emin((Y − Y (�))2/δ2, 1) ≤ c · δ−β4 ·M−�·β5

holds for all δ ∈ ]0, δ0] and � ∈ N0.

For specific applications we present suitable approximations Y (�) and corresponding
values of the parameters M , αi and βi in Section 5. Here we proceed with a general
discussion of (A3) and (A4).

Note that (A4) implies (A3) with α1 = β4/2, α2 = β5/2, and α3 = 0, but often better
estimates for the weak error are known, see Sections 4.2 and 5. The presence of α1 and β4

in these assumptions is motivated by weak and strong error estimates for SDEs or SPDEs,
which often scale with some power of δ. See, however, Sections 5.1 and 5.2

Let �Z�p = (E |Z|p)1/p for any random variable Z and 1 ≤ p < ∞. Typically, strong
error estimates for Y − Y (�) instead of min(|Y − Y (�)|, δ) are available in the literature.
Straightforward relations to (A3) and (A4) are provided by

(1) sup
s∈[S0,S1]

��E
�
g((Y − s)/δ) − g((Y (�) − s)/δ)

��� ≤ cL · δ−1 · �Y − Y (�)�1,

where cL denotes a Lipschitz constant for g, as well as

(2) Emin((Y − Y (�))2, δ2) ≤ min(�Y − Y (�)�22, δ2)
and

(3) Emin((Y − Y (�))2, δ2) ≤ E(δ · min(|Y − Y (�)|, δ)) ≤ min(δ · �Y − Y (�)�1, δ2).
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In the following case of equivalence of norms the upper bound in (2) is sharp, and then
we have β4 = 2 in (A4), while the optimal value of β5 is determined by the asymptotic
behavior of �Y − Y (�)�22. See Sections 5.1 and 5.2 for examples.

Lemma 2. Suppose that there exist c1 > 0 and p > 2 such that

0 < �Y − Y (�)�p ≤ c1 · �Y − Y (�)�2
for all � ∈ N0. Then there exists c2 > 0 such that

Emin((Y − Y (�))2, δ2) ≥ c2 · min(�Y − Y (�)�22, δ2)
for all δ ∈ ]0, δ0] and � ∈ N0.

Proof. Put

Z� =
(Y − Y (�))2

�Y − Y (�)�22
.

We show that there exists a constant c2 > 0 such that

Emin(Z�, δ) ≥ c2 · min(1, δ)

for all � ∈ N0 and δ > 0.
Clearly E(Z�) = 1 and E(Z

p/2
� ) ≤ cp1. It follows that

P ({Z� > u}) ≤ cp1
up/2

.

Put

d� = P ({Z� > 1/2}).
We claim that

d = inf
�∈N0

d� > 0.

Assume that d = 0. Use

1 = E(Z�) =

� ∞

0

P ({Z� > u}) du ≤ 1/2 +

� ∞

1/2

min(d�, c
p
1/u

p/2) du

and dominated convergence to conclude that, for a minimizing subsequence,

lim
k→∞

� ∞

1/2

min(d�k , c
p
1/u

p/2) du = 0,

which leads to a contradiction. Therefore

Emin(Z�, δ) =

� δ

0

P ({Z� > u}) du ≥ min(δ, 1/2) · d ≥ d/2 · min(1, δ).

�
On the other hand, if �Y − Y (�)�22 and �Y − Y (�)�1 are asymptotically equivalent, then

(3) is preferable to (2). See Section 5.3 for examples.
Assumption (A4) and the Lipschitz continuity and boundedness of g immediately yield

the following fact.

Lemma 3. There exists a constant c > 0 such that

E sup
s∈[S0,S1]

�
g((Y − s)/δ) − g((Y (�) − s)/δ)

�2 ≤ c · min(δ−β4 ·M−�·β5 , 1)

holds for all δ ∈ ]0, δ0] and � ∈ N0.
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2.3. The Multi-level Algorithm. The approximation of F on the interval [S0, S1] is
based on its approximation at finitely many points

(4) S0 ≤ s1 < · · · < sk ≤ S1,

followed by a suitable extension to [S0, S1].
For notational convenience we put

gk,δ(t) = (g((t− s1)/δ), . . . , g((t− sk)/δ)) ∈ Rk, t ∈ R,

as well as Z
(0)
i = Y (−1) = 0.

We choose L0, L1 ∈ N0 with L0 ≤ L1 as the minimal and the maximal level, respectively,
and we choose replication numbers N� ∈ N for all levels � = L0, . . . , L1, as well as k ∈ N
and δ ∈ ]0, δ0]. The corresponding multi-level algorithm for the approximation at the
points si is defined by

(5) Mk,δ,L0,L1

NL0
,...,NL1

=
1

NL0

·
NL0�

i=1

gk,δ(Y
(L0)
i ) +

L1�

�=L0+1

1

N�

·
N��

i=1

�
gk,δ(Y

(�)
i ) − gk,δ(Z

(�)
i )

�

with an independent family of R2-valued random variables (Y
(�)
i , Z

(�)
i ) for � = L0, . . . , L1

and i = 1, . . . , N� such that equality in distribution holds for (Y
(�)
i , Z

(�)
i ) and (Y (�), Y (�−1)).

Remark 2. In the particular case L = L0 = L1, i.e., in the single-level case, we actually
have a classical Monte Carlo algorithm, based on independent copies of Y (L) only. In
addition to

Mk,δ,L,L
N =

1

N
·

N�

i=1

gk,δ(Y
(L)
i )

with δ > 0, we also consider the single-level algorithm without smoothing. Hence we put

gk,0(t) =
�
1]−,∞,s1](t), . . . , 1]−,∞,sk](t)

�
∈ Rk, t ∈ R,

to obtain

Mk,0,L,L
N =

1

N
·

N�

i=1

gk,0(Y
(L)
i ).

Observe that Mk,0,L,L
N yields the values of the empirical distribution function, based on

N independent copies of Y (L), at the points si.
For the analysis of the single-level algorithm it suffices to assume that the simulation

of the distribution of Y (�) is possible at cost at most c · M � for every � ∈ N, cf. (A2).
Furthermore, there is no need for a strong error estimate like (A4), and if we do not
employ smoothing, then (A3) may be replaced by the following assumption. There exist
a constant α > 0 such that the weak error estimate

(6) sup
s∈[S0,S1]

��E
�
1]−∞,s](Y ) − 1]−∞,s](Y

(�))
��� ≤ c ·M−�·α

holds for all � ∈ N0. It turns out that the analysis of single-level algorithms without
smoothing is formally reduced to the case δ > 0 if we take

(7) α1 = 0, α2 = α, α3 = α.
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In the sequel � · �∞ denotes the supremum norm on C([S0, S1]) and | · |∞ denotes the
�∞-norm on Rk.

For the extension we take a sequence of linear mappings Qr
k : Rk → C([S0, S1]) with

the following properties for some constant c > 0:

(E1) For all k ∈ N and x ∈ Rk the cost for computing Qr
k(x) is bounded by c · k.

(E2) For all k ∈ N and x ∈ Rk

�Qr
k(x)�∞ ≤ c · |x|∞.

(E3) For all k ∈ N

�F −Qr
k(F (s1), . . . , F (sk))�∞ ≤ c · k−(r+1).

These properties are achieved, e.g., by piecewise polynomial interpolation with degree
max(r, 1) at equidistant points si = S0 + (i− 1) · (S1 − S0)/(k − 1) with k ≥ 2.

We employ Qr
k(M) with M = Mk,δ,L0,L1

NL0
,...,NL1

as a randomized algorithm for the approxi-

mation of F on [S0, S1]. Observe that M is square-integrable, since g is bounded, so that
(E2) yields E �Qr

k(M)�2∞ < ∞. The error of Qr
k(M) is defined by

error(Qr
k(M)) =

�
E �F −Qr

k(M)�2∞
�1/2

.

Since the error is based on the supremum norm, error(Qr
k(M)) does not increase if we

replace Qr
k(x) by s �→ supu∈[S0,s](Q

r
k(x))(u) to get a non-decreasing approximation on

[S0, S1].
The variance of any square-integrable Rk-valued random variable M is defined by

Var(M) = E |M− E(M)|2∞,

and

E |x−M|2∞ ≤ 2 · (|x− E(M)|2∞ + Var(M))

holds for x ∈ Rk. Furthermore,

Var(M) ≤ 4 · E(|M|2∞).

