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Abstract

In this paper we provide an approximation à la Ambrosio-Tortorelli of some clas-
sical minimization problems involving the length of an unknown one-dimensional set,
with an additional connectedness constraint, in dimension two. We introduce a term
of new type relying on a weighted geodesic distance that forces the minimizers to
be connected at the limit. We apply this approach to approximate the so-called
Steiner Problem, but also the average distance problem, and finally a problem re-
lying on the p-compliance energy. The proof of convergence of the approximating
functional, which is stated in terms of Γ-convergence relies on technical tools from
geometric measure theory, as for instance a uniform lower bound for a sort of average
directional Minkowski content of a family of compact connected sets.

1 Introduction

In the pioneering work by Modica and Mortola [29] (see also [2]), it is proved that
the functional

Mε(ϕ) = ε

∫

Ω
|∇ϕ|2dx+

1

ε

∫

Ω
ϕ2(1− ϕ)2dx

converges as ε→ 0 in a sense to be precised, to the Perimeter functional

P (ϕ) =
1

3
Per(A,Ω) if ϕ = 1A ∈ BV (Ω), and +∞ otherwise.

The original motivation for Modica and Mortola was a mathematical justification of
convergence for some two phase problem based upon a model by Cahn and Hilliard.

Later, this procedure gave rise to a method to perform a numerical approximation
of a wide class of variational problems. Indeed, in order to minimize numerically the
geometrical functional given by the perimeter, one may find it convenient to minimize
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the more regular functionalMε, which are of elliptic type. This idea was used by many
authors in the last two decades, with quite satisfactory results. Let us mention for
instance Ambrosio-Tortorelli [4] for the Mumford-Shah functional, and more recently
Oudet [30] and Bourdin-Bucur-Oudet [8] for partition problems, Santambrogio and
Oudet-Santambrogio [36, 31] for branched transport, among many others like [5, 27]
for fractures, etc.

But no analogous method of approximation was given so far to approximate one of
the simplest problem of that kind, namely the Steiner problem. Given a finite number
of points D := {xi} ⊂ R

2, the original Steiner problem consists in minimizing

min
{

H1(K) ; K ⊂ R
2 compact, connected, and containing D

}

. (1)

Here, H1(K) stands for the one-dimensional Hausdorff measure of K. It is known
that minimizers for (1) do exist, need not to be unique, and are trees composed
by a finite number of segments joining with only triple junctions at 120◦, whereas
computing a minimizer is very hard (some versions of the Steiner Problem belong to
the original list of (NP)-complete problems by Karp, [22]). We refer for instance to
[21] for a history of the problem and to [33] for recent mathematical results about it.

The main difficulty is to take care of the connectedness constraint on the com-
petitors. In [31], the problem of branched transport is considered which is slightly
related to the Steiner problem. We mention that a tentative approach to the Stenier
problem, by considering it as a limit case α = 0 in the branched transport problem,
was indeed performed in [31], but the analysis in such a paper required α > 0 and
the simulation performed with α close to 0 were not completely satisfactory.

In this paper we propose a new way to tackle the connectedness constraint on
minimizers. Our strategy is to add a term in the Modica-Mortola functional, relying
on the weighted geodesic distance dϕ, defined as follows. Let Ω ⊂ R

2. For any
ϕ ∈ C0(Ω) we define the geodesic distance weighted by ϕ as being

dϕ(x, y) := inf

{
∫

γ
ϕ(x)dH1(x); γ curve connecting x and y

}

. (2)

Given a function ϕ, the distance dϕ can be treated numerically by using the so-called
“fast marching” method (see [37]). A recent improvement of this algorithm (see [6])
is now able to compute at the same time dϕ and its gradient with respect to ϕ, which
is especially useful when dealing with a minimization problem on ϕ involving the
values of dϕ. Our proposal to approximate the problem in (1) is to minimize the
functional

1

4ε

∫

Ω
(1− ϕ)2dx+ ε

∫

Ω
|∇ϕ|2dx+

1

cε

N
∑

i=1

dϕ(xi, x1), (3)

with cε → 0, arbitrarily. The first two terms are a simple variant of the standard
Modica-Mortola functional, already used in [4]: they force ϕ to tend to 1 almost
everywhere at the limit ε → 0, and the possible transition to a thin region where
ϕ = 0 is paid by means of the length of this region, while the last term tends to make
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ϕ vanish on a connected set containing the points xi. The key point is that whenever

N
∑

i=1

dϕ(xi, x1) = 0,

the set {ϕ = 0} must be path connected and contain the {xi}. In our general setting,
we will rather consider quantities of the form

∫

Ω
dϕ(x, x0)dµ,

leading to a more general Steiner problem where the finite set {xi} is replaced by
the support of µ. We refer the reader to Section 4 and Theorem 4.2 for a precise
statement about the Steiner Problem.

Beyond the Steiner problem, we also consider in this paper two other minimization
problems that one can find in the literature, where the admissible competitors are
again compact connected sets. The first one is the average distance problem studied
in [10, 12, 39, 32, 10, 35, 9, 23, 40, 24, 26, 38]. For some Ω ⊂ R

2, Λ > 0, and f ≥ 0
a positive L1 density on Ω, the average distance problem is the the following:

min

{
∫

Ω
dist(x,K)f(x)dx+ ΛH1(K) ; K ⊂ Ω is closed and connected

}

. (4)

Here, dist refers to the euclidean distance in R
2. Notice that the first version of this

problem which has been proposed in [10] replaced the length penalization +ΛH1(K)
with a constraint H1(K) ≤ L. Mathematically the two problems are similar, but the
penalized one is easier to handle, and we concentrate on it in our paper.

The third and last problem is a minimization problem involving the so-called
p-Compliance energy coming from classical mechanics, see for instance [11] for the
following version of that problem: let p ∈]1,+∞[ and f ∈ L(p∗)′(Ω), where p∗ is the
exponent of the injection W 1,p ∈ Lp

∗

and (p∗)′ is its dual. For any closed set K ⊂ Ω,
we denote by W 1,p

K (Ω) the adherence in W 1,p(Ω) of functions C∞
c (R2 \K) (i.e. we

put Dirichlet conditions on K but not on ∂Ω). We then consider uK , the unique
solution for the problem

min

{
∫

Ω

(1

p
|∇u|p − uf

)

dx ; u ∈W 1,p
K (Ω)

}

. (5)

In particular, denoting ∆pu = div (|∇u|p−2∇u) the standard p-Laplacian, uK is a
weak solution for the problem







−∆pu = f in Ω \K
u = 0 on K
∂u
∂n = 0 on ∂Ω \K

The p-Compliance problem is then defined as being

min

{

p− 1

p

∫

Ω
uKf dx+ ΛH1(K) ; K ⊂ Ω is closed and connected

}

, (6)
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which is a min-max problem (minimization in K of a max in u).
In [11] it is observed that the above two problems are intimately related. Precisely,

when p converges to +∞, the p-compliance functional Γ-converges to the average
distance functional (for instance if one decided to look at the variant where the
function uK in the p−compliance is defined with u = 0 on K ∪ ∂Ω, then at the limit
one would get the average distance functional

∫

Ω dist(x,K ∪ ∂Ω)f(x)dx).
In order to approximate the two problems we first use a duality argument to turn

them into the following form. We denote by

K := {K ⊂ Ω; closed and connected},

Ap :=
{

(K, v) : K ∈ K, v ∈ Lq(Ω);−div v = f in Ω \K and v · nΩ = 0 on ∂Ω \K
}

,

where q is the conjugate exponent to p. Notice that the condition

−div v = f in Ω \K and v · nΩ = 0

is intended as
∫

Ω v · ∇φ =
∫

fφ for every φ ∈ C1(Ω) with φ = 0 on K. By duality,
Problem (6) is equivalent to

inf
(K,v)∈Ap

{

1

q

∫

Ω
|v|qdx+ΛH1(K)

}

, (7)

and Problem (4) is equivalent to (7) with q = 1. More precisely, the Lq norm is
replaced by the norm in the space of measures and the admissible set by

A∞ :=
{

(K, v) : K ∈ K, v ∈ Md(Ω);−div v = f in Ω\K and v·nΩ = 0 on ∂Ω\K
}

.

In the definition of Ap and A∞, the condition on the divergence and the normal
derivative are intended in a weak sense. We refer to Section 5 for the precise proofs
of these facts.

The purpose of introducing this new formulation is that we obtain a min-min
problem, which is more easy the handle than the original one, of min-max type.

To approximate the problem (7) we then consider the family of functionals

Fε(v, ϕ, y) =
1

q

∫

Ω
|v|qdx+

1

4ε

∫

Ω
(1− ϕ)2dx+ ε

∫

U
|∇ϕ|2dx

+
1√
ε

∫

Ω
dϕ(x, y)d

∣

∣div v + f
∣

∣(x) + |div v|(Ω)

which is proved to Γ-converge, as ε → 0, to a functional whose minimization is
equivalent to that of (7), and this convergence is one of our main results (Theorem
5.7). Notice that the framework for the Steiner problem, where no vector field v is
involved, is a bit different. We do not obtain a true Γ−convergence result, but we
are anyway able to prove the convergence to a minimizer.

Each term of Fε is easy to interpret: the first term is just the original functional
on v, the second and third are the Modica-Mortola part, the fourth term is the
one which forces ϕ to vanish on an almost connected set containing the support of
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|div v + f |, and finally the last term is just here to guarantee compactness in the
space of measures. This term does not dissapear at the limit but does not affect the
minimization as we prove in Proposition 5.6.

Let us further say a few words about the coefficient 1/
√
ε in front of the fourth

term. Indeed, in (3)
√
ε was replaced by a more general coefficient cε → 0. This was

enough for Steiner problem, while here the assumption has to be refined because of
some boundary issues. Indeed, in the proof of the Γ-limsup inequality, we follow a
standard construction to find a recovering sequence of functions ϕε which are almost
zero in a neighborhood of a given candidate set K, and we want them to be equal to
1 on ∂Ω. In order to do that, we need to modify them a little bit and in particular to
contract them inside the domain, if K touches the boundary (see Lemma 2.10). This
gives an extra cost, of the order of (ε| ln(ε)|). Hence, in our previous formula, any
coefficient of the form o((ε| ln(ε)|)−1) could work, but we chose ε−1/2 for simplicity.
On the contrary, we decided to avoid this kind of boundary issues for the Steiner
problem, since we know that the optimal set lies in the convex hull of the points xi,
that we can assume compactly contained in Ω.

The proof of Γ-convergence uses standard ingredients from Geometric measure
theory but relies on original ideas as well. If the Γ − lim sup is based on classical
arguments, at the contrary the Γ− lim inf is more involved and represents the biggest
part of the proof. For instance, no slicing argument is permitted due to the weak
regularity of v (the divergence of v is a measure, but this does not mean v ∈ BV
in general). Thus the liminf inequality has to be performed directly in dimension 2
via new techniques. Also, some objects related to our new term with dϕ have to be
introduced: in the limiting process, the good set to consider is rather {dϕ(x, x0) ≤ δ}
than the usual {ϕ(x) ≤ δ} which leads to some technical issues.

Structure of the paper Section 2 presents several technical tools from different
origins: we start with well-known notions on the measure H1 and on connected
sets that we want to recall, then we introduce and study the geometrical quantity
Iλ which will be crucial in our analysis, we state an easy estimate on the total
variation of functions of one variable, and finally we produce a recovery sequence
useful in the Γ − lim sup inequality following a standard construction and adapting
it to our needs. Later, Section 3 gives the proof of a Γ − lim inf-type inequality
that we need for all the three problems. In section 4 we explain how to handle the
Steiner problem and in Section 5 both the average distance and the p−compliance
problem. At the end of Section 5, a discussion about the existence of minimizers
for ε > 0 in our approximation is given. Finally, in the the last Section 6 we use
the approximation result that we proved in order to produce some numerical results.
For the sake of simplicity, only the 2−compliance problem has been considered, but
we are confident that adaptations and improvements of the same method could be
adapted (and improved) to more general settings.

Context and Acknowledgments The work of the authors is both part of the
work of the ANR research project GEOMETRYA, ANR-12-BS01-0014-01, and of the
PGMO research project MACRO “Modèles d’Approximation Continue de Réseaux
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Optimaux”. The support of these research projects is gratefully acknowledged. The
second and third author announced the theoretical part of this work, with particular
attention to the case of the Steiner problem in [25]. The question of applying these
techniques to the Steiner problem was raised at the Italian Conference on Calculus
of Variations in Levico Terme, February 2013, by G. P. Leonardi and E. Paolini.
We sincerely acknowledge them for the fruitful discussions, as well as A. Chambolle
for some initial suggestions about the dual formulation of the Compliance problem,
which lead to the genesis of this paper. The general question of finding an energy
which forces connectedness of minimizers was first asked by Edouard Oudet to the
second author in Pisa in the early 2010. We acknowledge him for bringing out to our
attention this nice question.

