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Abstract

A symmetric m×m matrix M with entries taken from {0, 1, ∗} gives
rise to a graph partition problem, asking whether a graph can be parti-
tioned into m vertex sets matched to the rows (and corresponding columns)
of M such that, if Mij = 1, then any two vertices between the corre-
sponding vertex sets are joined by an edge, and, if Mij = 0, then any two
vertices between the corresponding vertex sets are not joined by an edge.
The entry ∗ places no restriction on the edges between the corresponding
sets. This problem generalises graph colouring and graph homomorphism
problems.

A graph with no M -partition but such that every proper subgraph
does have an M -partition is called a minimal obstruction. Feder, Hell
and Xie [5] have defined friendly matrices and shown that non-friendly ma-
trices have infinitely many minimal obstructions. They showed through
examples that friendly matrices can have finitely or infinitely many min-
imal obstructions and gave an example of a friendly matrix with an NP-
complete partition problem. Here we show that almost all friendly matri-
ces have infinitely many minimal obstructions and an NP-complete parti-
tion problem.

1 Introduction

Many graph partition problems can be described by the following framework.
Given a symmetric m by m matrix M with entries taken from {0, 1, ∗}, a graph
G has an M -partition if its vertex set can be partitioned into m vertex classes
C1, . . . , Cm so that, if Mij = 0, then there are no edges between vertices in Ci

and vertices in Cj and, if Mij = 1, then every edge is present between vertices in
Ci and vertices in Cj . The symbol ∗ places no restriction on edges between the
two corresponding classes. The case i = j is included, so that if, for example,
Mii = 1, then Ci must induce a complete graph.

This framework generalises graph colouring and homomorphism problems.
Indeed, if an m by m matrix Mm has diagonal entries 0 and all off-diagonal
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entries ∗ then a graph has a Mm-partition exactly when it is m-colourable.
Suppose the matrix MH is formed from a graph H by matching a row and
column to each vertex and letting an entry in a row and column be ∗ if the
matching vertices are connected by an edge, and 0 otherwise. Then a graph
G is MH partitionable exactly when there is a graph homomorphism from G
into H.

For a fixed matrix M , the computational problem of determining whether a
graph is M -partitionable was introduced and studied by Feder, Hell, Klein and
Motwani [2]. It is well known that determining whether a graph is k-colourable
is a polynomial problem if k ≤ 2, and is NP-complete otherwise. Determining
whether a graph has a homomorphism into a fixed graph H is a polynomial
problem if H is bipartite, and is NP-complete otherwise [7]. It is unknown
whether every M -partition problem is either polynomial or NP-complete [3, 6].

If a matrix M has a ∗ on the diagonal then trivially all graphs have an M -
partition and further constraints must be included (for example insisting each
class is non-empty) to form an interesting problem. Here we will assume that
M has no ∗ on the diagonal.

The class of graphs which are M -partitionable, for some fixed matrix M ,
forms a hereditary property, that is a graph property closed under removing
vertices. An equivalent notation for these properties was introduced by Bollobás
and Thomason [1] who defined a type to be a complete graph with vertices
coloured blue or red, and edges coloured red, blue or green. An embedding
of a graph into a type embeds a complete, or empty, subgraph into each blue,
or red, vertex respectively and a complete, or empty, bipartite graph across
each blue, or red, edge respectively. Any collection of edges and non-edges can
be mapped across a green edge. This notion of types is equivalent to using
symmetric matrices with entries from {0, 1, ∗} with no ∗ on the diagonal, where
a type has a vertex for each pair of corresponding rows and columns and the
symbols 0, 1 and ∗ correspond to the colours red, blue and green respectively.

Work by Prömel and Steger [9], Bollobás and Thomason [1], and Thomason
and Marchant [8] built to the conclusion that any hereditary property could
be approximated by the property of being M -embeddable, for some symmetric
matrix M . That is, for any hereditary property P and fixed probability p there
is some symmetric matrix M for which

log(P(Gn,p ∈ P)) = log(P(Gn,p has an M partition)) + o(1).

