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ASYMPTOTIC APPROXIMATION OF THE DIRICHLET TO
NEUMANN MAP OF HIGH CONTRAST CONDUCTIVE MEDIA

LILIANA BORCEA∗, YULIYA GORB †, AND YINGPEI WANG‡

Abstract. We present an asymptotic study of the Dirichlet to Neumann map of high contrast
composite media with perfectly conducting inclusions that are close to touching. The result is an
explicit characterization of the map in the asymptotic limit of the distance between the particles
tending to zero.

1. Introduction. The Dirichlet to Neumann (DtN) map of an elliptic partial
differential equation maps the boundary trace of the solution to its normal derivative
at the boundary. It is used in inverse problems [22] for determining the coefficients
of the elliptic equation, in non-overlapping domain decomposition methods [21] for
solving numerically the equations, and elsewhere. In this paper we study the DtN
map of equation

∇ · [σ(x)∇u(x)] = 0, x ∈ D , (1.1)

with high contrast and rapidly varying nonnegative coefficient σ(x) in a bounded,
simply connected domain D ⊂ Rd with smooth boundary Γ. Rapidly varying means
that σ fluctuates on a length scale that is much smaller than the diameter of D.
High contrast means that the ratio of the largest and smallest value of σ in D is very
large, even infinite. The coefficient σ models the electrical conductivity of a composite
medium with highly conductive inclusions packed close together in D, so that they
are almost touching. The solution u of (1.1) is the electric potential and −σ∇u is the
electric current, which we also call the flow.

The first mathematical studies of high contrast composites [3, 16, 17] are con-
cerned with homogenization of periodic media with perfectly conducting (or insulat-
ing) inclusions. Due to the periodicity, the problem reduces to the local asymptotic
analysis of the potential in the thin gap of thickness δ between two neighboring in-
clusions. The asymptotics is in the limit δ → 0. The potential gradient in the gap
becomes singular in this limit, as described in [1, 2, 15], and the energy in the com-
posite is given to leading order by that in the gap, with effective conductivity

σ̄ = σ̄(δ, g, d) . (1.2)

Here d = 2 or 3 is the dimension of the space, and g is a geometrical factor depending
on the local curvature of the boundaries of the inclusions. The effective conductivity
blows up in the limit δ → 0 as δ−1/2 in two dimensions and logarithmically in three
dimensions.

Kozlov introduced in [18] a continuum model of high contrast conductivity in two
dimensions

σ(x) = σoe
S(x)/ǫ , (1.3)
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where σo is a reference constant conductivity, S(x) is a smooth function with non-
degenerate critical points, and ǫ ≪ 1 models the high contrast. An advantage of the
model (1.3) is that instead of specializing the analysis in the gaps to various shapes
of the inclusions, we can study a generic problem in the vicinity of saddle points of
the function S(x).

In any case, independent of the model of high contrast, the problem does not
reduce to a local one if the medium does not have periodic structure. The energy is
still determined to the leading order by that in the gaps, and each gap has an effective
conductivity of the form (1.2), but the net flow in the gaps cannot be determined from
the local analysis.

The global problem is analyzed in [9], for the high contrast model (1.3). It uses
two dual variational principles to obtain sharp upper and lower bounds of the energy,
which match to the leading order. The result can be interpreted as the energy of a
network with topology determined by the critical points of S(x) i.e., σ(x). The nodes
of the network are the maxima of S(x), and the edges connect the nodes through
the saddle points of S(x). Each saddle point x

S
is associated with a resistor with

effective conductivity given by σ(x
S
) multiplied by a geometrical factor depending on

the curvatures of S(x) at x
S
.

The extension of the approach in [9] to homogenization of two phase composites
with infinite contrast is in [6]. The result is similar. The energy is given to leading
order by a network with nodes at the centers of the conductive inclusions. The edges
connect the nodes through the thin gaps separating the inclusions, and have a net
conductivity of the form (1.2). An error analysis of the approximation is in [7].

The analysis of the DtN map is more involved than that of homogenization,
because of the arbitrary boundary conditions

u(x) = ψ(x), x ∈ Γ. (1.4)

Still, the problems are related, because they both reduce to approximating the energy
in the composite, which can be bounded above and below using dual variational
principles. Indeed, the DtN map Λ : H1/2(Γ) → H−1/2(Γ), defined by

Λψ(x) = σ(x)∇u(x) · n(x), x ∈ Γ , (1.5)

where n(x) is the outer normal at Γ, is self-adjoint. Therefore, it is determined by its
quadratic forms

〈ψ,Λψ〉 =
∫

Γ

ds(x)ψ(x)Λψ(x) , (1.6)

for all ψ ∈ H1/2(Γ), and using integration by parts we can relate it to the energy

E(ψ) =
1

2

∫

D
dxσ(x)|∇u(x)|2 , (1.7)

by the equation

〈ψ,Λψ〉 = 2E(ψ) . (1.8)

The DtN map of high contrast media with conductivity (1.3) is studied in [8]. It
is shown that Λ can be approximated by the matrix valued DtN map of the resistor
network described above, with topology determined by the critical points of S(x).
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Fig. 2.1. Illustration of the setup. The domain D contains N perfectly conducting inclusions
denoted by Di. The medium of conductivity σo = 1 lies in Ω, the complement of the union of the
inclusions in D.

However, the approximation in (1.3) is on a subspace of boundary potentials that
vary slowly on Γ, on scales that are larger or at most similar to the typical distance
between the critical points of S(x).

In this paper we study the DtN map of two phase composites with perfectly
conducting inclusions in a medium of uniform conductivity σo = 1. For simplicity
we work in two dimensions, in a disk shaped domain D, with disk shaped inclusions.
The analysis extends easily to any D ⊂ R2 with smooth boundary, and to arbitrary
inclusions, because only the curvature of their boundary near the gaps plays a role
in the approximation. The analysis also extends to three dimensions, with some
additional difficulties in the construction of the test functions used in the variational
principles to bound the energy E(ψ). High but finite contrast can be handled as well,
by writing the approximation as a perturbation series in the contrast parameter, with
terms calculated recursively, as shown in [10, 14].

As expected, we obtain that Λ is determined by the DtN map of the resistor net-
work with nodes at the centers of the inclusions and edges with effective conductivity
of the form (1.2). This is the same network as in the homogenization studies [6, 7].
But the excitation of the network depends on the boundary potential ψ. If ψ varies
slowly in Γ, then the network plays the dominant role in the approximation of Λ, and
the result is similar to that in [8]. If ψ varies rapidly in Γ, there is a boundary layer
of strong flow which must be coupled to the network. The main result of the paper
is the rigorous analysis of this coupling. We show that the more oscillatory ψ is, the
less the network gets excited, and the more dominant the boundary layer effect in the
approximation of Λ.

The paper is organized as follows: We begin in section 2 with the formulation of
the problem. The results are stated in section 3 and the proofs are in section 4. We
end with a summary in section 5.

2. Formulation. We study the DtN map Λ of an infinite contrast composite
medium in D ⊂ R2, consisting of N ≫ 1 perfectly conducting inclusions Di centered
at xi ∈ D, in a medium of uniform conductivity σo. See Figure 2.1 for an illustration.
The domain D is a disk of radius L, centered at the origin of the system of coordinates.
For simplicity we let the inclusions be identical disks of radius R ≪ L. They are
packed close together, but they are not touching. The complement of the inclusions
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in D is denoted by

Ω = D \
N⋃

i=1

Di .

2.1. Variational principles. The DtN map Λ is determined by the quadratic
forms (1.8), and therefore by the energy E(ψ). We estimate it using two dual varia-
tional principles. The first variational principle [4, 6, 7]

E(ψ) = min
v∈V(ψ)

1

2

∫

Ω

dx |∇v(x)|2 , (2.1)

is a minimization over potentials in the function space

V(ψ) =
{
v ∈ H1(Ω) , v|Γ = ψ , v|∂Di

= constant, i = 1, . . . , N
}
. (2.2)

They have boundary trace v|Γ equal to the given ψ ∈ H1/2(Γ), and are constant at the
boundaries ∂Di of the inclusions. There is a unique minimizer of (2.1), the solution
of the Euler-Lagrange equations [6]

∆u(x) = 0 , x ∈ Ω , (2.3)

u(x) = Ui , x ∈ ∂Di , (2.4)
∫

∂Di

ds(x)n(x) · ∇u(x) = 0 , i = 1, . . . , N , (2.5)

u(x) = ψ(x) , x ∈ Γ . (2.6)

The unknowns in these equations are the potential function u(x) and the vector
U = (U1, . . . ,UN ) of constant potentials on the inclusions. These are the Lagrange
multipliers associated with the conservation of current conditions (2.5).

The second variational principle

E(ψ) = max
j∈J

[∫

Γ

ds(x)ψ(x)n(x) · j(x) − 1

2

∫

Ω

dx |j(x)|2
]
, (2.7)

is a maximization over fluxes j in the function space

J =

{
j ∈ L2(Ω) , ∇ · j = 0 in Ω ,

∫

∂Di

dsn · j = 0 , i = 1, . . . , N

}
. (2.8)

It is obtained from (2.1) using Legendre (duality) transformations [12], as explained
for example in [6]. The divergence free condition on j, interpreted in the weak sense,
gives the conservation of current in Ω, and the constraints at ∂Di are the analogues
of (2.5). There is a unique maximizer of (2.7), given by

j(x) = ∇u(x), (2.9)

in terms of the solution of (2.3)-(2.6). It is the negative of the electric current in Ω.
If we could solve equations (2.3)-(2.6), we would have the exact energy. This is

impossible analytically. Moreover, numerical approximations of (u,U) are computa-
tionally intensive due to fine meshes needed to resolve the flow between the inclusions,
and the poor condition numbers of the resulting linear systems. We use instead the
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variational principles (2.1) and (2.7) with carefully constructed test functions v ∈ V(ψ)
and j ∈ J to obtain tight upper and lower bounds on E(ψ), which match to leading
order. The test potentials v are pieced together from local approximations of the so-
lution of (2.3)-(2.6) in the gaps between the inclusions and in a boundary layer at Γ.
The construction of the test fluxes is based on the relation (2.9) between the optimal
potential and flux. Once we have a good test potential v ∈ V, we can construct j ∈ J

so that j ≈ ∇v.
2.2. Asymptotic scaling regime. There are three important length scales in

the problem: The radius L of the domain D, the radii R of the inclusions and the
typical distance δ between the inclusions. To define δ, we specify first what it means
for two inclusions to be neighbors.

Let Xi be the Voronoi cell associated to the i−th inclusion

Xi = {x ∈ D such that |x− xi| ≤ |x− xj | , ∀j = 1, . . . , N, j 6= i} .