2 Technical tools

Our proof of Γ-convergence will use some tools from the Geometric measure theory.
For the sake of clarity, we present in this section some particular results of indepen-
dent interest that will be used later. Some of them are standard but difficult to find
in the literature (like for instance Proposition 2.2 about existence of tangent line in
connected sets of finite length, or the covering Lemma 2.3), but some others are more
original like Lemma 2.6 which is one of the key estimate leading to our main result.

Let A be a subset of R2. The Hausdorff measure of A is

H1(A) = lim
τ→0+

H1
τ (A), (8)

where

H1
τ (A) := inf

{

+∞
∑

i=1

diam(Ai) ; A ⊂
+∞
⋃

i=1

Ai and diam(Ai) ≤ τ

}

. (9)

It is well known that H1 is an outer measure on R
2 for which the Borel sets are mea-

surable sets. Moreover, its restriction to lines coincides with the standard Lebesgue
measure. We will also denote by dH the Hausdorff distance between two closed sets
A and B of R2 defined by

dH(A,B) := max
{

sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)
}

.

First we recall a standard result about densities.

Proposition 2.1. [3, Theorem 2.56.] Let Ω ⊂ R
2, µ be a positive Radon measure

in Ω and let A ⊂ Ω be a Borel set such that

lim sup
r→0

µ(B(x, r))

2r
≥ 1 ∀x ∈ A.

Then
µ ≥ H1|A.
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It is well known that compact connected sets with finite one dimensional Hausdorff
measure enjoy some nice regularity properties that we summarize in the following.

Proposition 2.2. Let K ⊂ R
2 be a compact connected set such that L := H1(K) <

+∞. Then :

(i) There exists a Lipschitz surjective mapping f : [0, L] → K. In particular K is
arcwise connected.

(ii) For H1-a.e. x ∈ K there exists a tangent line Tx ⊂ R
2, in the sense that

lim
r→0

dH
(

K ∩B(x, r), Tx ∩B(x, r)
)

r
= 0.

(iii) For all ε ∈ (0, 1/2) there exists some r0 > 0 such that

π(K ∩B(x, r)) ⊇ Tx ∩B(x, (1− ε)r) ∀r ≤ r0, (10)

where π : R2 → Tx denotes the orthogonal projection onto the line Tx identified
with R with origin at x.

Proof. The proof of (i) can be found for instance in [16, Proposition 30.1. page
186]. We now use (i) to prove (ii). Indeed, a direct consequence of (i) is that K
is rectifiable, which implies that K admits an approximate tangent line at H1-a.e.
point x ∈ K (see for e.g. [28, Theorem 15.19]). This means that there exists a line
Tx ⊂ R

2 for which

lim
r→0

H1
(

K ∩
(

B(x, r) \W (x, s)
))

r
= 0 ∀s > 0, (11)

where W (x, s) is the open cone of aperture s defined by

W (x, s) :=
{

y ∈ R
2; d(y, Tx) < s|y − x|

}

.

We will prove that, from the connectedness of K, the above measure-theoretical
estimate may be strengthened. In particular, we claim that

lim
r→0

sup{d(y, Tx); y ∈ K ∩B(x, r)}
r

= 0. (12)

This follows from the fact that due to the connectedness of K, we automatically have
a lower Ahlfors-regular condition, namely

H1(K ∩B(x, r)) ≥ r ∀x ∈ K, ∀r < diam(K)/2.

Consequently, for r small enough (depending on s) the set

K ∩
(

B(x, 2r) \B(x, r)
)

\W (x, 2s)

is empty, otherwise K ∩B(x, 2r) \W (x, s) would contain a piece of measure at least
sr/10 which would be a contradiction to (11) (this is actually [16, Exercice 41.21.3.
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page 277]). If the sets K ∩
(

B(x, 2r) \B(x, r)
)

\W (x, 2s) are empty for every small
r, by union the same will be true for K ∩

(

B(x, 2r) \ {x}
)

\W (x, 2s), and so follows
the claim.

It remains to control the second half of the Hausdorff distance and the measure
of the projection. For this purpose we furthermore assume that x = f(t0) is a point
of differentiability for f , which can be chosen H1-a.e. in t ∈ [0, L] by Rademacher’s
theorem ([28, Theorem 7.3.]), and therefore H1-a.e. in x ∈ K (because the image of
a H1-nullset by f is still a H1-nullset in K). It is clear that Tx = x+ Span(f ′(t0)).
Moreover there exists a ξ(h) → 0 such that

f(t0 + h) = f(t0) + hf ′(t0) + ξ(h)h. (13)

Let us identify Tx ∩ B(x, r) with the interval [−r, r], and let δ > 0 be given. Then
we chose r0 small enough so that |ξ(r)| ≤ δ/2 for all 0 < r ≤ r0. It follows that for
all r ≤ r0 and for every t ∈ Tx ∩ B(x, (1 − δ)r), thanks to (13), setting y = f(t) we
just have found a point y ∈ K ∩B(x, r) such that d(y, t) ≤ δ

2r. This implies that

1

r
sup

{

d(t,K ∩B(x, r)); t ∈ Tx ∩B(x, r)
}

≤ δ ∀0 < r ≤ r0,

and since δ is arbitrary we have proved that

lim
r→0

1

r
sup

{

d(t,K ∩B(x, r)); t ∈ Tx ∩B(x, r)
}

= 0,

which together with (12) yields

lim
r→0

1

r
dH

(

K ∩B(x, r), Tx ∩B(x, r)
)

= 0.

We finally prove (10). Let ε > 0 be fixed and let r0 be small enough so that |ξ(r)| ≤
ε/10 for all r ≤ r0. Let us set λε := (1− 11

10ε) ∈ (0, 1). Due to (13), we know that the
curve f([t0, t0+λεr]) stays inside the ball B(x, r). Since the image of a connected set
by the continuous application π is still connected, we deduce that π(f([t0, t0 +λεr]))
is an interval, that contains x (identified with the origin on the line Tx) and contains
π(f(t0 + λεr)), which lies at distance less than εr/10 from the point (1− 11

10εr). We
then conclude that

π(K ∩B(x, r)) ⊇ π
(

f([t0, t0 + λεr])
)

⊇ [f(t0), f(λε)r] ⊇ [0, (1 − ε)r].

With a similar reasoning on the curve f([t0 − λεr, t0]) we get

π(K ∩B(x, r)) ⊇ [−(1− ε)r, (1 − ε)r],

as desired.

We will also need an easy covering Lemma, for which we give a detailed proof for
the reader’s convenience.
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Lemma 2.3. Let A ⊂ R
2 be a compact set. Then for any 0 ≤ L < H1(A) there

exists r0 > 0 such that for every r < r0 there exist a finite number of balls B(xi, r),
with 1 ≤ i ≤ N satisfying the following properties:

i) the balls B(xi, r/2) are disjoint,

ii) xi ∈ A for all i and A ⊂
N
⋃

i=1

B(xi, r),

iii) L < 2Nr.

Proof. Given L < H1(A), define τ0 such that, for ever τ ∈ (0, τ0) we have

L ≤ H1
τ (A) ≤ H1(A). (14)

Now by compactness of A, it is easy to find by induction a finite number of points
xi ∈ A, 1 ≤ i ≤ N , with the property that

A ⊂
N
⋃

i=1

B(xi, τ/2),

and such that the B(xi, τ/4) are disjoint. Since the family
{

B(xi, τ/2)
}

i
is admissible

in the infimum (9), we have that

H1
τ (A) ≤

N
∑

i=1

τ. (15)

Gathering together (14) and (15) we obtain

L <
N
∑

i=1

τ,

and setting r0 = τ0/2 achieves the proof.

2.1 A topological lemma

The following Lemma is quite obvious for arcwise connected sets, but in the sequel
we will need to apply it in its full general version.

Lemma 2.4. Let A ⊂ R
2 be a compact and connected set, x ∈ A and r ∈ (0, 12 diam(A)).

Then the connected component of B(x, r) ∩A containing x, also contains a point of
A ∩ ∂B(x, r).

Proof. We shall use the following characterization of a connected set :

(P) a compact metric space A is connected if and only if it is well chained.

9



By “well chained” we mean that for any two points x, y ∈ A and for any ε > 0, one can
find an ε-chain of points {xi}Ni=1 ⊂ A such that x0 = x, xN = y and d(xi+1, xi) ≤ ε
for all i. A proof of the above claim can be found for instance in [15, Proposition
19-3].

Now since r ≤ diam(A)/2, we can find a point y ∈ A\B(x, r). Let ε > 0 be fixed.
There exists an ε-chain {xi} that connects x to y in A. Let xε be the last point of
the chain inside B(x, r) before the first exist, i.e. xε := xi0 where i0 is defined as

i0 := max{i : xj ∈ B(x, r) for all j ≤ i}.

Now we let ε → 0. Precisely, for a subsequence εn → 0 we can assume that xεn
converges to some point x0 inside the compact set A∩B(x, r). It is easy to see that
x0 ∈ ∂B(x, r).

We claim moreover that x0 ∈ K, where K ⊂ A ∩ B(x, r) is the connected com-
ponent of A ∩B(x, r) that contains x. This will achieve the proof of the Lemma.

To prove the claim, we introduce the notation z ∼A x to say that z is well-chained
with x in A (which means that for every ε > 0 one can find an ε-chain of points inside
A from x to z) and we consider the set

C := {z ∈ A ∩B(x, r) ; z ∼A∩B(x,r) x}.

Our goal is to prove that C ⊆ K. To see this we first notice that C is closed because
if zn is a sequence of points converging to some z, then for n large enough (depending
on ε) the ε-chain associated with zn will be admissible for z too, with z added at
the end. Thus C is a compact set, and C is naturally well-chained by its definition.
Therefore C is connected thanks to Property (P), and contains x. Therefore C ⊆ K.

To finish the proof it is enough to notice that x0 naturally belongs to C because
it is a limit point of points ε-chained to x in A ∩B(x, r), for arbitrary ε > 0.

2.2 A lower bound on some geometric integral quantity

For any closed set A ⊂ R
2, λ > 0 and direction ν ∈ S

1, we denote by Aλ,ν the
λ-enlargment of A in the direction ν defined by

Aλ,ν := {x+ tν ; |t| ≤ λ and x ∈ A}.

It is most obvious to check from the closeness of A that Aλ,ν is also a closed set.
Next, we denote by L 2 the two dimensional Lebesgue measure on R

2 and consider
for ν ∈ S

1 the function ν 7→ L 2(Aλ,ν). We claim that this function is H1-measurable.
For this purpose let us prove that it is upper-semicontinuous. Indeed, if x ∈ R

2 is
fixed and νε → ν we can get from the closeness of Aλ,ν that

lim sup
ε

1Aλ,νε
(x) ≤ 1Aλ,ν

(x). (16)

Assume by contradiction that x ∈ R
2 \Aλ,ν , and that there exists a sequence νε → ν

for which x ∈ Aλ,νε for all ε. Then there exists aε ∈ A and |tε| ≤ λ such that
x = aε + tενε. Up to extract a subsequence, tε converges to some t satisfying |t| ≤ λ

10



and aε converges in a to A, thus passing to the limit along this subsequence we
obtain x = a+ tν ∈ Aλ,ν , a contradiction. Using (16) and Fatou Lemma we deduce
that ν 7→ L 2(Aλ,ν) is upper-semicontinuous, and therefore Borel-measurable. By
consequence it is also H1-measurable and the following quantity is well defined.

Iλ(A) :=
1

2λπ

∫

S1

L
2(Aλ,ν)dH1(ν). (17)

We summarize some elementary facts regarding Iλ in the following Lemma.

Lemma 2.5. For any direction ν ∈ S
1 we denote by πν the orthogonal projection

onto the vectorial line directed by ν. The following facts hold true.

i) For any closed set A ⊂ R
2, ν 7→ H1(πν(E)) is H1-measurable on S

1 and we
have

Iλ(A) ≥
1

π

∫

S1

H1(πν(E))dH1(ν).

ii) If {Ek}k∈N is a disjoint sequence of closed sets which satisfies

dist(Ek, Ek′) ≥ 2λ for all k 6= k′

then
Iλ(

⋃

k∈N

Ek) =
∑

k∈N

Iλ(Ek).

