
ar
X

iv
:1

40
3.

38
62

v2
  [

m
at

h.
O

C
] 

 1
0 

D
ec

 2
01

5

ASYNCHRONOUS STOCHASTIC COORDINATE DESCENT:

PARALLELISM AND CONVERGENCE PROPERTIES

JI LIU∗ AND STEPHEN J. WRIGHT†

Abstract. We describe an asynchronous parallel stochastic proximal coordinate descent algo-
rithm for minimizing a composite objective function, which consists of a smooth convex function
added to a separable convex function. In contrast to previous analyses, our model of asynchronous
computation accounts for the fact that components of the unknown vector may be written by some
cores simultaneously with being read by others. Despite the complications arising from this pos-
sibility, the method achieves a linear convergence rate on functions that satisfy an optimal strong
convexity property and a sublinear rate (1/k) on general convex functions. Near-linear speedup on a
multicore system can be expected if the number of processors is O(n1/4). We describe results from
implementation on ten cores of a multicore processor.

Key words. stochastic coordinate descent, asynchronous parallelism, inconsistent read, com-
posite objective

AMS subject classifications. 90C25, 68W20, 68W10, 90C05

1. Introduction. We consider the convex optimization problem

min
x

F (x) := f(x) + g(x), (1.1)

where f : Rn 7→ R is a smooth convex function and g : Rn 7→ R ∪ {∞} is a separable,
closed, convex, and extended real-valued function. “Separable” means that g(x) can
be expressed as g(x) =

∑n
i=1 gi((x)i), where (x)i denotes the ith element of x and

each gi : R 7→ R ∪ {∞}, i = 1, 2, . . . , n is a closed, convex, and extended real-valued
function.

Formulations of the type (1.1) arise in many data analysis and machine learning
problems, for example, the linear primal or nonlinear dual formulation of support
vector machines [9], the LASSO approach to regularized least squares, and regular-
ized logistic regression. Algorithms based on gradient and approximate / partial
gradient information have proved effective in these settings. We mention in partic-
ular gradient projection and its accelerated variants [29], proximal gradient [45] and
accelerated proximal gradient [4] methods for regularized objectives, and stochastic
gradient methods [28, 38]. These methods are inherently serial, in that each iter-
ation depends on the result of the previous iteration. Recently, parallel multicore
versions of stochastic gradient and stochastic coordinate descent have been described
for problems involving large data sets; see for example [31, 34, 3, 21, 39, 22].

This paper proposes an asynchronous stochastic proximal coordinate-descent al-
gorithm, called AsySPCD, for composite objective functions. The basic step of
AsySPCD, executed repeatedly by each core of a multicore system, is as follows:
Choose an index i ∈ {1, 2, . . . , n}; read x from shared memory and evaluate the
ith element of ∇f ; subtract a short, constant, positive of this partial gradient from

∗Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madi-
son, WI 53706-1685, US (ji.liu.uwisc@gmail.edu). This author was supported in part by NSF
Awards DMS-0914524 and DMS-1216318 and ONR Award N00014-13-1-0129.

†Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madi-
son, WI 53706-1685, US (swright@cs.wisc.edu). This author was supported in part by NSF Awards
DMS-0914524, DMS-1216318, and IIS-1447449, ONR Award N00014-13-1-0129, AFOSR Award
FA9550-13-1-0138, and Subcontract 3F-30222 from Argonne National Laboratory.

1

http://arxiv.org/abs/1403.3862v2


2

(x)i; and perform a proximal operation on (x)i to account for the regularization term
gi(·). We use a simple model of computation that matches well to modern multicore
architectures. Each core performs its updates on centrally stored vector x in an asyn-
chronous, uncoordinated fashion, without any form of locking. A consequence of this
model is that the version of x that is read by a core in order to evaluate its gradient
is usually not the same as the version to which the update is made later, because x
is updated in the interim by other cores. (Generally, we denote by x̂ the version of
x that is used by a core to evaluate its component of ∇f(x̂).) We assume, however,
that indefinite delays do not occur between reading and updating: There is a bound τ
such no more than τ component-wise updates to x are missed by a core, between the
time at which it reads the vector x̂ and the time at which it makes its update to the
chosen element of x. A similar model of parallel asynchronous computation was used
in Hogwild! [31] and AsySCD [21]. However, there is a key difference in this paper:
We do not assume that the evaluation vector x̂ is a version of x that actually existed
in the shared memory at some point in time. Rather, we account for the fact that the
components of x may be updated by multiple cores while in the process of being read
by another core, so that x̂ may be a “hybrid” version that never actually existed in
memory. Our new model, which we call an “inconsistent read” model, is significantly
closer to the reality of asynchronous computation, and dispenses with the somewhat
unsatisfying “consistent read” assumption of previous work. It also requires a quite
distinct style of analysis; our proofs differ substantially from those in previous related
works.

