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Abstract. This paper deals with the numerical integration of Hamiltonian systems in which
a stiff anharmonic potential causes highly oscillatory solution behavior with solution-dependent
frequencies. The impulse method, which uses micro- and macro-steps for the integration of fast
and slow parts, respectively, does not work satisfactorily on such problems. Here it is shown
that variants of the impulse method with suitable projection preserve the actions as adiabatic
invariants and yield accurate approximations, with macro-stepsizes that are not restricted by the
stiffness parameter.
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1 Introduction

We are interested in the efficient numerical integration of Hamiltonian systems in which a stiff
anharmonic potential causes highly oscillatory solution behavior with state-dependent slowly
varying high frequencies.

1.1 The highly oscillatory Hamiltonian system

We consider Hamiltonians as studied, in varying degrees of generality and with different analytical
techniques, by Rubin & Ungar [16], Takens [19], Bornemann [2], Lorenz [14] and Hairer, Lubich
& Wanner [11, Section XIV.3]:

H(x, y) = 1
2 y

TM(x)−1y + U(x) +
1

ε2
V (x), 0 < ε� 1, (1)
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lubich@na.uni-tuebingen.de

‡Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Kaiserstr. 89-93, D-
76133 Karlsruhe, Germany. E-mail: daniel.weiss@kit.edu

1

ar
X

iv
:1

40
3.

42
74

v2
  [

m
at

h.
N

A
] 

 2
2 

Ju
l 2

01
4



depending on positions x ∈ Rn and momenta y ∈ Rn. The mass matrix M(x) is symmetric
and positive definite and depends smoothly on x. The slow potential U is smooth, and the stiff
potential 1

ε2V with a smooth function V : D ⊂ Rn → R attains its minimum value 0 on a
d-dimensional manifold

V = {x ∈ D : V (x) = minV = 0}. (2)

We assume that the potential V is strongly convex along directions non-tangential to V. More
precisely, there exists α > 0 such that for x ∈ V the Hessian ∇2V (x) satisfies

vT∇2V (x)v ≥ α · vTM(x)v (3)

for all vectors v in the M(x)-orthogonal complement of the tangent space TxV.
Furthermore, we assume that a constraint function g : D → Rm, with m = n − d, is known

such that

V = {x ∈ D : g(x) = 0} (4)

and the derivative matrix G(x) = g′(x) is of full rank on V.
The corresponding system of Hamiltonian differential equations reads

ẋ = M(x)−1y

ẏ = −∇x

(
1
2 y

TM(x)−1y
)
−∇U(x)− 1

ε2
∇V (x).

(5)

Example 1

A simple, yet nontrivial model example is the stiff spring double
pendulum. The Hamiltonian reads

H(x, y) = 1
2y

Ty + U(x) +
1

ε2
V (x),

where 1
2y

Ty is the kinetic energy, U(x) = x12 + x22, and

1

ε2
V (x) = 1

2

[α1

ε

]2
(‖x1‖ − l1)

2
+ 1

2

[α2

ε

]2
(‖x1 − x2‖ − l2)

2

is the stiff potential depending on the small parameter ε. The
parameters li denote the lengths of the springs, αi/ε are the large
spring constants.

m(x11, x12)

m (x21, x22)

Example 1 helps to fix ideas on a simple toy model. Obviously it extends to chains of stiff
springs, which describe the dynamics of chains of atoms in a molecule with almost rigid bonds,
cf., e.g., [13].

1.2 The effective Hamiltonian system

It has been known since Rubin & Ungar [16] that the motion of the system in the limit ε→ 0 dif-
fers from the Hamiltonian dynamics constrained to the manifold V (the rigid double pendulum in
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the above example) for general initial values (x0, y0) that have an energy bounded independently
of ε,

H(x0, y0) ≤ Const . (6)

Note that the set of admissible initial values (x0, y0) satisfying (6) depends on ε. The effective
constrained Hamiltonian has a correction potential W ,

Heff(X,Y ) = 1
2Y

TM(X)−1Y + U(X) +W (I,X),

0 = g(X).
(7)

The correction potential W (I,X) =
∑m

k=1 Ikωk(X) depends on the m frequencies ωk(X), i.e.,
the square roots of the nonzero generalized eigenvalues of the pencil λM(X) − ∇2V (X), and
on m parameters I = (I1, . . . , Im), known as the actions, which are determined by the initial
values (x0, y0) of (5). The actions vanish for consistent initial data that satisfy g(x0) = 0 and
G(x0)M(x0)−1y0 = 0.