A simple set of matrices with a polynomial partition problem are those for
which there is some finite collection of graphs such that a graph has an M -
partition exactly when it excludes each of those finitely many graphs as an
induced subgraph, that is, a subgraph formed by deleting vertices. In this case,
we may check whether G contains any of these finitely many graphs as induced
subgraphs in polynomial time. As M -partitionable graphs form a hereditary
property, the set of M -partitionable graphs may always be determined by a
(possibly infinite) set of forbidden induced subgraphs. Minimal obstructions to
an M -partition problem are graphs which have no M -partition yet any proper

2



induced subgraph does have an M -partition. Any set of forbidden induced
subgraphs defining the M -partition problem must contain all the minimal ob-
structions to an M -partition, and the minimal obstructions are sufficient to
define the problem.

Feder, Hell and Xie [5] used a random construction to demonstrate that
there are infinitely many minimal obstructions for the M -partition problem if
we can find either of the following submatrices in M by taking two rows and
their corresponding columns.(

0 ∗
∗ 0

) (
1 ∗
∗ 1

)
They defined ‘friendly’ matrices as those matrices which do not have this sub-
matrix property, so that we know ‘unfriendly’ matrices have infinitely many
minimal obstructions. They demonstrated the existence of friendly matrices
which have finitely many minimal obstructions, those with infinitely many min-
imal obstructions yet a polynomial partition problem, and those which have
an NP-complete partition problem. Feder, Hell and Shklarsky [4] have demon-
strated that any matrix only has finitely many minimal obstructions which are
split graphs, that is graphs which can be partitioned into a clique and an empty
set with no restrictions on the edges between them.

Given a friendly matrix M it appears difficult to determine whether or not
it has finitely many minimal obstructions. Neither the matrices with infinitely
many minimal obstructions, nor those with finitely many minimal obstruc-
tions, form a class of matrices closed under deleting pairs of matching rows
and columns. Let Mi be the matrix formed from M by deleting the ith row and
the ith column and suppose M is written as(

A C
C B

)
,

where A has each diagonal entry 0 and B has each diagonal entry 1. Feder, Hell
and Xie [5] showed that if either A or B has no two rows the same and Mi has
finitely many minimal obstructions for each i then M itself has finitely many
obstructions. If we select a friendly matrix randomly and uniformly from all 2n
by 2n friendly matrices with n entries for both 1 and 0 on the diagonal then
almost surely this first condition on A and B holds. That is, as n increases the
probability this condition holds tends to 1. However, we will show here that
almost all friendly matrices have infinitely many minimal obstructions.

Theorem 1. Almost all friendly matrices have infinitely many minimal ob-
structions.

Using the same notation, if A and B both have no three rows the same and
Mi has a polynomial partition problem for each i then M itself has a polynomial
partition problem [5]. While it appears to be difficult to determine whether or
not a friendly matrix M has an NP-complete partition problem, we will show
that almost all friendly matrices do have an NP-complete partition problem.
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Theorem 2. Almost all friendly matrices have an NP-complete partition prob-
lem.

While unfriendly matrices are known to have infinitely many minimal ob-
structions, examples occur both where the partition problem is polynomial and
where it is NP-complete. Indeed, the two unfriendly matrices encoding the 2-
colouring and 3-colouring problem respectively provide such examples. We will
show that almost all matrices have an NP-complete partition problem, where
we select a matrix uniformly at random from the n by n symmetric matrices
with entries in {0, 1, ∗} which do not have a ∗ on the diagonal.

Theorem 3. Almost all matrices have an NP-complete partition problem.

2 Definitions and notation

As the work here has a probabilistic flavour it will be convenient to use the
notation of types introduced by Bollobás and Thomason [1] in their work on
hereditary graph properties.

Definition. A type τ is a complete graph where each vertex is coloured either
red or blue and each edge is coloured red, blue or green. We will denote the set
of red vertices by R(τ), the set of blue vertices by B(τ) and the entire vertex
set by V (τ).