Proof. Assertions ii) is quite clear directly from definitions, so only i) needs a proof.
We first remark that given a direction ν ∈ S

1 and y ∈ R, then

H1
(

Aλ,ν ∩ π−1
ν⊥

(y)
)

≥
{

2λ if A ∩ π−1
ν⊥

(y) 6= ∅
0 otherwise

Next, using Fubini’s Theorem we can estimate

L
2(Aλ,ν) =

∫

R

H1
(

Aλ,ν ∩ π−1
ν⊥

(y)
)

dy ≥ 2λ

∫

R

1π
ν⊥

(A)(y)dy = 2λH1(πν⊥(A)).

The measurability of ν 7→ H1(πν⊥(A)) is a delicate issue and follows from [18, 2.10.5].

We finish the proof integrating over ν⊥ ∈ S
1.

Our goal is now to prove the following.

Lemma 2.6. Let (An)n∈N be a sequence of compact connected subsets of R2 converg-
ing for the Hausdorff distance to some compact and connected set A. Then for any
0 ≤ L < H1(A) and for every λ > 0 small enough (depending on A), one can find
n0 ∈ N such that

Iλ(An) ≥ CL, ∀n ≥ n0

where C > 0 is universal.
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Proof. We can assume that diam(A) > 0 otherwise L = 0 and there is nothing to
prove. We start by applying Lemma 2.3, supposing 4λ < min{r0,diam(A)}. For
r = 4λ, we get the existence of some points xi ∈ A for 1 ≤ i ≤ N such that the balls
B(xi, r) satisfy the properties i), ii) and iii) of Lemma 2.3.

Find n0 ∈ N large enough in such a way that

dH(A,An) ≤ r.10−5 ∀n ≥ n0 (18)

(here is where n0 can depend on λ). Given n ≥ n0, let zi,n ∈ An be a point such that
d(zi,n, xi) ≤ r.10−5 (this point exists due to (18)). Since r < diam(A) there exists
a point in A \ B(xi, r), and applying (18) again there exists a point of An close to
this one so that An \B(xi, r(1− 10−5)) is not empty, containing at least a point z′i,n.

This proves that diam(An) ≥ d(zi,n, z
′
i,n) >

1
2r. But then we can apply Lemma 2.4

to the connected set An in B(zi,n,
1
4r), and we get

Ki,n ∩ ∂B
(

zi,n,
r

4

)

6= ∅,

where Ki,n ⊂ An is the connected component of An ∩B(zi,n, r/4) that contains zi,n.
Let yi,n ∈ Ki,n ∩ ∂B

(

zi,n,
r
4

)

.
We now claim that with our choice of λ and n0 it holds

Iλ(An) ≥
N
∑

i=1

Iλ(Ki,n) ≥ CL, ∀n ≥ n0, (19)

where C > 0 is universal.
To justify the first inequality, notice that the sets (Ki,n)λ,ν are all disjoint since

λ = r/4 and Ki,n ⊂ Bi = B(xi, r/4), which provides ((Ki,n) ∩ Bi)λ,ν ⊂ B(xi, r/2),
and these balls are disjoint.

To estimate the integral with Ki,n, we use the first assertion in Lemma 2.5,
after noticing that, for each projection πν , if E is connected and {a, b} ⊂ E, then
πν(E) ⊃ πν([a, b]). This means that we have

Iλ(E) ≥ Iλ([a, b]) =
2

π
|a− b|.

In our particular case we can take E = Ki,n, a = zi,n and b = yi,n and get Iλ(Ki,n) ≥
Iλ([zi,n − yi,n]) ≥ Cr.

Hence, summing up and using Lemma 2.5 we get

Iλ(An) ≥
N
∑

i=1

Iλ((Ki,n) ∩Bi) ≥ C
N
∑

i=1

r,≥ CL,

as desired. This finishes the proof of the Lemma.
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2.3 An elementary inequality on the total variation

When I = (a, b) ⊂ R is an interval, we denote by V ar(f, I) the total variation of the
one-variable function f : I → R defined by

V ar(f, I) := sup{
∑

i

|f(ti)− f(ti+1)|; a = t0 < t1 < · · · < ti < · · · < tN = b}.

If J ⊂ R is open, we define V ar(f, J) =
∑

I V ar(f, I), where the sum is taken over
all the connected components of J .

Lemma 2.7. Let J ⊂ R be an open set and f : J → R a Borel measurable function.
Take a finite number of intervals I±i , 1 ≤ i ≤ N , satisfying the following properties:

(i) Ī−i = [a−i , ci] and Ī
+
i = [ci, a

+
i ] with a

−
i < ci < a+i

(ii) ci < ci+1 for all 1 ≤ i ≤ N

(iii) J =
⋃

1≤i≤N I
−
i ∪ I+i .

Then denoting by m±
i the average of f on I±i we have that

V ar(f, J) ≥
∑

1≤i≤N

m+
i +m−

i − 2f(ci).

Proof. This Lemma is very elementary but we provide a detailed proof for the con-
venience of the reader. Observe first that for all 1 ≤ i ≤ N , I−i ∪ I+i is an interval
and therefore is contained in only one connected component of J . Therefore, ar-
guing component by component we can assume without loss of generality that J is
connected.

We start by writing
∑

1≤i≤N

m+
i +m−

i − 2f(ci) ≤
∑

1≤i≤N

|m+
i − f(ci)|+ |m−

i − f(ci)|. (20)

Next, for each 1 ≤ i ≤ N we define t+i ∈ I+i and t−i ∈ I−i as follows :

• if m+
i − f(ci) ≥ 0 then we select some t+i ∈ Int(I+i ) such that f(t+i ) ≥ m+

i . In
this case we have that

|m+
i − f(ci)| = m+

i − f(ci) ≤ f(t+i )− f(ci) = |f(t+i )− f(ci)|.

• if, at the contrary, m+
i − f(ci) ≤ 0 then we select some t+i ∈ Int(I+i ) such that

f(t+i ) ≤ m+
i . It follows in this case that

|m+
i − f(ci)| = f(ci)−m+

i ≤ f(ci)− f(t+i ) = |f(t+i )− f(ci)|.

We proceed the same way for m−
i , defining for all 1 ≤ i ≤ N a point t−i ∈

Int(I−i ) satisfying
|m−

i − f(ci)| ≤ |f(t−i )− f(ci)|.
By this way we have obtained a subdivision of J of the form

a−1 < t−1 < c1 < t+1 < · · · < t−i < ci < t+i < . . . a+N .

13



Consequently

∑

1≤i≤N

|f(ci)− f(t−i )|+ |f(t+i )− f(ci)|+ |f(t−i+1)− f(t+i )| ≤ V ar(f, J)

And by construction of t±i it follows that

∑

1≤i≤N

|m+
i − f(ci)|+ |m−

i − f(ci)| ≤
∑

1≤i≤N

|f(ci)− f(t−i )|+ |f(t+i )− f(ci)|

≤ V ar(f, J),

and the proof is concluded by recalling (20).

2.4 A useful recovery sequence

Here we recall a standard construction for the Γ-limsup inequality, that is obtained
by studying the optimal profile in one dimension for minimizers of an energy of
Modica-Mortola type.

Lemma 2.8. Let Ω ⊂ R
2 be open and K ⊂ Ω be a compact and connected set. For

any r > 0 we will set Kr := {x ∈ R
2; dist(x,K) ≤ r}. Let kε → 0 be given. Then for

all ε > 0 there exists a function ϕε ∈ W 1,2
loc (R

2) ∩ C0(R2) equal to kε on Kε2, equal
to 1 on R

2 \Kε2+2ε| ln(ε)|, and such that

lim sup
ε→0

(
∫

R2

ε|∇ϕε|2 +
(1− ϕε)

2

4ε

)

≤ H1(K)

(the integral being indeed performed on a neighborhood of Ω, since ϕε is the constant
1 outside).

Proof. Due to the fact that K is connected, it automatically satisfies the lower
Ahlfors-regularity inequality

inf
x∈K,r<r0

H1(K ∩B(x, r))

2r
> 0. (21)

But this is enough to guarantee that the Minkowsky content and the Hausdorff
measure coincide (see for e.g. [3, Theorem 2.104, page 110]), namely,

lim
r→0

L 2(Kr)

2r
= H1(K). (22)

Then, for some suitable infinitesimals aε, bε that will be chosen just after, we take a
function ϕε similar to the one considered in the proof of Theorem 3.1. in [4], namely

ϕε =











kε on Kbε

1 on Ω \Kbε+aε

kε + λε

[

1− exp
(

bε−dist(x,K)
2ε

)]

on Kbε+aε \Kbε

14



where

λε :=
1− kε

1− exp(−aε/(2ε))
,

which insures that ϕε is a continuous function. We will impose aε/ε→ +∞, so that
λε → 1. Precisely, similarly to what was performed in [4] page 116-117, we can show
that, by choosing bε = ε2 and aε = −2ε ln(ε), it holds

lim sup
ε→0

(
∫

U
ε|∇ϕε|2 +

(1− ϕε)
2

4ε

)

≤ H1(K).

For the convenience of the reader, let us write here the proof.
Notice that the choice of aε implies λε = (1− kε)/(1− ε).
The main contribution in the limsup is attained in the region Kaε+bε \Kbε , since

it is easily seen that all the rest goes to zero. Denoting τ(x) := dist(x,K), we
observe that in this region the function ϕε is of the form λεf(τ(x)) + kε, where
f(t) = [1− exp

(

bε−t
2ε

)

] is solving the equation

f ′ =
1− f

2ε
, f(bε) = 0.

Also notice that for t ∈ [bε, bε + aε] we have f(t) ≤ 1− ε. We also have (we will use
this computation in the next inequalities)

1− kε − λεf(t) = (1− kε)

(

1− f(t)

1− ε

)

=
1− kε
1− ε

(1− ε− f(t)).

Also, from f(t) ≤ 1− ε, we infer (1− kε − λεf(t))
2 ≤ (1−kε)2

(1−ε)2
(1− ε− f(t))2.

The coarea formula yields

Aε :=

∫

Kaε+bε\Kbε

ε|∇ϕε|2 +
(1− ϕε)

2

4ε
dx

=

∫ bε+aε

bε

(

ελ2ε|f ′(t)|2 +
(1− kε − λεf(t))

2

4ε

)

H1
(

{x; dist(x,K) = t
)

dt

≤
∫ bε+aε

bε

(

λ2ε
(1− f(t))2

4ε
+

(1− kε)
2

(1− ε)2
(1− f(t))2

4ε

)

H1
(

{x; dist(x,K) = t
)

dt

≤ max

{

λ2ε,
(1− kε)

2

(1− ε)2

}

1

2ε

∫ bε+aε

bε

exp

(

bε − t

ε

)

H1
(

{x; dist(x,K) = t
)

dt.

setting

σε := max

{

λ2ε,
(1− kε)

2

(1− ε)2

}

→ 1

we only need to estimate the integral in the last expression.

Denoting g(t) = L 2(Kt), we have g′(t) = H1
(

{x; dist(x,K) = t
)

a.e. thus after

integrating by parts we arrive to

Aε ≤ σεε

2
g(aε + bε)−

σε
2ε
g(bε) +

σε
2ε2

∫ bε+aε

bε

exp

(

bε − t

ε

)

g(t)dt.
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Now since the first two terms are going to zero, and since σε → 1, we get

lim sup
ε→0

Aε ≤ lim sup
ε→0

1

2ε2

∫ bε+aε

bε

exp

(

bε − t

ε

)

g(t)dt. (23)

If we compute, with the change of variable t = b+ εs

1

2ε2

∫ a+b

b
exp

(

b− t

ε

)

2tdt =

∫ a/ε

0
exp(−s)

(

b

ε
+ s

)

ds

and we use a = aε = −2ε ln(ε) and b = bε = ε2 we get aε/ε → +∞ and bε/ε → 0,
which gives

lim
ε→0

1

2ε2

∫ aε+bε

b
exp

(

bε − t

ε

)

2tdt =

∫ ∞

0
exp(−s)sds = 1. (24)

Then, we can deduce from the computation above and from (22) that the right-
hand side of (23) does not exceed H1(K). Indeed, for any given τ > 0 we know from
(22) that g(t)/2t is less than H1(K)+τ , provided that ε is small enough. This allows
us to write, for small ε,

1

2ε2

∫ bε+aε

bε

exp

(

bε − t

ε

)

g(t)dt ≤ (H1(K) + τ)

2ε2

∫ bε+aε

bε

exp

(

bε − t

ε

)

2t dt

and we conclude by taking the limsup in ε, using (24), and then letting τ → 0.

Remark 2.9. Notice that from the explicit formulas for ϕε, one can also estimate
higher summability for |∇ϕε|, with bounds depending on ε. Without any intention
to be sharp, it is easy to check |∇ϕε| ≤ C/ε, and hence

∫

|∇ϕε|p ≤ Cε−p.

