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Abstract

In the paper we prove the existence results for initial-value bound-
ary value problems for compressible isothermal Navier-Stokes equa-
tions. We restrict ourselves to 2D case of a problem with no-slip
condition for nonstationary motion of viscous compressible isother-
mal fluid. However, the technique of modeling and analysis presented
here is general and can be used for 3D problems.
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1 Introduction

1.1 Problem formulation

Suppose a viscous compressible fluid occupies a bounded domain  C R2.
The state of the fluid is characterized by the macroscopic quantities: the den-
sity o(x,t) and the velocity u(x,t). The problem is to find u(z,t) and o(z, t)
satisfying the following equations and boundary conditions in the cylinder
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QT = X (O,T)

O(pu) +div(ou ® u) + Vo =divS(u) + of in Qr, (1a)
0o+ div(pu) =0 in Qr, (1b)

u=0 ondf2x(0,7), (1c)

u(z,0) =up(z), o(z,0) =pgo(z) in Q. (1d)

Here, the vector field f denotes the density of external mass forces, the viscous
stress tensor S(u) has the form

S(u) = v1(Vu+ Vu') + vediv ul, (le)

in which the viscosity coefficients satisfy the inequalities v1 > 0, v; + 15 > 0.
It is necessary to notice that problem () is the simplest multidimensional
boundary value problem for the compressible Navier-Stokes equations. In
1986 Padula, see [§], formulated the result on existence of a weak solution
to problem (dI), but the proof presented was incomplete, see [9]. The first
nonlocal results concerning the mathematical theory of compressible Navier-
Stokes equations are due to P.-L. Lions. In monograph [6] he established
the existence of a renormalized solution to nonstationary boundary value
problem for the Navier-Stokes equations with the pressure function p ~ o7
for all v > 5/3 in 3D case and for all v > 3/2 in 2D case. More recently,
Feireisl, Novotny, and Petzeltova’, see [4], proved the existence result for all
v > 3/21in 3D case and for all ¥ > 1 in 2D case, see also monographs [5], [7],
and [I0] for references and details. The question on solvability of problem ()
remained open. The main difficulty is the so called concentration problem,
see [6] ch.6.6. This means that the finite kinetic energy can be concentrated
in very small domains. Our goal is to relax the restriction v > 1 and to prove
the existence of solutions to problem (IJ). In order to make the presentation
clearer and avoid unnecessary technical difficulties, we assume that the flow
domain and the given data satisfy the hypotheses:

Condition 1.1. e The flow domain Q C R? is a bounded domain with
C* boundary.

e The data satisfy po,up € L>®(Q), £ € L>(Qr), and
ol + leollze@) + IfllLe@r) < ¢, 00 >¢>0,  (2)

where ¢, ¢ are positive constants.
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Remark 1.1. Further, we denote by E generic constants depending only on
QT [Jooll =@y [[vollr2()s [[EllL=@r), and v;.

We claim that problem () admits a weak solution which is defined as
follows:

Definition 1.1. A couple
0 € L¥(0,T;LN(Q)), u e L*(0,T: Wy* ()
is said to be a weak solution to problem () if (o,u) satisfies

o The kinetic energy is bounded, i.e., olu|?> € L>°(0,T; L}(Q)). The den-
sity function is non-negative o > 0.

e The integral identity
/ (ou- 9, + pu®u: V& + odiv € — S(u) : VE) dudt

+/ of - € dxdt + /(Qouo)(:c) -€)(x,0)dx =0 (3)
T Q
holds for all vector fields & € C*°(Qr) vanishing in a neighborhood of
00 x [0,T] and of Q x {t="T}.
e The integral identity

/ (gatw + ou - Vw) dxdt + /Q 0o(z)(x,0)dx =0 (4)

T

holds for all ¢ € C*(Qr) vanishing in a neighborhood of the top € X
{t="T1}.

The following existence theorem is the main result of the paper.

Theorem 1.1. Assume that Condition[I1 is fulfilled. Then problem () has
a weak solution which meets all requirements of Definition [L.1l and satisfies
the estimate

||u||L2(0,T;W01’2(Q)) + ||Q|u|2||Lo<>(o,T;L1(Q)) + llolog(1 + 0)|| L= (o,7;11(0)) < E,
()

where the constant E is as in Remark 11
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The next theorem, which is the second main result of the paper, shows
that a weak solution to problem (II) has extra regularity properties.

Theorem 1.2. Let Condition[11 be satisfied. Assume that (p,u) meets all
requirements of Theorem[L.1. Furthermore assume that u and o are extended
by 0 to R? x (0,T). Then for every nonnegative function ¢ € C5°(R?) with
spt ¢ € €,

west

T oo

ess sup / / ®(w,7,t)* drdt < c(¢)FE, (6)
0 —oo

where ® is the Radon transform of ((z)o(x,t),

B(w, 7, 1) = / C(x)o(x, 1) dl. (1)

Moreover, the function o admits the estimates

HCQHL?(O,T;H*U?(E@)) < c(Q)F,
[CollLi+agry < c((,A)E for all X €10,1/6).

Here ¢(¢) depends only on ¢ and ¢((, \) depends only on ¢, A.

The remaining part of the paper is devoted to the proof of these theorems.
In sections Pl and [B] we collect basic facts on Sobolev spaces, the Radon
transform, and the isentropic Navier-Stokes equations. Section [ is the heart
of the work. Here we derive the L2-estimates for the Radon transform of the
density function p. In sections [l and [6l we prove that the density is locally
integrable with exponent 1+ A < 7/6. In section [7] we complete the proof of
Theorems [Tl and

2 Preliminaries

2.1 Sobolev spaces. Radon transform. Multiplicators

For every s € R, denote by H*(R?) the Sobolev space of all tempered distri-
butions u in R? with the finite norm

ey = [|(1+ 1627 Full 2gey, (9)

lul
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where Fu(§) is the Fourier transform of w. For all nonnegative integers £k,

the space H*(IR?) coincides with W*?2(IR?). For every u € L?(R?) and s > 0
we have f p

ug dx

||| fr-s2y = sup C1C

gers(&2) |9l w2

Introduce the Bessel kernel Gy = F~1(1+ [£]%)~Y/2. Tt is well-known that it is
strictly positive and analytic in R?\ {0}. Moreover, the Bessel kernel admits
the estimates

(10)

e TP < Gi(z) S 2|t for |2 <1, Gi(2) <clz|teFl for |2 > 1.
(11)

In particular, for every N > 0 there exists a constant e(N) > 0 with the
property

e(N)|z]7 < Gi(2) < c|z|™! for |z| < N. (12)
The equality

HG1 X u||Hs+1(R2) = ||u||H5(R2). (13)

holds true for all u € H*(R?), s € R.
The next lemma constitutes Sobolev estimates for the functions with
integrable Radon transform.

Lemma 2.1. Let g € L*(R?) be a compactly supported. Then

1
||g||?{—1/2(R2) < o / d(w,7)?dwdr, where ®(w,T) = / g(x)dl.
SIxR w-r=T
(14)
Proof. The proof is in Appendix [Al O

The last lemma concerns multiplicative properties of Sobolev spaces.