We show that, for suitable choices of steplength, our algorithm converges at a
linear rate if an “optimal strong convexity” property (1.2) holds. It attains sublinear
convergence at a “1/k” rate for general convex functions. Our analysis also defines a
sufficient condition for near-linear speedup in the number of cores used. This condi-
tion relates the value of delay parameter τ (which corresponds closely to the number
of cores / threads used in the computation) to the problem dimension n. A parameter
that quantifies the cross-coordinate interactions in ∇f also appears in this relation-
ship. When the Hessian of f is nearly diagonal, the minimization problem (1.1) is
almost separable, so higher degrees of parallelism are possible.

We review related work in Section 2. Section 3 specifies the proposed algorithm.
Convergence results are described in Section 4, with proofs given in the appendix.
Computational experience is reported in Section 5. A summary and conclusions ap-
pear in Section 6.

Notation and Assumption. We use the following notation in the remainder of
the paper.

• Ω denotes the intersection of dom(f) and dom(g)
• S denotes the set on which F attains its optimal value, which is denoted by
F ∗.
• PS(·) denotes Euclidean-norm projection onto S.
• ei denotes the ith natural basis vector in R

n.
• Given a matrix A, we use A·j to denote its jth column and Ai· to denote its
ith row.
• ‖ · ‖ denotes the Euclidean norm ‖ · ‖2.
• xj ∈ R

n denotes the jth iterate generated by the algorithm.
• f∗

j := f(PS(xj)) and g
∗
j := g(PS(xj)).

• F ∗ := F (PS(x)) denotes the optimal objective value. (Note that F ∗ = f∗
j +g

∗
j

for any j.)



3

• We use (x)i for the ith element of x, and ∇if(x) for the ith element of ∇f(x).
• Given a scalar function h : R → R, define the componentwise proximal
operator

Pi,h(y) := argmin
x

1

2
‖x− y‖2 + h((x)i).

Similarly, for the vector function g, we denote

Pg(y) := argmin
x

1

2
‖x− y‖2 + g(x).

Note that the proximal operator is nonexpansive, that is, ‖Pg(x)−Pg(y)‖ ≤
‖x− y‖.

We define the following optimal strong convexity condition for a convex function
f with respect to the optimal set S, with parameter l > 0:

F (x) − F (PS(x)) ≥
l

2
‖x− PS(x)‖2 ∀x ∈ Ω. (1.2)

This condition is significantly weaker than the usual strong convexity condition; a
strongly convex function F (.) is an optimally strongly convex function, but the con-
verse is not true in general. We provide several examples of optimally strongly convex
functions that are not strongly convex:

• F (x) = constant.
• F (x) = f(Ax), where f is a strongly convex function and A is any matrix,
possibly one with a nontrivial kernel.
• F (x) = f(Ax)+1X(x) with strongly convex f , and arbitrary A, where 1X(x)
is an indicator function defined on a polyhedron set X . Note first that y∗ :=
Ax∗ is unique for any x∗ ∈ S, from the strong convexity of f . The optimal
solution set S is defined by

Ax = y∗, x ∈ X.

The inequality (1.2) clearly holds for x /∈ X , since the left-hand side is infinite
in this case. For x ∈ X , we have by the famous theorem of Hoffman [19] that
there exists c > 0 such that

‖Ax− y∗‖2 = ‖A(x− PS(x))‖2 ≥ c‖x− PS(x)‖2.

Then from the strong convexity of f(x), we have that there exists a positive
number l such that for any x ∈ X

F (Ax)− F (APS(x)) = f(Ax)− f(APS(x))

≥ l

2
‖A(x− PS(x))‖2 ≥

lc

2
‖x− PS(x)‖2.

• Squared hinge loss F (x) =
∑

imax(0, aTi x − yi)2. To verify optimal strong
convexity, we reformulate this problem as

min
t,x
‖t‖2 subject to ti ≥ aTi x− yi ∀i,

and apply the result just derived.