The Bienaymé formula for real-valued random variables turns into the inequality

(8) Var(M) ≤ c · log k ·
n�

i=1

Var(Mi),

if M =
�n

i=1 Mi with independent square-integrable random variables Mi taking values
in Rk. Here c is a universal constant. In the context of multi-level algorithms this is
exploited in Heinrich (1998).

We say that a sequence of randomized algorithms An converges with order (γ, η) ∈
]0,∞[ × R if limn→∞ error(An) = 0 and if there exists a constant c > 0 such that

cost(An) ≤ c · (error(An))
−γ · (− log error(An))

η.

Moreover, we put

(9) q = min

�
r + 1 + α1

α2

,
r + 1

α3

�
.
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Theorem 1. The following order, with η = 1, is achieved by algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

)

with suitably chosen parameters:

q ≤ max(1, β4/β5) ⇒ γ = 2 +
max(1, q)

r + 1
,(10)

q > max(1, β4/β5) ∧ β5 > 1 ⇒ γ = 2 +
max(1, β4/β5)

r + 1
,(11)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2 +
1

r + 1
,(12)

q > max(1, β4/β5) ∧ β5 < 1 ⇒ γ = 2 +
max(1, β4 + (1 − β5) · q)

r + 1
.(13)

Moreover, with η = 3,

q > β4 ≥ 1 ∧ β5 = 1 ⇒ γ = 2 +
β4

r + 1
.(14)

Proof. Let M denote any square-integrable random variable with values in Rk. For the
error of Qr

k(M) we have

error(Qr
k(M)) ≤ �F −Qr

k(F (s1), . . . , F (sk))�∞ +
�
E �Qr

k((F (s1), . . . F (sk)) −M)�2∞
�1/2

≤ c ·
�
k−(r+1) +

�
E |(F (s1), . . . F (sk)) −M|2∞

�1/2�

≤ 2c ·
�
k−2(r+1) + |(F (s1), . . . F (sk)) − E(M)|2∞ + Var(M)

�1/2

with a constant c > 0 according to (E2) and (E3).

Now we consider the algorithm M = Mk,δ,L0,L1

NL0
,...,NL1

with δ > 0. We write a � b if there

exists a constant c > 0 that does not depend on the parameters k, δ, L0, L1, NL0 , . . . , NL1

such that a ≤ c · b. Moreover, a � b means b � a, and a � b stands for a � b and a � b.
Note that E(M) = E(gk,δ(Y (L1))). Hence the bias term is estimated by

|(F (s1), . . . , F (sk)) − E(M)|∞ = sup
i=1,...,k

|F (si) − E(g((Y (L1) − si)/δ))|

� δr+1 + min
�
δ−α1 ·M−L1·α2 ,M−L1·α3

�
,

see Lemma 1 and (A3).
The variance of M is estimated as follows. From (8) we obtain

Var(M) � log k ·
�

1

NL0

· Var(gk,δ(Y (L0))) +

L1�

�=L0+1

1

N�

· Var
�
gk,δ(Y (�)) − gk,δ(Y (�−1))

�
�
.

Moreover,

Var
�
gk,δ(Y (�)) − gk,δ(Y (�−1))

�
≤ 4 · E sup

i=1,...,k

�
g((Y (�) − si)/δ) − g((Y (�−1) − si)/δ)

�2

� min(δ−β4 ·M−�·β5 , 1)

for � = L0 + 1, . . . , L1, see Lemma 3, and

Var(gk,δ(Y (L0))) � 1,
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since g is bounded. Therefore

Var(M) � log k ·
�

1

NL0

+

L1�

�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

�
.

Combining these estimates we finally get

error2(Qr
k(M)) � k−2(r+1) + δ2(r+1) + min

�
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

�
(15)

+ log k ·
�

1

NL0

+

L1�

�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

�
.

Now we analyze the computational cost of the algorithm M. For � = L0, . . . , L1 and

i = 1, . . . , N� the cost of computing gk,δ(Y
(�)
i ) or gk,δ(Y

(�)
i ) − gk,δ(Z

(�)
i ) is bounded by

M � + k, up to a constant, see (S1) and (A2). Use (E1) to obtain

(16) cost(Qr
k(M)) � c(k, L0, L1, NL0 , . . . , NL1)

with

(17) c(k, L0, L1, NL0 , . . . , NL1) =

L1�

�=L0

N� · (M � + k).

Note that for every k the cost per replication is essentially constant on all levels � ≤ L∗,
where

(18) L∗ = logM k.

Observe that the estimates (15) and (16) are valid, too, for single-level algorithms
without smoothing, i.e., for L0 = L1 and δ = 0, if we formally define the parameters αi

by (7), which leads to q = (r + 1)/α.
We determine parameters of the algorithm Qr

k(M) such that an error of about � ∈�
0,min(1, δr+1

0 )
�
is achieved at a small cost. More precisely, we minimize the upper bound

(16) for the cost, subject to the constraint that the upper bound (15) for the squared
error is at most �2, up to multiplicative constants for both quantities.

First of all we consider the case δ > 0, and we choose

(19) δ = �1/(r+1)

and, up to integer rounding,

(20) k = �−1/(r+1)

and

(21) NL0 = �−2 · logM �−1.

This yields

error2(Qr
k(M)) � �2 + a2(L1) + log �−1 ·

L1�

�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

with

(22) a(L1) = min
�
δ−α1 ·M−L1·α2 ,M−L1·α3

�
.
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Furthermore,

(23) L∗ =
1

r + 1
· logM �−1.

Due to the dependence of (16) on k and the decay of a(L1) and min(δ−β4 ·M−�·β5 , 1)
as functions of L1 and �, respectively, it suffices to study

(24) L0 ≥ L∗.

Moreover, a(L1) ≤ � requires L1 ≥ q · L∗. Consequently, we choose

(25) L1 = max(1, q) · L∗,

up to integer rounding.
For a single-level algorithm with smoothing, i.e., for L0 = L1 and δ > 0, all parameters

have thus been determined, and we obtain error(Qr
k(M)) � � as well as

(26) c(k, L1, L1, NL1) � �−2 · log �−1 ·ML∗
= �−2−1/(r+1) · log �−1

if q ≤ 1, and

(27) c(k, L1, L1, NL1) � �−2 · log �−1 ·M q·L∗
= �−2−q/(r+1) · log �−1,

if q > 1. For a single-level algorithm without smoothing we obtain the same result.
For a proper multi-level algorithm with

L∗ ≤ L0 < L1

we obtain

error2(Qr
k(M)) � �2 + log �−1 ·

L1�

�=L0+1

v�
N�

with
v� = min(ML∗·β4 ·M−�·β5 , 1)

as well as

c(k, L0, L1, NL0 , . . . , NL1) � �−2 · log �−1 ·ML0 +

L1�

�=L0+1

N� ·M �.

Observing
c(k, L0, L1, NL0 , . . . , NL1) � �−2 · log �−1 ·ML∗

and (26), we get (10) in the case q ≤ 1 already by single-level algorithms.
To establish the theorem in the case

q > 1

we fix L0 for the moment, and we minimize

h(L0, NL0+1, . . . , NL1) = �−2 · log �−1 ·ML0 +

L1�

�=L0+1

N� ·M �

subject to
L1�

�=L0+1

v�
N�

≤ �2/ log �−1.

A Lagrange multiplier leads to

(28) N� = �−2 · log �−1 ·G(L0) ·
�
v� ·M−�

�1/2
,
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up to integer rounding, which satisfies the constraint with

G(L0) =

L1�

�=L0+1

�
v� ·M �

�1/2
=

L1�

�=L0+1

�
min(ML∗·β4 ·M−�·β5 , 1) ·M �

�1/2
.

Moreover, this choice of NL0+1, . . . , NL1 yields

(29) h(L0, NL0+1, . . . , NL1) = �−2 · log �−1 ·
�
ML0 + G2(L0)

�
.

Put

L† =
β4

β5

· L∗.

Consider the case

1 < q ≤ β4/β5.

Then we have L1 ≤ L†, and therefore

ML0 + G2(L0) = ML0 +

�
L1�

�=L0+1

M �/2

�2

� ML0 + ML1 � ML∗·q.