It is a convex polygon bounded by straight line segments called edges. The inclusion
Di neighbors Dj if the cells Xi and Xj share an edge. We denote the set of indices of
the neighbors of Di by Ni,

Ni = {j ∈ {1, . . . , N} , j neighbors i} , (2.10)

and let

δij = dist{Di,Dj} , (2.11)

for all i = 1, . . . , N and j ∈ Ni. These are the thicknesses of the gaps between the
inclusions.

Similarly, we say that inclusion Di neighbors the boundary if Xi ∩ Γ 6= ∅. Let us
say that there are NΓ such inclusions and let δi be their distance from the boundary

δi = dist{Di,Γ} . (2.12)

We number henceforth the inclusions starting with those neighboring Γ, counter-
clockwise. Thus, Di neighbors Γ if i = 1, . . . , NΓ, and it is an interior inclusion if
i = NΓ + 1, . . . , N .

We assume that both δij and δi are of the same order δ, and seek an approximation
of the DtN map Λ in the asymptotic regime of separation of scales

δ ≪ R ≪ L. (2.13)

The reference order one scale is L.
There is one more parameter in the asymptotic analysis, denoted by k, which

defines the Fourier frequency of oscillation of ψ at Γ. It is independent of all the other
scales in the problem and it can vary between 0 and K, with K arbitrarily large.
For example, in domain decomposition, K would be determined by the mesh used to
discretize the domain. Because Γ is a circle of radius L in our setup, we parametrize
it by the angle θ ∈ [0, 2π], and suppose that ψ is a superposition of Fourier modes

ψ(θ) =
K∑

k=0

[ack cos(kθ) + ask sin(kθ)] . (2.14)

We seek approximations of 〈ψ,Λψ〉 that are valid for any K.
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3. Results. We state in Theorem 3.1 the approximation of 〈ψ,Λψ〉 for boundary
potentials ψ given by a single Fourier mode. The generalization to potentials (2.14)
is in Corollary 3.2

The approximation involves the discrete energy and therefore DtN map of a re-
sistor network that is uniquely determined by the medium. It has the graph (X ,E)
and edge conductivity function σ : E → R+. Each edge is associated to a gap between
adjacent inclusions or between an inclusion and the boundary, and models the net
singular flow there. The set of nodes of the network is given by

X =
{
xi, i = 1, . . . , N, xΓ

i , i = 1, . . . , NΓ
}
. (3.1)

The interior nodes xi are at the centers of the inclusions, for i = 1, . . . , N . The
boundary nodes

xΓ
i = L(cos θi, sin θi) (3.2)

are the closest points on Γ to the inclusions Di in its vicinity, for i = 1, . . . , NΓ. The
edges of the network connect the adjacent nodes

E =
{
eij = (xi,xj), i = 1, . . . , N, j ∈ Ni, eΓi = (xΓ

i ,xi), i = 1, . . .NΓ
}
, (3.3)

and the network conductivity function is defined by

σ(eij) = π

√
R

δij
=: σij , i = 1, . . . , N, j ∈ Ni , (3.4)

σ(eΓi ) = π

√
2R

δi
=: σi, i = 1, . . . , NΓ . (3.5)

The DtN map Λnet of the network is a symmetric NΓ×NΓ matrix. Its quadratic
forms are related to the discrete energy Enet(Ψ) of the network by

Ψ · ΛnetΨ = 2Enet(Ψ) , (3.6)

where we let Ψ = (Ψ1, . . . ,ΨNΓ)T be the vector of boundary potentials. The energy
has the variational formulation

Enet(Ψ) = min
U∈RN





NΓ∑

i=1

σi
2
[Ui −Ψi]

2 +
1

2

N∑

i=1

∑

j∈Ni

σij
2

(Ui − Uj)2


 , (3.7)

where the 1/2 factor in front of the second sum is because we sum twice over the
edges eij . There is a unique minimizer U ∈ RN of (3.7). It is the vector of node
potentials that satisfy Kirchhoff’s equations, a linear system which states that the
sum of currents in each interior node equals zero.

3.1. Boundary potential given by a single Fourier mode. Let the bound-
ary potential ψ be given by

ψ(θ) = cos(kθ) , (3.8)

with k > 0. The case k = 0 is trivial, because constant potentials are in the null space
of the DtN map.
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Theorem 3.1. We have that

〈ψ,Λψ〉 = 2E(ψ) = 2E(ψ) [1 + o(1)] , (3.9)

with the leading order of the energy given by the sum of three terms

E(ψ) = Enet (Ψ(ψ)) +
kπ

2
+Rk . (3.10)

The first term is the discrete energy Enet(Ψ(ψ)) of the resistor network described

above in (3.7), with vector Ψ = (Ψ1, . . . ,ΨNΓ)
T
of boundary potentials defined by

Ψi(ψ) = ψ(θi)e
− k

√
2Rδi
L , i = 1, . . . , NΓ. (3.11)

The second term in (3.10) is the energy in the reference medium with constant con-
ductivity σo = 1. It is related to the reference DtN map Λo by

Eo(ψ) =
1

2

∫

D
dx |∇uo(x)|2 =

kπ

2
=

1

2
〈ψ,Λoψ〉 . (3.12)

The last term in (3.13) is given by

Rk =

NΓ∑

i=1

σi
4

[√
2kδi
πL

Li1/2

(
e−

2kδi
L

)
− e−

2k
√

2Rδi
L

]
, (3.13)

in terms of the Polylogarithm function Li1/2.
The proof of the theorem is in section 4, and the meaning of the result is as

follows. The resistor network plays a role in the approximation if it gets excited. This
happens when the boundary potential ψ is not too oscillatory. As shown in equation
(3.11), the potential Ψi at the i−th boundary node of the network is not simply ψ(θi).
We have an exponential damping factor, which is due to the fact that only part of the
flow reaches the inclusion Di. As k increases, the flow near the boundary becomes
oscillatory, and has a strong tangential component. Less and less current flows into
Di and in the end, the network may not even get excited.

The term Rk in (3.10), which we rewrite as

Rk =

NΓ∑

i=1

Ri,k , (3.14)

with

Ri,k =
σi
4

[√
2kδi
πL

Li1/2

(
e−

2kδi
L

)
− e−

2k
√

2Rδi
L

]
, (3.15)

describes the anomalous energy due to the oscillations of the flow in the gaps between
the boundary and the nearby inclusions. Roughly speaking, the mean of the normal
flow at the boundary enters the inclusions, and thus excites the resistor network. The
remainder, the oscillations about the mean, have no effect on the network, but they
may be strong, depending on k and δ. As we explain below, the term Rk is important
only in a specific “resonant” regime.
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We distinguish three asymptotic regimes based on the values of the dimensionless
parameters

ε =
kδ

L
, η =

kR

L
. (3.16)

Equation (2.13) implies that

ε≪ η (3.17)

but depending on the value of k, these parameters may be large or small.
In the first regime k . L/R, so that

ε≪ η . 1 . (3.18)

The network is excited in this regime, and equation (3.11) shows that its boundary
potentials Ψi are basically the point values of ψ at the boundary nodes xΓ

i . The
energy of the network plays an important role in the approximation, and it is large,
given by the sum of terms proportional to the effective conductivities σi and σij of

the gaps, which are O
(√

R/δ
)
. The term Rk is much smaller, as obtained from the

following asymptotic expansions of the exponential

e−
√
εη = 1−√

εη +O(εη) , (3.19)

and the Polylogarithm function

Li1/2
(
e−2ε

)
=

√
π

2ε
+ ζ

(
1

2

)
− 2εζ

(
−1

2

)
+O

(
ε3/2

)
, ε≪ 1 , (3.20)

where ζ is the Riemann zeta function. We obtain that

Ri,k = σiO
(
ε1/2

)
≪ σi , (3.21)

and conclude that Rk is negligible in this regime. The leading order of the energy is
given by

E(ψ) ≈ Enet (Ψ(ψ)) +
kπ

2
. (3.22)

In the second regime the boundary potential is very oscillatory, with k & L/δ ≫ 1,
so that

1 . ε≪ η. (3.23)

The network plays no role in this regime, because it is not excited. Its boundary
potentials are exponentially small, essentially zero, as shown in equation (3.11). The
term Rk is the sum of

Ri,k =
σi
4

√
2kδi
πL

e−
2kδi
L

[
1 +O

(
e−

2kδi
L

)]

=
1

2

√
πkR

2L
e−2εδi/δ

[
1 +O

(
e−2ε

)]
, (3.24)
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where we used the asymptotic expansion of the Polylogarithm function at small ar-
guments. We estimate it as

Rk ∼
√
kL

R
e−ε , (3.25)

because

NΓ ∼ L

R
, (3.26)

with symbol ∼ denoting henceforth approximate, up to a multiplicative constant of
order one. Consequently,

Rk

Eo(ψ)
∼
√

L

Rk
e−ε , (3.27)

and recalling the definition (3.16) of ε, we see that Rk becomes negligible as k in-
creases. The oscillatory flow is confined near the boundary Γ for large k, and it does
not see the high contrast inclusions. The energy is approximately equal to that in the
reference medium

E(ψ) ≈ Eo(ψ) =
kπ

2
. (3.28)

The third regime corresponds to intermediate Fourier frequencies satisfying

L

R
. k ≪ L

δ
,

so that

ε≪ 1 . η. (3.29)

We call it the resonant regime because Rk plays an important role in the approxima-
tion. Equation (3.11) shows that the network gets excited, with boundary potentials
that are smaller than the point values of ψ. The term Rk is estimated by

Rk ∼
NΓ∑

i=1

σi

[
1 +O(ε1/2)

]
∼ L

R

√
R

δ
=

k√
εη
, (3.30)

where we used the expansion (3.20), and (3.26). All the terms in (3.10) play a role
in the approximation of the energy, with Rk of the same order as Enet when εη ≪ 1,
and much larger for εη ≫ 1. The term Rk dominates the reference energy Eo(ψ)
when εη ≪ 1, but it plays a lesser role as the frequency k increases so that εη & 1.

3.2. General boundary potentials. Assuming a potential of the form (2.14),
with K Fourier modes, we write

ψ(θ) =
K∑

k=0

ψk(θ) , (3.31)

with ψk(θ) oscillating at frequency k,

ψk(θ) = ack cos(kθ) + ask sin(kθ) . (3.32)
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The maximum frequency K may be arbitrarily large. We obtain the following gener-
alization of the result in Theorem 3.1.