Lemma 2.2. Let s > 1/2, g € L*(R?) and v € H'(R?). Then there is
c(s) > 0 such that

lgulla—s@2) < c($)llgll 172y 1l 1 @2). (15)

Proof. The proof is in Appendix [Al O
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2.2 Poisson equation

Let Q C R? be a bounded domain and r € (1,00). Let f € L"(R?) be an
arbitrary function such that spt f C €. Then, see [3], the Poisson equation

Au=f inR? (16)

has a solution with the properties: This solution is analytic outside of €2, and
satisfies

lim sup (log |2]) ™ u(@)| < 0o, Nullwr2(za) < cllfller@a)-

|z| =00

Here Bp is the ball {x € R? : |z| < R} of an arbitrary radius R < oo, and
the constant ¢ depends only on R and 2. The relation f — w determines a
linear operator A~1. In this framework we can define the linear operators

Aj=0,A7", Rj=09,,(-A)"? j=1.2

The Riesz operator R; is a singular integral operator and by the Zygmund-
Calderén theorem it is bounded in any space LP(RY) with 1 < p < oo. In
particular we have

1A fllwirsr) < c(R, Q)| fllr@2) when sptf C €,
[1R; fllLorzy < c(r)|| f]Lrre2)-

Notice that these operators have integral representations. In particular, we
have

Af@) =e [ Jo =yl = ) d. (17)

3 Regularized problem

In order to regularize problem ([II) we use the artificial pressure method and
replace equations ([Il) by regularized equations

O(ou) + div(pu @ u) + Vp(p) = divS(u) + of in Qr, (
0o+ div(pu) =0 in Qr, (

u=0 ondQx(0,7), (18¢c
u(z,0) =up(z), o(z,0) =g(z) inQ (
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Here, the artificial pressure function is given by
plo) =o+e0", €€ (0,1, 7>6. (18¢)

The existence of weak renormalized solutions to problem ([I8]) was established
in monographs [5] and [6]. The following proposition is a consequence of these
results.

Proposition 3.1. Let domain §2, and functions ug, 09, f satisfy Condition
[I1. Then problem (I8)) has a weak solution (g, u) with the following proper-
ties:

(i) The functions 0 > 0 and u satisfy the energy inequality

esssup/ {olul* + oln(1 + o) + c0" }(z,1) d:c+/ |Vu|? dzdt < cE.
Q Qr

te(0,T)
(19)
The constant E is as in Remark[1 1.

(i1) The integral identity
/ (Qu . 8{) dxdt + / (Qu ®@u+po)I— S(u)) : VE dxdt+
Qr Qr
/ of - € dxdt + / oo(z)ug(x) - &(x,0)dx =0 (20)
T Q
holds for all vector fields & € C*°(Q) satisfying
Ex,T)=0 inQ, &x,t)=0 ondQx(0,T). (21)

(iii) The integral identity

/ (@(@)&ew + (p(ou) - Vi =9 (¢'(0)o — ¢(0)) div u) dadt

T

T / (bp(o0))(x.0)dr =0 (22)

holds for all smooth functions 1, vanishing in a neighborhood of the top
Q x {t =T}, and for all functions p € C?[0,00) satisfying the growth
condition

()] + ¢ ()l + l¢"(0)0*| < C(1+ o). (23)
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Remark 3.1. Further we will assume that (o,u) and (9o, uy) are extended by
0 to the layer
I = R*x(0,7T). (24)

The following consequences of Proposition [3.1] will be used throughout
the paper.

Corollary 3.1. Assume that (o, u) meets all requirements of Proposition[31].
Then there is a constant c¢(E, €), depending only on E, B, «, v, and €, such
that

||Qu||L°o(o T2/ () < (E,¢),

c
loull207:08(0)) < c(E,€)  forall B € [1,00] with B <4,
lou| a0 120y < c(E,€)  for all a € [1,2y —2).

Proof. 1t follows from (I9) that

c(E,e),
c(E,¢).

o]l 0.7:L ) + lolal]l Lo 021 @)

<
. (25)

[l L2(0,T;W)2(Q)

Hence (p,u) are bounded energy functions and the corollary is a particular
case of Corollary 4.2.2 in [10]. O

Corollary 3.2. Assume that (0, u) meets all requirements of Proposition[3.]l.
Then there is a constant c(E,¢), depending only on E, 7, and €, such that

lolul* |l 22007 < c(E,€)  forall T € [1,27/(v+ 1)), (26)
||Q|u|2||L1(O,T;LT( Q)) < (E,E) fO’f’ all T € [177) (27)

Proof. In view of (25) the corollary is a particular case of Corollary 4.2.3 in
[10]. O

4 Radon transform

In this section we estimate the Radon transform of solutions to regularized
equations (I8)). The corresponding result is given by the following theorem.
Fix an arbitrary function ¢ with the properties

C€CPR?, sptC€eQ, (¢>0. (28)
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Theorem 4.1. Assume that a renormalized solution to problem ([I8) meets
all requirements of Proposition [3.1. Furthermore, assume that u and o are
extended by 0 to the layer I1. Then for every unit vector w € R2,

/OT /_Z { /MZT C(x)o(x,t) dl}Qdet < c(Q)E, (29)

where ¢(C) depends only on (, and E is specified by Remark[1.1. Notice that
c(¢) and E are independent of w and ¢.

Since the Navier- Stokes equations are invariant with respect to rotations,
it suffices to prove (29) for w = (1,0), i.e., to prove the inequality

/ / /C o(x,t dzvg} drydt < ¢(¢)E. (30)

We split the proof of ([B0) into a sequence of lemmas.

Lemma 4.1. Let all hypotheses of Theorem[{.1] be satisfied. Then for every
function ¢ € C*°(Qr) vanishing in a neighborhood of 022 x (0,7,

dp Op
/QT (Qul -Opp + (QU1U7L —S(u)a )8 + 8—:):1> dxdt+

/ of ¢ dudt < o(Q)E|¢llzeir). (31)

T

Proof. Set
1
nu(t) =1 for t <T —h, n:E(T—t) for te [T —h,T). (32)

Substituting € = (n,¢, 0) into (20) we arrive at the identity

0 Op
/ npouy - Opp drdt + / Uh(( ouru; — S(u); ) 890 + 87) drdt+
T T 1

1 T
| mesipdrit=1 [ [ owipdsit~ [ usopte0yde. (33
Qr T—h JQ Q

Next notice that

1 T
‘—/ /gulgodxdt‘ —l—‘/gouw(p(aj,O) d:c‘ <
hJr_nJa Q

HQUHLM(O,T;U(Q))HSOHLw(QT) + ||Qou0||L1(Q)||<P||L°°(QT) < EHSOHLW(QT)-
Letting h — 0 in (B3] we arrive at (31]) O
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Now we specify the test function ¢. Choose w : R — R satisfying
weCyP(R), sptwcC[-1,1], w iseven, /w(s)ds:l,
R
For every f € Li..(R?) define the mollifiers

Mh:%/ww(xl;yl)w(%;w)f(y)dy- (34)

Introduce the auxiliary functions

H(zl,t):/ml (s, 1) ds, \If(:)sl,t):/R[Cg]h(atl,:):g,t)dxg, (35a)

—00

and take the test function ¢ in the form
p(z,t) = ((x) [H ], (21,1). (35b)
The following lemma constitutes properties of ¥ and H.
Lemma 4.2. ¥, H € L>(0,T; C¥(R)) for every integer k > 0, and
[ H [ Loorx 0.1 < c(Q)E. (36)

Proof. Notice that (o € L*>(0,T; L*(R?)) and its norm in this space does
not exceed E. Hence for a.e. t € (0,7T),

<], O ller@e) < c(B)ICo(t)] ey < c(k)E.