Observing (27) we get (10) in the present case already by single-level algorithms.
From now on we consider the case

q > max(1, β4/β5).

Suppose that L0 < L†, which requires β4/β5 > 1 to hold. Then we get

ML0 + G2(L0) � ML0 +




L†�

�=L0+1

M �/2




2

+ ML∗·β4 ·




L1�

�=L†+1

M �·(1−β5)/2




2

� ML†
+ ML∗·β4 ·




L1�

�=L†+1

M �·(1−β5)/2




2

� ML†
+ G2(L†).

It therefore suffices to study the case

L0 ≥ L†,

where we have

ML0 + G2(L0) = ML0 + ML∗·β4 ·
�

L1�

�=L0+1

M �·(1−β5)/2

�2

.

If β5 = 1 then

ML0 + G2(L0) � ML0 + ML∗·β4 · (L1 − L0)
2.

If β5 > 1 then

ML0 + G2(L0) � ML0 + ML∗·β4 ·ML0·(1−β5) � ML0 .

If β5 < 1 then

ML0 + G2(L0) � ML0 + ML∗·β4 ·ML1·(1−β5).

Hence we choose

(30) L0 = max(1, β4/β5) · L∗
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in all these cases. Hereby we obtain

ML0 + G2(L0) � ML∗·max(1,β4/β5) ·
�

(L∗)2 , if β5 = 1 and β4 ≥ 1,

1, if β5 > 1 or β5 = 1 and β4 < 1,

as well as

ML0 + G2(L0) � Mmax(1,β4/β5,β4+(1−β5)·q)·L∗

if β5 < 1. In any case these estimates are superior to ML∗·q, cf. (27). Use (29) and
ML∗

= �−1/(r+1) to derive (11)–(14). �

Remark 3. Theorem 1 is based on the upper bounds (15) and (16) for the error and

the cost, respectively, of the algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

). The parameters that we have

determined in the proof of Theorem 1 are optimal in the following sense: they minimize
the upper bound for the cost, subject to the constraint that the upper bound for the error
is at most �, up to multiplicative constants for both quantities.

Obviously, this optimality holds true for the choice of δ, k, NL0 , and L1 according to
(19), (20), (21), and (25). Moreover, the constraint (24) is without loss of generality, so
that the minimal level L0 slowly increases with decreasing �.

This completes, in particular, the optimization of the parameters of single-level algo-
rithms, where L0 = L1. For proper multi-level algorithms the optimal values of N� for
� = L0 + 1, . . . , L1 are presented in (28) and the optimal value of L0 is presented in (30),
if q > max(1, β4/β5). It is straightforward to verify

(31) N� = �−2−β4/(r+1) · log �−1 ·M−�·(1+β5)/2 ·





L∗, if β5 = 1,

ML∗·max(1,β4/β5)·(1−β5)/2 if β5 > 1,

ML∗·q·(1−β5)/2, if β5 < 1.

Furthermore, we have carried out the comparison of multi-level and single-level algo-
rithms in the proof of Theorem 1. This comparison, too, is merely based on the upper
bounds for the error and the cost, and on the assumption that α = α3 in (6). In this sense
we have a superiority of proper multi-level algorithms over single-level algorithms if and
only if

(32) q > max(1, β4/β5),

which corresponds to (11)–(14) in Theorem 1. The lack of superiority, which is present
in (10) in Theorem 1, is explained as follows. For q ≤ 1 the maximal level can be chosen
so small that the computational cost on all levels is dominated by the number k of
discretization points that is needed to achieve a good approximation of F even from
exact data F (s1), . . . , F (sk). For 1 < q ≤ β4/β5 the negative impact of smoothing on the
variances leads to variances min(δ−β4 ·M−�·β5 , 1) of order one on all levels � = L0+1, . . . , L1.

Single-level algorithms with smoothing are never inferior to single-level algorithms with-
out smoothing, and they are superior if and only if

(33)
r + 1

α3

> max(1, q).

For large values of r the latter holds true if and only if α2 > α3; see Section 5.3 for an
example.
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Remark 4. In the limit r → ∞ we get

γ = 2 +
max(1 − β5, 0)

α2

in Theorem 1, which coincides with the order for the approximation of expectations by
means of multi-level algorithms, see Giles (2008a, Thm. 3.1).

Consider the empirical distribution function F̂n based on n independent copies of Y .
The Dvoretzky-Kiefer-Wolfowitz inequality, with the optimal constant due to Massart
(1990), yields �

E sup
s∈R

|F (s) − F̂n(s)|2
�1/2

≤ n−1/2,

which corresponds to an order two of approximation in terms of the number of samples
from the target distribution. In our analysis we do not assume that sampling from the
target distribution is feasible, and we fully take into account the computational cost to
generate samples from approximate distributions. Still, if β5 is almost one and if r is large,
a suitable multi-level algorithm almost achieves the order two. See Sections 5.1 and 5.2
for examples.

3. Approximation of Densities on Compact Intervals

In this section we study the approximation of the density ρ of Y on an interval [S0, S1]
for some fixed S0 < S1. The construction and analysis closely follows the approach from
Section 2.

3.1. Smoothing. We employ assumption (A1) with r ≥ 1, and g : R → R is assumed to
satisfy the properties (S1) and (S2), while (S3) and (S4) are replaced by:

(S5) g(s) = 0 if |s| > 1.

(S6)
� 1

−1
g(s) ds = 1 and

� 1

−1
sj · g(s) ds = 0 for j = 1, . . . , r − 1.

Obviously, g is bounded due to (S2) and (S5). Moreover, if g ∈ C1(R) satisfies (S3) and
(S4) and g� is Lipschitz continuous, then −g�, instead of g, satisfies (S5) and (S6). In
kernel density estimation, a function g with integral one and vanishing moments up to
order r − 1 is called a kernel of order (at least) r.

Remark 5. We modify the construction from Remark 1 as follows. There exists a uniquely
determined polynomial p of degree at most r + 1 such that

� 1

−1

p(s) ds = 1

and � 1

−1

sj · p(s) ds = 0, j = 0, . . . , r − 1,

as well as p(1) = p(−1) = 0. Extend p by zero to obtain g with the properties as claimed.
Since g is an even function, the same function g arises in this way for r and r + 1, if r is
odd.

We have the following estimate for the bias that is induced by smoothing with parameter
δ, i.e., by approximation of the Dirac functional at s by 1/δ·g((·−s)/δ). See, e.g., Tsybakov
(2009, Prop. 1.2).
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Lemma 4. There exists a constant c > 0 such that

sup
s∈[S0,S1]

|ρ(s) − 1/δ · E(g((Y − s)/δ))| ≤ c · δr

holds for all δ ∈ ]0, δ0].

Proof. Clearly

ρ(s) − 1/δ · E(g((Y − s)/δ)) =

� 1

−1

g(u) · (ρ(s) − ρ(δu + s)) du.

Use a Taylor expansion to derive

|ρ(s) − 1/δ · E(g((Y − s)/δ))| ≤ c · δr.

�

3.2. Assumptions on Weak and Strong Convergence. We employ the assumptions
(A2)–(A4) from Section 2.2 with possibly different values of αi in the weak error estimate
(A3). We make use of Lemma 3, and we refer to Section 5 for specific examples with
corresponding values of αi.

3.3. The Multi-level Algorithm. The definition (5) of the algorithms Mk,δ,L0,L1

NL0
,...,NL1

also

applies for the approximation of densities, except for gk,δ, which is now defined by

gk,δ(t) =
1

δ
· (g((t− s1)/δ), . . . , g((t− sk)/δ)) ∈ Rk, t ∈ R.

In the present setting we have δ > 0 also for single-level algorithms.
Hereby we obtain approximations to ρ at the points (4), which are extended to functions

on [S0, S1] by means of linear mappings Qr
k : Rk → C([S0, S1]). We assume that (E1) and

(E2) are satisfied, but instead of (E3) the following property is assumed to hold with some
constant c > 0:

(E4) For all k ∈ N

�ρ−Qr
k(ρ(s1), . . . , ρ(sk))�∞ ≤ c · k−r.

As before, piecewise polynomial interpolation at equidistant points, now of degree max(r−
1, 1), might be used for this purpose.