The functions ϕε that we have just built have the property that they are equal to
ε on K and are equal to 1 outside a neighborhood of K. In the sequel we will need
to “move” a little bit the set K inside Ω to take care of boundary effects.

In particular we will consider the following situation.

Lemma 2.10. Let Ω be an open and bounded subset of R2, star-shaped with respect to
0 ∈ Ω and with Lipschitz boundary. Then there exists some constants c(Ω) and C(Ω)
depending only on Ω and expliciten later, such that the following holds. Take aε, bε
and ϕε just as before for some closed connected set K ⊂ Ω, and with ε satisfying
aε + bε ≤ c(Ω). Let δ ∈]0, 1[ be such that

δ ≥ C(Ω)(aε + bε). (25)

Then

1

1 + δ
Kaε+bε ⊂ Ω (26)
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and the function ϕε,δ defined by

ϕε,δ(x) =

{

ϕε((1 + δ)x) if x ∈ (1 + δ)−1Ω,

1 if x ∈ Ω \ (1 + δ)−1Ω,

satisfy
(
∫

Ω
ε|∇ϕε,δ|2 +

(1− ϕε,δ)
2

4ε

)

≤
(
∫

Ω
ε|∇ϕε|2 +

(1− ϕε)
2

4ε

)

.

The constants c(Ω) and C(Ω) can be chosen as follows

c(Ω) =
1

4
min{|x|; x ∈ ∂Ω}, C(Ω) =

1

4c(Ω)

(

1 +
8Lip(gΩ)

c(Ω)

)

,

where gΩ is the Lipschitz parametrisation of the boundary defined through the identity

Ω = {x; |x| ≤ gΩ(x/|x|)}.

Proof. Let g = gΩ be the gauge of Ω and c(Ω), C(Ω) the constants given in the
statement of the Lemma. We want to find a condition on δ such that, for every point
x ∈ Ω and every vector w with |w| ≤ aε + bε ≤ c(Ω), we have (1 + δ)−1(x+ w) ∈ Ω.
Notice that B(0, R) ⊂ Ω where R := min{|x|; x ∈ ∂Ω}, and since aε + bε ≤ c(Ω) =
R/4, it follows that x+w ∈ B(0, R) ⊂ Ω for all x ∈ B(0, R/2), a fortiori (1+δ)−1(x+
w) ∈ Ω too. Therefore it is enough to check the property for x ∈ Ω \B(0, R/2).

From the inequality

∣

∣

∣

∣

x

|x| −
y

|y|

∣

∣

∣

∣

=

∣

∣

∣

∣

|y|(x− y) + y(|y| − |x|)
|x||y|

∣

∣

∣

∣

≤ |x− y|+
∣

∣|x| − |y|
∣

∣

|x| ≤ 2|x− y|
|x|

we deduce that
∣

∣

∣

∣

x

|x| −
x+ w

|x+ w|

∣

∣

∣

∣

≤ 2|w|
|x| . (27)

It follows that

g

(

x

|x|

)

≤ g

(

x+ w

|x+ w|

)

+ Lip(g)
2w

|x| . (28)

Recall that we want to find a condition on δ which garantees

|x+ w| ≤ (1 + δ)g

(

x+ w

|x+ w|

)

.

From |x+ w| ≤ |x|+ |w| and (28) it is enough to have

|x|+ |w| ≤ g

(

x

|x|

)

+ δg

(

x

|x|

)

− (1 + δ) Lip(g)
2|w|
|x| . (29)

Using |x| ≤ g(x/|x|) and δ ≤ 1, (29) is guaranteed if
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|w| ≤ δg

(

x

|x|

)

− 4Lip(g)
|w|
|x| ,

in other words when

δ ≥ |w|
g(x/|x|)

(

1 +
4Lip(g)

|x|

)

,

and since |w| ≤ aε+bε, |x| ≥ R/2 = 2c(Ω) and g(x/|x|) ≥ 4c(Ω) this holds true when

δ ≥ (aε + bε)
1

4c(Ω)

(

1 +
8Lip(g)

c(Ω)

)

,

which gives a choice for C(Ω).
We shall prove the last conclusion. The change-of variable y = (1 + δ)x shows

∫

U
|∇ϕε,δ|2 =

∫

(Kaε+bε)/(1+δ)
|(1 + δ)∇ϕε((1 + δ)x)|2 =

∫

(Kaε+bε)
|∇ϕε(x)|2 =

∫

Ω
|∇ϕε|2.

of course this is not surprising because our change of variable is conformal. Moreover,
by use of the same change of variable and using the fact that (1 − ϕε,δ)

2 = 0 on
Ω \ (1 + δ)−1Ω we also have that
∫

Ω
(1−ϕε,δ)

2dx =

∫

(1+δ)−1Ω
(1−ϕε,δ)

2dx =
1

(1 + δ)2

∫

Ω
(1−ϕε)

2dx ≤
∫

Ω
(1−ϕε)

2dx.

Remark 2.11. The same argument could be adapted in more general domains than
star-shaped by use of other transformations Tδ instead of y = (1 + δ)x, involving
coefficients depending on detDTδ and ||DTδ||, quantities which are close to 1 if DTδ
is close to the identity matrix.

3 The main liminf inequality

We are now ready to establish the main inequality that will lead to our Γ-convergence
result.

Lemma 3.1. Let Ω ⊂ R
2 be a bounded open set, µε be a family of measures on Ω and

ϕε ∈ H1(Ω)∩C(Ω) be a family of functions satisfying ϕε = 1 on ∂Ω and 0 ≤ ϕε ≤ 1
in Ω, cε → 0 and xε a sequence of points of Ω such that

(i) xε → x0 for some x0 ∈ Ω

(ii) µε
∗
⇀ µ for some measure µ on Ω

(iii) dϕε(x, xε) converges uniformly to some 1-Lipschitz function d(x) on Ω.

(iv)

sup
ε>0

(

1

4ε

∫

Ω
(1− ϕε)

2dx+ ε

∫

Ω
|∇ϕε|2dx+

1

cε

∫

Ω
dϕε(x, xε)dµε

)

≤ C < +∞.
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Then

(a) the compact set K := {x ∈ Ω ; d(x) = 0} is connected,

(b) x0 ∈ K,

(c) spt(µ) ⊂ K,

(d) we have

H1(K) ≤ lim inf
ε→0

(

1

4ε

∫

Ω
(1− ϕε)

2dx+ ε

∫

Ω
|∇ϕε|2dx

)

.

Proof. Up to extracting a subsequence in ε we may assume that the liminf in (d) is a
true limit. For the sake of simplicity, in the sequel we will continue to denote by ε the
index of this subsequence, and it will still be the same for any further subsequences
in the future.

For every ε and δ > 0 we define

Kε,δ := {x ∈ Ω ; dϕε(x, xε) ≤ δ}.

Since these sets are all compact sets contained in Ω, up to a subsequence we can
assume that Kε,δ converges to some Kδ for the Hausdorff distance when ε→ 0. Next
we define

K ′ :=
⋂

δ>0

Kδ.

Notice that for any pair of points x, y ∈ Kε,δ, the geodesic curve that realized the
distance dϕε(x, y) connecting x to y is totally contained in Kε,δ, thus Kε,δ is path
connected. Consequently, Kδ is connected as Hausdorff limit of connected sets, and
therefore K ′ is also connected as a decreasing intersection of connected sets (which is
also a Hausdorff limit). But since dϕε(x, xε) converges uniformly to some 1-Lipschitz
function d(x), it is easy to see that K ′ = K. Indeed, for each δ > 0 we have
{d < δ} ⊂ Kδ ⊂ {d ≤ δ}, which implies K ′ = {d = 0}. In particular, since
dϕε(x0, xε) ≤ |xε − x0| → 0, we obtain that d(x0) = 0, thus x0 ∈ K.

The next part of the claim, i.e. spt(µ) ⊆ K is an easy consequence of the fact
that

∫

Ω
dϕε(x, xε)dµε → 0,

which gives, thanks to the uniform convergence dϕε(x, xε) → d(x) and the weak
convergence of the measures,

∫

Ω d(x) dµ(x) = 0. Since d is a continuous function, we
get d = 0 on spt(µ) and hence spt(µ) ⊂ K.

At this stage (a), (b), (c) are proved and it remains to prove (d). This will be
achieved in two main steps.

Step 1. Rectifiability of K. We first prove that

H1(K) < +∞. (30)
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Fix δ0, τ0 > 0, and let {z1, z2, . . . , zN} ⊆ K be a τ0-network in K, which means

K ⊆
⋃

1≤i≤N

B(zi, τ0).

Due to the uniform convergence dϕε(·, xε) → d and the fact that d(zi) = 0 for all
1 ≤ i ≤ N , there exists an ε1 > 0, depending on δ0 and τ0, such that the following
holds : for any ε < ε1 there exists some C1 regular curves Γεi (of finite length)
connecting zi to xε and satisfying

∫

Γε
i

ϕε(s)dH1(s) < δ0, ∀1 ≤ i ≤ N. (31)

Now we consider
Γε :=

⋃

1≤i≤N

Γεi ,

(which also depends on δ0 and τ0 but we do not make it explicit to lighten the
notation). Our goal is to estimate the quantity Iλ(Γε) (recall the definition of Iλ in
(17)).

In view of applying Lemma 2.6, we denote by Γ0 the Hausdorff limit of Γε, which
surely exists up to extracting a subsequence. Let λ > 0 be a small enough parameter,
and ε0 > 0 be given by Lemma 2.6 applied with L < H1(Γ0), in such a way that

L ≤ CIλ(Γε) ∀ε < ε0. (32)

Let now ν ∈ S1 be an arbitrary direction: for any t ∈ R we denote by Lt the
affine line Rν+ tν⊥. Since Γε is a finite union of curves of finite length, we know that

H0(Lt ∩ Γε) < +∞ , for a.e. t ∈ R.

Let G ⊂ R be the set of such t ∈ R for which H0(Lt∩Γε) < +∞, and pick any t ∈ G.
Let {xj}j∈J be the finite set of Γε∩Lt. We brutally identify xj with its coordinate on
the line Lt and we assume that they are labelled in increasing order, i.e. xj < xj+1.
Next, we decompose the relative interior Int((Γε)λ,ν ∩ Lt) as follows :

Int((Γε)λ,ν ∩ Lt) =
⋃

j∈J

I−j ∪ I+j ,

where

I+j :=

{

[xj, xj + λ) if |xj+1 − xj| ≥ 2λ

[xj,
xj+xj+1

2 ] otherwise

I−j :=

{

(xj − λ, xj ] if |xj − xj−1| ≥ 2λ

(
xj+xj−1

2 , xj ] otherwise

Where by convention x−1 = −∞ and xN+1 = +∞ so that I−1 and I+N are well
defined. Notice also that if xj lies too close to ∂Ω, it could be that I+j and I−j goes a
bit outside Ω, but this will not be a problem in the sequel. Indeed, the function ϕε can
be extended to the whole R

2 by taking the value 1 outside Ω (this is a consequence

20



of 1 − ϕε ∈ H1
0 (Ω)). From the definition of the functional Fε(vε, ϕε, yε), extending

with a constant value 1 does not change the integral, since we have ∇ϕε = 0 and
(1 − ϕε)

2 = 0 outside Ω. Hence, we can think that the functions are defined on a
larger domain Ω′ including Ω in its interior and avoid caring about boundary issues.

Let P (s) := s − s2/2 be the primitive of s 7→ (1 − s) satisfying P (0) = 0 and
P (1) = 1/2. Arguing as Modica and Mortola [29], using the inequality 1

4εa
2 + εb2 ≥

ab, we infer that

C ≥ Fε(vε, ϕε, yε) ≥
1

4ε

∫

Ω
(1− ϕε)

2dx+ ε

∫

Ω
|∇ϕε|2dx

≥
∫

Ω
(1− ϕε)|∇ϕε|dx ≥

∫

Ω
|∇(P (ϕε))|dx.

Hence, we can go on with

C ≥
∫

Ω′

|∇ν(P (ϕε))|dx =

∫

R

V ar(ft, Lt ∩ Ω′), (33)

where ft := P (ϕε)|Lt . On the other hand applying Lemma 2.7 we can write

V ar(ft, Lt ∩ Ω) ≥ V ar(ft, Int((Γε)λ,ν ∩ Lt)) ≥
∑

j∈J

m+
j +m−

j − 2ft(xj), (34)

where m±
j denotes the average of ft on I

±
j . Since H1(I±j ) ≤ λ for all j, we deduce

that

V ar(ft, Lt ∩ Ω) ≥ 1

λ

∫

(Γε)λ,ν∩Lt

ft(s)ds− 2
∑

j∈J

ft(xj).