4

Note that optimal strong convexity (1.2) is a weaker version of the “essential
strong convexity” condition used in [21]. A concept called “restricted strong convex-
ity” proposed in [20] (See Lemma 4.6) is similar in that it requires a certain quantity
to increase quadratically with distance from the solution set, but different in that the
objective is assumed to be differentiable. Anitescu [2] defines a “quadratic growth
condition” for (smooth) nonlinear programming in which the objective is assumed to
grow at least quadratically with distance to a local solution in some feasible neighbor-
hood of that solution. Since our setting (unconstrained, nonsmooth, convex) is quite
different, we believe the use of a different term is warranted here.

Throughout this paper, we make the following assumption.
Assumption 1. The solution set S of (1.1) is nonempty.

Lipschitz Constants. We define two different Lipschitz constants Lres and Lmax

that are critical to the analysis, as follows. Lres is the restricted Lipschitz constant for
∇f along the coordinate directions: For any x ∈ Ω, for any i = 1, 2, . . . , n, and any
t ∈ R such that x+ tei ∈ Ω, we have

‖∇f(x)−∇f(x+ tei)‖ ≤ Lres|t|.

The coordinate Lipschitz constant Lmax is defined for x, i, t satisfying the same con-
ditions as above:

‖∇f(x)−∇f(x+ tei)‖∞ ≤ Lmax|t|.

Note that

f(x+ tei)− f(x) ≤ 〈∇if(x), t〉+
Lmax

2
t2. (1.3)

We denote the ratio between these two quantities by Λ:

Λ := Lres/Lmax. (1.4)

Making the implicit assumption that Lres and Lmax are chosen to be the smallest
values that satisfy their respective definitions, we have from standard relationships
between the ℓ2 and ℓ∞ norms that

1 ≤ Λ ≤ √n.

Besides bounding the nonlinearity of f along various directions, the quantities Lres

and Lmax capture the interactions between the various components in the gradient
∇f . In the case of twice continuously differentiable f , we can understand these
interactions by observing the diagonal and off-diagonal terms of the Hessian ∇2f(x).
Let us consider upper bounds on the ratio Λ in various situations. For simplicity, we
suppose that f is quadratic with positive semidefinite Hessian Q.

• If Q is sparse with at most p nonzeros per row/column, we have that

Lres = max
i
‖Q·i‖2 ≤

√
pmax

i
‖Q·i‖∞ =

√
pLmax,

so that Λ ≤ √p in this situation.
• If Q is diagonally dominant, we have for any column i that

‖Q·i‖2 ≤ Qii + ‖[Qji]j 6=i‖2 ≤ Qii +
∑

j 6=i

|Qji| ≤ 2Qii,

which, by taking the maximum of both sides, implies that Λ ≤ 2 in this case.



5

• Suppose that Q = ATA, where A ∈ R
m×n is a random matrix whose entries

are i.i.d from N (0, 1). (For example, f could be the linear least-squares
objective f(x) = 1

2‖Ax − b‖2.) We show in [21] that Λ is upper-bounded

roughly by 1 +
√

n/m in this case.

2. Related Work. We have surveyed related work on coordinate descent and
stochastic gradient methods in a recent report [21]. Our discussion there included non-
stochastic, cyclic coordinate descent methods [40, 24, 44, 5, 42, 43, 35], synchronous
parallel methods that distribute the work of function and gradient evaluation [16, 25,
18, 7, 11, 1, 10, 37], and asynchronous parallel stochastic gradient methods (including
the randomized Kaczmarz algorithm) [31, 22]. We make some additional comments
here on related topics, and include some recent references from this active research
area.

Stochastic coordinate descent can be viewed as a special case of stochastic gradient,
so analysis of the latter approach can be applied, to obtain for example a sublinear 1/k
rate of convergence in expectation for strongly convex functions; see, for example [28].
However, stochastic coordinate descent is “special” in that it is possible to guarantee
improvement in the objective at every step. Nesterov [30] studied the convergence
rate for a stochastic block coordinate descent method for unconstrained and separably
constrained convex smooth optimization, proving linear convergence for the strongly
convex case and a sublinear 1/k rate for the convex case. Richtárik and Takáč [33] and
Lu and Xiao [23] extended this work to composite minimization, in which the objective
is the sum of a smooth convex function and a separable nonsmooth convex function,
and obtained similar (slightly stronger) convergence results. Stochastic coordinate
descent is extended by Necoara and Patrascu [27] to convex optimization with a
single linear constraint, randomly updating two coordinates at a time to maintain
feasibility.