Definition. An embedding of a graph G into a type τ is a map ψ : V (G)→ V (τ)
where if uv is an edge in G then either u and v are mapped by ψ to the same
blue vertex, or ψ(u)ψ(v) is a blue or green edge, and if uv is not an edge in G
then either u and v are mapped by ψ to the same red vertex, or ψ(u)ψ(v) is a
red or green edge.

If a graph G has an embedding into the type τ then we say that it is embed-
dable into τ .

Thus, the vertices of the graph embedded into a red vertex form an indepen-
dent set, and those embedded into a blue vertex form a clique. Only edges may
be embedded across a blue edge. Only non-edges may be embedded across a
red edge. We place no restriction on the edges and non-edges embedded across
the green edges.

For example, the graphs which are embeddable into the type with k red
vertices with green edges between them are exactly the k-colourable graphs. The
M -partition problem is equivalent to a τ -embedding problem for a type with a
red vertex for each i with Mii = 0 and a blue vertex for each i with Mii = 1,
with edges between vertices coloured red, blue or green if the corresponding
entry between the rows and columns of M is 0, 1 or ∗ respectively.

A friendly type is defined analogously to a friendly matrix. That is, it is a
type with no green edge between any two red vertices or between any two blue
vertices.
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Definition. Given two types σ and τ , an edge-homomorphism φ : σ → τ is a
mapping of the vertices of σ to the vertices of τ where

• if vw is a red edge, then either φ(v) = φ(w) and this is a red vertex, or
φ(v)φ(w) is a red or green edge, and

• if vw is a blue edge, then either φ(v) = φ(w) and this is a blue vertex, or
φ(v)φ(w) is a blue or green edge.

If in addition φ : σ → τ preserves vertex colour and maps green edges across
green edges then we say φ is a type-homomorphism. If G has an embedding
ψ into σ and φ : σ → τ is a type-homomorphism then φψ is an embedding
of G into τ . However, it will be convenient later to use the weaker notion of
edge-homomorphism.

Finally, we must define a random friendly type and a random type.

Definition. The random friendly type Tf (n) is a type with n red vertices and
n blue vertices with each edge between a red vertex and a blue vertex coloured
red, green or blue uniformly and independently and each other edge coloured
red or blue uniformly and independently.

Definition. The random type T (n) is a type with n vertices where each edge
is coloured red, green or blue uniformly and independently and each vertex is
coloured red or blue uniformly and independently.

The first definition above is equivalent to choosing a matrix uniformly from
the friendly 2n by 2n matrices with n entries for both 1 and 0 on the diagonal.
In our proofs of Theorems 1 and 2 we will consider therefore the random friendly
type Tf (n). The second definition is equivalent to choosing a matrix uniformly
from the symmetric n by n matrices with entries in {0, 1, ∗} and without a ∗ on
the diagonal. In our proof of Theorem 3 we will consider therefore the random
type T (n).

3 Properties of almost all random types

For the proofs of the main theorems we will require some properties of almost
all random types, which will be stated and proved here. A type σ is a subtype
of the type τ , denoted by σ ⊂ τ , if σ can be formed by deleting vertices from
τ . Where A ⊂ V (τ), we denote the subtype of τ with the vertex set A by τ |A.

Given a subtype σ ⊂ τ and a vertex v ∈ V (σ), we say v is a fixed point of
the function φ : V (σ)→ V (τ) if φ(v) = v. As usual, we say a property of Tf (n)
or T (n) holds with high probability if it fails with probability o(1) as n→∞.

Lemma 1. Let α > β > 0 and τ = Tf (n) or T (n). With high probability the
following is true. For every subtype σ ⊂ τ with at least αn vertices and every
edge-homomorphism φ : σ → τ , φ has at least βn fixed points.
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Proof. Let τ = T (n), using the vertex set [n] = {1, . . . , n}. The case for Tf (n)
follows similarly. Let Φ be the set of pairs (A, φ) of vertex sets A ⊂ [n] and
functions φ : A → [n] where |A| ≥ αn and φ has at most βn fixed points.
As there are certainly at most nn such functions φ for each set A, we have
|Φ| ≤ 2nnn. Let X be the number of pairs (A, φ) ∈ Φ for which φ is an edge-
homomorphism from τ |A to τ . Thus, X is a random variable dependant on τ .
To prove the lemma we need to show that P(X > 0)→ 0 as n→∞.