Integrating over t ∈ R, applying Fubini’s Theorem and using (33) it comes

1

λ

∫

(Γε)λ,ν

P (ϕε(x))dx − 2

∫

R

∑

j∈J

ft(xj)dt ≤ C (35)

Now we estimate the second term in the left hand side of (35). The co-area formula
(see for instance the equality (2.72) page 101 of [3]) applied on the 1-rectifiable set
Γε provides

∫

R

∑

j∈J

ft(xj)dt =

∫

Γε

P (ϕε(x))Cν(x)dH1(x),

where Cν(x) denotes the one dimensional co-area factor associated with the orthog-
onal projection x 7→ 〈x, ν⊥〉. Since the latter mapping is 1-Lipschitz, it is easy to
verify that |Cν(x)| ≤ 1 yielding

∫

R

∑

j∈J

ft(xj)dt ≤
∫

Γε

P (ϕε(x))dH1(x)

≤
∑

1≤i≤N

∫

Γε
i

P (ϕε(x))dH1(x)

≤
∑

1≤i≤N

∫

Γε
i

ϕε(x)dH1(x) (36)

≤ Nδ0. (37)
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For (36) we have used P (ϕε) = ϕε − ϕ2
ε/2 ≤ ϕε, and for (37) we have used (31).

Returning now to (35), we have proved that

1

λ

∫

(Γε)λ,ν

P (ϕε(x))dx ≤ C + 2Nδ0. (38)

Let us emphasis that C is a uniform constant, but N depends on τ0 (and is indepen-
dent of ν and δ0). From (38) we get

1

2λ
(L 2((Γε)λ,ν) =

1

λ

∫

(Γε)λ,ν

P (1)dx ≤ C + 2Nδ0 +
1

λ

∫

Ω′

|P (1) − P (ϕε)|,

and finally, taking the average over ν ∈ S
1, we get

1

2
Iλ(Γε) =

1

4πλ

∫

S1

(L 2((Γε)λ,ν)dν ≤ C + 2Nδ0 +
1

λ

∫

Ω′

|P (1) − P (ϕε)|dx.

Then, due to (32), it follows that, after fixing τ0 and δ0, getting some set Γε and a
limit set Γ0, the inequality

L ≤ 2C + 4Nδ0 +
2

λ

∫

Ω′

|P (1) − P (ϕε)|dx (39)

holds for all L < H1(Γ0), for the value of λ that we have fixed, and ε < ε0. We now
let ε → 0. Since P (ϕε) is uniformly bounded in L∞(Ω), and ϕε → 1 a.e. in Ω, we
obtain P (ϕε) → P (1) strongly in L1(Ω) (and L1(Ω′)), which yields

L ≤ 2C + 4Nδ0. (40)

L being an arbitrary number smaller than H1(Γ0), we get

H1(Γ0) ≤ 2C + 4Nδ0. (41)

Recall that Γ0 is a connected set containing the τ0-dense set of points {zi} ⊆ K, of
total numberN depending only on τ0. Recall also that Γ0 is obtained as the Hausdorff
limit of union of curves Γεi , that are defined upon the parameter δ0. Therefore, Γ0

depends a priori on δ0 as well. This is why we define, up to a subsequence of δ0 → 0,
the Hausdorff limit of Γ0(δ0) that we denote by Γ00. The set Γ00 is still a connected
set containing the τ0-dense set of points {zi} ⊂ K. By passing to the liminf in (40)
and by use of Golab Theorem we get

H1(Γ00) ≤ lim inf
δ0→0

H1(Γ0) ≤ 2C. (42)

But now letting τ0 → 0 we get, through a suitable subsequence, a Hausdorff limit
set Γ000 which is still connected and surely contains K because Γ00 contained a
τ0−network of K. By use of Golab Theorem again we get

H1(K) ≤ H1(Γ000) ≤ lim inf
τ0→0

H1(Γ00) ≤ 2C. (43)
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This implies (30) and finishes the proof of the first step.

Step 2. More precise lower bound. Now that we know that K is rectifiable, we will
improve the lower bound. Namely, we shall now prove (d).

For this purpose we consider the following family of measures supported on Ω,

mε =

(

1

4ε
(1− ϕε)

2 + ε|∇ϕε|2
)

L
2|Ω,

that we assume to be weakly-∗ converging to some measure m supported on Ω (this
is not restrictive up to extracting a subsequence, thanks to the bound in (iv)).

Applying Lemma 2.2 to the set K, we know that H1-a.e. point x ∈ K admits a
tangent line. Let Tx be the tangent line to x. We assume without loss of generality
that x = 0 and Tx = Re1. We denote by π the orthogonal projection onto the one-
dimensional vector space Re1. Let 0 < λ < 1 be fixed (very close to 1). Lemma 2.2
provides that for some r0 > 0 and for all r ≤ r0, (that we suppose small enough so
that B(x, r) ⊆ Ω)

π(K ∩B(x, r)) ⊇ [−λr, λr]. (44)

Then we consider the rectangle

Cλ(r) := [−λr, λr]× [−hr, hr],

with h =
√
1− λ2, so that Cλ(r) ⊂ B(x, r) (see Picture 2 below). We want to

estimate mε(Cλ(r)), for r small.
Let β > 0 be a very small parameter satisfying

β ≤ 10−3h. (45)

Up to taking a smaller r0 we may also suppose that for all r ≤ r0, K ∩ Cλ(r) ⊂
W (β, r), where W (β, r) is a small strip near the tangent of relative width β, namely

W (β, r) := {y ∈ Cλ(r); d(y, Tx) ≤ rβ}. (46)

Let us define δε := ||dϕε(·, xε)− d||L∞ , which is a sequence converging to 0 as ε→ 0,
and consider the setsKε,δε , which converge in the Hausdorff topology toK. Moreover,
we have K ⊂ Kε,δε . We can also define some ε0 > 0 small enough so that :

Kε,δε ⊆W (2β, r) ∀ε ≤ ε0; (47)

Finally, we can also guarantee that

xε ∈ Kε,δε \ Cλ(r) ∀ε ≤ ε0 and ∀r ≤ r0. (48)

Under those conditions we are sure that K ∩ B(x, r) ∩ π−1([−λr, λr]) ⊂ Cλ(r)
thus it follows from (44) that for all t ∈ [−λr, λr] we can find a point zt that belongs
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to π−1(t) ∩K (and hence also to π−1(t) ∩Kε,δε). Since dϕε(zt) < δε, thanks to (48),
for every zt there exists a curve Γε(t) connecting zt to xε and such that

∫

Γε(t)
ϕε(s)ds ≤ δε.

Because of (47), and the fact that xε lies outside Cλ(r), the curve Γε(t) must first
exit Cλ(r) on either the left or the right side of C(x, r). More precisely, denoting by
C+ and C− the two connected components of ∂Cλ(r) ∩W (β, r),

C± := {y ∈ ∂Cλ(r); d(x, (±r, 0)) ≤ βr},

we must have that
Γε(t) ∩C+ 6= ∅ or Γε(t) ∩C− 6= ∅

as in the picture below.

h =
√

2λ(1− λ)

2λr

Cλ(r)

Tx

B(x, r)

K

W (β, r)

C−
C+

Let us define
tR := inf{t ∈ [−r, r]; Γε(t) ∩ C+ 6= ∅}
tL := sup{t ∈ [−r, r]; Γε(t) ∩C− 6= ∅}.

Of course the two sets on which we take the lower and upper bounds are not empty
because Γε(±λr)∩C± = {(±r, 0)} 6= ∅. Also notice that we necessarily have tR ≤ tL.
Indeed, the opposite inequality holds, then for all the points t ∈]tL, tR[, the curve
Γε(t) would not meet neither C+ not C−, which is impossible. Then, take t′L < tL
and t′R < tR such that |t′R − t′L| < ε and define

Γε := Γε(t
′
L) ∪ Γε(t

′
R).

The set Γε is not necessarily connected, but we have

π(Γε) ⊃ Iλ,r,ε := [−λr, λr] \ ]t′L, t′R[. (49)
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For every t ∈ Iλ,r,ε we denote by gt a point in Γε ∩ π−1(t).
Let us now estimate

mε(Cλ(r)) =
1

4ε

∫

Cλ(r)
(1− ϕε)

2dx+ ε

∫

Cλ(r)
|∇ϕε|2dx

≥
∫

Cλ(r)
(1− ϕε)|∇ϕε|dx ≥

∫

Cλ(r)
|∇(P (ϕε))|dx

≥
∫

Cλ(r)

∣

∣

∣

∂

∂x2
(P (ϕε))

∣

∣

∣
dx ≥

∫ λr

−λr
V ar(ft, [−hr, hr])dt

where ft := P (ϕε)|Lt with Lt := t + Re2. On the other hand applying Lemma 2.7,
for every t ∈ Iλ,r,ε, we can write

V ar(ft, It) ≥ m+
t +m−

t − 2ft(gt), (50)

where m+ denotes the average of ft on [gt, hr] and m− denotes the average of ft
on [−hr, gt] (here we identified gt on the line Lt with its coordinate on the second
axis). Observe that the length of each of those two intervals lies between hr − βr
and hr + βr , which is positive thanks to (45). Next,

V ar(ft, [−hr, hr]) ≥
1

r(h+ β)

∫

It

ft(s)ds− 2ft(gt).

Integrating over t ∈ Iλ,r,ε = [−λr, λr] \ [t′L, t′R] and applying Fubini’s Theorem it
comes

mε(Cλ(r)) ≥ 1

r(h+ β)

∫

Iλ,r,ε×[−hr,hr]
P (ϕε(x))dx − 2

∫

Iλ,r,ε

ft(gt)dt (51)

≥ 1

r(h+ β)

∫

Cλ(r)
P (ϕε(x))dx− εh

2(h+ β)
− 2

∫

Iλ,r,ε

ft(gt)dt (52)

To estimate the last term in the left hand side of (51) we use the same argument as
for (35) relying on the co-area formula to say that

∫

Iλ,r,ε

ft(gt)dt ≤
∫

Γε

P (ϕε(x))dH1(x)

≤
∫

Γε(t′L)
P (ϕε(x))dH1(x) +

∫

Γε(t′R)
P (ϕε(x))dH1(x)

≤
∫

Γε(t′L)
ϕε(x)dH1(x) +

∫

Γε(t′R)
ϕε(x)dH1(x)

≤ 2δε. (53)

Recall that for (53) we have used again P (ϕε) = ϕε − ϕ2
ε/2 ≤ ϕε.

Returning to (51) we obtain that for all r ≤ r0 it holds

mε(Cλ(r)) ≥ 1

r(h+ β)

∫

Cλ(r)
P (ϕε(x))dx− ε

2
− 4δε. (54)
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Passing to the limsup in ε → 0, using δε → 0, together with the facts that ϕε → 1
strongly in L1, that P (1) = 1/2, that Cλ(r) is closed and that mε converges weakly-∗
to m we get

m(Cλ(r)) ≥ lim sup
ε→0

mε(C(x, r)) ≥ 1

2r(h+ β)
L

2(Cλ(r)).

Recalling that Cλ(r) ⊆ B(x, r) we get

m(B(x, r)) ≥ 1

2r(h− β)
4r2hλ.

Finally, letting β → 0 and λ→ 1 we get the density estimate

m(B(x, r)) ≥ 2r,

which leads to

lim sup
r→0

m(B(x, r))

2r
≥ 1,

and this holds for H1-a.e. x ∈ K. Applying Proposition (2.1), we find that

m ≥ H1|K ,

and we conclude that

H1(K) ≤ lim inf
ε→0

(

1

4ε

∫

Ω
(1− ϕε)

2dx+ ε

∫

Ω
|∇ϕε|2dx

)

.

4 Approximation of the Steiner problem

In this section we explain how to approximate the following Steiner problem in R
2.

Let µ be a probability measure on R
2 with compact support; we denote by

Kµ := {K ⊂ R
2; compact, connected, and s.t. spt(µ) ⊂ K}.