We employ Qr
k(M) with M = Mk,δ,L0,L1

NL0
,...,NL1

as a randomized algorithm for the approxi-

mation of ρ on [S0, S1], and the error of Qr
k(M) is defined by

error(Qr
k(M)) =

�
E �ρ−Qr

k(M)�2∞
�1/2

.

Clearly the error does not increase if we replace Qr
k(x) by max(Qr

k(x), 0).
Recall the definition of q from (9).
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Theorem 2. The following order, with η = 1, is achieved by algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

)

with suitably chosen parameters:

q ≤ max(1, β4/β5) ⇒ γ = 2 +
max(1, q) + 2

r
,(34)

q > max(1, β4/β5) ∧ β5 > 1 ⇒ γ = 2 +
max(1, β4/β5) + 2

r
,(35)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2 +
3

r
,(36)

q > max(1, β4/β5) ∧ β5 < 1 ⇒ γ = 2 +
max(1, β4 + (1 − β5) · q) + 2

r
.(37)

Moreover, with η = 3,

q > β4 ≥ 1 ∧ β5 = 1 ⇒ γ = 2 +
β4 + 2

r
.(38)

Proof. We mimic the proof of Theorem 1. We use (A3), (E2) and (E4), Lemma 3 and
Lemma 4, and the boundedness of g to obtain

error2(Qr
k(M)) � k−2r + δ2r + 1/δ2 · min

�
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

�
(39)

+ log k/δ2 ·
�

1

NL0

+

L1�

�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

�
,

where M = Mk,δ,L0,L1

NL0
,...,NL1

. The upper bound (16) for the computational cost is also valid in

the present case. We minimize (16), subject to the constraint that the upper bound (39)
for the squared error is at most �2, up to multiplicative constants for both quantities.

Put

�̃ = �1+1/r.

First of all we choose

(40) δ = �1/r = �̃1/(r+1)

and, up to integer rounding,

(41) k = �−1/r = �̃−1/(r+1)

and

(42) NL0 = �−2−2/r · logM �−1 � �̃−2 · logM �̃−1.

This yields

error2(Qr
k(M)) � �2 + 1/δ2 ·

�
a2(L1) + log �̃−1 ·

L1�

�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

�
,

where a(L1) is given by (22). Furthermore,

(43) L∗ =
1

r
· logM �−1 =

1

r + 1
· logM �̃−1,

see (18), and it suffices to study L0 ≥ L∗.
Since δ · � = �̃, the proof of Theorem 1 is applicable with � being replaced by �̃. We

obtain the same values for η, but γ must be replaced by γ · (1 + 1/r). �
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Remark 6. The following comments on optimality etc. are meant in the sense of Re-
mark 3. We have a superiority of proper multi-level algorithms over single-level algorithms
if and only if (32) holds true. Moreover, the optimal values of δ, k, and NL0 , and L1 are
given by (40), (41), (42), and

L1 =
max(1, q)

r
· logM �−1,

see (25). In particular, this completes the optimization of the parameters of single-level
algorithms, where L0 = L1.

Suppose that q > max(1, β4/β5), so that we consider proper multi-level algorithms. The
optimal value of L0 is given by

L0 =
max(1, β4/β5)

r
· logM �−1,

see (30), The optimality of

N� = �−2−(β4+2)/r · log �−1 ·M−�·(1+β5)/2 ·





L∗, if β5 = 1,

ML∗·max(1,β4/β5)·(1−β5)/2 if β5 > 1,

ML∗·q·(1−β5)/2, if β5 < 1.

for � = L0 + 1, . . . , L1, with L∗ given by (43), is derived from (28) in a straightforward
way.

4. Approximation of Distribution Functions at a Single Point

Now we study the approximation of the distribution function F of Y at a single fixed
point s ∈ [S0, S1].

4.1. Smoothing. We employ assumption (A1) and the smoothing approach from Sec-
tion 2.1, which involves the assumptions (S1)–(S4). In particular, we make use of Lemma 1.

4.2. Assumptions on Weak and Strong Convergence. We consider the setting from
Section 2.2, and we assume (A2) and (A3) while, instead of (A4), the following property
is assumed to hold with a constant c > 0:

(A5) There exist constants β1 ≥ 0 and β2 > β3 ≥ 0 such that the strong error estimate

sup
s∈[S0,S1]

E
�
g((Y − s)/δ) − g((Y (�) − s)/δ)

�2 ≤ c · min
�
δ−β1 ·M−�·β2 ,M−�·β3

�

holds for all δ ∈ ]0, δ0] and � ∈ N0.

See Section 5 for specific applications and approximations Y (�) with corresponding
values of the parameters βi.

We use different assumptions on the strong error for approximation of F on compact
intervals and at a single point, namely (A4) with Lemma 3 as an immediate consequence
in the first case and (A5) in the second case. Clearly, (A4) implies (A5) for every bounded
and Lipschitz continuous function g with

(44) β1 = β4, β2 = β5, β3 = 0,

which is used in Section 5.3, but better values of β1, β2, and β3 may be available. See
Section 5 for examples where β1 < β4 and β3 > 0. Note that (A5) corresponds directly to
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the weak error estimate (A3), and it yields the latter for every bounded and measurable
function g with

(45) αi = βi/2

for i = 1, 2, 3. See Section 5 for applications.
Strong error estimates for Y −Y (�) or 1]−∞,s](Y )−1]−∞,s](Y

(�)) may be used to establish
(A5) and (A3). From the Lipschitz continuity of g we immediately get (A5) with β1 = 2
and β3 = 0, while the value of β2 is determined by the asymptotic behavior of �Y −Y (�)�22.
A refined analysis, which merely requires Y to have a bounded density, yields the following
results, which are applicable under the assumptions (S2) and (S3) or (S2) and (S5) on g.

Lemma 5 (Avikainen (2009)). There exists a constant c > 0 such that

sup
s∈[S0,S1]

�g((Y − s)/δ) − g((Y (�) − s)/δ)�qq ≤ cq · sup
s∈[S0−δ0,S1+δ0]

�1]−∞,s](Y ) − 1]−∞,s](Y
(�))�1

and
sup

s∈[S0−δ,S1+δ]

�1]−∞,s](Y ) − 1]−∞,s](Y
(�))�1 ≤ c · �Y − Y (�)�p/(p+1)

p

holds for all p, q ≥ 1, δ ∈ ]0, δ0], and � ∈ N0.

Proof. See Avikainen (2009, p. 387) for the proof of the first estimate and Avikainen
(2009, Lemma 3.4) for the second estimate. �

Lemma 6. For every 1 ≤ q ≤ p < ∞ there exists a constant c > 0 such that

sup
s∈[S0,S1]

�g((Y − s)/δ) − g((Y (�) − s)/δ)�qq ≤ c · δ1−q−q/p · �Y − Y (�)�qp

holds for all δ ∈ ]0, δ0/2] and � ∈ N0.

Proof. Put
Δ = g((Y − s)/δ) − g((Y (�) − s)/δ).

In the sequel, we adopt the notation � from the proof of Theorem 1, where now the
hidden constant must not depend on δ, � or s.

Because of assumption (A1), the density ρ of Y is bounded on [S0 − δ0, S1 + δ0]. By
Lemma 5,

EΔq � �Y − Y (�)�p/(p+1)
p ,

so all that remains is to establish

EΔq � δ1−q−q/p · �Y − Y (�)�qp
in the case δ1−q−q/p · �Y − Y (�)�qp ≤ �Y − Y (�)�p/(p+1)

p , i.e., for

(46) �Y − Y (�)�p ≤ δ1+1/p.

If |Y − s| > 2δ and |Y − Y (�)| < δ, then |Y (�) − s| > δ and hence Δ = 0 follows, since g
is constant on ]−∞,−1[ as well as on ]1,∞[. Accordingly, we consider

A1 = {|Y − s| ≤ 2δ} ,
A2 = {|Y − s| > 2δ} ∩

�
|Y − Y (�)| ≥ δ

�
,

A3 = {|Y − s| > 2δ} ∩
�
|Y − Y (�)| < δ

�
,

and we then have
EΔq = E(Δq · 1A1) + E(Δq · 1A2).
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Provided that p1 = P (A1) > 0, Jensen’s inequality and the Lipschitz continuity of g
give

E(Δq |A1) ≤ (E(Δp |A1))
q/p � δ−q p

−q/p
1 · �Y − Y (�)�qp.