Hence [Cg}h belongs to L>(0,T; C*(R)). Next, there is N such that the
square [—N + 1, N — 1]? contains domain 2. Hence the function [Cg]h(t) is

compactly supported in the square [~ N, N|?. It follows that ¥ € L>(0, T; C*(R))

and W(-,t) is supported in the interval [—N, N]. From this and (85]) we con-
clude that H € L*(0,T; C*(R)). It remains to note that

Hao) < [

R

\If(Il, t)d.l’l S /

R2

dzdt = ddt = dz < cE.
[CQ]h wdt /Rzgg xdt Q/C(l’)g(x,t) r<c

O

Now we investigate in details the time dependence of H.
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Lemma 4.3. The function 0,H belongs to the class L>(0,T;C*(Q)) for
every integer k > 0. Moreover, it has the representation

OH = —vp + Jo, where vp(x1,t) = / [(gul}h(:vl,xg,t) dxs, (37)
R
and the reminder admits the estimate

| Jol < c(Q)E. (38)
Proof. Integral identity (22)) with ¢(9) = ¢ and 1 replaced by (v reads

/H ((g o) + Cou - Vi) + @DQVCu) dxdt + . ¥(x,0)((x)oo(x) dx = 0. (39)

This identity holds true for all functions ¢ € C°°(R? x (0,T'), vanishing in a
neighborhood of the top R?x {t = T'}. Now choose an arbitrary £ € C5°(0,T')
and y € R%. Inserting

U= €)% (P (P )

into (B9) we arrive at

/0 ([cel, v, g'(t) ~ £div [Conl, (v, 1) +£[0VC]  (v.1) )t = 0,
which yields
Oy [CQL} = —div [Cgu}h + [QVC . u}h in R?x [0,7]. (40)

Next, Corollary BT implies that ou and oV( -u belong to L*°(0, T; L(R?)).
Hence the functions div [Cou], and [oV( - u], belong to L>(0,T; C*(R?))
for all integer k& > 0. Moreover, they are supported in Q. It follows that
Oy [Cg}h belongs to L*°(0,T; C*(R?)) and is supported in Q7. Therefore, the

function 5 oo
8tH:/ / 8,5[Cg]h(s,x2,t) dsdzs

belongs to the class L>(0,T; C*(R?)). Integrating both sides of (@0) over
(—o0, 1] x R we obtain representation (B7]) with the reminder

Jo(xl,t):/m {/R[Qvg-u]h(s,xg,t)d@}ds.

—00
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[t remains to note that for a. e. ¢ € (0,7'), we have

et < [ [elVclul] o de = [ o9l i <

(0) / olul(z, dz < ()]l ol =1y < c(C)E-
]

In view of Lemma the function ¢ given by formula (B3] belongs to
L>(0,T; C*(R?)) and is supported in Q7. Moreover, we have

lellz=@r) < AOIH Lo @x(0m) < c(O)E. (41)
Substituting ¢ in (31 and using (AI]) we obtain
[1+[2+13+[4+[5§C(<)E (42)

where

[1:/gu10tg0dxdt, Igz/guluiﬁxicpd:vdt, Ig,:/pﬁxlgpdxdt,
0| n n

(43)
Iy = —/ Si1 Oy, pdadt, Iy = / ofipdxdt.
I I
Let us consider each term in (42]) separately.
Lemma 4.4.
T
—/ /vi drydt + Jy, where |J1] < c(Q)E. (44)
o Jr

Proof. Since gu; € L*(I1) and the mollifying operator is symmetric, it follows
from (B3] that

]1:/ |:CQ’LL1:| (Il,LEQ,t)agH(Il,t)dl’dt.
I h

Next, the function [Q gul} X is supported in © x [0, T']. Therefore, the function

vy, is supported in every rectangular [—N, N|x [0, T] such that [-N, N|* D Q.
From this we conclude that

I = // /Cgul diEz}at (w1, t)dxdt = //Uh x1,t)0 H (21, t) duq dt.
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Inserting expression ([B17) for J;H we obtain representation (44]) with the

reminder T
J1=/ /Jovhdxldt.
o Jr

It remains to note that in view of (3],

T
|J1] SC(C)E/O /R|Uh|d$1dt§C(C)E/n[CQ|Uth$dt
= cE/H§g|u| dxdt = cE /QT Colu| dzdt < c(C)E/ olu| dzdt < ¢(C)E.

Qr

Lemma 4.5.

T
12:/ /Th(xl,t)‘lf(:cl,t) dx,dt + Js, whereTh:/[Cguﬂh(xl,xg,t) dxo,
o Jr

R
(45)
and the reminder Jo admits the estimate

| 2| < c(Q)E. (46)

Moreover, the function Yj belongs to the class L=(0,T; C*(R)) for every
integer k > 0. It is supported in any rectangular [—N, N] x [0,T] such that
[-N,NJ?> > Q.

Proof. Notice that Cou;u; € L>®(0,T; LY(€)) is supported in Q7. It follows
from (B3] that

/(gul , dxdt + Jy, where J, = /gul(VC -u)[H], dxdt.

II

Since 0., H = VU is independent of x5, we have

/ CQul , dxdt = / Cgul , dadt = / [(guﬂ ¥ dedt =

II

/OT/R‘I’(IM){/R [CQUﬂhdxz}dxldtz/o /IRTh(xl>t)\I’(l'1,t) dudt.
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This leads to the desired representation (45]). In order to estimate J, notice
that in view of (36)), we have sup |[H], | < sup H < ¢(¢)E. This gives

|Jo| < C(C)E/ olulPdzdt < c(¢)E.

T

Lemma 4.6.
T
Iy > / / U2dadt + J3, where |Js| < c(¢, E). (47)
0 R

Proof. We have
am(p = 8901C[H]h + C[\I]]h

Hence
13:/§p[\11]hd:cdt+J3, where J3:/8x1Cp[H]hd:cdt.
i} i}

Since ¥ is nonnegative we have

/ Cp[V], dedt = / Co[¥], dudi + < / (o [V], dudt >
11 11 11
T
/HCQ[\I/}hdxdt:/H[(g}h\lfd:cdt:/o /R\Ifzd:cldt,

which leads to (AT). It remains to estimate .J5. To this end notice that in

view of ([36]) and (I9]),

T
3] < (O H | 1 @no) / / pdadt < ¢(C)E.
0 Q

Lemma 4.7.

L] < c(C)E+c(C)E(/OT/R\If2d:c1dt)l/2, | < (OB, (48)
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Proof. 1t follows from formulae (35) that

Notice that [(S], is compactly supported in Q x [0, T]. Hence it is supported
in the slab [—N, N|? x [0, T] such that [-N, N|> D Q. Thus we get

‘ /H (Su [\If]hdxdt‘ = ‘ /H [CSn}hwxdt‘ _ ‘ /OT /[_NN]Z [an}h\ydxdt‘ <

T T
([ fsaiasa) ([ [ weasar)” <
0 J[-N,NJ2 0 J[-N,N]2
T T
( / / (CS11)2d:cdt)1/2(N / / \If2dx1dt>l/2§
0 [-N,N]2 0 [-N,N]
T
c(C)N1/2(/ |Vu|2dxdt>l/2(/ /\IIdeldt>l/2
Qr 0 JR

Since N depends only on €2, these inequalities along with estimate (I9) imply

‘ /H Su [\If}hdxdt‘ < c(g)E< /O ' /R \Ifzdxldt>1/2 (50)

We also have
| / (02,€) S (W) [H]  dzdt| < Q)| H ll=(ex 07y / (Vuldzdt < c(C)E.
(51)

Inserting (B0) and (BI)) into (@9) we arrive at the first inequality in ([48]). Tt
remains to notice that

15| < CHfIILoo(QT)IIHIILoomx(o,T))/Cdedt < C(C)E/ odxdt < c(Q)E.
I

T

O

Lemma 4.8.