In the class of synchronous parallel methods for coordinate descent, Richtárik and
Takáč [34] studied a synchronized parallel block (or minibatch) coordinate descent al-
gorithm for composite optimization problems of the form (1.1), with a block separable
regularizer g. At each iteration, processors update the randomly selected coordinates
concurrently and synchronously. Speedup depends on the sparsity of the data matrix
that defines the loss functions. A similar synchronous parallel method was studied in
[26] and [8]; the latter focuses on the case of g(x) = ‖x‖1. Scherrer et al. [36] make
greedy choices of multiple blocks of variables to update in parallel. Another greedy
way of selecting coordinates was considered by Peng et al. [32], who also describe a
parallel implementation of FISTA, an accelerated first-order algorithm due to Beck
and Teboulle [4]. Fercoq and Richtárik [15] consider a variant of (1.1) in which f
is allowed to be nonsmooth. They apply Nesterov’s smoothing scheme to obtain a
smoothed version and update multiple blocks of coordinates using block coordinate
descent in parallel. Sublinear convergence rate is established for both strongly convex
and weakly convex cases. Fercoq and Richtárik [14] proposed a variant of Nesterov’s
accelerated scheme to accelerate the synchronous parallel block coordinate algorithm
of [34], proving an improved sublinear convergence rate for weakly convex problems.
This variant avoids the disadvantage of the original Nesterov acceleration scheme
[30], which requires O(n) complexity per iteration, even on sparse data. Facchinei,
Sagratella, and Scutari [13] consider a general framework for synchronous block coor-
dinate descent methods with separable regularizers, in which the block subproblems
may be solved inexactly. However, the block to be updated at each step is not cho-
sen randomly; it must contain a component that is furthest from optimality, in some



6

sense.

We turn now to asynchronous parallel methods. Bertsekas and Tsitsiklis [6] de-
scribed an asynchronous method for fixed-point problems x = q(x) over a separable
convex closed feasible region. (The optimization problem (1.1) can be formulated in
this way by defining q(x) := Pαg[(I − α∇f)(x)] for a fixed α > 0.) They use an
inconsistent-read model of asynchronous computation, and establish linear conver-
gence provided that components are not neglected indefinitely and that the iteration
x = q(x) is a maximum-norm contraction. The latter condition is quite strong. In
the case of g null and f convex quadratic in (1.1) for instance, it requires the Hes-
sian to satisfy a diagonal dominance condition — a stronger condition than strong
convexity. By comparison, AsySCD [21] guarantees linear convergence under an
“essential strong convexity” condition, though it assumes a consistent-read model of
asynchronous computation. Elsner et al. [12] considered the same fixed point problem
and architecture as [6], and describe a similar scheme. Their scheme appears to re-
quire locking of the shared-memory data structure for x to ensure consistent reading
and writing. Frommer and Szyld [17] give a comprehensive survey of asynchronous
methods for solving fixed-point problems.

Liu et al. [21] followed the asynchronous consistent-read model of Hogwild! to
develop an asynchronous stochastic coordinate descent (AsySCD) algorithm and
proved sublinear (1/k) convergence on general convex functions and a linear conver-
gence rate on functions that satisfy an “essential strong convexity” property. Sridhar
et al. [39] developed an efficient LP solver by relaxing an LP problem into a bound-
constrained QP problem, which is then solved by AsySCD.

Liu et al. [22] developed an asynchronous parallel variant of the randomized
Kaczmarz algorithm for solving a general consistent linear system Ax = b, prov-
ing a linear convergence rate. Avron et al. [3] proposed an asynchronous solver
for the system Qx = c where Q is a symmetric positive definite matrix, proving a
linear convergence rate. This method is essentially an asynchronous stochastic coor-
dinate descent method applied to the strongly convex quadratic optimization problem
minx

1
2x

TQx−cTx. The paper considers both inconsistent- and consistent-read cases
are considered, with slightly different convergence results.

3. Algorithm. In our algorithm AsySPCD, multiple processors have access to
a shared data structure for the vector x, and each processor is able to compute a
randomly chosen element of the gradient vector ∇f(x). Each processor repeatedly
runs the following proximal coordinate descent process. (Choice of the steplength
parameter γ is discussed further in the next section.)