Corollary 3.2. For a potential ψ of the form (3.31) we have that

〈ψ,Λψ〉 = 2E(ψ) = 2

[
Enet (Ψ(ψ)) +

1

2
〈ψ,Λoψ〉+R(ψ)

]
[1 + o(1)] . (3.33)

The first term is due to the network with boundary potentials

Ψi(ψ) =

K∑

k=0

ψk(θi)e
− k

√
2Rδi
L . (3.34)

The second term is the quadratic form of the DtN map Λo of the reference medium,
with uniform conductivity σo = 1. The last term R is given by

R =

NΓ∑

i=1

K∑

k,m=0

e−|k−m|
√

2Rδi
L Ri,k∧m {(ackacm + aska

s
m) cos[(k −m)θi]+

(aska
c
m − acka

s
m) sin[(k −m)θi]} , (3.35)

where k ∧m = min{k,m} , and Ri,k is defined in (3.15).
The proof of this corollary is very similar to that of Theorem 3.1, so we do not

include it here. It uses the dual variational principles (2.1) and (2.7) to estimate the
energy E(ψ) for potential (3.31). Actually, it suffices to consider

ψ(θ) = cos(kθ) + cos(mθ) , ψ(θ) = sin(kθ) + cos(mθ) , ψ(θ) = sin(kθ) + sin(mθ) ,

for arbitrary k,m = 1, . . . ,K, because the energy is a quadratic form in ψ. We refer
to [23, section 4.3] for details.

The expression (3.33) is similar to (3.9), and the discussion in the previous section
applies to the contribution of each Fourier mode of ψ. The resonance R captures the
energy of the oscillatory flow in the gaps between the inclusions and the boundary
Γ. Its expression is more complicated than (3.13), but only the terms that are less
oscillatory have a large contribution in (3.35). We can see this explicitly in the special
case where all the gaps are identical

δi = δ1 , Ri,k = R1,k , ∀ i = 1, . . . , NΓ,

and the boundary points are equidistant. Then (3.35) simplifies to

R =NΓ
K∑

k=0

R1,k

[
(ack)

2
+ (ask)

2
]
+

2NΓ
K∑

k=0

R1,k

∑

q∈Z+

e−|q|NΓ
√

2Rδ1
L 1[0,K](k + qNΓ)

[
acka

c
k+qNΓ + aska

s
k+qNΓ

]
,

because

NΓ∑

i=1

cos[(k −m)θi] = NΓδkm moduloNΓ ,

NΓ∑

i=1

sin[(k −m)θi] = 0 , θi =
(i− 1)2π

NΓ
.

Here we let 1[0,K] be the indicator function of the interval [0,K].
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3.3. Generalization to inclusions of different size and shape. We assumed
for simplicity of the analysis that the inclusions Di are identical disks of radius R, but
the results extend easily to inclusions of different radii and even shapes. The leading
order of the energy is due to the singular flow in the gaps between the inclusions and
near the boundary. As long as we can approximate the boundaries ∂Di locally, in the
gaps, by arcs of circles of radius Ri, and we have the scale ordering

δ ∼ δi ≪ Ri ∼ R ≪ L,

the results of Theorem 3.1 and Corollary 3.2 apply, with the following modifications:
The effective conductivities of the gaps are given by

σij = π

√
2RiRj

δij(Ri +Rj)
, i = 1, . . . , N , j ∈ Ni , (3.36)

and

σi = π

√
2Ri
δi

, i = 1, . . . , NΓ. (3.37)

The resonance terms have the same expression as in (3.13) and (3.35), but R is
replaced by the local radii Ri of curvature in the sum over the gaps.

4. Method of proof. The basic idea of the proof is to use the two variational
principles (2.1) and (2.7), with carefully chosen test potentials and fluxes, to obtain
upper and lower bounds on the energy that match to the leading order, uniformly in
k. The main difficulty in the construction of these test functions is that, depending
on k, the flow may have very different behavior near Γ than in the interior of the
domain. To mitigate this difficulty, we borrow an idea from [5, 20] and introduce in
section 4.1 an auxiliary problem in a so-called perforated domain Ωp. It is a subset of
Ω, with complement Ω \Ωp chosen so that the flow in it is diffuse, and thus negligible
to leading order in the calculation of energy.

The perforated domain is the union of two disjoint sets: the boundary layer B,
and the union of the gaps between the inclusions, denoted by Π. It is useful because
it allows us to separate the analysis of the energy in the boundary layer and that in
Π, as shown in section 4.2. The estimation of the energy in Π is in section 4.3, where
we review the network approximation. The energy in B is estimated in section 4.4.
The proof of Theorem 3.1 is finalized in section 4.4.3.

4.1. The perforated domain. Let us denote by T the set of triangles that we
wish to remove from Ω, based on the observation that the flow there is diffuse and thus
negligible in the calculation of the leading order of the energy. There are two types
of triangles, those in the interior of the domain, and those near the boundary. The
triangles in the interior are denoted generically by Tijk, for indexes i ∈ {1, . . . , N},
j ∈ Ni and k ∈ Nj . We illustrate one of them in Figure 4.2(a), where we denote by
O the vertex of the Voronoi tessellation, the intersection of the Voronoi cells

O = Xi

⋂
Xi

⋂
Xk .

The vertices of the triangle Tijk are at the intersections of the boundaries of the
inclusions with the line segments connecting their centers with O.

The triangles near the boundary are denoted by T Γ
i+, for i = 1, . . . , NΓ. Note

that with our counting of the inclusions the triangle T Γ
i+ involves the neighbors Di

11



Fig. 4.1. Illustration of the perforated domain Ωp. It is the union of two disjoint sets: the
boundary layer B and the set Π of gaps between the adjacent inclusions. The complement of Ωp in
Ω is the set T of triangles.

(a) (b)

Fig. 4.2. (a) Illustration of a triangle Tijk. Its vertices are the intersections of the boundaries
of the inclusions with the line segments between their centers and the vertex O of the Voronoi
tessellation. (b) Illustration of a triangle T Γ

i+. It has vertices p
+

i and p
−
i+1

, one straight edge and
two curved ones. One curved edge is the arc on the circle of radius L−R/2, shown with dashed line.
The straight edge connects the vertex p

+

i with ∂Di+1 along the line that is parallel to that passing
through xi and xi+1. The other curved edge is on ∂Di+1.

and Di+1 for i = 1, . . . , NΓ − 1, whereas T Γ
NΓ+ involves DNΓ and D1. We define the

triangles to have one straight edge and two curved ones. Let p±
i be the intersection

of the circle1 of radius L − R/2 shown with the dashed line in Figure 4.2(b) and
the boundary ∂Di of the i−th inclusion. Then p+

i and p−
i+1 are vertices of T Γ

i+ and

the arc of the circle of radius L − R/2 between them is one curved edge of T Γ
i+. To

determine the straight edge of T Γ
i+, we draw two line segments that are parallel to the

line through the centers xi and xi+1 of the inclusions, and connect p+
i with ∂Di+1

and p−
i+1 with ∂Di, respectively. One of these segments lies inside the circle of radius

L − R/2, and it is the straight edge of T Γ
i+. The remaining curved edge is an arc on

1 The circle of radius L−R/2 used in the definition of T Γ is somewhat arbitrary. We may chose

any radius L−R+ ρ, with
√
Rδ ≪ ρ . R/2 and the result would be the same to the leading order.

12



the boundary of one of the inclusions. If the straight edge stems from p+
i i.e., if Di is

closer to Γ than Di+1, the curved edge lies on ∂Di+1, as illustrated in Figure 4.2(b).
Otherwise it lies on ∂Di. In the special case where the two inclusions have the same
distance to the boundary Γ, this edge degenerates to a point. That is to say, T Γ

i+ has

only two vertices p+
i and p−

i+1, and two edges connecting them. One edge is straight
and the other is on the circle of radius L−R/2.

The perforated domain is defined by

Ωp = Ω \ T . (4.1)

It is the union of the boundary layer B and the set of gaps Π, as shown in Figure
4.1.. The set B is bounded on one side by Γ, and on the other side by the inclusion
boundaries ∂Di and the curved edges of the triangles T Γ

i+ between them, for i =
1, . . . , NΓ. The set Π is the union of the disjoint gaps Πij between neighboring
inclusions

Π =
⋃

i=1,...,N,j∈Ni

Πij . (4.2)

They are bounded by ∂Di, ∂Dj , and the edges of the interior triangles.

4.2. Advantage of the perforated domain. We define the energy Ep(ψ) in
the perforated domain by

Ep(ψ) = min
v∈Vp(ψ)

1

2

∫

Ωp

dx |∇v(x)|2 , (4.3)

where the minimization is over potentials in the function space

Vp(ψ) =
{
v ∈ H1(Ωp), v|Γ = ψ, v|∂Di

= constant, i = 1, . . . , N
}
. (4.4)

Note that the set V(ψ) of test potentials in the variational principle (2.1) of E(ψ) is
contained in Vp(ψ). Note also that the minimizer in (4.3) is the solution up(x) of the
Euler-Lagrange equations

∆up(x) = 0 , x ∈ Ωp , (4.5)

up(x) = Ui , x ∈ ∂Di , (4.6)
∫

∂Di

ds(x)n(x) · ∇up(x) = 0 , i = 1, . . . , N , (4.7)

up(x) = ψ(x) , x ∈ Γ , (4.8)

n(x) · ∇up(x) = 0 , x ∈ ∂T . (4.9)

The first four equations are the same as those satisfied by the minimizer of (2.1), except
that Ωp is a subset of Ω. The unknowns are up and the vector U = (U1, . . . ,UN) of
constant potentials on the inclusions, the Lagrange multipliers for the conservation
of currents conditions (4.7). Equation (4.9) says that there is no flow in the set T
of triangles removed from Ω. The minimizer u(x) in (2.1) does not satisfy these
conditions, so

up(x) 6= u(x), x ∈ Ωp.

13



However, the next lemma states that when replacing u with up we make a negligible
error in the calculation of the energy. The proof is in appendix B.