Let (A, φ) ∈ Φ. We will find an upper-bound for the probability that φ is an
edge-homomorphism. We will first find a subset A′ ⊂ A with |A′| ≥ (α− β)n/4
so that the image of A′ under φ, φ(A′), is disjoint from A′. Calculating the
probability that φ|A′ is an edge-homomorphism will give us an upper-bound for
the probability that φ is an edge-homomorphism.

Let A0 = A. Delete from A0 any vertex fixed by φ. As (A, φ) ∈ Φ, at least
(α−β)n vertices remain in A0. Next, if there is a vertex v for which there is an
integer k > 1 such that {v, φ(v), . . . , φk−1(v)} ⊂ A0 and φk(v) = v, then delete
the vertex v from A0. Repeat this process until no such vertex in A0 exists.
Note that after a vertex v is deleted from A0 all of the vertices φ(v), . . . , φk−1(v)
will not subsequently be deleted from A0. Therefore, at the end of this process,
A0 will still contain at least (α− β)n/2 vertices.

Take a new directed graph H with the vertex set A0 and edges ~uv exactly
when φ(u) = v. If, with the edge directions forgotten, there is a cycle in this
graph, then it must be a directed cycle as each vertex has out-degree at most 1.
If there is a cycle of length k in H, then, taking some vertex v in the cycle, we
have that {v, φ(v), . . . , φk−1(v)} ⊂ A0 and φk(v) = v. Therefore, as no such
vertices remain in A0, H contains no cycles. The graph H is therefore a forest,
and hence is bipartite. As |A0| ≥ (α−β)/2, we can take A′ ⊂ A0 with |A′| ≥ εn,
where ε = (α− β)/4 > 0, so that A′ is an independent set in H. Observe that,
as A′ is an independent set, φ(A′) and A′ are disjoint.

The probability that φ is an edge-homomorphism is at most the probability
that φ|A′ is an edge-homomorphism. Let k = |φ(A′)| and φ(A′) = {v1, . . . , vk},
and, for each i, let gi be the number of vertices from A′ mapped to vi by φ.

If φ is an edge-homomorphism, then if a vertex vi is coloured red (respec-
tively, blue) it must have no blue (respectively, red) edges mapped into it, which

has probability at most
(
2
3

)(gi
2 ) ≤

(
7
9

)(gi
2 )

. The probability an edge vivj is not
green is 2

3 whereupon the gigj edges mapped into it either cannot be red (if
vivj is blue) or cannot be blue (if vivj is red), which certainly has probability

at most 2
3 (as gigj ≥ 1). Therefore, for each of the

(
k
2

)
edges vivj individually,

the probability that vivj and the edges mapped into it are coloured so as not to
prevent φ being an edge-homomorphism is at most 1

3 + 2
3 ×

2
3 = 7

9 . Thus,

P(φ is an edge-homomorphism) ≤
(

7

9

)(k
2)+

∑k
i=1 (gi

2 )
≤

(
7

9

)(k
2)+k(

1
k

∑k
i=1 gi
2 )

≤
(

7

9

)(k
2)+k(

εn
k
2 )
≤

(
7

9

)C(k2+ 1
kn2)

≤
(

7

9

)Cn4/3
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for some constant C > 0, where in the last inequality we have considered the
extremal case k = 2−1/3n2/3.

As |Φ| ≤ 2nnn, we have, using Markov’s inequality,

P(X > 0) ≤ E(X) ≤ 2n+n log2 n

(
7

9

)Cn4/3

→ 0 as n→∞.

In fact this proof is sufficient to show there are at most C(n log n)3/4 non-
fixed vertices, for some constant C > 0, but the statement of Lemma 1 is
strong enough for our purposes. Furthermore, generalising the techniques used
in proving Theorem 1 would show that there can be at most C log n non-fixed
vertices, for some constant C > 0, which is tight up to the constant.