We then investigate

inf{H1(K) ;K ∈ Kµ}. (55)

Notice that here µ is only important through its support. If the infimum in the
above problem is finite, then the problem admits a solution as a direct consequence
of Blaschke and Golab’s Theorem; notice that in general the minimal set is not
unique. The most investigated case is the case of the so-called Steiner problem (see
[21, 33] and the references therein), where we consider a finite number of points finite
set of points {xi} =: D and we choose any measure µ such that spt(µ) = D, for
instance µ = 1

♯D

∑

i δxi .
To approximate (55) we introduce an open set Ω containing the convex hull of D

in its interior. This is just to avoid boundary problems. Indeed, it is easy to verify
that a minimizer for (55) will always stay inside Ω otherwise its projection onto the
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convex hull would make a better competitor (such a projection is indeed a 1-Lipschitz
mapping). Therefore (55) is equivalent to the problem

min{H1(K) ;K ∈ Kµ and K ⊂ Ω}. (56)

Now, to approximate (56) we take any arbitrary chosen point x0 ∈ D. Then recalling
the definition of dϕ in (2) we introduce the family of functionals defined on L2(Ω) by

Sε(ϕ) =
1

4ε

∫

Ω
(1− ϕ)2dx+ ε

∫

Ω
|∇ϕ|2dx+

1

cε

∫

Ω
dϕ(x, x0)dµ(x), (57)

if ϕ ∈ W 1,2(Ω) ∩ C0(Ω) satisfies 0 ≤ ϕ ≤ 1, ϕ = 1 on ∂Ω, and Sε(ϕ) = +∞
otherwise.

Definition 4.1. We say that ϕε is a quasi-minimizing sequence for Sε if

Sε(ϕε)− inf
ϕ
Sε(ϕ) −→

ε→0
0.

Our approximation result is as follows.

Theorem 4.2. For all ε > 0 let ϕε be a quasi-minimizing sequence of Sε, where
cε → 0. Consider the sequence of functions dϕεn

converging uniformly to a certain
function d. Then the set K := {d = 0} is compact and connected and is a solution
to Problem (55).

Remark 4.3. Notice that the assumption of dϕε converging to a function d is not
restrictive since they are all 1-Lipschitz functions thus always converge uniformly up
to a subsequence.

Proof. Defining
τn := sup

k≥n
|dϕεk

(x, x0)− d(x)|∞,

it is easy to see that
Kn := {x ∈ Ω; dϕεn

(x, x0) ≤ τn}
converges, for the Hausdorff distance, to the set K = {d(x) = 0}.

Now let K0 ∈ Kµ be a minimizer for the Steiner Problem (56) in particular
K0 ⊂ Ω because it is contained in the convex hull of the support of µ, in other words
K0 ∩ ∂Ω = ∅.

Then, let aε and bε be the same parameters as in Lemma 2.8, and let ψε be
the family of function given by Lemma 2.8, with kε = 0. For ε small enough we
have ψε = 1 on ∂Ω. Since ϕε are quasi-minimizers of Sε, it follows that for all
n ≥ 0, it holds Sεn(ϕεn) ≤ Sεn(ψεn) + o(1), thus taking the liminf, and noticing that
1
cε

∫

Ω dψε
(x, x0)dµ(x) = 0 for all ε we infer that

lim inf
n

Sεn(ϕεn) ≤ lim sup
n

Sεn(ψεn) ≤ H1(K0). (58)
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In particular Sεn(ϕεn) ≤ C so that Lemma 3.1 applies, thus we obtain that K ∈ Kµ

and that
H1(K) ≤ lim inf

n→+∞
Sεn(ϕεn).

Gathering with (58) we deduce that

H1(K) ≤ H1(K0)

which proves that K is a minimizer.

Remark 4.4. We refer the reader to Section 5.4 in order to check the technical tricks
to guarantee existence for the approximating problems minSε.

5 Approximation of the average distance and

compliance problems

5.1 The dual problem

Our strategy is first to change the problem into a simpler form via a duality argument.
Indeed, if one writes the energy

∫

uKf in terms of a minimization problem, one finds
that Problem (6) has a min-max form. By duality, we will turn this problem into a
min-min. Let us denote by

K := {K ⊂ Ω; closed and connected},

Aq := {(K, v) : K ∈ K, v ∈ Lq(Ω)

∫

Ω
v ·∇ψ =

∫

Ω
ψf for all ψ ∈ C1(Ω), ψ = 0on K},

(the definition of Ap is the same as in the introduction, with the divergence and
boundary conditions expressed in a weak sense).

Proposition 5.1. For p ∈]1,+∞[ and q = p′ = p−1
p , Problem (6) is equivalent to

inf
(K,v)∈Ap

{

1

q

∫

Ω
|v|qdx+ΛH1(K)

}

. (59)

Proof. Let K ∈ K and uK be a minimizer of (5). Then the optimality condition
yields

1− p

p

∫

Ω
uKf = min

u∈W 1,p
K

(Ω)

∫

Ω

(

1

p
|∇u|p − uf

)

dx.

Let q be the conjugate exponent to p. We need to prove

min
u∈W 1,p

K
(Ω\K)

∫

Ω

(

1

p
|∇u|p − uf

)

dx

= sup

{

−1

q

∫

Ω
|v|q dx, v ∈ Lq(Ω,R2) : (K, v) ∈ Aq

}

. (60)
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This is quite classical, but we provide a proof from convex analysis (the following
approach is inspired by the proof of Theorem 2 in [14]). For η ∈ Lp(Ω,R2), we set

Φ(η) := inf
u∈W 1,p

K
(Ω)

∫

Ω

(

1

p
|∇u+ η|p − uf

)

dx.

This functional Φ is convex in η, since it is obtained as the infimum over u of a
functional which is jointly convex in (u, η). The argument from convex analysis that
we use is the following : given a reflexive Banach space E, if Φ : E → R is a convex
function, lower semi-continuous, never taking the value −∞, then Φ∗∗ = Φ, where
Φ∗ denotes the convex conjugate (see for instance [17]). It is easy to check that our
function Φ satisfies these extra conditions (l.s.c. and Φ > −∞).

We denote by v ∈ Lq(Ω,R2) the dual variable associated to η. Let us compute
Φ∗(v) :

Φ∗(v) = sup
η∈Lp

[
∫

Ω
v · η dx− Φ(η)

]

= sup
η∈Lp

[

∫

Ω
v · η dx− inf

u∈W 1,p
K

(Ω)

{
∫

Ω

1

p
|∇u+ η|pdx−

∫

Ω
fu dx

}

]

= sup
η∈Lp





∫

Ω
v · η dx+ sup

u∈W 1,p
K

(Ω)

{

−
∫

Ω

1

p
|∇u+ η|pdx+

∫

Ω
fu dx

}





= sup
η∈Lp, u∈W 1,p

K
(Ω)

[
∫

Ω
v · η dx−

∫

Ω

1

p
|∇u+ η|p dx+

∫

Ω
fu dx

]

= sup
η∈Lp, u∈W 1,p

K
(Ω)

[
∫

Ω

{

v · (∇u+ η)− 1

p
|∇u+ η|p

}

dx+

∫

Ω
fudx−

∫

Ω
v · ∇u dx

]

Then we use the relation

sup
η∈Lp

∫

Ω

{

v · (∇u+ η)− 1

p
|∇u+ η|p

}

dx =
1

q

∫

Ω
|v|q

(the equality is achieved for η = |v|q−2v −∇u), which yields :

Φ∗(v) =
1

q

∫

Ω
|v|q dx+ sup

u∈W 1,p
K

(Ω)

∫

Ω
(fu− v · ∇u) dx

We then introduce the condition
∫

Ω
(fu− v · ∇u) dx = 0 ∀u ∈W 1,p

K (Ω) (61)

(which says that div v = −f in Ω \K and v · ν = 0 on ∂Ω, in a weak sense). Since
the above expression is linear in u, at v fixed, we see that the supremum in the above
expression for Φ∗ is either 0 when v satisfies (61), or +∞. This way,

Φ∗(v) =

{1
q

∫

Ω |v|q if v satisfies (61),

+∞ otherwise.
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We take again the conjugate: for all η ∈ Lp(Ω,R2),

Φ∗∗(η) := sup

{
∫

Ω
v · η dx− Φ∗(v), v ∈ Lq(Ω,R2)

}

= sup

{
∫

Ω
v · η dx− 1

q

∫

Ω
|v|q dx, v ∈ Lq(Ω,R2), v satisfies (61)

}

We conclude by writing that Φ(0) = Φ∗∗(0), in other words

inf

{
∫

Ω

(

1

p
|∇u|p − fu

)

dx, u ∈W 1,p
K (Ω)

}

=

sup

{

−1

q

∫

Ω
|v|q dx, v ∈ Lq(Ω,R2), v satisfies (61)

}

.

Remark 5.2. From the previous proof, one notices that the optimal vector field
v satisfies div v = ∆qu, where u is the solution of −∆qu = f with u = 0 on K.
The function u is non-negative outside K, and hence its normal derivatives on K are
positives, and this gives the sign of div v onK, which is a singular measure depending
on these normal derivatives.

We also have a similar statement for the average distance problem. Let us set

A∞ :=

{

(K, v) : K ∈ K, v ∈ Md(Ω) :

∫

Ω
∇ψ · dv =

∫

Ω
ψf ∀ψ ∈ C1(Ω), ψ = 0on K

}

.

Here Md(Ω) is the set of finite (d−dimensional) vector measures on Ω, endowed
with the norm ||v||M := |v|(Ω) = sup{

∫

ψ ·dv : ψ ∈ C0(Ω;Rd), |ψ| ≤ 1}. Analogusly,
we define M(Ω) as the set of finite signed measures on Ω.

Proposition 5.3. Problem (4) is equivalent to

inf
(K,v)∈A∞

{
∫

Ω
|v|dx + ΛH1(K)

}

. (62)

Proof. The proof for the case p = ∞ and the average distance problem could be
obtained by adapting the previous proof for the compliance case, but would require
some attention due to the fact that the spaces are non-reflexive. Hence, for the reader
knowing some optimal transport techniques, we give a different approach.

First notice that

∫

Ω
dist(x,K)f(x)dx = min{W1(f, ν) : spt(ν) ⊂ K},

where W1 is the Wasserstein distance between probability measures, and we identify
f with a probability having f as a density. It is easy to see that the optimal measure
ν in the minimum above is given by (πK)#f , where πK is the projection onto the set
K (well-defined a.e. and measurable).

Next, we use Beckmann’s interpretation of the distanceW1 (see for instance [34]),
which gives

W1(f, ν) = inf{||v||M : −div v = f − ν},
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where the divergence condition is to be intended in the sense
∫

∇φ · dv =

∫

φd(f − ν), for all φ ∈ C1(Ω),

(without compact support or boundary conditions on φ, which means that v also
satisfies v · nΩ = 0). Hence we have

∫

Ω
dist(x,K)f(x)dx = min

spt(ν)⊂K
min

div v=f−ν
||v||M

= min{||v||M : spt(div v − f) ⊂ K}.

Remark 5.4. From the previous proof, one notices that the optimal vector field
v satisfies −div v = f − ν, where ν is a positive measure of the same mass as
f ≥ 0. In particular this gives the sign of the singular part of div v and proves
|div v|(Ω) = 2

∫

Ω f(x)dx.

In the sequel we will assume that Λ = 1 to lighten the notation. Now we define
M(q)(Ω) the space of fields v ∈ Lq(Ω,R2) whose divergence in the sense of distribution
div v is a measure (for q = 1, this becomes the space of vector measures such that
the divergence is also a measure). For any signed measure µ on Ω, we define the
length of the “connected envelope” of its support by

CE(µ) := St(spt(µ)),

where St(A) is the length of the solution of the Steiner problem associated to the set
A, namely,

St(A) := inf{H1(K) ; K ⊂ Ω is closed, connected, and A ⊆ K}.

Then, for given v ∈ M(q)(Ω), we define

H1
C(v) := CE(div v + f).

Notice that H1
C(v) depends also on f but we don’t make it explicit.

Remark 5.5. If the infimum in the definition of St(A) is finite, then it is actually
a minimum. Indeed, let Kn be a minimizing sequence such that H1(Kn) < +∞
for n large enough, by Golab’s Theorem, up to extracting a subsequence we can
assume that Kn → K0 for some closed and connected set K0, and H1(K0) ≤
lim infH1(Kn) = St(A). On the other hand, the condition A ⊆ Kn, with Kn con-
verging to K0 in the Hausdorff topology, implies A ⊆ K0. But then K0 is admissible
in the definition of St(A) which implies that it is a minimizer.

Next we define the functional that will arise as Γ-limit of our approximating
functionals. If the following conditions are satisfied

1. v ∈ Md(Ω) (for Problem (4)) or v ∈ Lq(Ω) (for Problem (6))

2. div v ∈ M(Ω)
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3. y ∈ spt(div v + f)

4. spt(div v + f) ⊂ Ω

5. ϕ = 1 a.e. on Ω

then we set, for q ≥ 1,

F0(v, ϕ, y) =
1

q

∫

Ω
|v|qdx+ |div v|(Ω) +H1

C(v)

and F0(v, ϕ, y) = +∞ otherwise.
The next proposition says that the problem (5) is equivalent to the one of mini-

mizing F0.