As is outlined in [3] and will be recapitulated in Section 3, the effective Hamiltonian can be
found by transforming the system to separate slow and fast variables as in [14] and [11, Section
XIV.3], and transforming the obtained slow system (ε = 0) back via the effective dynamics of
the fast variables.

The effective constrained Hamiltonian system is then given by

Ẋ = M(X)−1Y

Ẏ = −∇X

(
1
2Y

TM(X)−1Y
)
−∇U(X)−∇XW (I,X)−G(X)TΛ

0 = g(X),

(8)

with Lagrange multipliers Λ(t) ∈ Rm. This differs from the usual constrained equations of motion
through the correction force F (I,X) = −∇XW (I,X).

To initial values (x0, y0) of system (5) with bounded energy (6), we associate consistent initial
values (X0, Y0) for the effective system (8). These are chosen by projecting M -orthogonally onto
the manifold of consistent values:

X0 = x0 +M(x0)−1G(x0)Tλ, 0 = g(X0),

Y0 = y0 +G(X0)Tµ, 0 = G(X0)M(X0)−1Y0.
(9)

With the projection

P(x) = I −Q(x), Q(x) = [GT(GM−1GT)−1GM−1](x), (10)

the second equation can be rewritten as Y0 = P(X0)y0, and along the solution of (8) we note
Y (t) = P(X(t))Y (t).

The effective Hamiltonian system describes the limit dynamics on the constraint manifold as
long as the solution-dependent frequencies ωk(X(t)) remain separated and are non-resonant: for
some δ > 0,

|ωj(X(t))− ωk(X(t))| ≥ δ for j 6= k (11)

|ωj(X(t))± ωk(X(t))± ωl(X(t))| ≥ δ for all j, k, l. (12)
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If these conditions are satisfied for t ≤ t, then we have for the corresponding solutions of (5) and
(8) over this time interval

X(t)− x(t) = O(ε)

Y (t)− P(x(t))y(t) = O(ε),
(13)

where the constants in the O-notation depend on δ and deteriorate as δ → 0; see [19, 11, 3]. In
the case of a single frequency (m = 1), where no separation and non-resonance conditions appear,
the approximation of the full system by the effective system was already studied by Rubin &
Ungar [16]. Note that the above estimates also imply

P(X(t))(y(t)− Y (t)) = O(ε),

which is equivalent to saying that the tangential component of the velocity error is O(ε). The
normal component of the velocity is, however, disregarded in the constrained effective equation.

Conditions (11) and (12) may appear rather severe at first sight, but in fact conditions
of this type are needed for the above approximation result for the effective dynamics. Using
the techniques of [11, Chap. XIV] it can be shown that the order of this approximation is still
O(ε1/(m+1)) if ωj ± ωk ± ωl have zeros of multiplicity m. However, the separation cannot be
omitted. If the distance of two frequencies becomes smaller than

√
ε, then the slow motion can

depend very sensitively on the initial values, and it is no longer approximated by the dynamics
of the effective Hamiltonian system; see Takens [19]. The indeterminacy of the slow motion in
the case of non-separated frequencies is termed Takens chaos in [2].

1.3 Outline of the paper and relation to the literature

The objective of this paper is to devise and analyze a two-scale integrator for the highly oscillatory
Hamiltonian system (5), such that for a macro-stepsize h that is not restricted by ε, the method
yields an O(h2) +O(ε) error in the positions x(t) and the projected momenta P(x(t))y(t) over
time intervals t = O(1).

This paper is part of the vast literature on the numerical solution of highly oscillatory differ-
ential equations; see, e.g., the reviews [5, 15]. Recent work on the numerical integration of highly
oscillatory mechanical systems includes [1, 4, 17, 18, 20].

While much work has been done on systems with constant high frequencies, the numerical
analysis of the present case of solution-dependent high frequencies or even just the case of explic-
itly time-dependent high frequencies is scarce; see [11, Chapter XIV]. An important aspect here is
to preserve the adiabatic invariants (see, e.g., [12] for this notion) in the numerical discretization.