I 2 g 2
5/0 /R\If dxldt+/0 /R(Thllf vy) dzydt < c(Q)E. (52)
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Proof. Estimate (48)) for I5 and inequality (42]) imply
]1 + ]2 + [3 + [4 S C(C)E

From this and Lemmas 4.4, we obtain

T
I3+ / /(Thllf —v)drydt < c(Q)E + |1
o Jr

Applying Lemmas and [4.7 we arrive at

/OT/R\Ifzd:C1dt+/OT/R(Th\If—U,2L) dz1dt < co(Q)E+c(C) E (/OT/R\IJdeldt) 1/2’

which obviously leads to (52). O
Lemma 4.9. T, ¥ —v? > 0 4n II.
Proof. We begin with the observation that the inequality
2 2 2
fol < 17710 L97],

holds for all functions f(x), g(x) locally integrable with square in R?. Setting
f=+/Co(-,t) and g = v/Coluy|(-,t) we obtain for a.e. z,t and all § > 0,

[CQ‘UI‘]h(xlvx2ut> < [CQU%];L(%,MJ) [gg}h(fch@,t) <
%5[C0Uﬂh(x1, T, 1) + %5_1 [CQ]h(SL’h T, 1)

Integrating both sides with respect to x5 over R and recalling formulae (37
and ([H) for v, and Yj we arrive at

Uh(l’l, t) S %(5Th($(71, t) + %5_1\1’(1’1, t)

Recall that Y, and ¥ are nonnegative. Setting § = (¥/Y})"/? we obtain the
desired inequality. O

We are now in a position to complete the proof of Theorem 4.1l Introduce
the function

Oy (21,1) = / Co(z1, 29, t) dag = P(eq, 21, 1).
R
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Recall that (p is supported in Q7. It suffices to prove that

' ®? drydt < c(Q)E. (53)
I

By virtue of the energy estimate (I9), the function ®; belongs to the class
L?(0,T;R). Tt is supported in the rectangular [N, N] x [0, T] for every N
such that [—N, NJ> D Q. It obviously follows from this and definition (34])
of the mollifier that

1 —
U= [0,]", where [®]"(21,1) = _/w(“ Yoy, t)dy.
R

h h

In other words, [CDI}S) is the mollifying of ®; with respect to x;. Lemmas
4.8 and imply the inequality

/0 ' /R ([®:]7)? dardt < ¢(Q)E. (54)

Notice that [@1}21) — &7 ae. in R x (0,7). Letting h — 0 in (54) and

applying the Fatou Theorem we arrive at (53). O

5 Momentum estimates

In this section we prove auxiliary estimates for solutions (g, u) to regularized
equations (I8]). We start with the estimating of norms of ¢ and pu in negative
Sobolev spaces.

Proposition 5.1. Let a solution (o,u) to problem (I8)) meets all require-
ments of Proposition[31. Let ( € C5°(R?) be an arbitrary nonnegative com-
pactly supported in Q function and s > 1/2. Then

HCQHLQ(O,T;H*UZ(R?)) < c(Q)F, (55)
[Coul| o1 m2)) < c(()e(s)E, (56)

where ¢(¢) depends only on (, c(s) depends only on s, and E is specified by
Remark [1.1.
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Proof. Lemma 2.1] and Theorem [4.1] imply the estimates

T T o) 9
/ ||<Q||§{—1/2(Rz)dt S/ / / { / Cle} drdwdt =
0 0 St J—o00 .

=T

/Sl {/OT/_Z{ / Codl} drit}duw < e(Q) /S dw < (Q)F,

=T

which yield (55]). Next, Lemma implies the inequality

ICo(t)u(t)[ @2y < (¢, s)l[Co() | 12y [l () || 1 z2).-

From this, (B3]), and estimate (I9) we finally obtain

[Coul| L1050 w2y) < c(C 9)I[C0ll 200,122y [0l 20,1001 (R2Y) < €(C, 8) E.

O

5.1 Cauchy-Riemann equations

Further notation V+ and rot stands for the differential operators
vlf = (_axz.fa amf)a rot w = axzwl - a:(:1w2-

Denote by F = (F}, F») a solution to the inhomogeneous Cauchy-Riemann
equation
VFE, +V*+F,=(ou in II. (57)

It is easily seen that
Fy =div A7 (Cpu), F, = —rot A~ (Cpu). (58)

The following two auxiliary lemmas give LP- estimates for a vector function
F.

Lemma 5.1. Under the assumptions of Proposition[51, for every positive §
and R, there is a constant ¢(6,(, R) such that

I < c(0,¢ R)E. (59)

8
L4(0,T;L3 (BR))
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Proof. Fix an arbitrary positive 6 and R. Without loss of generality we may
assume that § < 1 and Bg D (). Integral representation (7)) for the operator
9, A™! and formulae (ER) for solutions to inhomogeneous Cauchy-Riemann
equations imply the inequalities

Pz, )] < / o~ ol Colul . 1) dy < Sb{a, 0L 1) + b7 ()0 ),
Q
where
L, t) = / =yl ColuP(y, ) dy, Q) = / -y Cody,

b is an arbitrary positive function. Notice that if £(z,t) or Q(x,t) vanishes
at least at one point (z,t), then F(-, ) vanishes in R% In opposite case we

can take b = \/Q/L. Thus we get

|F(z,t)| < e/L(2,t) V/QO(x,t) ae. in R x (0,T) (60)

Now our task is to estimate £ and Q. We have

1—

", s
ﬁ(:c,t)Z/B (Colul?) 2 |z —y[°** (Coul?) * |z —y|*dy,
R

where a = 6/2 > 0. It follows that

146 1—

L(x,t) < c(R)/ (Colu?) * |z — y|_1_‘5+‘”(CQ|u|2)Té dy for = € Bg.
Bgr

Applying the Holder inequality we obtain

148 15
L(z,t) SC( CQ|U|2|93—?/|_2+%CZ?/) i ( CQIUIQdy) c
Br Br

This leads to the inequality

ﬂ 2a
/ L(z,t)T5de < ( CQ|u|2dy> o / Colul*(y, )|z — y|7>"1+5 dady <
Bgr Bgr Bgr J Br

™ 2/(1+)

o | comPlyndy)™ < elllohaPO)llie) "
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Recalling the energy estimate (I9]) we finally obtain
I£] < (R, )llelulllL~orii@y < (¢, R)E.  (61)

Now our task is to estimate Q. Notice that |x —y| < 2R for all x,y € Bg. It
follows from this and (I2)) that |z — y|™' < ¢(R)Gy(z —y) for all x,y € Bg,
where GGy is the Bessel kernel. We thus get

2
L>°(0,T;L1+3 (BR))

Q1) <e(R) [ Gila = y)6aly.t)dy = Gl.).
R
Estimate (I3]) for the Bessel kernel and inequality (55) yield

HG||L2(0,T;H1/2(R2) < HCQ||L(O,T;H*1/2(R2)) <c(Q)E.

Since the embedding H'/2?(R?) — L*(R?) is bounded, see [I], thm. 7.57, we
obtain

1Rl 20.7:01(8r)) < (B)GlL20.1:8(8r)) < C(RGp20,1m1/2m2)) < (R, Q) E.

Combining these inequalities with (61 we arrive at the estimates

VL g SCROE, IVQlliorizsma < c(R.QOE. (62)

Loo(0,75L1+% (BR))
Next, the Holder inequality implies that
||\/Z\/é||LT(O,T;LT(BR)) < ||\/Z||L71(O,T;L’"1(BR))||\/§||L72(0,T§LT'2(BR))
for all 7,7, 7, r; € [1, 00| satisfying the condition
-1

-1 -1 -1 -1 -1
T =T ATy, T =1 1y,

Setting 7 =1 =4, 11 =00, 11 =4/(14+9), 12 =8, r = 8/(3 + 2§), and
recalling inequalities (62]) we obtain

||\/Z\/@HL4(0,T;L8/<3+26>(BR)) <c((,0,R)E.
Combining this result with (60) we arrive at (B9). O

Lemma 5.2. . Under the assumptions of Proposition[i. 1, for every positive
v < 3 and R, there is a constant c(v,(, R) such that

HFHL2(O,T;L3*V(BR)) S C(I/, C, R)E (63)
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Proof. Assume that Q C Bg. It follows from (I2) that |[z—y|™! < ¢(R)G(z—
y) for all z,y € Br. Thus we get

|F(z,t)| < c/}R2 Gi(z —y)Colu|(y,t) dy := M(x,t) for all = € Bg. (64)

Now choose an arbitrary p € (0,1/2). It follows from (I3]) that

IM @) 1722y < ISPl (Bl r-1/2-1(m2)-

Applying inequality (B0) we obtain
||M||L1(0,T;H1/2*#(IR2)) <c(p, Q) E.
Since the embedding HY/2~#(R2) — L% (R?) is bounded, [I], thm. 7.57,

we get
M| < el QE.