Proposition 5.6. If f ≥ 0, F0 has a minimizer, and finding it is equivalent to
solving (59) or (62).

Proof. To prove the existence of a minimizer for F0 take a minimizing sequence vn,
and consider for each n a compact and connected set Kn such that H1

C(vn) = H1(Kn)
and spt(div v + f) ⊂ Kn. Up to a subsequence, we can assume vn ⇀ v̄ in Lq(Ω) (in

M(Ω) if q = 1), div vn
∗
⇀ div v̄ and Kn → K in the Hausdorff topology. Then we

get spt(div v̄ + f) ⊂ K, H1
C(v̄) ≤ H1(K) ≤ lim infnH1(Kn) = lim infnH1

C(vn). The
semicontinuity of the other terms is immediate, and v̄ is a minimizer.

Then we want to prove that the minimizers of F0 also minimize a simpler func-
tional, which is given by

F̃0(v) :=
1

q

∫

Ω
|v|qdx+H1

C(v) + 2

∫

Ω
f.

Indeed, the Neumann condition on the competitors v implies
∫

div v = 0, but div v =
−f on Ω \ K. Then the mass of div v is at least twice the integral of f on Ω \ K
which equals

∫

Ω f since K is Lebesgue-negligible. This shows that F0(v) ≥ F̃0(v) for
every v. On the other hand, for any v such that div v ≤ 0 on K we have the equality
F0(v) = F̃0(v) since the mass outside K is exactly equal to that of the singular part
on K. This is the case for any minimizer v̂ of F̃0 (see the Remarks 5.2 and 5.2) and
proves the equality of the two minimal value and the fact that the minimizers are
the same.

Finally, the minimization of F1 is obviously equivalent to that of 1
q

∫

Ω |v|qdx +

H1
C(v), since 2

∫

Ω f is a constant. This last problem is indeed a minimization in the
pair (K, v) with spt(div v + f) ⊂ K, which is the same as minimizing in A∞ and
gives the problem (59).

We are now ready to define the family of functionals that will converge to F0. We
work on Lq(Ω)× L2(Ω)× Ω. If the following conditions are satisfied

1. v ∈ Lq(Ω,R2) and div v is a finite measure.

2. ϕ ∈ H1(Ω) ∩ C0(Ω)

3. 0 ≤ ϕ ≤ 1

4. ϕ = 1 on ∂Ω
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then

Fε(v, ϕ, y) =
1

q

∫

Ω
|v|qdx+

1

4ε

∫

Ω
(1− ϕ)2dx+ ε

∫

Ω
|∇ϕ|2dx

+
1√
ε

∫

Ω
dϕ(x, y)d|div v + f |(x) + |div v|(Ω).

Otherwise we set Fε(v, ϕ, y) = +∞.
The rest of the paper is devoted to the proof of the following.

Theorem 5.7. The family of functionals Fε Γ-converges to F0 in the strong topology
of Lq × L2 × U .

As usual we split the Γ-convergence in two parts, corresponding to the Γ-liminf
inequality and Γ-limsup inequality.

5.2 Proof of Γ-liminf

Theorem 5.8. Assume that Ω is any open and bounded subset of R2. Let (vε, ϕǫ, yε)
be a sequence converging weakly to some (v, ϕ, y0) in L

q(Ω)× L2(Ω)× Ω. Then

F0(v, ϕ, y0) ≤ lim inf
ε→0

Fε(vε, ϕǫ, yε).

Proof. Without loss of generality we may assume that

lim inf
ε

Fε(vε, ϕǫ, yε) < +∞, (63)

otherwise there is nothing to prove. We also assume that the liminf is a limit, achieved
for some subsequence εn → 0 that we still denote by ε for simplicity. In particular
during the proof, some further subsequences will be extracted, which does not affect
the value of the limit, and we will still denote those sequences by ε. As a consequence
we have that

Fε(vε, ϕǫ, yε) ≤ C

for some constant C, and for ε small enough, but forgetting the first terms we can
also assume without loss of generality that it holds for all ε. In particular, we know
that each of the terms of Fε is uniformly bounded and this implies, in what concerns
the second term, that

ϕε → 1 strongly in L2(Ω), (64)

and for the last term, that

there exists a signed measure µ such that div vε
∗
⇀ µ. (65)

Since vε → v weakly in Lp, by uniqueness of the limit in the distributional space
D′(Ω), we get that div v = µ is a measure.

Next we focus on the distance functionals dϕε . Since supε |ϕε|∞ ≤ 1, the family
of functions x 7→ dϕε(x, yε) is equi-Lipschitz on Ω. Therefore, up to a subsequence,
we may assume that dϕε(·, yε) converges uniformly to a function d(x) in Ω.

We are now in position to apply Lemma 3.1 which says that
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(a) the compact set K := {x ∈ Ω ; d(x) = 0} is connected,

(b) y0 ∈ K,

(c) spt(div v + f) ⊂ K,

(d) H1(K) ≤ lim infε→0

(

1
4ε

∫

Ω(1− ϕε)
2dx+ ε

∫

Ω |∇ϕε|2dx
)

.

It follows that H1(K) ≥ H1
C(v) and

F0(v, ϕ, y) =
1

q

∫

U
|v|qdx+ |div v|(U) +H1

C(v).

Finally from the lower semicontinuity property with respect to the weak convergence
we get

1

q

∫

Ω
|v|qdx ≤ lim inf

ε

1

q

∫

Ω
|vε|qdx

and
|div v|(Ω) ≤ lim inf

ε
|div vε|(Ω),

which finishes the proof of the Theorem.

5.3 Proof of Γ-limsup inequality

Theorem 5.9. Suppose that Ω is Lipschitz and star-shaped around 0 ∈ Ω. Then,
for any (v, ϕ, y0) in Lq(Ω) × L2(Ω) × Ω there exists a weakly converging sequence
(vε, ϕǫ, yε) → (v, ϕ, y0) such that

lim sup
ε→0

Fε(vε, ϕǫ, yε) ≤ F0(v, ϕ, y0).

Proof. We may assume that F0(v, ϕ, y0) < +∞ otherwise there is nothing to prove.
This implies that v ∈ M(q)(Ω), y ∈ spt(div v + f), and ϕ = 1 a.e. in Ω. Recall that
this implies that v ∈ Lq(Ω,R2) and that div v is a singular measure with respect to
the Lebesgue measure supported on an H1-rectifiable set. Let us also recall that in
this case

F0(v, ϕ, y) =
1

q

∫

Ω
|v|qdx+ |div v|(Ω) +H1

C(v)

where

H1
C(v) := inf{H1(K) ; K ⊂ Ω is closed, connected, and spt(div v + f) ⊆ K}. (66)

Let K0 be the compact and connected set given by Remark 5.5 such that

H1
C(v) = H1(K0).

We also have that −div v = f in the sense of distribution in Ω\K0. Let aε and bε be
the same parameters than the ones of Lemma 2.8, let ϕε be the family of functions
given by Lemma 2.8 with kε = o(ε), and then consider the family of functions ϕε,δε
given by Lemma 2.10 with the choice δε := C(Ω)(aε+ bε). We assume that ε is small
enough so that the assumptions of Lemma 2.10 are satisified, and ϕε,δε = 1 on ∂Ω
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thanks to (26). For simplicity we denote again by ϕε the functions ϕε,δε . We know
that

lim sup
ε→0

(
∫

Ω
ε|∇ϕε|2 +

(1− ϕε)
2

4ε

)

≤ H1(K0) = H1
C(v).

We also take vε = v and yε = y0 for all ε > 0.
Now looking at each term of Fε(vε, ϕε, y0) containing vε, we notice that the only

non constant one is

1√
ε

∫

Ω
dϕε(x, yε) d

(

|div v + f |
)

(x). (67)

Remember that |div v + f | is supported on K0. Next, we recall that ϕε = kε on the
connected set (1 + δε)

−1K0, and moreover

d(K0, (1 + δε)
−1K0) ≤ diam(Ω)δε.

Therefore we can find two points x1 and x2 in (1 + δε)
−1K0 such that

max(d(x, x1), d(y0, x2)) ≤ diam(Ω)δε.

Furthermore, since (1 + δε)
−1K0 is path connected, it contains a rectifiable path Γx

connecting x1 to x2 inside K0. By consequence the path

Γ := [x, x1] ∪ Γx ∪ [x2, y0]

is an admissible path in the definition of dϕε(x, y0) which yields

0 ≤ dϕε(x, y0) ≤
∫

Γ
ϕε(s)dH1(s) ≤ 2 diam(Ω)δε + kεH1(K0), (68)

because ϕε = kε on Γx, is smaller than 1 everywhere, and because

H1(Γx) ≤ H1((1 + δε)
−1K0) ≤ H1(K0).

We have just proved that dϕε(x, yε) ≤ Cδε on K0 (we use that ε << δε) and it
follows that

1√
ε

∫

Ω
dϕε(x, yε)d|div v + f |(x) ≤ Cδε√

ε
|div v + f |(Ω) → 0, (69)

because δε = C(aε + bε) = C(ε2 + 2ε| ln(ε)|) << √
ε, which implies

lim sup
ε→0

Fε(vε, ϕε, y0) ≤
1

q

∫

Ω
|v|qdx+ |div v|(Ω) +H1

C(v),

and finishes the proof.
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5.4 A note on the existence of minimizers for ε > 0

The existence of minimizers for the functionals Fε(v, ϕ, y) when ε > 0 is fixed is
a very delicate matter, and the same is true for the minimization of Sε that we
used in Section 4 to approximate the Steiner problem. Indeed, the troubles come
from the behavior of the map ϕ 7→ dϕ. First, notice that we only restricted our
attention to ϕ ∈ C0(Ω) for the sake of simplicity, in order to get a well-defined dϕ.
Indeed, it is possible to define dϕ as a continuous function as soon as ϕ ∈ Lp for an
exponent p larger than the dimension (here, p > 2, see [13]). Since we use functions
ϕ which are in H1 in dimension two, they belong to Lp for every p, and dϕ could be
defined in this (weak) sense. The difficult question is which kind of convergence on ϕ
provides convergence for dϕ (notice that in this setting, as soon as |ϕ| ≤ 1 any kind
of weaker convergence, including pointwise one, implies uniform convergence since
all the functions dϕ are 1−Lipschitz). If one wanted upper semi-continuity of the
map ϕ 7→ dϕ(x, x1) (for fixed x and x1), this would be easy, thanks to the concave
behavior of dϕ, and any kind of weak convergence would be enough. Yet, in the case
of our interest, we would like lower semi-continuity, which is more delicate. An easy
result is the following: if ϕn → ϕ uniformly and a uniform lower bound ϕn ≥ c > 0
holds, then dϕn(x, x1) → dϕ(x, x1). Counterexamples are known if the lower bound
is omitted. On the contrary, replacing the uniform convergence with a weak H1

convergence (which would be natural in the minimization of Sε) is a delicate matter
(by the way, the continuity seems to be true and it is not known whether the lower
bound is necessary or not), which is the object of an ongoing work with T. Bousch.

However a careful look at our proofs reveals that we could change the space on
which the approximating functional is defined as kε ≤ ϕ ≤ 1 instead of 0 ≤ ϕ ≤ 1,
for some kε → 0. The Γ-convergence result of Section 5 still holds with this little
modification, and now, up to add a term of the form εp+1

∫

|∇ϕ(x)|pdx for p > 2 to
the functional Fε (which obviously does not change the Γ-limit but helps to extract
uniformly convergent subsequences), a minimizer do exists for Fε.

For the Steiner approximation one can follow the same strategy, at the difference
that kε must be chosen so that kε/cε → 0, for instance kε = c2ε in order to cancel the
term involving dϕ at the limit.

We stress anyway that from the point of view of the numerical applications this
lack of semicontinuity is not crucial, and moreover that no true minimizer is really
needed but quasi-minimizers as in Definition 4.1 are enough.

6 Numerical approximation

In this section, we apply the relaxation process described in Section 5 to approximate
numerically the solution of the compliance problem (6), in the case p = 2, and for a
constant right-hand side f ≡ 1. We decided for the sake of simplicity to stick to a
unique problem, and to choose the most “regular” one, i.e. the quadratic compliance
problem. The approach for the average distance problem for other values of the
exponent p would be essentially similar.