Lemma 4.1. The energy E(ψ) is approximated to leading order by the energy in
the perforated domain, uniformly in k,

E(ψ) = Ep(ψ) [1 + o(1)] . (4.10)

Because the perforated domain is the union of the disjoint sets B and Π, it allows
us to separate the estimation of the energy in the boundary layer from that in the
gaps, as stated in the next lemma. The two problems are tied together by the vector
U

Γ = (U1, . . . ,UNΓ) of potentials on the inclusions near Γ.
Lemma 4.2. The energy in the perforated domain is given by the iterative mini-

mization

Ep(ψ) = min
UΓ∈RNΓ

[
EB(U

Γ, ψ) + EΠ(U
Γ)
]
, (4.11)

where EB(U
Γ, ψ) and EΠ(U

Γ) are the energy in the boundary layer and gaps respec-
tively, for given U

Γ and ψ. The energy in the boundary layer has the variational
principle

EB(U
Γ, ψ) = min

v∈VB(UΓ,ψ)

1

2

∫

B
dx |∇v(x)|2 , (4.12)

with minimization over potentials in the function space

VB(U
Γ, ψ) =

{
v ∈ H1(B), v|Γ = ψ, v|∂Di

= Ui, i = 1, . . . , NΓ,

v|∂Di
= constant, i = NΓ + 1, . . . , N

}
. (4.13)

The energy in the gaps is given by

EΠ(U
Γ) = min

v∈VΠ(UΓ)

1

2

∫

Π

dx |∇v(x)|2 , (4.14)

with potentials in the function space

VΠ(U
Γ) =

{
v ∈ H1(Π), v|∂Di

= Ui, i = 1, . . . , NΓ,

v|∂Di
= constant, i = NΓ + 1, . . . , N

}
. (4.15)

The proof of this lemma is in appendix C. It uses that the minimizer uB of (4.12)
satisfies the Euler-Lagrange equations

∆uB(x) = 0 , x ∈ B , (4.16)

uB(x) = Ui , x ∈ Di , i = 1, . . . , NΓ , (4.17)

uB(x) = ψ(x) , x ∈ Γ , (4.18)

n(x) · ∇uB(x) = 0 , x ∈ ∂B ∩ ∂T , (4.19)

and the minimizer uΠ of (4.14) satisfies

∆uΠ(x) = 0 , x ∈ Π , (4.20)

uΠ(x) = Ui , x ∈ Di , i = 1, . . . , N , (4.21)
∫

∂Di

ds(x)n(x) · ∇uΠ(x) = 0 , i = NΓ + 1, . . . , N , (4.22)

n(x) · ∇uΠ(x) = 0 , x ∈ ∂Π ∩ ∂T . (4.23)

14



These equations are similar to (4.5)-(4.9). Note however that in (4.16)-(4.19) there
is only one unknown, the potential function uB(x). The constant potentials on the
inclusions near the boundary are given. We do not get conservation of current at
the boundaries of these inclusions until we minimize (4.11) over the vector UΓ. The
unknowns in equations (4.20)-(4.23) are the potential function uΠ(x) and the vector
(UNΓ+1, . . . ,UN ) of potentials on the interior inclusions. There is no explicit depen-
dence of uΠ on the boundary potential ψ. The dependence comes through U

Γ, when
we minimize (4.11) over it.

We estimate in the next two sections EΠ(U
Γ) and EB(U

Γ, ψ). Then we gather
the results and complete the proof of Theorem 3.1 in section 4.4.3.

4.3. Energy in the gaps. The energy EΠ(U
Γ) is given by (4.14). We follow

[5, 20] and rewrite it in simpler form using that Π is the union of the disjoint gaps
Πij , for i = 1, . . . , N and j ∈ Ni.

Lemma 4.3. The energy EΠ(U
Γ) is given by the discrete minimization

EΠ(U
Γ) = min

UI∈RN−NΓ+1

1

2

N∑

i=1

∑

j∈Ni

(Ui − Uj)2Eij , (4.24)

where

U
I = (UNΓ+1, . . . ,UN )

is the vector of potentials on the interior inclusions and Eij is the normalized energy
in the gap Πij. It is given by the variational principle

Eij = min
v∈Vij

1

2

∫

Πij

dx |∇v(x)|2 , (4.25)

where the minimization is over the function space of potentials

Vij =

{
v ∈ H1(Πij), v|∂Di

=
1

2
, v|∂Dj

= −1

2

}
. (4.26)

The proof of this iterative minimization is similar to that in Appendix C and is
given in [5, 20]. The estimate of the normalized energy Eij is obtained in [6, 16].
It uses the variational principle (4.25) and a test potential v(x) obtained from the
asymptotic approximation of the minimizer uij(x) in the limit δ → 0 to obtain an
upper bound of Eij . The lower bound is obtained from the dual variational principle

Eij = max
j∈Jij

[∫

∂Di∩∂Πij

ds(x)
1

2
n(x) · j(x) +

∫

∂Dj∩∂Πij

ds(x)

(
−1

2

)
n(x) · j(x)−

1

2

∫

Πij

dx |j(x)|2
]
, (4.27)

with fluxes j in the function space

Jij =
{
j ∈ L2(Πij), ∇ · j = 0 in Πij , n · j = 0 in ∂Π±

ij

}
. (4.28)

Here ∂Π±
ij are the boundaries shared by Πij and the set T of triangles, as shown on

the left in Figure 4.3.

15



Fig. 4.3. Illustration of a gap Πij . The local asymptotic analysis is in the system of coordinates
shown on the right, with y axis connecting the centers of the inclusions.

The minimizing potential uij of (4.25) satisfies

∆uij(x) = 0 , x ∈ Πij , (4.29)

uij(x) =
1

2
, x ∈ ∂Di , (4.30)

uij(x) = −1

2
, x ∈ ∂Dj , (4.31)

n(x) · ∇uij(x) = 0 , x ∈ ∂Π±
ij . (4.32)

In the system of coordinates shown in Figure 4.3, with x = (x, y) and y axis along
the line connecting the centers of the inclusions, we see that x belongs to an interval
of order R and y belongs to an interval of length

hij(x) = δij + 2R

(
1−

√
1− x2

R2

)
. (4.33)

We expect that the leading order contribution to the energy comes from the center of
the gap, where hij ∼ δ ≪ R and the gradient of the potential is high. A simple scaling
argument shows that we can approximate uij there by the potential v satisfying

∂2yv(x, y) = 0,

with boundary conditions v(x,±hij(x)/2) = ±1/2. We obtain as in [6, 16]

v(x) =
y

hij(x)
, (4.34)

and let the test flux be the divergence free vector that is approximately equal to its
gradient

j(x) =
1

hij(x)
ey . (4.35)

Here ey is the unit vector along the y axis. It is parallel to the boundaries ∂Π±
ij by

construction, so (4.35) satisfies the no flow conditions there.

It is shown in [6, 16] that the upper bound obtained with the test potential (4.34)
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is given by

1

2

∫

Πij

dx |∇v(x)|2 =
1

2

∫ R

−R
dx

∫ hij(x)

2

−hij(x)

2

dy
1

h2ij(x)
+O(1)

=
1

2

∫ R

−R

dx

hij(x)
+O(1)

=
σij
2

+O(1) , (4.36)

with

σij = π

√
R

δij
.

Moreover, the difference between the upper bound and the lower bound given by the
test flux (4.35) is order one. Therefore,

Eij =
σij
2

+O(1) (4.37)

and the energy EΠ(U
Γ) follows from Lemma 4.3

EΠ(U
Γ) = EΠ(UΓ) [1 + o(1)] , (4.38)

with leading order EΠ given by

EΠ(UΓ) = min
UI∈RN−NΓ+1

1

2

N∑

i=1

∑

j∈Ni

σij
2

(Ui − Uj)2 . (4.39)

This is the energy of the network with nodes at the centers xi of the inclusions,
edges eij and net conductivities σij , for i = 1, . . . , N and j ∈ Ni. It is not the same
network as in Theorem 3.1, because it does not contain the boundary nodes xΓ

i , for
i = 1, . . . , NΓ. It also has an arbitrary vector UΓ of boundary potentials. The network
in Theorem 3.1 has a uniquely defined vector U

Γ(ψ) of potentials on the inclusions
near Γ, the minimizer of (4.11).

4.4. Boundary layer analysis. To estimate the energy EB(U
Γ, ψ) we bound

it above using the variational principle (4.12), and below using the dual variational
principle

EB(U
Γ, ψ) = max

j∈JB




∫

Γ

ds(x)n(x) · j(x) +
NΓ∑

i=1

Ui
∫

∂B∩∂Di

ds(x)n(x) · j(x)−

1

2

∫

B
dx |j(x)|2

]
, (4.40)

with fluxes j in the function space

JB =
{
j ∈ L2(B), ∇ · j = 0 in B, n · j = 0 on ∂B ∩ ∂T

}
, (4.41)

and n the outer normal at ∂B.
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Let us calculate the difference between the bounds, to gain insight in the choice
of the test potentials and fluxes in the variational principles. We denote it by

G(v, j) =EB(U
Γ, ψ; v)− EB(U

Γ, ψ; j) , (4.42)

where

EB(U
Γ, ψ; v) =

1

2

∫

B
dx |∇v(x)|2 , (4.43)

for v ∈ VB(U
Γ, ψ) and

EB(U
Γ, ψ; j) =

∫

Γ

ds(x)ψ(x)n(x) · j(x) +
NΓ∑

i=1

Ui
∫

∂B∩∂Di

ds(x)n(x) · j(x)−

1

2

∫

B
dx |j(x)|2 , (4.44)

for j ∈ JB. Integration by parts gives

∫

B
dx∇v(x) · j(x) =

∫

B
dx∇ · [v(x)j(x)]

=

∫

∂B
ds(x) v(x)n(x) · j(x)

=

∫

Γ

ds(x)ψ(x)n(x) · j(x) +
NΓ∑

i=1

Ui
∫

∂B∩∂Di

ds(x)n(x) · j(x) ,

because of the constraint ∇ · j = 0 and the boundary conditions of v. Therefore

G(v, j) = 1

2

∫

B
dx |∇v(x) − j(x)|2 , (4.45)

and to make it small, we seek fluxes j(x) ≈ ∇v(x) in JB, and potentials v ∈ VB(U
Γ, ψ)

satisfying

∆v(x) ≈ ∇ · j(x) = 0 . (4.46)

4.4.1. Test potentials for the upper bound. Using the polar coordinates
(r, θ) we write

B = {(r, θ), r ∈ (L− d(θ), L), θ ∈ [0, 2π)} , (4.47)

with d(θ) the thickness of the layer given by

d(θ) =

{
L− ρi cos(θ − θi)−

√
R2 − ρ2i sin

2(θ − θi) , θ ∈ (θi − αi, θi + αi) ,
R
2 , θ ∈ (θi + αi, θi+1 − αi+1) ,

(4.48)
where

ρi = L−R− δi . (4.49)
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Fig. 4.4. Illustration of the decomposition of the boundary layer B.

The angles θi ± αi are defined by the intersections p±
i of the circle of radius L−R/2

with the boundaries ∂Di of the inclusions. We estimate them as

sinαi .

√
3R

2ρi
= O

(
R

L

)
, (4.50)

using Heron’s formula for the triangle with edges of length L − R/2, ρi and R, and
vertices at the origin, xi and p+

i .
Let us decompose the boundary layer in the sets

Bi = {(r, θ), r ∈ (L− d(θ), L), θ ∈ (θi − αi, θi + αi)} , i = 1, . . . , NΓ (4.51)

and

Bi+ = {(r, θ), r ∈ (L−R/2, L), θ ∈ (θi + αi, θi+1 − αi+1)} , (4.52)

for i = 1, . . . , NΓ − 1, as shown in Figure 4.4. Recall that with our counting of the
inclusions D1 neighbors D2 and DNΓ , so we let

BNΓ+ = {(r, θ), r ∈ (L−R/2, L), θ ∈ (θNΓ + αNΓ , θ1 − α1)} . (4.53)

We seek a test potential v that is an approximate solution of Laplace’s equation in B, as
stated in (4.46). We can solve the equation with separation of variables in the domains
Bi+, but not in Bi, where the layer thickness varies with θ. However, the physics of
the problem suggests that we neglect the variation of d(θ) in the construction of v in
Bi. Indeed, if it is the case that the tangential flow is dominant in B, we expect that
it is confined in a very thin layer near Γ, of thickness smaller than δ, and does not
interact with the inclusions. Otherwise, the normal flow near Γ plays a role, and we
expect that the leading contribution to the energy comes from the gaps between the
inclusions and Γ, where d(θ) is smaller, of order δ. Then, based on a scaling argument
similar to that in the previous section, we neglect the variation of d(θ) in the local
approximation of the solution of Laplace’s equation.