R: Choose an index i ∈ {1, 2, . . . , n} at random, read x into the local storage
location x̂, and evaluate ∇if(x̂);

U: Update component i of the shared x by taking a step of length γ/Lmax in the
direction −∇if(x̂), follows by a proximal operation defined as follows:1

x← Pi, γ
Lmax

gi

(

x− γ

Lmax
ei∇if(x̂)

)

.

1Our analysis assumes that no other process modifies xi while this proximal operation is being
computed. As we explain in Section 5, our practical implementation actually assigns each coordinate
xi to a single core, and allows only that core to update xi, so this issue does not arise. An alternative
implementation, pointed out by a referee, would be to use a “compare-and-swap” atomic instruction
to implement the update. This operation would perform the update only if xi was not changed while
the update was being computed.



7

Fig. 3.1: Time sequence of writes and reads of a two-variable vector, showing instances
of consistent and inconsistent reading. The left column shows the initial vector at time
0, stored in shared memory, with updates to single components at times 3, 5, and
7. The middle column shows a consistent read, in which the first component is read
at time 1 and the second component is read at time 4. The read vector is equal to
the shared-memory vector at time 0. The right column shows an inconsistent read,
in which the first component is read at time 2 and the second component is read at
time 6. Because of intervening writes to these components, the read vector does not
match the versions that appeared in shared memory at any time point.

Notice that each step changes just a single element of x, that is, the ith element. Unlike
standard proximal coordinate descent, the value x̂ at which the coordinate gradient is
calculated usually differs from the value of x to which the update is applied, because
while the processor is evaluating its gradient, other processors may repeatedly update
the value of x stored in memory. As mentioned above, we use an “inconsistent read”
model of asynchronous computation here, in contrast to the “consistent read” models
of AsySCD [21] and Hogwild! [31]. Figure 3.1 shows how inconsistent reading can
occur, as a result of updating of components of x while it is being read. Consistent
reading can be guaranteed by means of a software lock, but such a mechanism degrades
parallel performance significantly. In fact, the implementations of Hogwild! and
AsySCD described in the papers [31, 21] do not use any software lock, and in this
respect the computations in those papers are not quite compatible with their analysis.

The “global” view of algorithm AsySPCD is shown in Algorithm 1. To obtain
this version from the “local” version, we introduce a counter j to track the total
number of updates applied to x, so that xj is the state of x in memory after update
j is performed. We use i(j) to denote the component that is updated at iteration j,
and x̂j for value of x that is used in the calculation of the gradient element ∇fi(j).
The components of x̂j may have different ages. Some components may be current
at iteration j, others may not reflect recent updates made by other processors. We



8

Algorithm 1 Asynchronous Stochastic Coordinate Descent Algorithm xJ =
AsySPCD(x0, γ, J)

Require: x0, γ, and J
Ensure: xJ
1: Initialize j ← 0;
2: while j < J do

3: Choose i(j) from {1, 2, . . . , n} with equal probability;

4: xj+1 ← Pi(j), γ
Lmax

gi(j)

(

xj − γ
Lmax

ei(j)∇i(j)f(x̂j)
)

;

5: j ← j + 1;
6: end while

assume however that there is an upper bound of τ on the age of each component,
measured in terms of updates. K(j) defines an iterate set such that

xj = x̂j +
∑

d∈K(j)

(xd+1 − xd).

One can see that d ≤ j − 1, ∀d ∈ K(j). Here we assume τ to be the upper bound
on the age of all elements in K(j), for all j, so that τ ≥ j −min{d | d ∈ K(j)}. We
assume further that K(j) is ordered from oldest to newest index (that is, smallest
to largest). Note that K(j) is empty if xj = x̂j , that is, if the step is simply an
ordinary stochastic coordinate gradient update. The value of τ corresponds closely
to the number of cores involved in the computation provided that computation of the
update for each component of x costs roughly the same.

4. Main Results. This section presents results on convergence of AsySPCD.
The theorem encompasses both the linear rate for optimally strongly convex f and
the sublinear rate for general convex f . The result depends strongly on the delay
parameter τ . The proofs are highly technical, and are relegated to Appendix A. We
note the proof techniques differ significantly from those used for the consistent-read
algorithms of [31] and [21].