We consider a rectangular domain Ω ⊂ R
2 and we fix Λ > 0 and a point y0 ∈ Ω.
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For all ε > 0 and for every pair (v, ϕ) ∈ C1(Ω,R2) × (H1(Ω) ∩ C0(Ω)), such that
v · nΩ = 0 on ∂Ω and 0 ≤ ϕ ≤ 1, we define

GΛ,ε(v, ϕ) =
1

2

∫

Ω
|v|2 + Λ

4ε

∫

Ω
(1− ϕ)2 + Λε

∫

Ω
|∇ϕ|2

+
1

2
√
ε

∫

Ω

√

(div v + 1)2 + ε2 dϕ(x, y0) dx. (70)

In the definition above, the last integral is a regularization of the original term
∫

Ω
|div v + 1| dϕ(x, y0) dx,

allowing for differentiation with respect to v.
Our goal is to compute an approximate value of a minimizer (vΛ,ε, ϕΛ,ε) of GΛ,ε,

for a given Λ > 0 and a small value of ε.

6.1 Discretization of the relaxed problem

To simplify the notation, we consider the case Ω = (0, 1)2 throughout this subsection.
The discretization can be adapted straightforwardly to the case of a rectangular
domain Ω, discretized by a squared grid of size h × h. We fix N ∈ N

∗, a step
h = 1

N+1 and we define a regular grid, composed of squared cells (Ci,j)1≤i,j≤N+1,
defined by

Ci,j = ((i − 1)h, ih) × ((j − 1)h, jh), for 1 ≤ i, j ≤ N + 1.

We denote by Yi,j the center of the cell Ci,j, defined by Yi,j = ((i − 1
2 )h, (j − 1

2)h).
Following a standard approach in numerical fluid dynamics, the approximations of
the scalar fields ϕ, div v are located on the centers Yi,j, whereas the vector fields ∇ϕ,
v are discretized on a staggered grid. Namely, the horizontal components of the fields
are computed on a (N + 1)× (N + 2) grid X1, which is located on the midpoints of
the vertical cells interfaces :

X1
i,j = (ih, (j − 1

2
)h) 0 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 1,

and the vertical components are computed on a (N + 2)× (N + 1) grid X2, located
on the midpoints of the horizontal interfaces :

X2
i,j = ((i− 1

2
)h, jh) 1 ≤ i ≤ N + 1, 0 ≤ j ≤ N + 1.

Here is the discretization for the vector field v, and its divergence is coherently
defined as a scalar field at the center of each square of the grid. We need to ingetrate
dφ according to a measure involving div v, so we need to define dφ on the same grid.
Since the distances dφ are computed via a Fast-Marching algorithm which provides
values for dφ on the same regular grid where φ is defined, we also define φ on the very
same grid. In what follows we will denote by φi,j the value of a discrete scalar field φ
at point Yi,j, and by V 1

i,j (resp. V
2
i,j) the value of the first (resp. second) component
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of a discrete vector field V , at point X1
i,j (resp. X2

i,j). Gradients are computed by
finite differences as follows

(Dxφ)i,j =
φi+1,j − φi,j

h
, 1 ≤ i ≤ N, 1 ≤ j ≤ N + 1,

(Dyφ)i,j =
φi,j+1 − φi,j

h
, 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N,

In the same fashion, we approximate at the center of the cells the divergence of
a vector field v, associated to its discrete representative V , using the operator Div
defined by

(Div V )i,j =
V 1
i,j − V 1

i−1,j

h
+
V 2
i,j − V 2

i,j−1

h
, 1 ≤ i, j ≤ N + 1.

To be consistent with the boundary condition v · nΩ = 0 satisfied by the continuous
vector fields v on ∂Ω, we impose the boundary conditions

V 1
0,j = V 1

N+1,j = 0, 1 ≤ j ≤ N + 1,

V 2
i,0 = V 2

i,N+1 = 0, 1 ≤ i ≤ N + 1.

The discretized functional. We discretize the functional GΛ,ε, defined by (70),
using a first order discretization of the integrals.

We assume that the point y0 ∈ Ω, associated to the geodesic distance dϕ(•, y0),
coincides with a certain point Yi∗,j∗ of the grid Y . To approximate the geodesic
distance, we apply a fast marching algorithm (see [37], [41]) using the vector φ, the
discrete representative of ϕ on grid Y . We denote by dφ the corresponding discrete
geodesic distance, which is located at points of grid Y . Notice that dφ depends on
the indices (i∗, j∗), but we have dropped this dependency to lighten the notation.

Now, we introduce the discrete functional GhΛ,ε, obtained by discretizing the func-
tional GΛ,ε using step h. To simplify the notation, we introduce the following sets of
subscripts (i, j) :

I1 = [[1, N ]] × [[1, N + 1]], I2 = [[1, N + 1]] × [[1, N ]] J = [[1, N + 1]]2.

For every discrete scalar field φ, satisfying η ≤ φ ≤ 1, and every discrete vector field
V , satisfying the boundary conditions

V 1
0,j = V 1

N+1,j = 0, 1 ≤ j ≤ N + 1,

V 2
i,0 = V 2

i,N+1 = 0, 1 ≤ i ≤ N + 1,

we define GhΛ,ε(V, φ) by

GhΛ,ε(V, φ) =
1

2

(

∑

(i,j)∈I1

h2(V 1
i,j)

2 +
∑

(i,j)∈I2

h2(V 2
i,j)

2
)

+
Λ

4ε

∑

(i,j)∈J

h2(1− φi,j)
2 + Λε

(

∑

(i,j)∈I1

h2[(Dxφ)i,j]
2 +

∑

(i,j)∈I2

h2[(Dyφ)i,j ]
2
)

+
1

2
√
ε

∑

(i,j)∈J

h2
√

((Div V )ij + 1)2 + ε2 (dφ)i,j.
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Let us stress that the functional GhΛ,ε is strictly convex with respect to V , but,
in general, non convex with respect to φ. This is a consequence of the concavity of
the functions φ 7→ (dφ)i,j , (see for instance [6]). This concavity is both satisfied in a
continuous setting, and in the discrete approximation of the fast marching algorithm.
Thus, the convexity properties of the functional GhΛ,ε, with respect to φ, results from
the competition between the quadratic term

Λ

4ε

∑

(i,j)∈J

h2(1− φi,j)
2 + Λε

(

∑

(i,j)∈I1

h2[(Dxφ)i,j]
2 +

∑

(i,j)∈I2

h2[(Dyφ)i,j ]
2
)

and the concave term

1

2
√
ε

∑

(i,j)∈J

h2
√

((Div V )ij + 1)2 + ε2 (dφ)i,j. (71)

As a result, the search for a global minimizer of GhΛ,ε for arbitrary values of Λ, ε is
very delicate. However, the convex term (with coefficient Λ/ε) can be expected to
dominate the concave one (with coefficient 1/(2

√
ε)), at least when ε is large enough.

This observation is the key point in the optimization strategy that we present in the
next paragraphs, inspired from the works of Oudet in [30, 31].

6.2 The optimization process

To take into account the specificities of each functional GhΛ,ε(•, φ) and G
h
Λ,ε(V, •), we

propose to optimize alternatively in each direction V, φ. For a given Λ > 0 and a
fixed ε > 0, we define the following minimization algorithm (MA)ε :

Minimisation algorithm (MA)ε

• Inputs: a tolerance δ > 0, an initial guess φ0.

• Output: a pair (Vε, φε), local minimizer of GhΛ,ε with respect to each
direction (•, φε) and (Vε, •).

• Instructions:

1. Define n = 0 and V 0 ≡ 0.

2. Repeat :

3. Find V n+1, the global minimizer of GhΛ,ε(•, φ
n).

4. Find φn+1, a (local) minimizer of GhΛ,ε(Vn+1, •).

5. n := n+ 1.

6. Until |GhΛ,ε(V n, φn)−GhΛ,ε(V
n−1, φn−1)| ≤ δ.

7. Define (Vε, φε) := (V n, φn).

Step 3 is performed using Fletcher-Reeves nonlinear conjugate gradient algorithm,
implemented in the GNU Scientific Library [20]. We refer to [19] for a description
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of the algorithm. For step 4, to take into account the constraints η ≤ φ ≤ 1, we
apply the ”Spectral Projected Gradient Method”, which is a classical projected gra-
dient method extended to include nonmonotone line search strategy and the spectral
steplength. The version that we use is a part of the Open Optimization Library [1],
and implements the algorithm published originally by Birgin et al. [7].

To apply this projected gradient method, we have to address the differentiability
of the functional GhΛ,ε with respect to φ, and define its gradient at each step. However,
as observed in [6], the functions φ 7→ (dφ)i,j fail to be differentiable, in general. This
is a consequence of the lack of differentiability of the geodesic distance with respect
to the metric. Nevertheless, Benmasour et al. prove in [6] that the functions (dφ)i,j ,
computed using a fast marching algorithm, are concave (and continuous) functions of
φ, and propose an algorithm, called the ”subgradient marching”, allowing to compute,
at each node (i, j), both (dφ)i,j and an element of the superdifferential at a given φ.
Using the subgradient marching method, we are able to define a descent direction,
obtained by summing the gradient of the quadratic term and an element of the
superdifferential of the concave term of GhΛ,ε.

Let us emphasize that a global minimizer of GhΛ,ε, for a given ε, is hard to find,
because of the concavity. Moreover, the alternate directions optimization strategy
does not guarantee that the profiles obtained for (V, φ) are, in fact, local minimizers;
they are local minimizers with respect to perturbations of V , or φ, separately.

In order to avoid some local minimizers, we apply a strategy proposed by Oudet in
[30] and then applied to other problems. For a given Λ > 0, we consider a target value
εfinal, and the problem of minimizing GhΛ,εfinal

. Due to the concave term (71), step 4

of algorithm (MA)ε, may lead to a local minimizer φn+1. To avoid this phenomenon,
we apply the following iterative optimisation procedure:

Iterative optimisation algorithm

• Inputs:

– an integer L ∈ N and a decreasing family {εℓ}Lℓ=0 of positive
numbers, such that εL = εfinal;

– an initial guess φ0;

– a tolerance δ > 0.

• Output: a family of local minimizers (Vεℓ , φεℓ), of each functional
GhΛ,εℓ , for ℓ = 0, . . . , L.

• Instructions:

1. Define (Vε0 , φε0) as the output of algorithm (MA)ε0 , with the
tolerance δ and the initial guess φ0.

2. For ℓ = 1, . . . , L :

3. Define (Vεℓ , φεℓ) as the output of algorithm (MA)εℓ , with the
initial guess φεℓ−1

and the tolerance δ.
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6.3 Numerical results

We have applied the procedure described in Section 6.2, in the case of a rectangle
Ω = (0, 0.5) × (0, 1) discretized by a regular grid, composed of squares of size h =
1/100. The optimisation algorithm was initialized using a quadratic, nonnegative
profile for the initial guess φ0, vanishing only at point y0. This particular choice of
φ0 was motivated by the fact that, at convergence of the algorithm, we expect φ to
vanish at point y0, and to take values close to 1, far from this point.

We present in Figure 1 the optimal profiles for φ, obtained for different values
of the parameter Λ, associated to the penalization of the length of the unknown
connected set K. In these simulations, we have fixed y0 = (0.25, 0.5), that is, the
center of the rectangle. The results that are plotted correspond to ε = 0.05. We
observe that the sets {ϕ = 0} appear as one-dimensional objects, the length of
which decreases as Λ increases. This feature is consistant with the principle of the
penalization. Although we cannot assure that the candidates that we exhibit are, in
fact, global minimizers of each functional, this consistency with respect to Λ argues
in favor of an implicit selection of the minimizers, performed by the algorithm.

We emphasize that, in these examples, the zero level sets of φ are connected, and
contain the point y0. In order to verify that this property still holds for a different
position of y0, we have represented in Figure 2 the optimal profile of φ and the
divergence of V obtained with Λ = 20 and ε = 0.05, for an off-center grid point y0
(with coordinates y0 = (0.351485, 0.59901)). On the plot of div V , this point can be
identified as the most singular point for the divergence. As in the former examples,
the zero level set of φ appears as a connected set containing y0. As a result, we may
infer that our numerical method is able to force the zero level set of φ to be connected
to a given grid point.
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Λ = 10 Λ = 15

Λ = 20 Λ = 30

Figure 1: Optimal profiles for φ, associated to different values of Λ, with ε = 0.05. The
point y0 is the center of the rectangle.
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Figure 2: Optimal profiles for φ (left) and div V (right), with ε = 0.05, in the case of an
off-center point y0, with coordinates y0 = (0.351485, 0.59901). This point coincides with
the most singular point of the divergence of V .
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[8] B. Bourdin, D. Bucur, and É. Oudet. Optimal partitions for eigenvalues. SIAM
J. Sci. Comput., 31(6):4100–4114, 2009/10.

[9] G. Buttazzo, E. Mainini, and E. Stepanov. Stationary configurations for the
average distance functional and related problems. Control & Cybernetics,
38(4A):1107–1130, 2009.

43

http://ool.sourceforge.net/
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