Hence, using the boundedness of the density of Y ,

E(Δq · 1A1) � δ−q p
1−q/p
1 · �Y − Y (�)�qp � δ1−q−q/p · �Y − Y (�)�qp.

Turning now to A2, Markov’s inequality gives

P ({|Y − Y (�)| ≥ δ}) ≤ δ−p · �Y − Y (�)�pp,
and hence, using the boundedness of g,

E(Δq · 1A2) � δ−p · �Y − Y (�)�pp ≤ δ1−q−q/p · �Y − Y (�)�qp,
with the last step coming from (46). �

If �Y −Y (�)�p and �Y −Y (�)�1 are asymptotically equivalent for every 1 ≤ p < ∞, then
Lemma 5 and Lemma 6 should be applied with large values of p, and this yields (A5)
with β1 arbitrarily close to 1 and (A3) with α1 arbitrarily close to 0. See Sections 5.1 and
5.2 for examples.

4.3. The Multi-level Algorithm. We study multi-level algorithms

Mδ,L0,L1

NL0
,...,NL1

=
1

NL0

·
NL0�

i=1

gδ(Y
(L0)
i ) +

L1�

�=L0+1

1

N�

·
N��

i=1

�
gδ(Y

(�)
i ) − gδ(Z

(�)
i )

�

with

gδ(t) = g((t− s)/δ), t ∈ R,
which form a particular instance of (5). The error of M = Mδ,L0,L1

NL0
,...,NL1

is defined by

error(M) =
�
E |F (s) −M|2

�1/2
,

and Remark 2 applies to single-level algorithms.
Put

β† =
β1

β2 − β3

,

and recall the definition of q from (9).

Theorem 3. The following order, with η = 0, is achieved by algorithms Mδ,L0,L1

NL0
,...,NL1

with

suitably chosen parameters:

q ≤ β† ∧ β3 �= 1 ⇒ γ = 2 +
(1 − β3)+ · q

r + 1
,(47)

q > β† ∧ β3 �= 1 ∧ β2 > 1 ⇒ γ = 2 +
(1 − β3)+ · β†

r + 1
,(48)

q > β† ∧ β2 < 1 ⇒ γ = 2 +
β1 + (1 − β2) · q

r + 1
.(49)

Moreover, with η = 2,

β3 = 1 ⇒ γ = 2,(50)

q > β† ∧ β2 = 1 ⇒ γ = 2 +
β1

r + 1
.(51)
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Proof. We proceed analogously to the proof of Theorem 1. Use Lemma 1, the assumptions
(A3) and (A5), and the boundedness of g to obtain

error2(M) � δ2(r+1) + min
�
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

�
(52)

+
1

NL0

+

L1�

�=L0+1

min
�
δ−β1 ·M−�·β2 ,M−�·β3

�

N� · δ2

for M = Mδ,L0,L1

NL0
,...,NL1

. Furthermore, by (S1) and (A2),

(53) cost(M) � c(L0, L1, NL0 , . . . , NL1)

with

c(L0, L1, NL0 , . . . , NL1) =

L1�

�=L0

N� ·M �.

We minimize the upper bound (53) for the cost, subject to the constraint that the upper
bound (52) for the squared error is at most �2, up to multiplicative constants for both
quantities.

To this end we choose δ according to (19), and, up to integer rounding,

(54) NL0 = �−2

as well as

(55) L1 = q · L∗

with L∗ given by (23).
For a single-level algorithm, i.e., L0 = L1, this yields error(M) � � and

(56) c(L1, L1, NL1) � �−2−q/(r+1).

For a proper multi-level algorithm, i.e., L0 < L1, we obtain

error2(M) � �2 +

L1�

�=L0+1

v�
N�

with

v� = min
�
ML∗·β1 ·M−�·β2 ,M−�·β3

�

as well as

c(L0, L1, NL0 , . . . , NL1) � �−2 ·ML0 +

L1�

�=L0+1

N� ·M �.

Fix L0 for the moment. We minimize

h(L0, NL0+1, . . . , NL1) = �−2 ·ML0 +

L1�

�=L0+1

N� ·M �

subject to
L1�

�=L0+1

v�
N�

≤ �2.

A Lagrange multiplier leads to

(57) N� = �−2 ·G(L0) ·
�
v� ·M−�

�1/2
,
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up to integer rounding, which satisfies the constraint with

G(L0) =

L1�

�=L0+1

�
v� ·M �

�1/2
=

L1�

�=L0+1

�
min(ML∗·β1 ·M−�·β2 ,M−�·β3) ·M �

�1/2
.

Moreover, this choice of NL0+1, . . . , NL1 yields

h(L0, NL0+1, . . . , NL1) = �−2 ·
�
ML0 + G2(L0)

�
.

Put

L† = β† · L∗.

In the case q ≤ β† we have L1 ≤ L†, and therefore

ML0 + G2(L0) = ML0 +

�
L1�

�=L0+1

M �·(1−β3)/2

�2

.

In the case q > β† we have L† < L1, and therefore

ML0 + G2(L0) = ML0 +




L†�

�=L0+1

M �·(1−β3)/2 + ML∗·β1/2 ·
L1�

�=L†+1

M �·(1−β2)/2




2

.

Since

ML0 +

�
L�

�=L0+1

M �·(1−β3)/2

�2

�





ML0 , if β3 > 1,

ML0 + (L− L0)
2, if β3 = 1,

ML0 + ML·(1−β3), if β3 < 1,

for L = L1 and L = L†, we take

L0 = 0

in both cases.
This leads to

ML0 + G2(L0) �





1, if β3 > 1,

L2
1, if β3 = 1,

ML1·(1−β3), if β3 < 1,

if q ≤ β†. Moreover, it is straightforward to verify

ML0 + G2(L0) �





1, if β3 > 1,

(L†)2, if β3 = 1,

ML†·(1−β3), if β3 < 1 and β2 > 1,

ML∗·β1 · (L1 − L†)2, if β2 = 1,

ML∗·(β1+q(1−β2)), if β2 < 1,

if q > β†. Except for the case β3 = 0 and q ≤ β† these estimates are superior to ML1 ,
which corresponds to (56). �

Remark 7. The following comments on optimality etc. are meant in the sense of Re-
mark 3. The optimal values of δ, NL0 , and L1 are given by (19), (54), and (55), which
completes the optimization of the parameters of single-level algorithms. For proper multi-
level algorithms, L0 = 0 is optimal, and the optimal replication numbers NL0+1, . . . , NL1

and L0 can be easily derived from (57).
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Proper multi-level algorithms are superior to single-level algorithms if and only if

β3 �= 0 ∨ q > β1/β2.

In the case β3 = 0 and q ≤ β1/β2 the lack of superiority is caused by the negative impact
of smoothing, which leads to variances of order one on all levels level � = 0, . . . , L1.

Single-level algorithms with smoothing are superior to single-level algorithms without
smoothing if and only if

(58)
r + 1

α3

>
r + 1 + α1

α2

.

5. Applications

At first we consider a general situation, where all we have at hand is (A1), (A2), and
an upper bound on the order of the strong error of Y − Y (�), which does not depend on
p. Specifically, we assume that there exists a constant

0 < β ≤ 2

with the following property. For every 1 ≤ p < ∞ there exists a constant cp > 0 such that

(59) �Y − Y (�)�p ≤ cp ·M−�·β/2

for every � ∈ N. In the sequel ε > 0 may be chosen arbitrarily small.
From (59) we obtain (A4) with

(60) β4 = 2, β5 = β,

see (2), and Lemma 5 and Lemma 6 yield (A5) with

(61) β1 = 1 + ε, β2 = β, β3 = β/2 − ε

under the assumptions (S2) and (S3) or (S2) and (S5). Using Lemma 5 and Lemma 6
again we get (A3) under both sets of assumptions on g with

(62) α1 = ε, α2 = β/2, α3 = β/2 − ε,

and (6) holds with

(63) α = β/2 − ε.