Consequently, we let the test potential be

v(r, θ) =

{
(r/L)k − [1− d(θ)/L]2k(L/r)k

1− [1− d(θ)/L]2k

}
ψ(θ) +

ln(r/L)

ln[1− d(θ)/L]
L(θ,UΓ) , (4.54)
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where we recall that

ψ(θ) = cos(kθ) .

The function L is constant on the inclusions

L(θ,UΓ) = Ui , θ ∈ (θi − αi, θi + αi) , (4.55)

and it interpolates linearly between the inclusions

L(θ,UΓ) =
Ui + Ui+1

2
+ (Ui+1 − Ui)

[
ℓi(θ) −

1

2

]
, (4.56)

for θ ∈ (θi + αi, θi+1 − αi+1), where

ℓi(θ) =
θ − (θi + αi)

(θi+1 − αi+1)− (θi + αi)
. (4.57)

The potential (4.54) satisfies all the constraints in VB, because

v|Γ = v(L, θ) = ψ(θ) , (4.58)

and

v|∂Di
= v(L, d(θ)) = L(θ,UΓ) = Ui, θ ∈ (θi − αi, θi + αi) . (4.59)

Thus, we can use it in the variational principle (4.12) to obtain an upper bound of
the energy.

4.4.2. Test fluxes for the lower bound. Since v is harmonic by construction
in the sets Bi+, we let

j(r, θ) = ∇v(r, θ) − er
(L−R/2)

r
∂rv

(
L− R

2
, θ

)
in Bi+ , (4.60)

where er is the unit vector in the radial direction. We obtain that

∇ · j = 0 in Bi+ ,
and

n · j
(
L− R

2
, θ

)
= −er · ∇v

(
L− R

2
, θ

)
+ ∂rv

(
L− R

2
, θ

)
= 0 ,

for θ ∈ (θi + αi, θi+1 − αi+1), as required by the constraints in JB.
Since in Bi the potential v is not harmonic, we cannot let the flux be simply the

gradient of v. We define it instead by

j(r, θ) = ∇⊥H(r, θ) = −er
r
∂θH(r, θ) + eθ∂rH(r, θ) , (4.61)

with scalar function

H(r, θ) = −
∫ θ

0

dθ′ L∂rv(L, θ
′)−

∫ L

r

dr′

r′
∂θv(r

′, θ) . (4.62)

This construction gives

∇ · j(x) = 0 in Bi ,
with tangential flux equal to the tangential gradient of v in Bi

eθ · j(r, θ) = eθ · ∇v(r, θ) ,
and normal flux matching the normal derivative of v at Γ

er · j(L, θ) = er · ∇v(L, θ) .
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4.4.3. The energy estimate. We show in appendix D that the test potential
(4.54) and flux defined by (4.60) and (4.61) give the following difference between the
upper and lower bounds of EB,

G(v, j) =
NΓ∑

i=1

[
GBi

(v, j) + GBi+(v, j)
]
, (4.63)

where

GBi
(v, j) + GBi+(v, j) . O(1) . (4.64)

The upper bound EB(U
Γ, ψ; v) on the energy is computed in appendix E. We write

it as

EB(U
Γ, ψ; v) =

NΓ∑

i=1

[
EBi

(UΓ, ψ; v) + EBi+(U
Γ, ψ; v)

]
, (4.65)

with terms

EBi
(UΓ, ψ; v) =

1

2

∫

Bi

dx |∇v(x)|2

=
kαi
2

+
π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2
+

π

4

√
2LR

ρiδi

[√
2kδi
Lπ

Li1/2

(
e−2kδi/L

)
− e

−k
√

2Rδi
Lρi

]
+O(1) , (4.66)

and

EBi+(U
Γ, ψ; v) =

1

2

∫

Bi+

dx |∇v(x)|2

=
k [(θi+1 − αi+1)− (θi + αi)]

4
+O(1) . (4.67)

Note that the remainder is of the same order one as the difference (4.64) between the
upper and the lower bounds. We show next that the first terms in (4.66)-(4.67) are
larger, and thus define the leading order of the energy in B.

The magnitude of (4.66)-(4.67) depends on the potentials Ui and the dimensionless
parameters ε and η defined in (3.16), satisfying

ε =
kδ

L
∼ kδi

L
, η =

kR

L
∼ kαi ∼ k(θi+1 − θi) . (4.68)

The potentials Ui are arbitrary in (4.66), but in the end we take them as minimiz-
ers of the energy, like in Lemma 4.2. They are the solutions of Kirchhoff’s cur-

rent conservation laws in the network with boundary potentials cos(kθi)e
−k

√
2Rδi
Lρi ,

for i = 1, . . . , NΓ , and satisfy the discrete maximum principle (A.4). Thus, we can
assume that

|Ui − cos(kθi)e
−k

√
2Rδi
Lρi | ∼ e

−k
√

2Rδi
Lρi ∼ e−

√
εη .
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To see that the remainder of order one is negligible in (4.66) and (4.67), we
distinguish two cases based on the value of η. When η . 1, which means that
ε ≪ η . 1, the boundary potentials are of order one, the second term in (4.66)
dominates the others

π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2
∼
√
R

δ
≫ O(1) & kαi ∼ η ,

and the remainder is negligible. Otherwise, η ≫ 1 and the remainder is again negli-
gible to leading order, because

kαi ∼ η ≫ 1.

We gather the results and rewrite the energy in the boundary layer as

EB(U
Γ, ψ) =





kπ

2
+

NΓ∑

i=1

π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2
+

π

4

√
2LR

ρiδi

[√
2kδi
Lπ

Li1/2

(
e−2kδi/L

)
− e

−k
√

2Rδi
Lρi

]}
[1 + o(1)] , (4.69)

with negligible relative error, uniformly in k.
The proof of Theorem 3.1 follows from (4.69), once we replace ρi = L [1 +O(R/L)]

by L in (4.69). We can do so without affecting the leading order, independent of the
value of k.

5. Summary. We obtained an asymptotic approximation of the Dirichlet to
Neumann (DtN) map Λ of the partial differential equation describing two dimensional
electrical flow in a high contrast composite medium occupying a bounded, simply
connected domain D with smooth boundary Γ. The high contrast composite has
perfectly conducting inclusions packed close together, so they are close to touching.
To simplify the proofs, we assumed that D is a disk of radius L, and that the inclusions
are identical disks of radius R. Extensions to general domains, sizes and shapes of
inclusions are discussed, as well. The analysis is in the regime of separation of scales
δ ≪ R ≪ L, where δ is the typical thickness of the gaps between adjacent inclusions.

Because the map Λ is self-adjoint, it is determined by its quadratic forms 〈ψ,Λψ〉,
for all boundary potentials ψ in the trace space H1/2(Γ). The main result of the
paper is the explicit characterization of the leading order of these quadratic forms
in the regime of separation of scales described above. The result is intuitive once
we decompose the potential ψ over Fourier modes, and study the quadratic forms
〈ψk,Λψk〉 for modes ψk oscillating at arbitrary frequency k. It says that the leading
order of 〈ψk,Λψk〉 is given by the sum of three terms: The first is the quadratic
form Ψ(ψk) · ΛnetΨ(ψk) of the matrix valued DtN map Λnet of a unique resistor
network with vector Ψ(ψk) of boundary potentials. The second term is the quadratic
form 〈ψk,Λoψk〉 of the DtN map Λo of the homogeneous medium with reference
conductivity σo = 1 in which the inclusions are embedded. The last term R is labeled
a resonance term, because it plays a role only in a certain “resonant” regime.

The resistor network approximation arises due to the singularity of the potential
gradient in the gaps between the inclusions, and the gaps between the boundary
and the nearby inclusions. The network is unique, with nodes at the centers of the
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inclusions and edges connecting adjacent inclusions. The edge conductivities capture
the net energy in the associated gaps. Network approximations have been derived
before in homogenization studies of high contrast composites. What is new here is
that the excitation of the network, the vector of potentials Ψ(ψk) at its boundary
nodes, depends on the frequency k of oscillation of ψk. If k is small, then the entries
in Ψ(ψk) are the values of ψk at the points on Γ that are closest to the inclusions.
However, for large k, the entries in Ψ(ψk) are damped exponentially in k. There is
a layer of strong flow near the boundary Γ, and the network plays a lesser role as
k increases. We distinguished three regimes in the approximation of 〈ψk,Λψk〉. In
the first regime k is small, so that the entries in Ψ(ψk) are large, of order one. The
network is excited and plays a dominant role in the approximation,

〈ψk,Λψk〉 ≈ Ψ(ψk) · ΛnetΨ(ψk) .

In the second regime the frequency k is very large, so that the flow is confined in a
very thin layer near the boundary Γ and does not interact with the inclusions. The
entries in Ψ(ψk) are basically zero, the network is not excited and the flow perceives
the medium as homogeneous

〈ψk,Λψk〉 ≈ 〈ψk,Λoψk〉 .
In the third, intermediary regime, some of the flow penetrates in the domain and
excites the network. The remainder is tangential flow near the boundary, as in the
homogeneous medium, and oscillatory flow squeezed between the boundary and the
nearby inclusions. The latter gives an anomalous energy, captured by the resonance
term R. All three terms play a role in the approximation in this resonant regime,

〈ψk,Λψk〉 ≈ Ψ(ψk) · ΛnetΨ(ψk) + 〈ψk,Λoψk〉+ 2R .

Our analysis justifies these approximations and gives explicit formulas for Ψ(ψk) and
the resonant term R.
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Appendix A. Maximum principle for the potentials on the inclusions.
We show here that the potentials Ui on the inclusionsDi, for i = 1, . . . , N , are bounded
in terms of the boundary data ψ.