In this paper we study two-scale time integrators for (1) which aim at solving the effective
system (8) over the time scale t = O(1) without, however, explicitly evaluating the correction
force F (I,X) = −∇XW (I,X). This additional force is, in general, directly accessible only via
a series of computationally expensive, nonlinear implicit coordinate transformations. Moreover,
even in cases where the correction force is computationally accessible, it is of interest to have a
numerical method that is able to monitor the possible breakdown of the validity of the effective
equation due to the loss of adiabatic invariance of the actions in cases where frequencies come
close or become resonant.

Heterogeneous multiscale methods (HMM) [6, 8, 7] have been developed for the very purpose
to handle situations where the underlying effective dynamics is not known. In Brumm & Weiss [3]
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an HMM-approach for highly oscillatory mechanical systems with solution-dependent frequencies
is analyzed. This approach shows, however, major drawbacks because of difficulties in initializing
the micro-simulation.

In this article, we follow the alternative idea of the impulse method where the Hamiltonian is
split into the slow potential U and the fast part including the kinetic and stiff potential energy.
The slow part is integrated in macro-steps, the fast part uses micro-steps. As it turns out, this
must be complemented with a suitable projection to lead to a method with satisfactory error
behavior.

We proceed as follows: In Section 2 we formulate the impulse method, a mollified impulse
method, and a novel projected impulse method for highly oscillatory mechanical systems with
solution-dependent frequencies. We state the main convergence theorem and show results of
numerical experiments that highlight different behavior of the various methods. In Section 3 we
transform the system, following [14] and [11, Section XIV.3] to variables that are appropriate for
the further analysis. Moreover, a further mollified impulse method with a projection mollifier
in the transformed variables is introduced, which is computationally impractical but serves as a
theoretical reference method for the error analysis. This method is studied in Section 4. Using
the obtained results, the analysis of the mollified and projected impulse methods of Section 2 is
done in Section 5.

2 Numerical methods and statement of the main result

2.1 Impulse method

The impulse method was introduced in the context of the numerical treatment of molecular
dynamics (Grubmüller, Heller, Windemuth & Schulten [10], Tuckerman, Berne & Martyna [21]).
A mathematical study of this method is given by Garćıa-Archilla, Sanz-Serna & Skeel [9]. The
idea is to split the Hamiltonian

H(x, y) = H fast(x, y) + U(x)

and to approximate the exact flow ϕH
h by the following symmetric decomposition:

ϕH
h ≈ ϕslow

h/2 ◦ ϕ
fast
h ◦ ϕslow

h/2 .

Since the flow of the slow part can be trivially solved, one step is equivalent to

1. kick: y+
n = yn − h/2 · ∇U(xn),

2. oscillate: solve system (5) with U = 0 and initial values (y+
n , xn) over a time step h to

obtain (y−n+1, xn+1),

3. another kick: yn+1 = y−n+1 − h/2 · ∇U(xn+1).

Step 2. is solved approximately using, e.g., the Störmer–Verlet method with micro-stepsizes,
or alternatively using a large-timestep method in suitably transformed variables (an adiabatic
integrator) as in [14].

Compared to a direct numerical integration of the full system (5) with small stepsizes, this
method saves many evaluations of the slow force −∇U(x), which is often the computationally
most expensive part.
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Figure 1: Double logarithmic plots: stepsize versus maximal error (maximum norm, maximum
over all discrete times) of the impulse method applied to the stiff spring double pendulum with
initial value (14). Left: Error in positions. Right: Error of the projected momenta.

For our numerical experiments we consider the stiff spring double pendulum with initial values

x(0) = (
√

0.5,−
√

0.5,
√

2, 5ε)T, y(0) = (0, 0, 0, 0)T (14)

and the parameters α1 = α2 = 1, over the time interval 0 ≤ t ≤ 10. In this situation the
frequencies remain well-separated.

We observe unsatisfactory behavior of the impulse method in Figure 1. Here and in all fol-
lowing figures the dash-dotted straight line has slope 2, corresponding to the desired h2 error
behavior. We used the Störmer–Verlet method with very small stepsize (ε/1000 for the impulse
method and ε/100 for the following methods) for the micro-integration in order to avoid any sig-
nificant influence on the overall error. Throughout all computations, as a reference, the effective
system (8) is approximated in transformed variables (see (29)) by the Störmer–Verlet method
with small stepsize, the results being translated back into cartesian coordinates.