Combining this result with (64]) we arrive at

iy

4
L1(0,T;LTF20 (R2)

< ¢(u, )E. (65)

4
LY(0,T;LT¥2¢ (BR))

Next notice that by the interpolation inequality,

Flirorne s < ||F|* F||'=
Il (0.T:L°(Br)) = | HL4(0,T;Lﬁ86(BR))H ||L1(0,T;L1T42?(BR))

holds for all & € (0,1) and

4 o l-a 4, 349 14 2p
= _ = 1— o).
r 4—|— T S S a+ 1 (1—a)

Setting o = 2/3 and recalling inequalities (B9), (65) we obtain

1] ) <G8 p R).

12
L2(0,T;L*Fn¥5 (Bg

Choosing g and § so small that 3 — v < 12/(4 + u + 0) we finally arrive at

63]).
O
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6 LP estimates

In this section we investigate properties of solutions (p,u) to regularized
problem (I8]) and prove that the pressure function p(p) is locally integrable
with an exponent greater than 1. The corresponding result is given by the
following

Theorem 6.1. Let a solution (o,u) to problem (I8) meets all requirements
of Proposition 3. Let ¢ € C;°(R?) be an arbitrary nonnegative compactly
supported in ) function and A € (0,1/6). Then

¢*p(o)e dadt < (¢, N)E, (66)
QT

where ¢(¢, \) depends only on ¢ and .

The rest of the section is devoted to the proof of this theorem. Our
strategy is the following. First we construct a special test function &£ such
that p div € ~ p(p)o*. Next we insert £ into (20) to obtain special integral
identity containing the vector field F. Finally we employ Lemmas [5.1] and
to obtain estimate (66). Hence the proof of Theorem falls into four
steps.

6.1 Step 1. Test functions

Fix an arbitrary A € (0,1/6) and choose a function ¢ € C*°(R) with the
properties

P(0)=0, ¥(s) =0, s =1<w(s) <clslt, |se'(s)] < cfs|t, (67)

where ¢ is some positive constant. Next choose an arbitrary function ( €
C5°(R?) such that ¢ is nonnegative and is compactly supported in 2. Recall

the definition of the mollifier [ . }h and introduce the auxiliary function

gz, t) = [C¥(0)],(z,t) in R*x[0,T]. (68)

We will assume that h is less than the distance between the support of ( and
the boundary of €2. Finally, introduce the test vector field

£(z,t) = ((r)H(z,t), where H=VA™lg. (69)

The following lemmas constitute the basic properties of ¥(p), g, and H.
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Lemma 6.1. Under the assumptions of Theorem [6.1), there is a constant
c(N), depending only on A and 1), such that

DV, s o 100 — @ @)FU < eV)E,
(70)
[¥(e)ull L2082y < c(M)E. (71)

Proof. Notice that
(o) Vul +[(¥(0) — e¥'(0))Vu| < cg*|Vul. (72)

Recall that u and g vanish outside of © x [0, 7). From this and relations
1/2+1/co=1/2, 1/241/(1/X) = (1+2))/2
we obtain

lo*Vul, ), S IVallzoro [0 ormm) <

2(0,T;LTH2 (Q
cMIVullzz,rc2 @) ||Q||2°°(0,T;L1(Q)) <c(NE,

which along with (72) yields (70). Next set ¢ = 3/(1 — 3X). Since 1/q +
1/(1/A) = 1/3, we have

||¢(Q)u||L2(o,T;L3(R2)) < C||Q)\u||L2(O,T;L3(Q)) < CHQ)\HLOO(O,T;LU/\(Q))HuHLZ(QT;Lq(Q))
< C()\)||Q||2oo(o,T;L1(Q))||u||L2(0,T;Lq(Q)) < C()‘)HQH%,OO(O,T;Ll(Q))||u||L2(0,T;W01’2(Q)) <ck,
and the lemma follows. O

Lemma 6.2. Under the assumptions of Theorem[G_1}, the function g belongs
to the class L°°(0,T; C*(R?)) for every integer k > 0. It is compactly sup-
ported in 2 x [0,T] and admits the estimate

HgHLOO(O,T;Ll/’\(RZ)) < c(Q)E. (73)
Moreover, ;g belongs to the class L*(0, T; C*(R?)) and has the representation

0ig = —div [C(0)uln + [¥(0)VCu]n + [C(¥(0) — ¢ (0)e) div ulp.  (74)



ISOTHERMAL NAVIER-STOKES EQUATIONS 24

Proof. Since ((0) € L>(0,T; L*(R?)), it follows from general properties of
the mollifier that g € L*°(0,T; C*(R?)). Since h is less than the distance
between spt ¢ and R?\ Q, the function g is supported in Q x [0, 7). Next,
inequality (67) implies the estimate

lg)llzaez) < 16O ey < e(Olle®)l|7a@2),

which along with energy inequality (I9) yields (73)). Let us consider the time
derivative of ¢g. In view of (22) the integral identity

| (w00 + (lom) - ¥~ (v (e)e — (o)) divu) drit = 0 (73

holds for every function ¢ € C*°(II) which is supported in Q7. Choose an
arbitrary ¢ € C5°(0,T), y € R?, and set

S(w,t) = £ () b2 (B (B 22).

Substituting ¢ into (75]) we obtain
| ctatuna- [ s cotoulunode [ 0w Toun) s

/0 B [CWe) — ¥ (0)o) div ulu(y,t) dt =0,

which yields (74)). In view of Lemma [6.1] the functions v (0)Cu, ¥ (0)V(-u
belong to the class L*(0,T; L3(R?), and the function (¢(0) — ¢'(0)e) div u
belong to L*(0, T; L*+2Y(R?). Since the mollifier [-], : LP(R?) — C*(R?) is
bounded for all p > 1 and k& > 0, the representation (B3] yields the inclusion
Oig € L*(0,T; C*(R?)) . O

Lemma 6.3. Under the assumptions of Theorem[6 1, H belongs to the class
class L>=(0,T;C*(R?)), and O,H belongs to the class L*(0,T;C*(R?)) for
every integer k > 0. Moreover, H admits the estimates.

H| 2~ r:pe@) < (QF,  [[VH[| w0000 < (QE. (76)

Proof. Since the function g is supported in Qr, the inclusions H € L>(0, T; C*(R?))
and O;H € L?(0,T; C*(R?)) obviously follow from (6.2). Now choose an ar-
bitrary R such that Q @ Bg/,. Since spt g(t) C €2, we have

@ wisr) < (B, Qg0 o)
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The embedding W'/*(Bg) < C(Bg) is bounded for every A < 1/2. It follows
that

||| Lo 0,m:08r)) < (B MBI Lo o mwi/n () <
HgHLOO(O,T;Ll//\(Q) <c(R,(,\E (77)
Since € C Bp/s, representation (7)) implies
[H(z,t)| < (R, Q)lgt)|[ 1) for € R*\ By
Thus we get

IH|| oo 0,102\ BR)) < (B, M| gllzoe0,1521 () < ¢(R, (A E.

Combining this result with (77) gives the first inequality in (76). Next notice
that
8xiHj = 8mi8mjA_1g = RiRjg,

where R; , R; are the Riesz singular operators. Since the Riesz operators
are bounded in L'/*(R?), the second inequality in (76) is a straightforward
consequence of estimate ([73)).

U

6.2 Step 2. Integral identities

The proof of Theorem is based on the special integral identity which is
given by the following proposition.

Proposition 6.1. Under the assumptions of Theorem [G 1], we have

7
| col@lcuto] dzdt =310+ 1, (73)
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where

o — /Q Fi[C((0) — 0/ (0)) div u], dadt,

8H — FQVJ_UJ' . 8—H> dxdt,

F(3):/ <Fd' — FVu,  —
Qr g AR Y o, Oz

r<2>:/ Fi[¢(0)V¢ - u], dudt, r<4>=—/ o(u-V¢) (u-H) drdt,
Qr Q

T

e — _ ¢pV(¢-Hdzdt, T© = / (S(u) : VE — of - E)da:dt,
Qr Qr
T
'@ = lim l/ / Cou - Hdxdt — / o0(z)Cuo(r)H(z,0) dx
T—0 T T—7JQ QO
(79)

Ih = — /R2 o CQu -V div A_l( [Cw(g)} hu — [C@D(g)u}h) dxdt. (80)

Here F is a solution to the Cauchy-Riemann equations (57)), and H is given
by [69).