We start by describing the key idea of the algorithm, which is reflected in the way
that it chooses the steplength parameter γ. Denoting x̄j+1 by

x̄j+1 := P γ
Lmax

g

(

xj −
γ

Lmax
∇f(x̂j)

)

, (4.1)

we can see that

(xj+1)i(j) = (x̄j+1)i(j), (xj+1)i = (xj)i for i 6= i(j), (4.2)

so that xj+1 − xj = [(x̄j+1)i(j) − (xj)i(j)]ei(j). Thus, we have

Ei(j)(xj+1 − xj) =
1

n

n∑

i=1

[(x̄j+1)i − (xj)i]ei =
1

n
[x̄j+1 − xj ].

Therefore, we can view x̄j+1−xj as capturing the expected behavior of xj+1−xj . Note
that when g(x) = 0, we have x̄j+1 − xj = −(γ/Lmax)∇f(x̂j), a standard negative-
gradient step. The choice of steplength parameter γ entails a tradeoff: We would like
γ to be long enough that significant progress is made at each step, but not so long



9

that the gradient information computed at x̂j is stale and irrelevant by the time the
update is applied to xj . We enforce this tradeoff by means of a bound on the ratio of
expected squared norms on xj − x̄j+1 at successive iterates; specifically,

E‖xj−1 − x̄j‖2 ≤ ρE‖xj − x̄j+1‖2, (4.3)

where ρ > 1 is a user defined parameter. The analysis becomes a delicate balancing
act in the choice of ρ and steplength γ between aggression and excessive conservatism.
We find, however, that these values can be chosen to ensure steady convergence for the
asynchronous method at a linear rate, with rate constants that are almost consistent
with a standard short-step proximal full-gradient descent, when the optimal strong
convexity condition (1.2) is satisfied.

Our main convergence result is the following.
Theorem 4.1. Suppose that Assumption 1 is satisfied. Let ρ be a constant that

satisfies ρ > 1 + 4/
√
n, and define the quantities θ, θ′, and ψ as follows:

θ :=
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
, θ′ :=

ρ(τ+1) − ρ
ρ− 1

, ψ := 1 +
τθ′

n
+

2Λθ√
n
. (4.4)

Suppose that the steplength parameter γ > 0 satisfies the following two bounds:

γ ≤ 1

ψ
, γ ≤

√
n(1− ρ−1)− 4

4(1 + θ)Λ
. (4.5)

Then we have

E‖xj−1 − x̄j‖2 ≤ ρE‖xj − x̄j+1‖2, j = 1, 2, . . . . (4.6)

If the optimal strong convexity property (1.2) holds with l > 0, we have for j = 1, 2, . . .
that

E‖xj − PS(xj)‖2 +
2γ

Lmax
(EF (xj)− F ∗)

≤
(

1− l

n(l + γ−1Lmax)

)j (

‖x0 − PS(x0)‖2 +
2γ

Lmax
(F (x0)− F ∗)

)

, (4.7)

while for general smooth convex function f , we have

EF (xj)− F ∗ ≤ n(‖x0 − PS(x0)‖2Lmax + 2γ(F (x0)− F ∗))

2γ(n+ j)
. (4.8)

The following corollary proposes an interesting particular choice for the parame-
ters for which the convergence expressions become more comprehensible. The result
requires a condition on the delay bound τ in terms of n and the ratio Λ.

Corollary 4.2. Suppose that Assumption 1 holds and that

4eΛ(τ + 1)2 ≤ √n. (4.9)

If we choose

ρ =

(

1 +
4eΛ(τ + 1)√

n

)2

, (4.10)



10

then the steplength γ = 1/2 will satisfy the bounds (4.5). In addition, when the
optimal strong convexity property (1.2) holds with l > 0, we have for j = 1, 2, . . . that

EF (xj)− F ∗ ≤
(

1− l

n(l + 2Lmax)

)j

(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗), (4.11)

while for the case of general convex f , we have

EF (xj)− F ∗ ≤ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

j + n
. (4.12)

We note that the linear rate (4.11) is broadly consistent with the linear rate for
the classical steepest descent method applied to strongly convex functions, which has
a rate constant of (1 − 2l/L), where L is the standard Lipschitz constant for ∇f .
Suppose we assume (not unreasonably) that n steps of stochastic coordinate descent
cost roughly the same as one step of steepest descent, and that l ≤ Lmax. It follows
from (4.11) that n steps of stochastic coordinate descent would achieve a reduction
factor of about

1− l

2Lmax + l
≤ 1− l

3Lmax
,

so a standard argument would suggest that stochastic coordinate descent would re-
quire about 6Lmax/L times more computation. Since Lmax/L ∈ [1/n, 1], the stochas-
tic asynchronous approach may actually require less computation. It may also gain an
advantage from the parallel asynchronous implementation. A parallel implementation
of standard gradient descent would require synchronization and careful division of the
work of evaluating ∇f , whereas the stochastic approach can be implemented in an
asynchronous fashion.