2.2 Mollified impulse method

Garćıa-Archilla, Sanz-Serna & Skeel [9] and Izaguirre, Reich & Skeel [13] improve the impulse
method by replacing the slow potential U(x) by a mollified potential Ū(x) = U(α(x)), where
α(x) is an averaged or suitably projected value of x. The mollified force then reads

−∇U(x) = −α′(xn)T∇U(α(xn)).

The mollification considered in the present paper is given by the M(x)-orthogonal projection
onto the configuration manifold {X : g(X) = 0}, i.e., α(x) = X with

X = x+M(x)−1G(x)Tλ,

0 = g(X).
(15)

Using the same initial value (14) as in the case of the impulse method, we observe better con-
vergence behavior of the positions and the projected momenta, see Figure 2.
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Figure 2: Double logarithmic plots: stepsize versus maximal error of the mollified impulse method
applied to the stiff spring double pendulum with initial value (14). Left: Error in positions. Right:
Error of the projected momenta.

As it turns out in the analysis, the unsatisfactory behavior of the impulse method is due to
M(x)-orthogonal components of the slow forces ∇U(x). The mollification reduces those M(x)-
orthogonal components. Indeed, we observe the following.

Lemma 2.1 Under the bounded-energy condition V (x) = O(ε2), the mollifier α(x) of (15)
satisfies

α(x) = x+O(ε),

α′(x)T = P(x) +O(ε),

where the projection P(x) is defined in (10).

Proof. The condition V (x) = O(ε2) is equivalent to g(x) = O(ε). Noting that (GM−1GT)(x)
is invertible in view of the full rank of G, the implicit function theorem then yields λ = O(ε)
such that g(x+M(x)−1G(x)Tλ) = 0, and hence α(x) = x+O(ε). Differentiating both equations
in (15) yields

α′(x) = I +M−1(x)G(x)Tλ′(x) +O(ε)

0 = G(α(x))α′(x).

Inserting the first into the second equation permits us to compute

λ′(x) = −(GM−1GT)−1G(x) +O(ε).

Reinserting this expression into the first equation yields the stated result on recalling the defini-
tion of P(x).

2.3 Projected impulse method

The preceding lemma motivates us to simplify the method by projecting the slow force:
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1. kick: y+
n = yn − h/2 · P(xn)∇U(xn),

2. oscillate: solve system (5) with U = 0 and initial values (y+
n , xn) over a time step h obtaining

(y−n+1, xn+1),

3. kick: yn+1 = y−n+1 − h/2 · P(xn+1)∇U(xn+1).

Using this new simplified scheme, we observe convergence behavior as in the case of the
mollified impulse method, see Figure 3.

We have sacrificed the symplecticity of the method which is not of main interest here, but
have nevertheless maintained the time-reversal symmetry.
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Figure 3: Double logarithmic plots: stepsize versus maximal error of the projected impulse
method applied to the stiff spring double pendulum with initial value (14). Left: Error in
positions. Right: Error of the projected momenta.

2.4 Main Result

The idea of a projection as a mollification is proposed in [13]. There, the use of this idea is shown
experimentally but no analysis is given. On the other hand, in [14, 11] the adiabatic nature of
the systems of interest is revealed by applying a series of canonical transformations. Combining
the different ideas and techniques, we are now able to formulate and prove the result about the
global error of the mollified impulse method with the projection mollifier. Additionally, we prove
the same result for the computationally simpler projected impulse method. The proof is based
on a further, different mollification introduced in Section 3.

Theorem 2.2 Let the initial values satisfy the energy bound (6) and assume that the frequencies
remain separated and non-resonant (see conditions (11)-(12)) along the solution of (5) for 0 ≤
t ≤ t. Then, the errors of the mollified impulse method and of the projected impulse method after
n steps with stepsize h satisfy

xn −X(tn) = O(h2) +O(ε)

P(xn)yn − Y (tn) = O(h2) +O(ε)
(16)
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where (X(t), Y (t)) is the solution of the effective Hamiltonian system (8) with initial values
defined by (9). The constants symbolized by O do not depend on ε, h and n with nh ≤ t.