Proof. Recall formulae (32)) and (69) for the cut-off function 7, and the vec-
tor field & Notice that the function 7n,€ and its time derivative belong to
L>=(0,T;C*(Q)) and L2(0,T; C*(Q)) respectively for all integer k > 0. More-
over, n,€ vanishes at the lateral side and the top of the cylinder ()r. Hence
we can use this function as a test function in integral identity (20) to obtain

/ n:(t) (ou - 9,€) dadt + / n-(ou®@u+p(o)T—S(u)) : VE dedt+

T T

/ neof - € dwdt = Tp(r), (81)

T

where

Tp(r) = % /T i /Q Cou - H dudt — /Q oo(x)Cup(2)H(z, 0)dz  (82)

Letting 7 — 0 in (BI]) we arrive at

/ (ou-0,€) dxdt+/ (ou@u+p(0) I-S(u)) : V& d:cdt—i—/ of £ dxdt =T,

T
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The limit ') = lin(1] I'r(7) exists since there exists the limit of the left hand
T—

side of (BI)). We can rewrite the latter identity in the form

/ p(o)div & dzdt = @410 — / ou-9,& dadt— / ou®u : V& dzdt.
(83)

It follows from the expression (69) for & that 0, = (VA™10,9, where g is
given by (68). From this and and the representation (74]) in Lemma we
obtain the identity

/ ou - 0;€ dxdt = g Cou-VA™! [((¢(Q) — o' (p)) div u}hdde
Cou-VA™! [@D(Q)VC . u]h dxdt — Cou- Vdiv A™! [Qw(g)u]h dxdt
Qr QT
(84)

Since (, [C(¢(g) — oY'(0)) div u}h, and [w(g)VC . u}h are supported in Qr,
we have

; Cou-VAT[C(¥(0)—ey'(0)) div u}hdévdtz/HCQu-VA‘l[C(w(Q)—W’(Q)) div u], dzdt

__ /H Fy[¢((0) — 0/ (0)) div u], ddt = —T0),

g Cou-VA™! [¢(Q)VC . u]hd:cdt = /HCQu -VA™! [w(g)vg . u]hd:cdt =

- / Fi[y(0)VC¢ -u], dxdt = —T®.
I
Inserting these equalities into (84]) we arrive at

/ ou- 8 dadt = —TW — 1@ — Cou- Vdiv A™! [C@b(g)u}h dxdt. (85)
I Qr

Next, expression (69) for H implies

&, B oH
/T QUina—l’j dxdt = /Hu]a—x] - (Cou) dxdt+

OH
. . — Ratiaini _17®
/Hg(u V() (u-H) d;zdt—/nu]azj (Cou) dxdt — T (86)
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Using equation (7)) we obtain the identity

OH OH
/Huja—:cj - (Cou) dxdt = /Huj (VFi + V' F)- oz, dxdt.
In view of Corollary B.I] the function gu belongs to the class L*(II). Ob-
viously it is supported in € x (0,7"). From this and formula (59) we con-
clude that F € L?*(0,T;W"?(Bg)) for every ball By C R? Recall that
u e L*0,T; WH2(R?)) is compactly supported in Q x (0,7). Finally notice
that H € L>°(0,T; C*(R?)) for every k > 0. Hence we can integrate by parts
to obtain

OH oH . OH
/Huja—zj - (Cou) dxdt = /n (Fgrot 6—% — Fidiv a—z)uj dxdt—

OH OH
FEVu,  — + BV, - — ]
/( \Vu, j+ 5V U; j)dxdt

Recall that H = VA~!g, where g = [Cw(g)}h € L>(0,T; C3(R?)) is sup-
ported in Qr. It follows that

(87)

OH . OH
rot 8—% = O, div 8—;[‘] = 8xj [C¢(Q)]h
We thus get
OH . OH
/H <F2rot a—x] — Fidiv a—%>uj dxdt = —/HFluj&Ej [§¢(g)]h =
—/ Fidiv ([C@D(g)}hu) dxdt—l—/ gFdiv udzxdt.
Qr Qr

Noting that F; = div A7}((ou) we arrive at the identity

oH . OH
/H (Fgrot 8—% — Fidiv 8—%>uj dxdt =

/ Cou - Vdiv A_l([ﬁ/)(Qﬂhu) dxdt + / gF1div udxdt.
I I

Inserting this equality into (87) and recalling the expression (8I]) for I'® we
get

OH
/HCQuja—Ij cudedt = —T'®) — /H Cou - Vdiv A_l([gz/)(g)}hu) dxdt.
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Inserting this result into (86) we finally obtain

/ guiuj% dedt = —T®) —T® 4 / Cou- Vdiv A7 ([¢(0)] ,u) dad.
I ZLj I
(88)

It remains to note that in view of (79) and (€9) we have

/ pdiv Edxdt = / (p [C@b(g}h dxdt — T, (89)
I I

Inserting (85), (88]), and (8J) into (83]) we obtain the desired identity (78). O

6.3 Step 3. Estimates of '

In this section we show that the quantities I'® in the basic integral identity

(78) are bounded by a constant, depending only on the exponent A, the
cut-off function ¢, and the constant E specified by Remark [I.1]

Proposition 6.2. Under the assumptions of Theorem [6.1,
I < (¢, ME, (90)
where ¢ depends only on ¢ and .

Proof. Let us estimate I'™ and I'®. Since A < 1/6, we can choose v > 0,
depending on A, such that (3 —v)™'+ (1+2X)27" = 1. Lemmas 5.2, 6.1 and
the Holder inequality imply
|F(1)| < ||F1||L2(O,T;L3*”(]R2)) | [C(@D(Q) - Q@/)/(Q)) div u}h||L2(0,T;L2/<1+2A>(R2)) <
||F1||L2(O,T;L3*V(R2)) 1€ (¢ (0) — o¥'(0)) div 11||L2(0,T;L2/<1+2A>(R2)) <c(AQE.

(91)
Applying Lemmas and once more we obtain
r®| < 1Fy[| 20,8+ @2y | [#0(0) V¢ - u}hHLQ(O,T;LZ(R%) < (92)

| F1 || 20,528+ w2y [90(0)VC -l p20,7522(r2)) < (A, Q)E.

Our next task is to estimate I'® and I'®). Since u is supported in  x [0, 7],
we have

T < / IF|[Vu|(lg] + |VH]) dedt (93)
Qx(0,7)
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It follows from Lemmas and [6.3] that
91l oo 0,101 m2yy + IVH Loo 07, 01/3 m2)) < (A E. (94)
On the other hand, energy estimate (I9) and Lemma imply
IF | 20,1525 (0)) < (G R)E, [Vl z20ri22(0) < o((AE,  (95)

where k is an arbitrary positive number. Since A < 1/6, we can choose K
such that (3 — )™+ A +271 = 1. Applying the Holder inequality and using
@4), ([@F) we obtain

[ IFlIVul(lg] + V) dadt <

Qx(0,7)

HFHL?(O,T;L?’*”(Q)) ||Vu||L2(0,T;L2(Q))(HgHLOO(O,T;Ll//\(R?))‘I'HVHHLOO(O,T;LV’\(R?))) < C(<> A)E-
which leads to estimate (0) for I'®. In order to estimate I'Y notice that in

view of Lemma [6.3 and energy estimate (I9), we have

IT@| < C(C)/ IH|o|u|* dzdt <
Qx(0,T)

< o(O)[H = @eior) / olu? dadt < ¢(C, \)E.
Qx(0,7)

Next we employ Lemma [6.3] and estimate (19) to obtain

0| < / oV C| [H] dedt < o(O)l|H] =01 / pdadt < ¢(C,\)E.
R2x(0,T) Qx(0,1)

It remains to estimate I'® and I'W. Expression (69) for the vector field &,
and expression (79) for I'® yield the estimate

T < ’/S(u) : Vﬁdxdt’ + ’/ Qf'fdzndt‘ <
[ cistl | dsde+ [ ¢+ V) BIS()| + o) drde <

C(C)/ \Vu|(|H|+\VH|)dmdt+c(§)E/ ofH| dedt. (96)

T
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On the other hand, energy estimate (I9)) yields

/Q [Vul([H| + [VH]) dzdt < c(Q)[|Vull 2o [HI| L20,mw12(0)) <
T
C(C)E”H||L2(0,T;W1»2(Q))
Next, Lemma and the inequality 1/A > 2 imply
[H|| 20 rwr2(9)) < [1H| Lo,z (0)) + [ VHI| Lo o173 @) < ¢(CA)E.