It follows that

q =
2 · (r + 1)

β
+ ε

and

max(1, β4/β5) = 2/β,

so that (11), (13), and (14) in Theorem 1 yield

1 ≤ β ≤ 2 ⇒ γ = 2 +
2

β · (r + 1)
,(64)

0 < β < 1 ⇒ γ =
2

β
+

2

r + 1
+ ε(65)
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for the approximation of F on [S0, S1]. Likewise, (35), (37), and (38) in Theorem 2 yield

1 ≤ β ≤ 2 ⇒ γ = 2 +
2 · (1 + β)

β · r ,(66)

0 < β < 1 ⇒ γ =
2

β
+

2 · (1 + β)

β · r + ε,(67)

for the approximation of ρ on [S0, S1]. Moreover,

β† = 2/β + ε,

so that (48), (49), and (51) in Theorem 3 yield

1 ≤ β ≤ 2 ⇒ γ = 2 +
2 − β

β · (r + 1)
+ ε,(68)

0 < β < 1 ⇒ γ =
2

β
+

1

r + 1
+ ε(69)

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems we
get γ = max(2, 2/β) in the limit r → ∞, and proper multi-level algorithms are always
superior to single-level algorithms, see Remarks 3, 6, and 7.

Remark 8. We compare the smoothing approach for the approximation of F at a single
point with a direct approach, which is due to Avikainen (2009) and which only requires
that Y has a bounded density ρ, see Lemma 5.

We study multi-level algorithms

ML0,L1

NL0
,...,NL1

=
1

NL0

·
NL0�

i=1

1]−∞,s](Y
(L0)
i ) +

L1�

�=L0+1

1

N�

·
N��

i=1

�
1]−∞,s](Y

(�)
i ) − 1]−∞,s](Z

(�)
i )

�

for the approximation of F (s). As previously, we assume that (59) with 0 < β ≤ 2 is all
we have at hand. The analysis from Theorem 3 directly applies, if we take

β1 = 0, β2 = β/2 − ε, β3 = β/2 − ε,

and

α1 = 0, α2 = β/2 − ε, α3 = β/2 − ε.

We achieve the order (γ�, η�) with

γ� =
2 + β

β
+ ε,

so that the smoothing approach is superior to the direct approach iff β < 2 and r ≥ 1.

In the sequel we consider three specific settings in the context of stochastic differential
equations (SDEs). We let X denote the solution process of the SDE, which is supposed
to take values in Rd. For simplicity, we alway take the Euler scheme with equidistant
time-steps for approximation of X, and we do not discuss results on the existence and
smoothness of densities. As previously, ε > 0 may be chosen arbitrarily small.
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5.1. Smooth Path-independent Functionals for SDEs. Let

Y = ϕ(XT ),

where ϕ : Rd → R is Lipschitz continuous. We assume that the cost of computing ϕ(x) is

uniformly bounded for x ∈ Rd, and for approximation of Y we use Y (�) = ϕ(X
(�)
T ), where

X(�) denotes the Euler scheme with 2� equidistant time-steps. Obviously, (A2) holds with
M = 2. For weak error estimates we refer to Bally, Talay (1996a). Hereby we obtain (A3)
with

(70) α1 = 0, α2 = 1, α3 = 1

under the assumptions (S2) and (S3) or (S2) and (S5) on g and the smoothness and non-
degeneracy assumptions (C) and (UH) on the coefficients of the SDE. Furthermore, (6)
holds with

α = 1.

It is well-known that (59) holds with

β = 1

already under standard assumptions on the coefficients of the SDE. Hence we get (A4)
with

(71) β4 = 2, β5 = 1,

see (60), and (A5) with

β1 = 1 + ε, β2 = 1, β3 = 1/2 − ε,

see (61).
We therefore have q = r + 1 and max(1, β4/β5) = 2, and (10) and (14) in Theorem 1

yield

(γ, η) =

�
(3, 1), if r ≤ 1,

(2 + 2/(r + 1), 3), if r ≥ 2,

for the approximation of F on [S0, S1]. Likewise, (34) and (38) in Theorem 2 yield

(γ, η) =

�
(6, 1), if r = 1,

(2 + 4/r, 3), if r ≥ 2,

for the approximation of ρ on [S0, S1]. For both problems, proper multi-level algorithms
are superior to single-level algorithms if and only if r ≥ 2, see Remarks 3 and 6. Moreover,
β† = 2 + ε, so that (47) and (51) in Theorem 3 yield

γ =

�
5/2 + ε, if r = 0,

2 + 1/(r + 1) + ε, if r ≥ 1,

for the approximation of F at a single point s ∈ [S0, S1]. For this problem, proper multi-
level algorithms are superior to single-level algorithms for every r ∈ N0, see Remark 7.
For all three problems we get γ = 2 in the limit r → ∞.

If the coefficients of the SDE merely satisfy the standard assumptions, instead of (C)
and (UH) from Bally, Talay (1996a), we may apply (62) to obtain α1 = ε, α2 = 1/2,
and α3 = 1/2 − ε, see also Kebaier (2005, Sec. 2.2). While the latter is inferior to (70),
it leads to essentially the same orders of convergence for approximation of densities or
distribution functions if r ≥ 1, see (64), (66), and (68).
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Remark 9. A two-level construction of the form

Mδ,L0,L1

NL0
,NL1

=
1

NL0

·
NL0�

i=1

gδ(Y
(L0)
i ) +

1

NL1

·
NL1�

i=1

�
gδ(Y

(L1)
i ) − gδ(Z

(L1)
i )

�
,

which is the counterpart of the two-level construction from Kebaier (2005) for the ap-
proximation of E(ϕ(XT )), is employed in Kebaier, Kohatsu-Higa (2008) for the approx-
imation of the density ρ of Y = XT at a single point s. Here the sequence (Y (�))�∈N
consists of suitably regularized Euler schemes with � equidistant time-steps. By assump-
tion, ρ ∈ C∞

b (Rd,R), i.e., the multi-dimensional counterpart to (A1) is satisfied for every
r ∈ N0. Using Malliavin calculus techniques, the authors derive a central limit theorem
for L1 · (Mδ,L0,L1

NL0
,NL1

− ρ(x)) with properly chosen parameters L0, NL0 , NL1 , and δ as L1

tends to infinity. For every dimension d the order γ = 5/2 + ε is achieved in this way,
while the multi-level approach achieves the order γ = 2 + ε (at least for d = 1).

Remark 10. Consider the problem of approximating a quantile of Y , which is studied
in Talay, Zheng (2004) in the particular case of a projection ϕ(x) = xi. By assumption,
ρ ∈ C∞

b (R,R). The authors employ a single-level algorithm that is based on a suitably
regularized Euler scheme, cf. Remark 9. The approximation to the quantile is given as the
corresponding empirical quantile, and an error of order γ = 3 is achieved, if ρ is bounded
away from zero in a neighborhood of the quantile.

Under the latter assumption, the order of approximation to F in the supremum norm
and to the quantile coincide, and given (A1) for every r ∈ N0 we expect our multi-level
algorithm to achieve the order γ = 2 + ε also for quantile approximation and every
Lipschitz continuous function ϕ. Furthermore, the multi-level algorithm may be used to
approximate the distribution function F and the density ρ in parallel, which allows to
control the impact of inverting the approximation to F .

Remark 11. We comment on the optimality of the parameters αi and βi according to
(70) and (71) in (A3) and (A4). Due to Bally, Talay (1996a), the estimate (A3) with (70)
is sharp under the assumptions (C) and (UH). Under standard assumptions, 2�/2 · (X −
X(�)) converges in distribution to a stochastic process U with UT being non-degenerate in
general, see Jacod, Protter (1998). In the latter case we have a projection ϕ(x) = xi such
that (59) with M = 2 and p = 1 does not hold for any β > 1. A slight generalization of
Lemma 2 shows that (A4) does not hold for any β4 < 2 or β5 > 1. Hence the estimate
(A4) with (71) cannot be improved in general for the Euler scheme.

The approximation of marginal densities of SDE in studied in a number of papers
under different aspects. The convergence rate of the density of the Euler approximation

X
(�)
T towards ρ is studied in, e.g., Bally, Talay (1996b) and Gobet, Labart (2008). Milstein,

Schoenmakers, Spokoiny (2004) construct a forward-reverse kernel estimator and provide
an upper bound for its variance.