Combined with (13) this also yields the error bounds with respect to the solution (x(t), y(t))
of the highly oscillatory problem

xn − x(tn) = O(h2) +O(ε)

P(xn)(yn − y(tn)) = O(h2) +O(ε).
(17)

We note, however, that yn − Y (tn) = O(1) and yn − y(tn) = O(1). Moreover, the method does
not converge to the solution (x(t), y(t)) of the highly oscillatory system for a fixed ε as h → 0.
This causes no problems since the interest of the method lies in the use of large step sizes h > ε.
Note that in Theorem 2.2 there is no restriction of the step size h by the small parameter ε.

Theorem 2.2 explains the error behavior observed in Figures 2 and 3.

3 Transformed variables and another mollified impulse
method

Under conditions (2)-(4), [11, Section XIV.3] and [14] show that there exists a canonical change
of coordinates (x, y) = ψ(q, p) of the separated form x = χ(q), y = χ′(q)−Tp, which transforms
the Hamiltonian (1) into the form

H(q, p) = 1
2 p

T

0M0(q0)−1p0 +
1

2ε
pT1Ω(q0)p1 +

1

2ε
qT1 Ω(q0)q1

+ 1
2

(
p0

ε−1/2p1

)T

R(q0, ε
1/2q1)

(
p0

ε−1/2p1

)
+ Ǔ(q0, ε

1/2q1), (18)

where q = (q0, q1) ∈ Rd × Rm and p = (p0, p1) ∈ Rd × Rm and the appearing functions have all
their partial derivatives bounded independently of ε and are as follows:

• M0(q0) is a symmetric positive definite d× d matrix;

• Ω(q0) is a diagonal m×m matrix with positive entries, the frequencies ωk(q0);

• R(q0, ε
1/2q1) is a symmetric n× n matrix with R(q0, 0) = 0;

• Ǔ(q0, ε
1/2q1) = U(x) for x = χ(q).

The assumption (6) of bounded energy now becomes

q = O(ε1/2), p = O(ε1/2). (19)

We define the actions

Ik =
1

2ε

(
q2
1,k + p2

1,k

)
, k = 1, . . . ,m. (20)

Under the separation and non-resonance conditions (11)–(12), the actions are adiabatic invari-
ants: they remain nearly constant along solutions of the Hamiltonian system with bounded
energy,

Ik(t) = Ik(0) +O(ε), (21)
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see [11], p. 562.
As will become clear from our analysis, this is a key property that should be transfered to

the numerical method. However, if we express the impulse method in the transformed variables,
then the kick step becomes(

p+
n,0

p+
n,1

)
=

(
pn,0
pn,1

)
− h

2

(
∇0Ǔ(qn,0, ε

1/2qn,1)
ε1/2∇1Ǔ(qn,0, ε

1/2qn,1)

)
,

and we see that the actions are not approximately preserved. This is illustrated in Figure 4. The
non-preservation of the actions is at the base of the disappointing numerical behavior observed
in Figure 1.

Figure 4: Non-preservation of the actions for the impulse method.
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−5

0

5
x 10

−4

time

I
2
−

I
2
(0
)

Figure 5: Near-preservation of the actions for the projected impulse method.
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On the other hand, if we use a mollified impulse method for which the modified potential is
chosen, in the transformed variables, as

U(q) = Ǔ(q0, 0), (22)

then p+
n,1 = pn,1, and hence the actions are exactly preserved in the kick step. While this method

is not practical in that it would require performing the coordinate transformation from (x, y) to
(q, p), it gives much theoretical insight into the error propagation behavior. We will therefore
study its error in the next section. Subsequently we will interpret the mollified and projected
impulse methods of Section 2, which work in the original variables, as perturbations of this
theoretically interesting method.

As a numerical illustration, in Figure 6 we use the transformed-variable mollified impulse
method with the initial value of Section 2 for the stiff spring double pendulum. We observe
similar results as in Figures 2 and 3.
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Figure 6: Double logarithmic plots: stepsize versus maximal error of the mollified impulse method
with (22) applied to the stiff spring double pendulum with initial value (14). Left: Error in
positions. Right: Error of the projected momenta.