Consider the solution (u,U) of equations (2.3)-(2.6). Since u is harmonic in
the connected set Ω, it takes its maximum and minimum values at the boundary

∂Ω = Γ

N⋃

i=1

∂Di . Suppose that there exists an index i for which

u|∂Di
= Ui =M = max

x∈Ω
u(x) ,

and define the function

f(ρ) =
1

2π(R+ ρ)

∫

|x−xi|=R+ρ

ds(x)u(x)

=
1

2π

∫

|y|=1

ds(y)u(xi + (R + ρ)y) , (A.1)

23



for ρ ≤ O(δ), so that the annulus

Cρ = {x = xi + r(cos θ, sin θ) , r ∈ [R,R+ ρ] , θ ∈ [0, 2π]} ,

is contained in Ω. We obtain using integration by parts and the conservation of
currents (2.5) at ∂Di that

f ′(ρ) =
1

2π

∫

|y|=1

ds(y)y · ∇u(xi + (R+ ρ)y)

=
1

2π(R+ ρ)

∫

|x−xi|=R+ρ

ds(x)n(x) · ∇u(x)

=
1

2π(R+ ρ)

[∫

|x−xi|=R+ρ

ds(x)n(x) · ∇u(x) +
∫

Di

ds(x)n(x) · ∇u(x)
]

=
1

2π(R+ ρ)

∫

Cρ

dx∆u(x)

= 0 ,

and therefore f(ρ) is constant

f(ρ) = f(0) = Ui =M . (A.2)

Moreover, integrating in polar coordinates we get that the average of u(x) in the
annulus equals its maximum value

1

|Cρ|

∫

Cρ

dxu(x) =
1

|Cρ|

∫ R+ρ

R

dr

∫

|x−xi|=r
ds(x)u(x)

=
1

|Cρ|

∫ R+ρ

R

dr2πrf(r −R)

=M .

This implies that u(x) =M in Cρ, and using the maximum principle for the harmonic
function u(x), that u(x) =M , in Ω.

A similar argument shows that if the minimum value of the potential is attained
at the boundary of one inclusion, then u is constant in Ω. Thus, we have the maximum
principle

min
x∈Γ

ψ(x) ≤ Ui ≤ max
x∈Γ

ψ(x), i = 1, . . . , N . (A.3)

A discrete version of the maximum principle for networks can be found in [19,
11]. It says that the potential at the nodes of the network attains its minimum and
maximum values at the boundary nodes. Thus, if we let Ψi for i = 1, . . . , NΓ be the
boundary potentials, we have

min
j=1,...,NΓ

Ψj ≤ Ui ≤ min
j=1,...,NΓ

Ψj , i = 1, . . . , NΓ . (A.4)

Appendix B. Proof of Lemma 4.1. Recall that the solution u(x) of equations
(2.3)-(2.6) minimizes (2.1). We have

E(ψ) =
1

2

∫

Ω

dx |∇u(x)|2 ≥ 1

2

∫

Ωp

dx |∇u(x)|2 ≥ Ep(ψ) . (B.1)
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The first inequality is because Ωp ⊂ Ω. The second inequality is because the restriction
of u(x) to Ωp belongs to the function space Vp(Ψ) of test potentials in the variational
formulation (4.3) of Ep(Ψ). To complete the proof we need the following result,
obtained in sections 4.3 and 4.4.

Lemma B.1. There exists a potential vp(x) ∈ Vp(ψ) such that

1

2

∫

Ωp

dx |∇vp(x)|2 = Ep(ψ) [1 + o(1)] . (B.2)

Moreover, if let T be any edge of a triangle in T , and denote by |T | its length, we
have the pointwise estimate

|∇vp(x)| ≤
C

|T | , x ∈ T ⊂ ∂T , (B.3)

with order one constant C that is independent of δ and k.
The estimate (B.3) is valid in the vicinity of the boundary of the triangles, not

only on ∂T . Moreover, by our definition of the triangles,

|T | = O(R) . (B.4)

Using Kirszbraun’s theorem [13] we extend vp(x) from the boundary of each triangle
inside the triangle, in such a way that |∇vp| remains bounded by O(1/R) in T . The
extended vp is a function in V(ψ), so we get the upper bound

E(ψ) ≤ 1

2

∫

Ω

dx |∇vp(x)|2 =
1

2

∫

Ωp

dx |∇vp(x)|2 +
1

2

∫

T
dx |∇vp(x)|2 . (B.5)

The first term in the right hand side is given in (B.2). To estimate the second term,
let Tijk be an arbitrary interior triangle, for i = 1, . . . , N , j ∈ Ni and k ∈ Nk. By
construction, the area of the triangles is O(R2), so we have

1

2

∫

Tijk

dx |∇vp(x)|2 = O(1) . (B.6)

This is much smaller than the contribution of the gaps given in section 4.3

1

2

∫

Πij

dx |∇vp(x)|2 = O

(√
R

δ

)
,

1

2

∫

Πjk

dx|∇vp(x)|2 = O

(√
R

δ

)
. (B.7)

A similar result holds for the triangles near the boundary layer. We obtain that

1

2

∫

T
dx |∇vp(x)|2 = Ep(ψ) o(1) , (B.8)

and the proof of Lemma 4.1 follows from (B.5) and (B.1).

Appendix C. Proof of Lemma 4.2. The proof is a consequence of Euler-
Lagrange equations (4.5)-(4.9), (4.16)-(4.19) and (4.20)-(4.23), which have unique
solutions as follows from standard application of Lax-Milgram’s Theorem. It is con-
venient in this section to emphasize in the notation their dependence on the data.
Thus, we let up(x;ψ), U(ψ) be the solutions of (4.5)-(4.9). Moreover, for a given

U
Γ = (U1, . . . ,UNΓ) we let uB(x;ψ,U

Γ) be the solution of (4.16)-(4.19), and uΠ(x;U
Γ)
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and U
I(UΓ) = (UNΓ+1(U

Γ), . . . ,UN (UΓ)) the solution of (4.20)-(4.23). The index I
stands for interior inclusions.

Note that the restriction of up(x;ψ) to the boundary layer solves equations (4.16)-

(4.19) for UΓ = U
Γ(ψ) = (U1(ψ), . . . ,UNΓ(ψ)),

uB(x;ψ,U
Γ(ψ)) = up(x;ψ) , x ∈ B . (C.1)

Similarly, the restriction of up(x;ψ) to the set Π of gaps

uΠ(x;U
Γ(ψ)) = up(x;ψ) , x ∈ Π , (C.2)

and the vector of potentials on the interior inclusions

U
I(UΓ(ψ)) = (UNΓ+1(ψ), . . . ,UN (ψ)) , x ∈ Π , (C.3)

solve equations (4.20)-(4.23) for UΓ = U
Γ(ψ). Therefore, we have

Ep(ψ) =
1

2

∫

Ωp

dx |∇up(x;ψ)|2

=
1

2

∫

B
dx |∇uB(x;ψ,UΓ(ψ))|2 + 1

2

∫

Π

dx |∇uΠ(x;UΓ(ψ))|2

= EB(U
Γ(ψ), ψ) + EΠ(U

Γ(ψ))

≥ min
UΓ

[
EB(U

Γ, ψ) + EΠ(U
Γ)
]
. (C.4)

For the reverse inequality let UΓ be arbitrary in RN
Γ

and define v ∈ Vp(ψ) by

v(x) =

{
uB(x;ψ,U

Γ) , x ∈ B ,
uΠ(x;U

Γ) , x ∈ Π .
(C.5)

We obtain that

Ep(ψ) ≤
1

2

∫

Ωp

dx |∇v(x)|2

=
1

2

∫

B
dx |∇uB(x;ψ,UΓ)|2 + 1

2

∫

Π

dx |∇uΠ(x;UΓ)|2

= EB(U
Γ, ψ) + EΠ(U

Γ), (C.6)

for all UΓ. The result follows by taking the minimum over UΓ in RN
Γ

.

Appendix D. Tightness of the bounds on EB. Definition (4.60) of the flux
in Bi+ and the expression (4.54) of the potential give that

GBi+(v, j) =
1

2

∫

Bi+

dx

∣∣∣∣
(L−R/2)

r
∂rv

(
L− R

2
, θ

)∣∣∣∣
2

=
1

2

∫

Bi+

dx

∣∣∣∣∣
2(L−R/2)

rL

k
(
1− R

2L

)k−1

1−
(
1− R

2L

)2k cos(kθ) +
L(θ,UΓ)

r ln
(
1− R

2L

)
∣∣∣∣∣

2

.

(D.1)
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We estimate the first term by

∣∣∣∣∣
2(L−R/2)

rL

k
(
1− R

2L

)k−1

1−
(
1− R

2L

)2k cos(kθ)

∣∣∣∣∣ ≤
4

R
,

because r ∈ (L−R/2, L) and the function kak/(1−a2k) for any a ∈ (0, 1) is monotone
decreasing in k for k ≥ 1. In particular, for a = 1−R/(2L), we have

k
(
1− R

2L

)k

1−
(
1− R

2L

)2k ≤ 1− R
2L

1− 1 + R
2L

=
2L

R

(
1− R

2L

)
.

The second term in (D.1) satisfies

∣∣∣∣∣
L(θ,UΓ)

r ln
(
1− R

2L

)
∣∣∣∣∣ ≤

2

R
(1 +O(R/L))

because L(θ,UΓ) is the interpolation between Ui and Ui+1, and their absolute value
is bounded by one, as shown in (A.3). Thus, we have

GBi+(v, j) ≤
13 (1 +O(R/L))

R2

∫

Bi+

dx = O(1) , (D.2)

because

∫

Bi+

dx =

∫ L

L−R/2
dr r

∫ θi+1−αi+1

θi+αi

dθ =
LR

2

(
1− R

4L

)
(θi+1 − θi − αi+1 − αi) ∼ R2 ,

and

θi+1 − θi − αi+1 − αi .
2π

NΓ
∼ R

L
.

Definition (4.61) of the test flux gives after a straightforward calculation that

GBi
(v, j) =

1

2

∫

Bi

dx |∇v(x) − j(x)|2

=
1

2

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)
dr r

∣∣∣∣∂rv(r, θ) +
1

r
∂θH(r, θ)

∣∣∣∣
2

=
1

2

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

dr

r

[∫ L

r

ds s∆v(s, θ)

]2
, (D.3)

and using expression (4.54) of the test potential we obtain

GBi
(v, j) =

1

2

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

dr

r

{∫ L

r

ds

s

[
cos(kθ)∂2θwk(s, θ)−

2k sin(kθ)∂θwk(s, θ) + Ui∂2θw(s, θ)
]}2

≤ 3

2
[Si,1 + Si,2 + Si,3] . (D.4)
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Here we let

wk(s, θ) =
(s/L)k − [1− d(θ)/L]2k(L/s)k

1− [1− d(θ)/L]2k
, w(s, θ) =

ln(s/L)

ln[1− d(θ)/L]
, (D.5)

used the inequality

(a+ b+ c)2 ≤ 3(a2 + b2 + c2) , ∀a, b, c ∈ R ,

and introduced the integrals

Si,1 =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

dr

r

[
2k sin(kθ)

∫ L

r

ds

s
∂θwk(s, θ)

]2
, (D.6)

Si,2 =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

dr

r

[
cos(kθ)

∫ L

r

ds

s
∂2θwk(s, θ)

]2
, (D.7)

Si,3 =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

dr

r

[
Ui
∫ L

r

ds

s
∂2θw(s, θ)

]2
. (D.8)

(D.9)

D.1. Estimate of (D.6). We obtain from definition (D.5) that

∂θwk(s, θ) = − 2kd′(θ)p2(θ)

(L− d(θ))(1 − p2(θ))2

[( s
L

)k
−
(
L

s

)k]
, (D.10)

with

p(θ) = [1− d(θ)/L]k , (D.11)

so we can bound Si,1 as

Si,1 ≤ 16

∫ θi+αi

θi−αi

dθ

[
kd′(θ)p2(θ)

(L − d(θ))(1 − p2(θ))2

]2∫ L

L−d(θ)

dr

r

[∫ L

r

ds

(
ksk−1

Lk
− kLk

sk+1

)]2
.