5.2. Smooth Path-dependent Functionals for SDEs. Let

Y = ϕ(X)

with ϕ : C([0, T ],Rd) → R being Lipschitz continuous. We assume that the cost of com-
puting ϕ(x) for a piecewise linear path x ∈ C([0, T ],Rd) with m breakpoints is bounded
by a constant times m, and for approximation of Y we use Y (�) = ϕ(X(�)), where X(�)
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denotes the Euler scheme with 2� equidistant time-steps and piecewise linear interpola-
tion. Then (A2) holds with M = 2, and the following fact is well-known under standard
assumptions on the coefficients of the SDE. For every 1 ≤ p < ∞ there exists a constant
cp > 0 such that

�Y − Y (�)�p ≤ cp ·
�
� ·M−�

�1/2

for every � ∈ N. Consequently, (59) holds with

β = 1 − ε,

and we get (A4) with

(72) β4 = 2, β5 = 1 − ε

see (60), (A5) with

β1 = 1 + ε, β2 = 1 − ε, β3 = 1/2 − ε

under the assumptions (S2) and (S3) or (S2) and (S5), see (61), as well as (A3) with

(73) α1 = 0, α2 = 1/2 − ε, α3 = 1/2 − ε,

see (62). Furthermore, (6) holds with

α = 1/2 − ε,

see (63).
We therefore have q = 2 · (r + 1) + ε and max(1, β4/β5) = 2 + ε, and (13) in Theorem

1 yields

γ = 2 + 2/(r + 1) + ε

for the approximation of F on [S0, S1]. Likewise, (37) in Theorem 2 yields

γ = 2 + 4/r + ε

for the approximation of ρ on [S0, S1]. Moreover, β† = 2 + ε, so that (49) in Theorem 3
yields

γ = 2 + 1/(r + 1) + ε

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems proper
multi-level algorithms are always superior to single-level algorithms, see Remarks 3, 6,
and 7.

Note that Section 5.1 is dealing with a particular instance of the functionals studied
here. We achieve essentially the same order of convergence for the problems studied in
Sections 5.1 and 5.2, if r ≥ 1, and we always get γ = 2 in the limit r → ∞.

Remark 12. We comment on the optimality of the parameters αi and βi according to
(73) and (72) in (A3) and (A4). Due to Remark 11 the estimate (A4) with (72) cannot
be improved in general for the Euler scheme. Concerning (A3) we are not aware of an
optimality result. We refer, however, to Alfonsi, Jourdain, Kohatsu-Higa (2013), who
study processes Y (�) that coincide with the Euler scheme X(�) at the discretization points,
but instead of 2� Brownian increments the whole trajectory of the Brownian motion is
employed. They provide an upper bound of the order 2/3− ε for Wasserstein distance of
X and Y (�) in the case d = 1.
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5.3. Stopped Exit Times for SDEs. Consider a bounded domain D ⊂ Rd such that
X0 ∈ D, and let

Y = ϕ(X)

be the corresponding exit time, stopped at T > 0, i.e.,

ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T

for x ∈ C([0, T ],Rd). We assume that the cost of computing ϕ(x) for a piecewise linear
path x ∈ C([0, T ],Rd) with m breakpoints is bounded by a constant times m, and as in
the previous section Y (�) is the Euler scheme X(�) composed with ϕ. Then (A2) holds
with M = 2. For every 1 ≤ p < ∞ there exists a constant cp > 0 such that

(74) �Y − Y (�)�p ≤ cp ·M−�/(2p)

for every � ∈ N, see Bouchard, Geiss, Gobet (2013). From (3) we get (A4) with

β4 = 1, β5 = 1/2,

and (44) and Lemma 5 yield (A5) with

β1 = 1, β2 = 1/2, β3 = 1/4.

Furthermore, (1) and Lemma 5 yield (A3) with

α1 = 1, α2 = 1/2, α3 = 1/4

under the assumptions (S2) and (S3) or (S2) and (S5), while (6) holds with

α = 1/4.

We therefore have q = 2r + 4 and max(1, β4/β5) = 2, and (13) in Theorem 1 yields

(γ, η) = (3 + 2/(r + 1), 1)

for the approximation of F on [S0, S1]. Likewise, (37) in Theorem 2 yields

(γ, η) = (3 + 5/r, 1)

for the approximation of ρ on [S0, S1]. Moreover, β† = 3, so that (49) in Theorem 3 yields

(75) (γ, η) = (3 + 2/(r + 1), 0)

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems, proper
multi-level algorithms are superior to single-level algorithms for every r ∈ N0, see Remarks
3, 6, and 7, but we only get γ = 3 in the limit r → ∞. The latter is in contrast to the
results from Sections 5.1 and 5.2, and it is basically due to the fact that the upper bound
(74) for strong approximation of Y by Y (�) depends on p in the most unfavorable way. We
add that numerical experiments suggest that the upper bound (74) cannot be improved,
in general. Furthermore, observe that for stopped exit times the same order γ is achieved
for the approximation of F on a compact interval and at a single point.

We add that (33) and (58) are satisfied for every r ≥ 1, and therefore smoothing already
help for the single-level algorithm to approximate the distribution function of the stopped
exit time.

Remark 13. For the approximation of the mean E(Y ) of the stopped exit time a multi-
level Euler algorithm has been constructed and analyzed in Higham et al. (2013). It is
shown that the order γ = 3 + ε is achieved under standard smoothness assumptions on
the coefficients of the SDE and on the domain D.
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Figure 1. Smoothing polynomials g.

6. Numerical Experiments

The main goal of our numerical experiments is to demonstrate the potential of the
new multi-level algorithm. We consider three benchmark problems according to Sections
5.1–5.3 for a simple, scalar SDE, where the solutions are known analytically. We present
results only for the approximation of distribution functions on a compact interval [S0, S1],
as the main numerical difference to the other two problems studied in this paper is in
the deterministic interpolation part. Our numerical experiments show the computational
gain in terms of upper bounds, achieved by the multi-level Monte Carlo approach with
smoothing in comparison to the single-level Monte Carlo approach without smoothing.
Furthermore, we compare the error of the multi-level algorithm with the accuracy demand
�, which serves as an input to the algorithm. An extensive numerical study of our algorithm
and the adaptive choice of its parameters is out of the scope of the current paper and will
be presented in a subsequent paper.

Consider a geometric Brownian motion X, given by

dXt = µ ·Xt dt + σ ·Xt dWt, t ∈ [0, T ],

X0 = 1,

where W denotes a scalar Brownian motion. For the approximation of X we use the
Euler scheme with equidistant time-steps, so that M = 2. The corresponding values of
the parameters αi and βi are presented in Sections 5.1–5.3.

In the examples from this section, the assumption (A1) holds for every r ∈ N, but
typically we think of r being unknown. Hence we choose r̃ ∈ N0, instead, and a particular
purpose of the numerical experiments is to illustrate the impact of r̃. In all our experiments
we take

r̃ = 3, 5, 7, 9, 11,

and the corresponding smoothing polynomials g according to Remark 1 can be seen in
Figure 1.

Given � and r̃, we basically choose the remaining parameters of the multi-level (single-
level) algorithm such that all four (three) terms in the upper bound (15) are of the order
�2. For the multi-level algorithm with smoothing we choose the parameters L0, L1, and
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N� according to (30), (25), (21), and (31), with r replaced by r̃, while

δ = 2−1/(r̃+1) · �1/(r̃+1),

cf. (19). For the single-level algorithm without smoothing, see Remark 2, we choose L =
L0 = L1 and NL according to (25) and (21), too, however observing (7), which leads to
q = (r̃ + 1)/α.

In the second stage of the algorithm we employ piecewise polynomial interpolation Q3
k

of degree 3 with equidistant knots for any r̃. Due to the Lebesgue constants involved,
this is preferable to Qr̃

k with a large value of r̃ if the overall number k of interpolation
points is comparatively small. Furthermore, it is convenient if k − 1 is a multiple of 3
and proportional to the length of the interval [S0, S1]. In both cases, single-level and
multi-level, we therefore take

(76) k = 3 ·
�
5 · �−1/(r̃+1) · (S1 − S0)/3

�
+ 1,

cf. (20).
To specify the computational gain we compare the upper bound (17) for the cost of the

multi-level Monte Carlo algorithm with smoothing and the corresponding upper bound

c(k, L,N) = N · (2L + k),

for the cost of the single-level algorithm. The ratio c(k, L0, L1, NL0 , . . . , NL1)/c(k, L,N),
which is a function of the desired accuracy �, is used to describe the computational gain.