4 Error analysis of the transformed-variable method

We will show almost-conservation of the actions along the numerical solution, In = (In,1, . . . , In,m)
with In,k = 1

2ε (q2
n,1,k + p2

n,1,k).

Theorem 4.1 Assume the energy bound (6). Furthermore, assume that the frequencies of the
transformed-variable mollified impulse method with modified potential (22) remain separated and
non-resonant (see conditions (11)-(12)) for 0 ≤ t ≤ t. Then, this method approximately preserves
the actions:

In = I0 +O(ε) for nh ≤ t.

The constant symbolized by O is independent of n, h, and ε.
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To prove this result, we first need to look in more detail into the differential equations in the
transformed variables. As is shown in [11], p. 560, the Hamiltonian equations of motion take the
form

ṗ0 = −∇q0

(
1
2 p

T

0M0(q0)−1p0 + U(q0, 0)
)

−∇q0

( 1

2ε
pT1Ω(q0)p1 +

1

2ε
qT1 Ω(q0)q1

)
+ f0(p, q)

q̇0 = M0(q0)−1p0 + g0(p, q) (23)(
ṗ1

q̇1

)
=

1

ε

(
0 −Ω(q0)

Ω(q0) 0

)(
p1

q1

)
+

(
f1(p, q)
g1(p, q)

)
with functions f0 = O(ε), g0 = O(ε) and f1 = O(ε1/2), g1 = O(ε1/2). Moreover we have
(omitting the arguments p0, q0 in a, b, c, L, which are all O(1))

f1 = −ε1/2c− Lp1 + ε−1/2a(p1, p1)− ε1/2∇1Ǔ(q0, 0) +O(ε3/2)

g1 = LT q1 + ε−1/2b(p1, q1) +O(ε3/2) (24)

where L is an m×m matrix and the functions a and b are bilinear.
We diagonalize

Γ∗
(

0 −Ω(q0)
Ω(q0) 0

)
Γ = i

(
Ω(q0) 0

0 −Ω(q0)

)
=: iΛ(q0),

with

Γ =
1√
2

(
I I
−iI iI

)
,

and introduce the diagonal phase matrix Φ(t) by

Φ(t) =

∫ t

0

Λ(q0(s)) ds.

Following [11], p. 561, we transform the oscillatory part of the solution to adiabatic variables

η(t) = ε−1/2 exp

(
− i
ε

Φ(t)

)
Γ∗
(
p1(t)
q1(t)

)
. (25)

We further introduce the m× 2m matrices P1(t) and Q1(t) as(
P1

Q1

)
= Γ exp

(
i

ε
Φ

)
,

so that p1 = ε1/2P1η and q1 = ε1/2Q1η. In adiabatic variables, the differential equation for the
oscillatory part becomes

η̇ = exp
(
− i
ε

Φ
)
W (p0, q0) exp

( i
ε

Φ
)
η

+ exp
(
− i
ε

Φ
)

Γ∗
(
a(P1η, P1η; p0, q0)
b(P1η,Q1η; p0, q0)

)
(26)

− P ∗1

(
c(p0, q0) +∇1Ǔ(q0, 0)

)
+O(ε)
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with

W = − 1
2

(
L− LT L+ LT

L+ LT L− LT

)
.

The functions L, a, b, c are those appearing in the remainder terms f1 and g1 in (24).
Proof. (of Theorem 4.1) We rewrite the mollified impulse method in adiabatic variables and

note that the kick steps do not change the adiabatic variables: in the jth time step, η+
j = ηj and

ηj+1 = η−j+1. We thus obtain

ηj+1 = ηj +

∫ tj+1

tj

η̇j(s)ds,

where ηj(t) solves

η̇ = exp

(
− i
ε

Φj

)
W (pj0, q

j
0) exp

(
i

ε
Φj

)
η

+ exp

(
− i
ε

Φj

)
Γ∗
(
a(P j

1 η, P
j
1 η; pj0, q

j
0)

b(P j
1 η,Q

j
1η; pj0, q

j
0)

)
+ (P j

1 )
∗
c(pj0, q

j
0) +O(ε)

(27)

with initial value ηj on the interval [tj , tj+1]. All terms with superscript j are defined with respect
to the solution of the oscillation step of the mollified impulse method on [tj , tj+1].