The integral in r is estimated by

∫ L

L−d(θ)

dr

r

[∫ L

r

ds

(
ksk−1

Lk
− kLk

sk+1

)]2
=

∫ L

L−d(θ)

dr

r

[
2− rk

Lk
− Lk

rk

]2

≤ − (1− p(θ))4

p2(θ)
ln

[
1− d(θ)

L

]
, (D.12)

where the monotonicity in r of the function in parenthesis implies

(
2− rk

L2
− Lk

rk

)2

≤
[
2− (L − d(θ))k

L2
− Lk

(L− d(θ))k

)2

=
(1− p(θ))4

p2(θ)
, (D.13)

for all r ∈ [L− d(θ), L]. Moreover, since

1

1− p2(θ)
≤ 1

1− p(θ)
, (D.14)
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we obtain the bound

Si,1 ≤ 16

∫ θi+αi

θi−αi

dθ

[
d′(θ)

L− d(θ)

]2{
− [kp(θ)]

2
ln

[
1− d(θ)

L

]}
. (D.15)

Function kp(θ) attains its maximum at k = −1/ ln [1− d(θ)/L]

kp(θ) = k

[
1− d(θ)

L

]k
≤ e−1

− ln
[
1− d(θ)

L

] , (D.16)

and after expanding the logarithm we get

Si,1 ≤ C

∫ θi+αi

θi−αi

dθ
[d′(θ)]2

Ld(θ)
, (D.17)

with positive constant C of order one.
To estimate (D.17) we obtain from definition (4.48) that

d(θ) = L− ρi cos(θ − θi)−
√
R2 − ρ2i sin

2(θ − θi)

= δi + ρi[1− cos(θ − θi)] +R−
√
R2 − ρ2i sin

2(θ − θi)

≥ R −
√
R2 − ρ2i sin

2(θ − θi) , (D.18)

and note that its derivative satisfies

|d′(θ)| = ρi sin |θ − θi|√
R2 − ρ2i sin

2(θ − θi)
[L− d(θ)] ≤ 2L

R
ρi |sin(θ − θi)| . (D.19)

Here we used (4.50) to write

1√
R2 − ρ2i sin

2(θ − θi)
≤ 2

R
, ∀ θ ∈ (θi − αi, θi + αi) .

The second derivative of d(θ), needed in the next section, is bounded similarly

|d′′(θ)| ≤ 8L2

R
. (D.20)

Inequalities (D.18)-(D.19) give

[d′(θ)]2

Ld(θ)
≤ 4L

R2

ρ2i sin
2(θ − θ1)

R −
√
R2 − ρ2i sin

2(θ − θi)

=
4L

R2

[
R+

√
R2 − ρ2i sin

2(θ − θi)

]

=

(
8L

R

)
, (D.21)

and the estimate

Si,1 ≤ O(1) (D.22)

follows from (D.17) and αi = O(R/L).
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D.2. Estimate of (D.7). We obtain from (D.10) that

∂2θwk(s, θ) =

{
2[d′(θ)p(θ)]2

[
(2k + 1)p2(θ) + 2k − 1

]

[1− p2(θ)]3[L− d(θ)]2
− 2d′′(θ)p2(θ)

[1− p2(θ)]2[L− d(θ)]

}
×

[
ksk

Lk
− kLk

sk

]
,

and using the estimate (D.12) of the integral in r we get

Si,2 ≤ C

∫ θi+αi

θi−αi

dθ

{
− (1− p(θ))4

p2(θ)
ln

[
1− d(θ)

L

]}{[
d′′(θ)p2(θ)

[1− p2(θ)]2[L− d(θ)]

]2
+

[
[d′(θ)p(θ)]2

[
(2k + 1)p2(θ) + 2k − 1

]

[1− p2(θ)]3[L− d(θ)]2

]2
 ,

with positive constant C of order one. Now use inequality (D.14) and expand the
logarithm and the terms L− d(θ) in the denominator to simplify the bound

Si,2 . C

∫ θi+αi

θi−αi

dθ
d(θ)

L





[
d′′(θ)

L

]2
p2(θ) + 16

[
[d′(θ)]2

L

]2 [
kp(θ)

L[1− p(θ)]

]2


 .

The derivatives of d(θ) are estimated in (D.20) and (D.21), p(θ) ≤ 1, and

kp(θ)

1− p(θ)
=

k [1− d(θ)/L]
k

1− [1− d(θ)/L]
k
≤ L

d(θ)
[1− d(θ)/L] . (D.23)

This is because the function kak/(1 − ak) is monotonically decreasing in k for any
a ∈ (0, 1) and k ≥ 1. In particular, for a = 1− d/L we have (D.23). Gathering all the
results and using that αi = O(R/L) we get

Si,2 ≤ C1

∫ θi+αi

θi−αi

dθ
d(θ)L

R2
≤ O(1) . (D.24)

D.3. Estimate of (D.8). We recall from (A.3) that Ui is at most of order one,
and obtain from (D.5) that

∂2θw(s, θ) =

{
2[d′(θ)]2/ ln[1− d(θ)/L] + [d′(θ)]2 + [L− d(θ)]d′′(θ)

[L− d(θ)]2 [ln[1− d(θ)/L]]2

}
ln
s

L

≈
{
d′′(θ)

L
− 2

[d′(θ)]

d(θ)L

}
ln(s/L)

[ln[1− d(θ)/L]]
2 . (D.25)

The integrals in s and r give

∫ L

L−d(θ)

dr

r

[∫ L

r

ds

s
ln
( s
L

)]2
=

1

4

∫ L

L−d(θ)

dr

r

[
ln
r

L

]4
= − 1

20

{
ln

[
1− d(θ)

L

]}5

,

and with the bounds (D.20) and (D.21) of the derivatives of d(θ), and the expansion
of the logarithm, we obtain the estimate

Si,3 ≤ 9

20

∫ θi+αi

θi−αi

dθ
L d(θ)

R2
≤ O(1) . (D.26)

30



Appendix E. Energy in the boundary layer. We use the test potential
(4.54) to calculate the upper bound of the energy in the boundary layer. Given the
decomposition of the layer in the sets Bi and Bi+, we write the bound as in (4.65),
and estimate the two terms in sections E.2 and E.1.

E.1. Energy in the sets Bi+. Let us introduce the simplifying notation

U i =
Ui + Ui+1

2
, Ũi = Ui+1 − Ui , (E.1)

and

θi =
θi + θi+1

2
− αi+1 − αi

2
, θ̃i = (θi+1 − αi+1)− (θi + αi) , (E.2)

for the average and difference potentials and angles, so that

L(θ,UΓ) = U i + Ũi
(
θ − θi

θ̃i

)
(E.3)

in Bi+. We obtain after straightforward calculation that

EBi+(U
Γ, ψ; v) =

kθ̃i
4

+ PBi+ , (E.4)

with perturbation term

PBi+ =
kp2θ̃i

4(1− p2)
− k2p2 ln

(
1− R

2L

)

2(1− p2)2

∫ θ̃i/2

−θ̃i/2
dθ cos

[
2k(θi + θ)

]
+

1

2 ln
(
1− R

2L

)
∫ θ̃i/2

−θ̃i/2
dθ

(
U i + Ũi

θ

θ̃i

)
cos
[
k(θi + θ)

]
−

1

4 ln (1−R/2L)

∫ θ̃i/2

−θ̃i/2
dθ

(
U i + Ũi

θ

θ̃i

)2

− Ũ2
i ln

(
1− R

2L

)

6θ̃i
+

Ũi
[
(1− p2) + 2p ln p

]

2(1− p2) ln p

1

θ̃i

∫ θ̃i/2

−θ̃i/2
dθ sin

[
k(θi + θ)

]
, (E.5)

where

p =

[
1− d(θ)

L

]k
=

(
1− R

2L

)k
.

Now let us show that PBi+ = O(1). The first term in (E.5) is estimated as

kp2θ̃i
(1 − p2)

=
k
(
1− R

2L

)2k
θ̃i[

1−
(
1− R

2L

)2k] ≤
(
1− R

2L

)2
θ̃i[

1−
(
1− R

2L

)2] = O(1) ,

because the function is monotonically decreasing in k and θ̃i = O(R/L). The second
term in (E.5) satisfies
∣∣∣∣∣
k2p2 ln

(
1− R

2L

)

(1− p2)2

∫ θ̃i/2

−θ̃i/2
dθ cos

[
2k(θi + θ)

]
∣∣∣∣∣ =

(
kp

1− p2

)2
∣∣∣∣∣cos(kθi)sinc

(
kθ̃i
2

)∣∣∣∣∣×

θ̃i

∣∣∣∣ln
(
1− R

2L

)∣∣∣∣ ≤
(

kp

1− p

)2

θ̃i

∣∣∣∣ln
(
1− R

2L

)∣∣∣∣ ≤ O(1) ,
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where we used the inequality (D.23) and expanded the logarithm. The third, fourth
and fifth terms in (E.5) are also order one, because the integrands are order one and

θ̃i ∼ − ln

(
1− R

2L

)
= O

(
R

L

)
.

The last term in (E.5) satisfies

∣∣∣∣∣
Ũi
[
(1− p2) + 2p ln p

]

(1− p2) ln p

∣∣∣∣∣
1

θ̃i

∫ θ̃i/2

−θ̃i/2
dθ sin

[
k(θi + θ)

]
≤
∣∣∣∣∣

[
(1 − p2) + 2p ln p

]

(1− p2) ln p

∣∣∣∣∣ ≤ 1 ,

because the potentials satisfy the maximum principle (A.3). The last inequality is
easy to see, for example by plotting the function for p ∈ (0, 1).