The techniques in the proofs of Theorems 1, 2 and 3 will require some techni-
cal lemmas, for which we need to define the common neighbourhood of a vertex
set of a type.

Definition. For a vertex subset A of a type τ ,

N(A) = {v ∈ V (τ) \A : there do not exist r, b ∈ A with vr red and vb blue}.

When A contains few vertices we list them, for example writing N(v, w) for
N({v, w}).

Lemma 2. Given τ = Tf (n), with high probability it is true that for all distinct
r1, r2 ∈ R(τ) and distinct b1, b2 ∈ B(τ) the following holds.

i) |N(r1, r2) ∩N(b1, b2)| ≥ 2
3n, and,

ii) |N(r1, r2) ∩ N(b1, b2) ∩ N(v, w)| ≤ 16
27n for all distinct v, w ∈ V (τ) with

{v, w} 6= {r1, r2} and {v, w} 6= {b1, b2}.

Proof. i) A red vertex v ∈ R(τ) \ {r1, r2} is in N(r1, r2) unless vr1 and vr2 take
different colours in {red,blue}, which, as τ is a random friendly matrix, happens
with probability 1

2 . A red vertex v ∈ R(τ) \ {r1, r2} is in N(b1, b2) unless vb1
and vb2 take different colours in {red,blue}. There are thus 2 bad colourings
out of the 9 different possible colourings of vr1 and vr2. Therefore,

P(v ∈ N(r1, r2) ∩N(b1, b2)) =
1

2

(
1− 2

9

)
=

7

18
.

Hence, |N(r1, r2)∩N(b1, b2)∩R(τ)| is a binomial variable with parameters n−2
and 7

18 . By Chernoff’s inequality, we have for any ε, 0 < ε ≤ 1, that

P
(
|N(r1, r2) ∩N(b1, b2) ∩R(τ)| < 7

18
(1− ε) (n− 2)

)
≤ exp

(
− 7

72
ε2(n− 2)

)
.

By taking ε = 1
8 , we have, for n ≥ 100,

P
(
|N(r1, r2) ∩N(b1, b2) ∩R(τ)| < 1

3
n

)
≤ exp

(
− 1

1000
n

)
.
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The same result holds similarly for |N(r1, r2) ∩N(b1, b2) ∩B(τ)|, and thus, for
n ≥ 100,

P
(
|N(r1, r2) ∩N(b1, b2)| < 2

3
n

)
≤ 2 exp

(
− 1

1000
n

)
.

There are at most n4 choices for the vertices r1, r2, b1, b2, so the expected number
of sets of such vertices for which i) does not hold is at most 2n4 exp(− 1

1000n), if
n ≥ 100. Thus, with high probability all sets of such vertices will satisfy i).

ii) Proving the second part is very similar to proving the first part, but re-
quires several different cases based on whether each of v and w is red or blue
and whether each of v and w is in the set {r1, r2, b1, b2} or not. In each case
|N(r1, r2)∩N(b1, b2)∩N(v, w)| can be shown to be a sum of two binomial vari-
ables whose combined expectation is strictly less than 16

27n, for large n. Note that
if a vertex lies in N(r1, r2)∩N(b1, b2)∩N(v, w) it satisfies additional restrictions
than if it just lies in N(r1, r2)∩N(b1, b2), and thus we expect the combined ex-
pectation in each case to be distinctly smaller than the corresponding combined
expectation in part i).