We thus get

|Vu|(|H| + |VH]) dzdt < ¢(¢,\)E (97)
Qr
Finally notice that

/ olH] dedt < [H o) lollie om0 < (G NE.
Qr

Inserting this estimate along with (@7) into (Q6) we arrive at the desired
estimate (Q0) for ['®). Finally, expression (82)) for 'y, Lemma 6.3, and the
energy estimate (I9) imply

P2 (7)| < e(OIH| =@r) |0l Lo 0.7:L1 () < (O E. (98)
It follows from this that ') = lir% Ir(7) satisfies inequality (O0). O
T—

6.4 Step 4. Proof of Theorem

The proof is based on Propositions and [6.2l First we show that the
quantity I, in identity (78) tends to zero as h — 0. We begin with the
observation that

I, = /HCQu -V div A‘1< [qu(g)u]h — Clp(g)u) dxdt—
/H< ou -V div A‘l( ([¢v(0)], — <w<g>)u) dxdt.

Since the Riesz operator VdivA~™!: L?(R?) — L?(R?) is bounded and ( is
supported in 2, we have

T
L < cllouleon / (n(t) + La(t)) dt, (99)
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where

Tn(t) = [[[Ce(o)u], () —Ce()u®) |22y La(t) = [[[C¥(0)],ult)—C¥(0)u(t)||72(q)-

In view of Corollary B2 the vector field pu belongs to the class L?(Qr). Hence
it suffices to prove that the sequence J, + Lj has an integrable majorant and
tends to 0 a.e. in (0,7") as h — 0. Inequality (1)) in Lemma [6. T implies that
CY(p)u € L*(0,T; L*(R?)). Tt follows from properties of the mollifier that
Jp(t) = 0 as h — 0 a.e. in (0,7"). On the other hand, we have

Tn(t) < 1[e(e)u], ()2 + I (@ut) [l z2) < 2[¢(0)u(®)]| 20

By (71)), the right hand side is integrable over [0, 7] and is independent of h.
Hence the sequence J, — 0 a.e. in (0,7") and has an integrable majorant.
Next, the Holder inequality implies

Li(t) < [1[¢(0)], (1) = S (@) ()1 1/n ey 1) 127020 (0
Since the embedding W, *(Q) < L¥1=2Y(Q) is bounded, we have
Lu(t) < e M [C¥(0)],(8) = C(@) O T2 - (100)
Since (y(0) € L>®(0,T; LY*(Q)), we have
I[¢v ()], () = Co(@ @)L — 0 as h—0 forae te(0,T).

Hence Ly(t) — 0 a.e. in (0,7"). Notice that

1[¢¥ ()], () — (@)l L) <
1S ()], Ol @) + 116 (0) (Dl i@y < 2016w (0) ()l Loy

Combing this result with (I00) and recalling that (¥ (o) € L>(0,T; LY*(Q))
we obtain Ly(t) < c||u(t)H€V1,2(Q). In view of the energy estimate (I9) the
0

right side of this inequality is integrable over (0,7"). Hence the sequence Ly,
has an integrable majorant. Applying the Lebesgue dominant convergence
Theorem we arrive at the relation

/T(Jh(t) + Lp(t))dt -0 as h— 0.
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From this and ([@9) we conclude that I;, — 0 as h — 0. Next, Propositions
and imply

. Cp[Cv(0)], dudt < I+ (¢, N)E. (101)

The functions [C(o)] , are nonnegative and converge a.e. in Qr to (¥(o).
Letting h — 0 in (I0I) and applying the Fatou Theorem we arrive at the
inequality
CpY(o) dwdt < (¢, N\ E.
Qr
It remains to note that ¢(p) > co* — 1 and the theorem follows.

7 Proof of Theorems [1.1] and

7.1 Proof of Theorem 1.1

By Proposition B.1], for every € > 0 regularized problem (I8)) has a solution
(0e, u.) which admits estimates (I9) and satisfies integral identities (20)), (21]).

Lemma 7.1. Let A € [0,1/6) and Q' € Q. Then there are exponent r,p €
(2,00) and q, s,z € (1,00) such that

| 0cl 12 @ w0, + 5/ 0. < C, (102)
% (0,7)

||Qa||LT'(0,T;L5(Q’)) + ||Qaua||LP(0,T;LZ(Q’)) + ||Qa|ua|2||Lq(Q’><(0,T)) <, (103)

where C' 1s independent of €. Moreover, the sequences p.u. and o. are equi-
integrable.

Proof. Fix an arbitrary Q' € Q. Choose a nonnegative function ¢ € C§°(R?)
with the properties: ¢ is compactly supported in Q and ¢ = 1 in €2'. Notice
that A, ¢, and o. meet all requirements of Theorem [6.1l Hence p(p.) satisfy
inequality (€0). It is easy to see that estimates (I02) follows from (G and
the formula p(g) = 0 + 02. Next choose an arbitrary r € (2,00) and set
s=r/(r—=A)>1land a=(1+\)/r € (0,1). Obviously

(1—a)/oo+a/(1+AN)=1/r, 1—a+a/(l+X)=1/s.



ISOTHERMAL NAVIER-STOKES EQUATIONS 34

From this, inequality (I02]), and the interpolation inequality we obtain

||QE||L7" 0,7;Ls Q’ < ||QE||Loo OTLl Q/ ||Qa||L1+A OTL1+A(Q/ < C (104)

which gives the estimate (I03]) for o.. In order to estimate the quantity
0:|u.|, represent it in the form

0:|u| = Qg(Qa|ua|2)B|ua|V- (105)

Let us show that there exist exponents p € (1/2,1), 5,v € (0,1) and p, z,0 €
(1, 00) with the properties

b=1—p, v+26=1 1ie, v=2u—1,

M/T—FI//QIl/p, /J’/S+/B+V/O':1/Z, (106)

To this end notice that these relations can be equivalently rewritten in the
form

Up = (20— 1)/24 pfr, 1z =1+ p(Lfs = 1) + @u—1)/o, B=1—p, v=2u—1,

which gives u = (1/2 + 1/p)(1 + 1/r)~'. The inequalities 1/2 < p < 1 are
fulfilled if and only if 2r/(r +2) < p < 2r. Since r > 2, there exists p > 2
satisfying these inequalities. On the other hand, it follows from s > 1 that
0 <14 pu(l/s—1) < 1. Hence there is o € (1,00) such that z € (1,00).
This completes the proof of the existence of exponents satisfying (I06). The
Holder inequality, estimate (I02]), and energy estimate (I9) imply

| o-uc||Lr 0,27y <
HQeHLr/“(OTLS/“(Q’ ||Q ‘us‘%HLw(OTLl/ﬁ ) |H115\ HLZ/”OTL“/”(Q’))

I7

= |locll’- (0.T;L5 (') ||Q€\u€| ||L°°(0TL1 ) ||usHL2(0TL0(Q') < C||u€||L2(OTL"(Q’))

Recall that the embedding W, *(Q) < L°(Q) is bounded for every o €
[1,00). It follows from this and energy estimate (I9) that

[ucll20.zo @) < elluell oo rmr2)y < €

which leads to the estimate for p.u. in (I03). Now our task is to estimate
the kinetic energy density o.|u.|? Since p > 2 and z > 1 there are k1, ko, w €
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(1,00) such that 1/p+1/2=1/k; and 1/2 4+ 1/w = 1/Ks. Set ¢ = min{x;}.
Applying the Hélder inequality and using estimate (I03]) for g.u. we obtain

’|Qe‘u€‘2“Lq(Q’X(O,T)) < CHQe\us|2||L~1(0,T;L~2(Q'))

< cllocuc||| e 0,10 ) |0l 20,710 () < CHu€||L2(O,T;WOI’2(Q)) <C.