For the general convex case, (4.12) defines a sublinear rate, whose relationship
with the rate of standard gradient descent for general convex optimization is similar
to the previous paragraph.

Note that the results in Theorem 4.1 and Corollary 4.2 are consistent with the
analysis for constrained AsySCD in [21], but this paper considers the more general
case of composite optimization and the inconsistent-read model of parallel computa-
tion.

As noted in Section 1, the parameter τ corresponds closely to the number of cores
that can be involved in the computation, since if all cores are working at the same rate,
we would expect each other core to make one update between the times at which x is
read and (later) updated. If τ is small enough that (4.9) holds, the analysis indicates
that near-linear speedup in the number of processors is achievable. A small value for
the ratio Λ (not much greater than 1) implies a greater degree of potential parallelism.
As we note at the end of Section 1, this ratio tends to closer to 1 than to

√
n in some

important applications. In these situations, the bound (4.9) indicates that τ can vary
like n1/4 without affecting the iteration-wise convergence rate, and yielding near-
linear speedup in the number of cores. This quantity is consistent with the analysis
for constrained AsySCD in [21] but weaker than the unconstrained AsySCD (which
allows the maximal number of cores being O(n1/2)). A further comparison is with
the asynchronous randomized Kaczmarz algorithm [22] which allows O(m) cores to
be used efficiently when solving a consistent sparse linear system.



11

We conclude this section with a high-probability bound. The result follows im-
mediately from Markov’s inequality. See Theorem 3 in [21] for a related result and
complete proof.

Theorem 4.3. Suppose that the conditions of Corollary 4.2 hold, including the
choice of ρ. Then for ǫ > 0 and η ∈ (0, 1), we have that

P (F (xj)− F ∗ ≤ ǫ) ≥ 1− η, (4.13)

provided that one of the following conditions holds. In the optimally strongly convex
case (1.2) with l > 0, we require

j ≥ n(l + 2Lmax)

l

∣
∣
∣
∣
log

Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗

ǫη

∣
∣
∣
∣
,

iterations, while in the general convex case, it suffices that

j ≥ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

ǫη
− n.

5. Experiments. This section presents some results to illustrate the effective-
ness of AsySPCD, in particular, the fact that near-linear speedup can be observed on
a multicore machine. We note that more comprehensive experiments can be found in
[21] and [39], for unconstrained and box-constrained problems. Although the analysis
in [21] assumes consistent read, it is not enforced in the implementation, so apart from
the fact that we now include a prox-step to account for the regularization term, the
implementations in [21] and [39] are quite similar to the one employed in this section.

We apply our code for AsySPCD to the following “ℓ2-ℓ1” problem:

min
x

1

2
‖Ax− b‖2 + λ‖x‖1 ≡

1

2
xTATAx − bTAx+

1

2
bT b+ λ‖x‖1.

The elements of A ∈ R
m×n are selected i.i.d. from a Gaussian N (0, 1) distribution.

To construct a sparse true solution x∗ ∈ R
n, given the dimension n and sparsity s,

we select s entries of x∗ at random to be nonzero and N (0, 1) normally distributed,
and set the rest to zero. The measurement vector b ∈ R

m is obtained by b = Ax∗ + ǫ,
where elements of the noise vector ǫ ∈ R

m are i.i.d. N (0, σ2), where the value of σ
controls the signal-to-noise ratio.

Our experiments run on 1 to 10 threads of an Intel Xeon machine, with all threads
sharing a single memory socket. Our implementations deviate modestly from the ver-
sion of AsySPCD described in Section 3. We compute Q := ATA ∈ R

n×n and
c := AT b ∈ R

n offline. Q and c are partitioned into slices (row submatrices) and sub-
vectors (respectively) of equal size, and each thread is assigned one submatrix from Q
and the corresponding subvector from c. During the algorithm, each thread updates
the elements of x corresponding to its slice of Q, in order. After one scan, or “epoch”
is complete, it reorders the indices randomly, then repeats the process. This scheme
essentially changes the scheme from sampling with replacement (as analyzed) to sam-
pling without replacement, which has demonstrated empirically better performance
on many related problems. (The same advantage is noted in the implementations of
Hogwild! [31].)