The highest combined expectation is when {v, w} ⊂ {r1, r2, b1, b2}, or, with-
out loss of generality, when v = r1 and w = b1. In this case, a red vertex
x /∈ {r1, r2} is in N(r1, r2) ∩ N(b1, b2) ∩ N(r1, b1) if xr1 and xr2 are the same
colour and if the following holds. Either xb1 is green, or xb1 and xb2 are both
the same colour as xr1, or xb1 is the same colour as xr1 and xb2 is green. Thus,
a red vertex not in {r1, r2} is in N(r1, r2) ∩ N(b1, b2) ∩ N(r1, b1) with proba-
bility 1

2

(
1
3 + 1

9 + 1
9

)
= 5

18 . The probability is the same for a blue vertex not in
{b1, b2}, so the sum of the expectations of the distributions is 5

9 (n− 2), strictly
less than 16

27n, for large n, as required.
In each case, Chernoff’s inequality shows the probability that |N(r1, r2) ∩

N(b1, b2) ∩ N(v, w)| > 16
27n is exponentially small. As there are at most n6

choices for the vertices r1, r2, b1, b2, v, w, with high probability τ will satisfy the
second condition of the lemma.

The following two lemmas will take the same role in the proofs of Theorems
2 and 3 respectively as Lemma 2 will take in the proof of Theorem 1. They can
be proved similarly to Lemma 2.

Lemma 3. Given τ = Tf (n), with high probability it is true that for every set
A ⊂ V (τ) of six red and three blue vertices the following holds.

i) |N(A)| ≥ 1
36n, and

ii) |N(A ∪ {v})| ≤ 1
40n for each vertex v /∈ A.

Lemma 4. Given τ = T (n), with high probability it is true that for every set
A ⊂ V (τ) of three vertices the following holds.

i) |N(A)| ≥ 14
27n, and

ii) |N(A ∪ {v})| ≤ 13
27n for each vertex v /∈ A.

8



4 Proof of the main results

Proof of Theorem 1. Let ρ be the type with the vertex set {r1, r2, r3, b1, b2, b3}
so that

• the vertices r1, r2 and r3 are red, and the vertices b1, b2 and b3 are blue,

• the edges r1r3, r2r3 and b1b2 are blue,

• the edges r1b1, r1b3, r2b2 and r3b2 are green, and

• all the remaining edges within ρ are red.

This subtype ρ is the example used by Feder, Hell and Xie [5] to demonstrate
that there are friendly types with infinitely many minimal obstructions.

Let τ = Tf (n). Taking any set of three red and three blue vertices in
V (τ), the probability that restricting τ to this set gives a copy of ρ is at least

( 1
3 )(

6
2). Considering bn3 c disjoint such vertex sets in V (τ), and using Chernoff’s

inequality, demonstrates that τ will almost surely contain a subtype which is a
copy of ρ. Relabelling, let us suppose that ρ ⊂ τ . By Lemma 1 and Lemma 2, τ
almost surely also satisfies the conclusion of Lemma 1 with α = 2

3 and β = 17
27 ,

and the conclusion of Lemma 2. Assume additionally that n ≥ 100. We will
show that, for each m ∈ N, τ has a minimal obstruction with at least m vertices.
The type τ must then have infinitely many obstructions, and the theorem will
be proved.

Let σ ⊂ τ have the vertex set N(r1, r2) ∩ N(b1, b2). Then r3, b3 ∈ V (σ)
and, by the property from Lemma 2, |σ| ≥ 2

3n. For each vertex v ∈ V (σ),
create a new vertex v′. Let G be the graph of order |V (σ)| + 2m with vertex
set {v′ : v ∈ V (σ)} ∪ {x1, . . . , xm, y1, . . . , ym}, whose edge set comprises

• the edges u′v′ for which uv is a blue edge of σ,

• the edges in the complete graph on {y1, . . . , ym},

• the edges in the path x1y1x2 . . . xmym,

• the edges x1b
′
3 and ymr

′
3,

• the edges in {xiv′ : v ∈ V (σ), i ∈ [m] and r1v or r2v is blue in τ}, and

• the edges in {yiv′ : v ∈ V (σ), i ∈ [m] and b1v or b2v is blue in τ}.

We claim the resulting graph G has the following two properties.

Claim 1. G does not have a τ -embedding.

Claim 2. For each i, 1 ≤ i ≤ m, G− xi does have a τ -embedding.

9



Claim 1 implies that G contains a minimal obstruction. Claim 2 implies that
any minimal obstruction contained in G must contain each vertex xi. Thus, τ
has a minimal obstruction with at least m vertices, as required.