In the remaining part of the proof we show
∑n−1

j=0

∫ tj+1

tj
η̇j(s)ds = O(ε). The techniques are

more or less the same as for the exact solution presented in [11]. Therefore, we just consider the
first term of the righthand side in (27). For l 6= k partial integration gives

n−1∑
j=0

∫ tj+1

tj

exp

(
− i
ε

(Φj
l (s)− Φj

k(s))

)
wlk(pj0(s), qj0(s))ηjk(s)ds =

iε

n−1∑
j=0

exp

(
− i
ε

(Φj
l (s)− Φj

k(s))

)
wlk(pj0(s), qj0(s))ηjk(s)

ωj
l (q0(s))− ωj

k(q0(s))

∣∣∣tj+1

tj

− iε
n−1∑
j=0

∫ tj+1

tj

exp

(
− i
ε

(Φj
l (s)− Φj

k(s))

)
d

ds

wlk(pj0(s), qj0(s))ηjk(s)

ωj
l (q0(s))− ωj

k(q0(s))
ds,

where the latter term is of size O(ε) in the case of separated frequencies. Taking into account the
O(h)-jumps from pj0(tj+1) to pj+1

0 (tj+1) and noting that ηj(tj+1) = ηj+1(tj+1) and Φj(tj+1) =
Φj+1(tj+1), we prove the same bound for the first term. We have thus shown

ηn = η0 +O(ε), (28)

and since In,k = |ηn,k|2, the result follows.

We are now in the situation to prove an error bound.

13



Theorem 4.2 Assume the energy bound (6). Furthermore, assume that the frequencies remain
separated and non-resonant (see conditions (11)-(12)) on a fixed time interval 0 ≤ t ≤ t. Then,
the error of the transformed-variable mollified impulse method of Section 3 after n steps with
stepsize h satisfies

xn −X(tn) = O(h2) +O(ε)

P(xn)yn − Y (tn) = O(h2) +O(ε).

The constants symbolized by O do not depend on ε, h and n with nh ≤ t.

We note, however, that the normal components of the momenta are not approximated cor-
rectly: we only have yn − y(tn) = O(1).

Proof. We consider the method in the slow components p0, q0 as a perturbed variant of the
Störmer–Verlet scheme applied to the slow system

ṗ0 = −∇q0

(
1
2p

T

0M0(q0)p0 + U(q0, 0)
)
−

m∑
k=1

Ik(0)∇q0ωk(q0),

q̇0 = M0(q0)−1p0.

(29)

More precisely, if we write the Störmer–Verlet scheme for (29) in one-step form as(
pn+1,0

qn+1,0

)
= Ψh(pn,0, qn,0),

then the slow components of the mollified impulse method for (23) fulfill(
pn+1,0

qn+1,0

)
= Ψh(pn,0, qn,0) + dn

with a local error dn = O(h3) +O(hε), because

∇q0

( 1

2ε
pT1Ω(q0)p1 +

1

2ε
qT1 Ω(q0)q1

)
=

m∑
k=1

Ik∇q0ωk(q0)

and In,k = I0,k + O(ε) by Theorem 4.1. Application of the discrete Gronwall Lemma gives the
desired result for the slow components in the variables (q, p): for nh ≤ t,

qn,0 = q0(tn) +O(h2) +O(ε), pn,0 = p0(tn) +O(h2) +O(ε).

For the fast variables we have, using (28),(
p1(tn)
q1(tn)

)
= ε1/2Γ exp

(
i

ε
Φ(tn)

)
η(tn)

= ε1/2Γ exp

(
i

ε
Φ(tn)

)
[η(0) +O(ε)]

= ε1/2Γ exp

(
i

ε
Φ(tn)

)
[ηn +O(ε)]

= Γ exp

(
i

ε
[Φ(tn)− Φn(tn)]

)
Γ∗
(
pn,1
qn,1

)
+O(ε3/2),
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which shows
qn,1 = O(ε1/2), pn,1 = O(ε1/2),

but in view of the phase difference Φ(tn)−Φn(tn) = O(h2) +O(ε) this does not yield an approx-
imation estimate. Transforming back to the coordinates (x, y) and considering the rescaling and
the Lipschitz-continuity of the transformations then gives the result.