This completes the proof of (I03). It remains to show that the sequences o.
and p.u. are equi-integrable in Q7. By energy estimate (I9), the sequence
0. 1log(1 + ) is bounded in L'(Qr). Hence this sequence is equi-integrable.
This means that for every s > 0 there is §(s¢), depending on € only, such

that the inequality
/ 0. drdt <
A

hold for every A C Qr such that meas A < d(»). By the Cauchy inequality
and energy estimate (), we have

1/2 1/2
/Q€|ug|d9§dt < </ 0- d:cdt) </ Q€|ua|2dxdt) < Ev/.
A A Qr

which yields the equi-integrability of the sequence p.u.. O

Let us turn to the proof of Theorem [[LTl It follows from energy estimates
(I9) and Lemma [T T] that, after passing to a subsequence if necessary, we can
assume that there are integrable functions o, u, pu, and pu ® u with the
properties

0. — 0, o.u. — ou weakly in Ll(Q x (0,T)),

107
u. — u weakly in L2(0,T; W, *(Q)), (107)

For every compact set €' C ), we have

0. — o weakly in L"(0,T; L*(Q)), o-u. — pu weakly in LP(0,T; L*(Q)),
0-u. ® u. — pu ®u weakly in LI( x (0,7)).
(108)

Here r,p € (2,00) and ¢, s,z € (1,00) are given by Lemma [T1l It follows
from energy estimate (I9) and convexity of the function glog(1 + o) that
o and u satisfies inequalities (B]). Moreover, o € L"(0,T;L*(Y)), ou €
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LP(0,7T; L*(2)) and pu @ u € LI(Y x (0,7T)) for ever ' € Q. Finally notice
that in view of estimates (I02) we have

5/ 0.7 — 0 as ¢ — 0.
Q' x(0,T)

Substituting (g.,u.) and ¢(g.) := . into [20), (22) and letting ¢ — 0 we
obtain that the integral identities

/(Q_u~8t§+m:V§+QdiV£—S(u):Vé)dmdt
—i—/@gf~£d:cdt+/g(gouo-ﬁ)(m,O) dr =0 (109)

/ (00p) + ou - Vo) dadt + / 00(x)Y(x,0)dx =0 (110)
Qr Q

hold for all vector fields &€ € C*°(Qr) equal 0 in a neighborhood of 9 x
[0,7] and of the top  x {t = T} and for all ¥ € C*°(Qr) vanishing in a
neighborhood of the top Q2 x {t = T'}. It remains to prove that

ou=pou, ouRu=pu®u ae. in Qr (111)

The proof is standard, see [5]. We begin with the observation that g. and u.
satisfies the equations

at(@e“s) = div (S(U-s) — 0eU: & ue) - VP(QE) + stv 8tQ€ = — div (que)u
(112)

which are understood in the sense of the distribution theory.Notice that in
view of the energy estimate ([9)), the sequences o., S(u.), o-u. ® u., p(o.)
are bounded in the space L*(0,7;L'(©)). Choose an arbitrary function
€ € C°(Qr). Since the embedding W (Q) — C(Q) is bounded, it fol-
lows from (II2]) that the sequences 0;(£0.) and 0y(§p.u.) are bounded in
L2(0,T; W=32(Q)). On the other hand, Lemma [7.I] implies that the se-
quences £o. and {p.u. are bounded in L"(0,7"; L*(2)) and LP(0,T; L*(Q2))
respectively . Notice that r,p > 2 and the embedding W~12(Q) < L*(Q),
W=1(Q) — L*(Q) is compact for s,z > 1. Applying the Dubinskii-Lions
compactness Theorem we conclude that the sequences £p. and &p.u. are
relatively compact in L?(0,T; W~12(Q)). From this and (I07) we obtain

o, drdt — Eoudxdt, £o-u. ® u. drxdt — Eou @ udxdt
Qr Qr Qr Qr

as € — 0, which yields (III]). This completes the proof of Theorem [L.T]
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7.2 Proof of Theorem 1.2

It suffices to note that estimate (6]) follows directly from Theorem E.1], and
estimates (§]) follow from Proposition 5.1l and Theorem [6.11

A  Proof of Lemmas 2.1 and

Proof of Lemma [2.7] Introduce the polar coordinates A = || € R* and
w = [£|7¢ € S'. Applying the Fubini Theorem we obtain

1 , 1 ,
5000 = 5= [ e Sowrdo =5 [ e gla) do =

- % 27T RZ

1 > —iAT _ 1 > —iAT _ 1
5 _ooe { / g(x)dl}df—%/_ooe (ID(w,T)dT—E&\(P(w,)\),

W-r=T

where §) is the Fourier transform with respect to 7. We thus get

1
1S90 = - [338(w, V) (13)

Since ® is a real valued function, the Plancherel identity yields

| me@npa= g [ mewapa - [ ewnpe
0 —00

—0o0

Integrating both sides of (II3]) by A we conclude that

/wmﬂm@&mzi%/wmm%ﬂﬁm

0

It follows that
T 1
/|€|_1|39|2d€Z//Xlgg()\w)F)\d)\dw:
R2 st 0

/ﬂ@wwwm:%//’m%ﬂ%w.
T Jst J—0o
St 0

Recalling expression (@) for H*- norm we obtain the desired estimate (I4]).
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Proof of Lemma Let s > 1/2. It suffices to prove that

[uv|l g2z < cllullgrge) ||l gs @2

for all w € H'(R?) and for all v € H*(R?). Choose an arbitrary v € H'(R?)
and consider the linear operator U : v — uwv. Set § = s—1/2 > 0. Recall that
H*(R?) coincides with W*2?(R?). Since the embedding H*(R?) — L>*(RR?)
is bounded, we have

vl ey < ol oy lull oy < cllollmsglulmas — (114)

Since the embedding H'*9(R?) «— W12/ (1-9(R?) and H'(R?) — L*°(R?) is
bounded, see [1], thm. 7.57, we have

IV (uv) || L2re) < [[vllpeo@e) VUl 2me) + [[uVo][L20) <
clollmesllullnee) + IVl ars-o el sgesy < (135)
C(||U||H1+6(R2) + ||U||W1’2/(1*5)(R2) ) [ull ey < cllvllarese) l|ullm @e).-
Combining (II4)and (II5) we obtain
[Gollsay < el ey o e (116)

On the other hand, the boundedness of the embedding H? < L% (=% (R?)
implies
lwvll 22y < (ol p2a-o @ellull 2rsge) < clloll s @) llull @),
which yields the estimate
10| 22y < cllullm v]lmo@2)-

From this and (II6) we conclude that U is a bounded operator from H°(R?)
to L*(R?) and from H'*?(R?) to H'(R?). Moreover, its norm does not exceed
c||lu|| g1 m2y. Applying the interpolation theorem, [2] Sec. 2.4, Sec. 6.4 Thm.
6.4.5, and noting that 1/2 4+ § = s we obtain that the desired inequality

[wvll/2@e) = (U] ey < cllullmr@) vl penzgey = cllulla @) o]l @2

holds for all w € H'(R?) and all v € H*(R?).
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