E.2. Energy in the sets Bi. The test potential in this set is of the form

v(r, θ) = wk(r, θ) cos(kθ) + Uiw(r, θ) , (E.6)

with functions wk(r, θ) and w(r, θ) defined in (D.5). We write the contribution of Bi
to the energy bound as a quadratic polynomial in the potentials

EBi
(UΓ, ψ; v) =

1

2

∫

Bi

dx |∇v(x)|2 = aiU2
i + 2biUi + ci . (E.7)

The leading coefficients are independent of k

ai =
1

2

∫

Bi

dx

{
[∂rw(r, θ)]

2
+

[
1

r
∂θw(r, θ)

]2}
, (E.8)

and are estimated in section E.2.1. The coefficients of the linear term are

bi =
1

2

∫

Bi

dx

{
cos(kθ)∂rwk(r, θ)∂rw(r, θ) −

1

r
∂θw(r, θ)×

[
k sin(kθ)

r
wk(r, θ)−

cos(kθ)

r
∂θwk(r, θ)

]}
, (E.9)

and are estimated in section E.2.2. The coefficients

ci =
1

2

∫

Bi

dx

{
[∂rwk(r, θ)]

2 cos2(kθ) +

[
k sin(kθ)

r
wk(r, θ)−

cos(kθ)

r
∂θwk(r, θ)

]2}

(E.10)

are estimated in section E.2.3.

E.2.1. Estimate of ai. We obtain from (D.5) and (E.8) after integrating in the
radial direction that

ai =
1

2

∫ θi+αi

θi−αi

dθ

− ln [1− d(θ)/L]
+ PBi,ai , (E.11)

with remainder

PBi,ai = −1

2

∫ θi+αi

θi−αi

dθ
[d′(θ)]2

3[L− d(θ)]2 ln [1− d(θ)/L]
. (E.12)
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We can bound it as

|PBi,ai | ≤ O(1) , (E.13)

using the estimate (D.21) of d′(θ), expanding the logarithm and recalling that the
angle αi = O(R/L).

To calculate the first term in (E.11), we expand the logarithm

∫ θi+αi

θi−αi

dθ

− ln [1− d(θ)/L]
= L [1 + o(1)]

∫ αi

−αi

dθ

d(θi + θ)
, (E.14)

and obtain an integral that is basically the same as that in (4.36). Recalling definition
(D.18) of d(θ) and using that αi = O(R/L), we have the approximation

L

d(θi + θ)
=

L

δi +
ρiL
2R θ

2
+O

(
L

R

)
, (E.15)

and the coefficient becomes

ai =
1

2

∫ αi

−αi

dθ
L

δi +
ρiL
2R θ

2
+O(1)

=
1

2

√
2LR

ρiδi

∫ αi

√
ρiL

2Rδi

−αi

√
ρiL

2Rδi

dt

1 + t2
+O(1) ,

=
π

2

√
ρiL

2Rδi
+O(1) . (E.16)

E.2.2. Estimate of bi. We obtain from (D.5) and (E.9) after integrating in the
radius that

bi =
1

2

∫ θi+αi

θi−αi

dθ

{
cos(kθ)

ln [1− d(θ)/L]
+
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
+

− 2[d′(θ)]2 cos(kθ)

[L− d(θ)]2 ln[1− d(θ)/L]

p(θ)
[
1− p2(θ) + (1 + p2(θ)) ln p(θ)

]

[1− p2(θ)]2 ln p(θ)

}
.

(E.17)

We show next that the first term may be large, but the last two are at most order
one.

We estimate the last term in (E.17) using (D.21) and the bound

p
[
1− p2 + (1 + p2) ln p

]

(1− p2)2 ln p
≤ lim

p→1

p
[
1− p2 + (1 + p2) ln p

]

(1 − p2)2 ln p
=

1

6
,

which holds because the function on the left is monotonically increasing in the interval
p ∈ (0, 1). We have

∣∣∣∣∣

∫ θi+αi

θi−αi

dθ
2[d′(θ)]2 cos(kθ)

[L− d(θ)]2 ln[1− d(θ)/L]

p(θ)
[
1− p2(θ) + (1 + p2(θ)) ln p(θ)

]

[1− p2(θ)]2 ln p(θ)

∣∣∣∣∣ ≤

1

6

∫ θi+αi

θi−αi

dθ
[d′(θ)]2

Ld(θ)[1 − d(θ)/L]2
≤ O(1) , (E.18)
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where we expanded the logarithm, and used that αi = O(R/L).
The second term in (E.17) is estimated using integration by parts

∫ θi+αi

θi−αi

dθ
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
=

−d
′(θ) cos(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

∣∣∣∣
θi+αi

θi−αi

−
∫ θi+αi

θi−αi

dθ cos(kθ)

[
[L− d(θ)]d′′(θ) + [d′(θ)]2

]

[L− d(θ)]2
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
−

∫ θi+αi

θi−αi

dθ cos(kθ)
d′(θ)

[L− d(θ)]

d

dθ

{
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

}
.

We have that
[
1− p2 + 2 ln p

]

(1 − p2)2(ln p)2
≤ lim

p→1

[
1− p2 + 2 ln p

]

(1− p2)2(ln p)2
=

1

6
,

because the function is monotonically increasing in the interval p ∈ (0, 1). Moreover,

d

dθ

{
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

}
=

2d′(θ)

[L− d(θ)] ln[1− d(θ)/L]
×

[1− p2(θ)]2 + p(θ)[1 − p2(θ)] ln p(θ)− p(θ)[1 + p2(θ)][ln p(θ)]2

[1− p2(θ)]2[ln p(θ)]2

with the last factor bounded in the interval p ∈ (0, 1), as can be seen easily by
plotting. Thus, gathering all the results and using the estimates (D.20) and (D.21)
for the derivatives of d(θ), we get

∣∣∣∣∣

∫ θi+αi

θi−αi

dθ
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

∣∣∣∣∣ ≤ O(1) . (E.19)

We have obtained that

bi =
1

2

∫ θi+αi

θi−αi

dθ
cos(kθ)

ln[1− d(θ)/L]
+O(1)

= −L
2
cos(kθi)

∫ αi

−αi

dθ
cos(kθ)

d(θi + θ)
+O(1)

= − L

2δi
cos(kθi)

∫ αi

−αi

dθ
cos(kθ)

1 + ρiL
2Rδi

θ2
+O(1) , (E.20)

where we expanded the logarithm and the cosine, discarded the sin term which is odd,
and used approximation (E.15). The integral in (E.20) is similar to that in (E.14) for
small k, but for large k the result is smaller due to the oscillatory cosine. Explicitly,
we have

bi = −cos(kθi)

2

√
2RL

ρiδi

∫ αi

√
ρiL

2Rδi

−αi

√
ρiL

2Rδi

dt
cos
(
k
√

2Rδi
ρiL

)

1 + t2
+O(1)

= −π cos(kθi)
2

√
2RL

ρiδi
e
−k

√
2Rδi
ρiL +O(1) . (E.21)
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E.2.3. Estimate of ci. We obtain from (D.5) and (E.10) after integrating in
the radius that

ci =
kαi
2

+
1

2

∫ θi+αi

θi−αi

dθ

{
kp2(θ)

[1− p2(θ)]
− 2k2p2(θ) ln[1− d(θ)/L] cos(2kθ)

[1− p2(θ)]2
+

2kd′(θ)p(θ) sin(2kθ)

[L− d(θ)]

p(θ)[1 − p2(θ) + (1 + p2(θ)) ln p(θ)]

[1− p2(θ)]3
+

2k2[d′(θ)]2p2(θ)cos2(kθ) ln[1− d(θ)/L]

L− d(θ)]2[1 − p2(θ)]2
[1− p4(θ) + 4p2(θ) ln p(θ)

[1− p2(θ)]2 ln p(θ)

}
, (E.22)

and proceeding as in the previous two sections, we conclude that the last two terms
are at most order one.

To calculate the first integral in (E.22), let us introduce the notation

p2(θi+θ) =

[
1− d(θi + θ)

L

]2k
= e−2kx , x = − ln

[
1− d(θi + θ)

L

]
, θ ∈ (−αi, αi) ,

and use that d≪ L to write

x =
d

L
+O

(
d2

L2

)
=
d̃

L
+
d− d̃

L
+O

(
d2

L2

)
,

for

d̃ = δi +
ρiL

2R
θ2 ,

the parabolic approximation of d(θi + θ). We have from (E.15) that

|d− d̃| ≤ O

(
d2

R

)
,

and therefore

x =
δi
L

[
1 +

ρiL

2Rδi
θ2
]
+O

(
d2

LR

)
.

Next, we let

kp2

1− p2
=

ke−2kx

1− e−2kx
=

k

e2kx − 1
=: f(k, x) ,

and use the mean value theorem to write

f(k, x) =
k

e2kd̃/L − 1
+ ∂xf(k, x

′)

[
x− d̃

L

]
,

for some x′ ∼ d̃/L. Note that because |∂xf(k, x)| is monotonically decreasing in k,
we have

|∂kf(k, x)| =
2k2e2kx

[e2kx − 1]2
≤ |∂kf(x, k = 1)| = 2e2x

[e2x − 1]2
= O

(
1

x2

)
= O

(
L2

d2

)
.
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Therefore, we can approximate

f(k, x) =
kp2

1− p2
=

k

e2kd̃/L − 1
+O

(
L

R

)
,

and since αi = O(R/L), we write the first integral in (E.22) as

∫ αi

−αi

dθ
kp2(θi + θ)

1− p2(θi + θ)
=

∫ αi

−αi

dθ
k

e2kd̃/L − 1
+O(1)

=
1

2

√
2RL

ρiδi

∫ Yi

−Yi

dy
λ

eλ(1+y2) − 1
+O(1) , (E.23)

with

λ =
2kδi
L

, Yi = αi

√
Lρi
2Rδi

∼
√
R

δi
≫ 1.

Moreover,

∫ Yi

−Yi

dy
λ

eλ(1+y2) − 1
=

∫ ∞

−∞
dy

λ

eλ(1+y2) − 1
+O

(√
δ

R

)

=
√
πλLi1/2

(
e−λ

)
+O

(√
δ

R

)
,

with remainder estimated as

∫ ∞

Yi

dy
λ

eλ(1+y2) − 1
≤
∫ ∞

Yi

dy

1 + y2
=
π

2
− arctan(Yi) = O

(
1

Yi

)
= O

(√
δ

R

)
.

Here we used that the integrand is monotonically decreasing in λ to write

λ

eλ(1+y2) − 1
≤ lim

λ→0

λ

eλ(1+y2) − 1
=

1

1 + y2
.

Gathering the results, we obtain that the first integral in (E.22) is given by

∫ θi+αi

θi−αi

dθ
kp2(θ)

1− p2(θ)
=
π

2

√
2RL

ρiδi

√
2kδi
Lπ

Li1/2

(
e−2kδi/L

)
+O(1) . (E.24)

The second integral is obtained similarly, so we write directly its expression

−
∫ θi+αi

θi−αi

dθ
2k2p2(θ) ln[1− d(θ)/L] cos(2kθ)

[1− p2(θ)]2
= π

√
2RL

ρiδi
cos2(kθi)e

−2k
√

2Rδi
ρiL −

π

2

√
2RL

ρiδi
e
−2k

√
2δiR

ρiL +O(1) .

(E.25)

The result stated in (4.66) follows.
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