5 Error analysis of the mollified and projected impulse
methods

In order to analyze the mollified and projected impulse methods of Section 2, we have to derive
an appropriate expression of the kick-step in the transformed variables (q, p). We show that
both methods are O(ε)-perturbations of the transformed-variable mollified impulse method of
Section 3, which uses the modified potential (22), that is, in the original variables, the modified
potential U(π(x)) with

π(x) = χ(q0, 0) for x = χ(q) with q = (q0, q1).

The following result is essential in relating the various methods.

Lemma 5.1 For the mollifier π(x) we have, under the bounded-energy condition V (x) = O(ε2),

π(x) = x+O(ε),

π′(x)T = P(x) +O(ε),

where the projection P(x) is defined in (10).

Proof. As the construction in [11, Chapter XIV.3] shows, the transformation x = χ(q) is
composed as χ = ξ ◦ φε with an ε-independent transformation ξ and a rescaling φε(q0, q1) =
(q0, ε

1/2q1). Since for x = χ(q) the bounded-energy condition V (x) = O(ε2) is equivalent to
q1 = O(ε1/2), we obtain

x = ξ(q0, ε
1/2q1) = ξ(q0, 0) +O(ε) = π(x) +O(ε).

The proof of the result for π′(x)T is then obtained from the identity

π′(X)T = P(X) for X with g(X) = 0

used for X = π(x). This identity is obtained from the transformation laws as follows: Un-
der a change of coordinates x = χ(q), the constraint function changes to ǧ(q) = g(χ(q)) and
its derivative Ǧ = ǧ′ to Ǧ(q) = G(x)χ′(q). The inverse mass matrix changes to M̌(q)−1 =
χ′(q)−1M(x)−1χ′(q)−T. Consequently, the projection P̌(q) = I − [ǦT(ǦM̌−1ǦT)−1ǦM̌−1](q)
transforms as

P̌(q) = χ′(q)TP(x)χ′(q)−T.

For π̌(q) = χ−1(π(χ(q))), the transposed derivative transforms in the same way for x = χ(q)
with x = π(x):

π̌′(q)T = χ′(q)Tπ′(x)Tχ′(q)−T.
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Now, in the variables q we have ǧ(q0, q1) = q1 and a block diagonal mass matrix M̌(q), and on
the other hand π̌(q0, q1) = (q0, 0). This gives us

P̌(q) =

(
1 0
0 0

)
= π̌′(q)T,

and hence the result follows.

Using Lemma 5.1 and the corresponding result Lemma 2.1 for the mollified impulse method
of Section 2, we find for the kick step of the mollified - and projected impulse methods expressed
in the variables (q, p) of Section 3(

p+
n,0

p+
n,1

)
=

(
pn,0
pn,1

)
− h

2

(
∇q0Ǔ(qn,0, 0)

0

)
+

(
O(hε)
O(hε3/2)

)
.

Here, the additional factor ε1/2 is due to the rescaling of the fast positions and momenta in the
transformation. For the actions, we then obtain the estimate I+

n = In +O(hε) in the kick step,
and as in Section 4 we obtain the near-invariance of the actions along the numerical solution.

Theorem 5.2 Consider the mollified impulse method or the projected impulse method of Sec-
tion 2. Assume the energy bound (6). Furthermore, suppose that the frequencies remain separated
and non-resonant (see conditions (11)-(12)) for 0 ≤ t ≤ t. Then, the method approximately pre-
serves the actions:

In = I0 +O(ε) for nh ≤ t.

The constant symbolized by O is independent of n, h, and ε.

Therefore, Theorem 2.2 holds true, which can be proven in exactly the same way as Theorem
4.2.

6 Conclusion

We devised and analyzed numerical integrators that capture the effective dynamics of stiff me-
chanical systems where a strong constraining force leads to highly oscillatory solution behavior
with state-dependent frequencies. The integrators are projected variants of the impulse method,
which splits the Hamiltonian into the slow potential and the fast part and integrates the latter
with micro-steps. A key aspect is the preservation of the actions as adiabatic invariants in the
numerical method. It is shown that this can be ensured by approximately projecting out the nor-
mal components of the slow force. Numerical experiments and theoretical error bounds illustrate
the favorable properties of the proposed methods.
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