To assess the accuracy of the multi-level algorithm, error(Q3
k(M)), which depends on �

and r̃, should be compared with the desired accuracy �. Since error(Q3
k(M)) is not known

exactly, we employ a simple Monte Carlo experiment with 25 independent replications for
each of the values of r̃ and each of the values � = 2−i for i = 3, . . . , 11. The estimate is
denoted by RMSE(�, r̃). In the present approach we do not have an exact control of the
error of the multi-level (single-level) algorithm for a given �, since the parameters of the
algorithm are chosen on the basis of the asymptotic analysis from Section 2. Therefore
we only aim at RMSE(�, r̃) being reasonably close to �.

6.1. Smooth Path-independent Functionals for SDEs. In this section we set

µ = 0.05, σ = 0.2, T = 1,

and we approximate the distribution function F (s) = E(1]∞,s](Y )) of

Y = XT

on the interval

[S0, S1] = [0, 2].

Note that Y is lognormally distributed with parameters µ− σ2/2 and σ2.
The computational gain as well as the replication numbers N� for the multi-level algo-

rithm with � = 2−11 are presented in Figure 2. The maximal level L1 of the multi-level
algorithm coincides with the level chosen by the single-level algorithm, and this level does
not depend on r̃. For smaller values of r̃ the multi-level algorithm start on a higher level
L0, and therefore the computational gain in the case r̃ = 3 is only about a factor two. For
large values of r̃ we observe a reasonable computational gain already for moderate values
of �. In Figure 3 we compare the estimate RMSE(�, r̃) for the error of the multi-level
algorithm and the accuracy demand �. Note that RMSE(�, r̃) is in the range of �; actually,
it is less that � in almost all cases.
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Figure 2. Path-independent functional: replication numbers (left) and
computational gain (right).
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Figure 3. Path-independent functional: error vs. accuracy demand �.

6.2. Smooth Path-dependent Functionals for SDEs. For this test case we use the
same parameters for the SDE and the same interval [S0, S1] as in Section 6.1. We approx-
imate the function

F (s) = E
�
e−µ·T · max(XT −X0, 0) · 1]−∞,s](Y )

�
,

where

Y = max
t∈[0,T ]

Xt.

See Shreve (2008, p. 307) for the analytical solution. Note that this problem does not
exactly fit into our framework, due the the presence of max(XT −X0, 0) in the definition
of the functional. Still, the multi-level smoothing approach is applicable.

See Figures 4, with replication numbers for � = 2−10, and 5 for the results. As the main
difference, compared to the previous section, the computational gain is substantially larger
for the path-dependent functional. This is due to the following facts. The orders of strong
convergence are essentially the same for both problems. However, the maximal level, which
once more coincide with the level chosen by the single-level algorithm, is essentially twice
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Figure 4. Path-dependent functional: replication numbers (left) and com-
putational gain (right).
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Figure 5. Path-dependent functional: error vs. accuracy demand �.

as large as in the previous case, due to the slower decay of the bias. This results in a
larger value of L1 − L0, which provides an advantage to the multi-level approach.

6.3. Stopped Exit Times for SDEs. In this section we set

µ = 0.01, σ = 0.2, T = 2,

and we approximate the distribution function F (s) = E(1]∞,s](Y )) of

Y = inf{t ≥ 0 : Xt = b} ∧ T

with b = 0.8 on the interval

[S0, S1] = [0, 1].

The distribution of inf{t ≥ 0 : Xt = b} is an inverse Gaussian distribution with parameters
ln b/(µ− σ2/2) and (ln b)2/σ2, and this yields an explicit formula for F since T > S1.

See Figures 6, with replication numbers for � = 2−9, and 7 for the results. Observe that
the computational gain is even larger than in the previous section. This difference is due
to the fact that smoothing already yields an improved weak error estimate for the present
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putational gain (right).
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problem. Consequently,

L1 =

�
2 +

2

r̃ + 1

�
· log2 �−1

is the maximal level for the multi-level algorithm, up to integer rounding, but for the
single-level algorithm without smoothing we have to take

L = 4 · log2 �−1.
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[127] M. Kovács, S. Larsson, and K. Urban. On Wavelet-Galerkin methods for semilinear
parabolic equations with additive noise. Preprint 127, DFG-SPP 1324, August
2012.

[128] M. Bachmayr, H. Chen, and R. Schneider. Numerical analysis of Gaussian ap-
proximations in quantum chemistry. Preprint 128, DFG-SPP 1324, August 2012.

[129] D. Rudolf. Explicit error bounds for Markov chain Monte Carlo. Preprint 129,
DFG-SPP 1324, August 2012.

[130] P.A. Cioica, K.-H. Kim, K. Lee, and F. Lindner. On the Lq(Lp)-regularity and
Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains.
Preprint 130, DFG-SPP 1324, December 2012.



[131] M. Hansen. n−term Approximation Rates and Besov Regularity for Elliptic PDEs
on Polyhedral Domains. Preprint 131, DFG-SPP 1324, December 2012.

[132] R. E. Bank and H. Yserentant. On the H1 -stability of the L2 -projection onto
finite element spaces. Preprint 132, DFG-SPP 1324, December 2012.

[133] M. Gnewuch, S. Mayer, and K. Ritter. On Weighted Hilbert Spaces and Inte-
gration of Functions of Infinitely Many Variables. Preprint 133, DFG-SPP 1324,
December 2012.

[134] D. Crisan, J. Diehl, P.K. Friz, and H. Oberhauser. Robust Filtering: Correlated
Noise and Multidimensional Observation. Preprint 134, DFG-SPP 1324, January
2013.

[135] Wolfgang Dahmen, Christian Plesken, and Gerrit Welper. Double Greedy Algo-
rithms: Reduced Basis Methods for Transport Dominated Problems. Preprint
135, DFG-SPP 1324, February 2013.

[136] Aicke Hinrichs, Erich Novak, Mario Ullrich, and Henryk Wozniakowski. The Curse
of Dimensionality for Numerical Integration of Smooth Functions. Preprint 136,
DFG-SPP 1324, February 2013.

[137] Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck. Ap-
proximation of High-Dimensional Rank One Tensors. Preprint 137, DFG-SPP
1324, March 2013.

[138] Markus Bachmayr and Wolfgang Dahmen. Adaptive Near-Optimal Rank Tensor
Approximation for High-Dimensional Operator Equations. Preprint 138, DFG-
SPP 1324, April 2013.

[139] Felix Lindner. Singular Behavior of the Solution to the Stochastic Heat Equation
on a Polygonal Domain. Preprint 139, DFG-SPP 1324, May 2013.

[140] Stephan Dahlke, Dominik Lellek, Shiu Hong Lui, and Rob Stevenson. Adaptive
Wavelet Schwarz Methods for the Navier-Stokes Equation. Preprint 140, DFG-
SPP 1324, May 2013.

[141] Jonas Ballani and Lars Grasedyck. Tree Adaptive Approximation in the Hierar-
chical Tensor Format. Preprint 141, DFG-SPP 1324, June 2013.

[142] Harry Yserentant. A short theory of the Rayleigh-Ritz method. Preprint 142,
DFG-SPP 1324, July 2013.

[143] M. Hefter and K. Ritter. On Embeddings of Weighted Tensor Product Hilbert
Spaces. Preprint 143, DFG-SPP 1324, August 2013.



[144] M. Altmayer and A. Neuenkirch. Multilevel Monte Carlo Quadrature of Discon-
tinuous Payoffs in the Generalized Heston Model using Malliavin Integration by
Parts. Preprint 144, DFG-SPP 1324, August 2013.

[145] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate functions
by trigonometric polynomials based on rank-1 lattice sampling. Preprint 145,
DFG-SPP 1324, September 2013.

[146] C. Bender, N. Schweizer, and J. Zhuo. A primal-dual algorithm for BSDEs.
Preprint 146, DFG-SPP 1324, October 2013.

[147] D. Rudolf. Hit-and-run for numerical integration. Preprint 147, DFG-SPP 1324,
October 2013.

[148] D. Rudolf and M. Ullrich. Positivity of hit-and-run and related algorithms.
Preprint 148, DFG-SPP 1324, October 2013.
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