To prove Claim 1, suppose to the contrary that ψ : V (G) → V (τ) is some
embedding of the graph G. Let φ : σ → τ be defined by φ(v) = ψ(v′). We know
that |V (σ)| ≥ 2

3n, and can observe that φ is an edge-homomorphism. Indeed, if
vw is a red edge in σ then v′w′ /∈ E(G) and hence as ψ is an embedding either
φ(v) = ψ(v′) = ψ(w′) = φ(w) is a red vertex or ψ(v′)ψ(w′) = φ(v)φ(w) is a red
or green edge. The same follows with ‘blue’ and ‘v′w′ ∈ E(G)’ in place of ‘red’
and ‘v′w′ /∈ E(G)’ respectively.

Therefore, by the property from Lemma 1, φ has at least 17
27n fixed vertices.

Call this set of fixed vertices F . For v ∈ V (σ) and f ∈ F \ {v, φ(v)}, if vf
is blue then φ(v)φ(f) = φ(v)f cannot be red, and if vf is red then φ(v)f
cannot be blue. Therefore f ∈ N(v, φ(v)), for each f ∈ F \ {v, φ(v)}. As
F ⊂ N(r1, r2) ∩N(b1, b2), we have

|N(r1, r2) ∩N(b1, b2) ∩N(v, φ(v))| ≥ 17

27
n− 2.

Therefore, by the property from Lemma 2, to avoid a contradiction we must
have v = φ(v), for each v ∈ V (σ) (as v /∈ {r1, r2, b1, b2}), and so φ in fact fixes
every vertex in σ. In other words, each vertex v′ in G has been embedded into
v by ψ.

We now consider where the remaining vertices in G are, that is the vertices
in the path x1y1x2 . . . xmym. Fixing i, let x = ψ(xi). If v ∈ V (σ) \ {x} and
r1v is a blue edge in τ , then xiv

′ is an edge in G. As ψ(v′) = v, x 6= v, and
ψ is an embedding of G, we must have that xv is a blue or green edge in τ .
Similarly, if v ∈ V (σ) \ {x} and r1v is a red edge in τ , then xv is a red or
green edge in τ . Therefore, for each v ∈ V (σ) \ {x}, v ∈ N(r1, x), and hence
|N(r1, r2) ∩N(b1, b2) ∩N(r1, x)| ≥ 2

3n− 1. Using the property from Lemma 2,
x must be r1 or r2. Therefore, for each vertex xi, we have ψ(xi) ∈ {r1, r2}.

Similarly, for each yi, we must have V (σ) \ {ψ(yi)} ⊂ N(b1, ψ(yi)), so that
|N(r1, r2)∩N(b1, b2)∩N(b1, ψ(yi))| ≥ 2

3n− 1. By the property from Lemma 2
then, ψ(yi) ∈ {b1, b2}.

We know that x1b
′
3 ∈ E(G), b′3 is embedded into b3 (as b′3 ∈ V (G)) and r2b3

is a red edge in τ . Therefore, ψ(x1) 6= r2, and hence ψ(x1) = r1. Then, as
x1y1 ∈ E(G) and r1b2 is a red edge in τ we can deduce ψ(y1) = b1. Continuing
like this, and considering x2 next, the path x1y1x2 . . . xmym must be embedded
between r1 and b1, until finally we deduce that ψ(ym) = b1. But then the edge
ymr

′
3 of G is embedded across the red edge r3b1 in τ , a contradiction. Thus no

such embedding ψ exists and Claim 1 has been proved.
To prove Claim 2 we can define, for each i, an embedding ψ : G − xi → τ

as follows. For v ∈ V (σ), let ψ(v) = v′. For each j, j < i, let ψ(xj) = r1 and
ψ(yj) = b1. For each j > i, let ψ(xj) = r2 and ψ(yj) = b2. Let ψ(yi) = b2.

As removing xi breaks the path x1y1 . . . xmym, the contradiction that arose
in proving Claim 1 does not occur, and ψ can easily be seen to be an embedding
from the definition of G.
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Proof of Theorem 2. Suppose τ is a friendly type with n blue and n red vertices,
where n ≥ 1000, for which the conclusion of Lemma 3 holds, as well as the
conclusion of Lemma 1 with α = 1

36 and β = 1
38 . Feder, Hell and Xie [5] showed

that there is a friendly type, which we shall call ρ, which has 6 red and 3 blue
vertices and an NP-complete partition problem. Suppose further that τ contains
this type ρ. We will show that the problem of determining whether G has an
embedding into ρ can be solved by determining whether there is an embedding
into τ of a specific graph G′ constructed from G in polynomial time. Therefore,
the problem of determining whether a graph has an embedding into τ must
also be NP-complete. Using a similar argument to that used in the proof of
Theorem 1, we can almost surely assume that ρ ⊂ Tf (n). The other properties
of τ follow almost surely for Tf (n) by Lemmas 1 and 3, and therefore the random
friendly type Tf (n) will almost surely have an NP-complete embedding problem.

Given a graph G, extend it to form the graph G′ as follows. Let σ be the
subtype of τ with the vertex set N(V (ρ)). For each v ∈ V (σ) create a vertex
v′ of G′ and connect it with an edge to every vertex in G exactly when at least
one of the edges from v to ρ in τ is blue. Add the edge v′w′ to G′ if vw is a
blue edge in τ . Note that |N(V (ρ))| ≥ 1

36n by the property from Lemma 3.
Given an embedding ψ of G′ into τ , the edge-homomorphism φ : σ → τ

defined by φ(v) = ψ(v′) must have at least 1
38n fixed vertices, by the property

of τ from Lemma 1. Let F be the set of these fixed vertices, and let v ∈ V (G).
Given f ∈ F \ {ψ(v)}, if there is some vertex x ∈ V (ρ) for which fx is blue
(so that all the edges from V (ρ) to f must be blue or green as f ∈ V (σ)), then
f ′v is an edge in G′, so that ψ(f ′)ψ(v) = fψ(v) is a blue or green edge in τ .
All the edges from V (ρ) ∪ {ψ(v)} to f are therefore blue or green, and hence
f ∈ N(V (ρ) ∪ {ψ(v)}). If there are no edges between V (ρ) and f which are
blue, then f ′v is not an edge in G. Hence fψ(v) is a red or green edge in τ , and
f ∈ N(V (ρ)∪{ψ(v)}). Therefore, for each f ∈ F \{ψ(v)}, f ∈ N(V (ρ)∪{ψ(v)}),
and hence F \ {ψ(v)} ⊂ N(V (ρ) ∪ {ψ(v)}). Therefore, |N(V (ρ) ∪ {ψ(v)})| ≥
1
38n− 1, and so, for large n, we must have by the property from Lemma 3 that
ψ(v) ∈ V (ρ). As this holds for all v ∈ V (G), ψ|V (G) is an embedding of G into
ρ. Therefore, if the graph G′ has an embedding into τ then G must have an
embedding into ρ.

Given an embedding of G into ρ we can extend this to an embedding of G′

into τ by mapping v′ into v for each v ∈ V (σ). Therefore, as required, G has
an embedding into ρ if and only if G′ has an embedding into τ .

Proof of Theorem 3. Let ρ be the type consisting of three red vertices with a
green edge between each pair of these vertices. Given a random type τ = T (n)
we have, almost surely, that ρ ⊂ τ (with relabelling) and that the conclusion of
Lemma 4 and Lemma 1, with α = 14

27 and β = 1
2 , hold for τ (as shown by those

lemmas). Given a graph G, we may create from G an auxiliary graph G′ in
polynomial time which is embeddable into τ precisely when G is embeddedable
into ρ, using an identical construction to that used in the proof of Theorem 2.
Therefore, asking whether G′ has a τ -embedding is equivalent to asking whether
G has a 3-colouring. The 3-colouring problem is known to be NP-complete, and
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thus the τ -embedding problem must be NP-complete as well.
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