We choose σ = 0.01 with m = 6000, n = 10000, and s = 10 in Figure 5.1 and
m = 12000, n = 20000, and s = 20 in Figure 5.2. We set λ = 20

√

m log(n)σ (a



12

value of the order of
√

m log(n)σ is suggested by compressed sensing theory) and
the steplength γ is set as 1 in both figures. In both cases, we can estimate the ratio
Λ = Lres/Lmax roughly by 1+

√

n/m ≈ 2.3, as suggested at the end of Section 1. Our
final computed values of x have nonzeros in the same locations as the chosen solution
x∗, though the values differ, because of the noise in b.

The left-hand graph in each figure indicates the number of threads / cores and
plots objective function value vs epoch count, where one epoch is equivalent to n
iterations. Note that the curves are almost overlaid, indicating that the total work-
load required for AsySPCD is almost independent of the number of cores used in the
computation. This observation validates our result in Corollary 4.2, which indicates
that provided τ is below a certain threshold, it does not seriously affect the rate of
convergence, as a function of total computation performed. The right-hand graph in
each figure shows speedup when executed on different numbers of cores. Near-linear
speedup is observed in Figure 5.2, while there is a slight dropoff for the larger num-
bers of cores in Figure 5.1. The difference can be explain by the smaller dimension
of the problem illustrated in Figure 5.1. Referring to our threshold value (4.9) that
indicates dimensions above which linear speedup should be expected, we have by set-
ting Λ ≈ 2.3 (as discussed above) and τ = 10 (the maximum number of threads used
in this experiment) that the left-hand side of (4.9) is approximately 3000, while the
right-hand side is 100 (for Figure 5.1) and approximately 141 (for Figure 5.1). As ex-
pected, our analysis is quite conservative; near-linear speedup is observed even when
the threshold (4.9) is violated significantly.

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m = 6000 n = 10000 sparsity = 10 σ = 0.01

# epochs

O
bj

ec
tiv

e

 

 

thread= 1
thread= 2
thread= 4
thread= 8
thread=10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

m = 6000 n = 10000 sparsity = 10 σ = 0.01

threads

sp
ee

du
p

 

 

Ideal
AsySPCD

Fig. 5.1: The left graph plots objective function vs epochs for 1, 2, 4, 8, and 10 cores.
The right graph shows speedup obtained for implementation on 1-10 cores, plotted
against the ideal (linear) speedup.



13

20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 12000 n = 20000 sparsity = 20 σ = 0.01

# epochs

O
bj

ec
tiv

e

 

 

thread= 1
thread= 2
thread= 4
thread= 8
thread=10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

m = 12000 n = 20000 sparsity = 20 σ = 0.01

threads

sp
ee

du
p

 

 

Ideal
AsySPCD

Fig. 5.2: The left graph plots objective function vs epochs for 1, 2, 4, 8, and 10 cores.
The right graph shows speedup obtained for implementation on 1-10 cores, plotted
against the ideal (linear) speedup.

6. Conclusions. This paper proposes an asynchronous parallel proximal stochas-
tic coordinate descent algorithm for minimizing composite objectives of the form
(1.1). Sublinear convergence (at rate 1/k) is proved for general convex functions,
with stronger linear convergence results for problems that satisfy the optimal strong
convexity property (1.2). Our analysis indicates the extent to which parallel imple-
mentations can be expected to yield near-linear speedup, in terms of a parameter
that quantifies the cross-coordinate interactions in the gradient ∇f and a parameter
τ that bounds the delay in updating. Our computational experience confirms that
the linear speedup properties suggested by the analysis can be observed in practice.

Acknowledgments. The authors thank the editor and both referees for their
valuable comments. Special thanks to Dr. Yijun Huang for her implementation of
AsySPCD, which was used here to obtain computational results.

Appendix A. Proofs of Main Results.

This section provides the proofs for the main convergence results. We start with
some preliminaries, then proceed to proofs of Theorem 4.1 and Corollary 4.2.

A.1. Preliminaries. Note that the component indices i(0), i(1), . . . , i(j), . . . in
Algorithm 1 are independent random variables. We use E to denote the expectation
over all random variables, and Ei(j) to denote the conditional expectation in term of
i(j) given i(0), i(1), . . . , i(j − 1). We also denote

(∆j)i(j) := (xj − xj+1)i(j), (A.1)

and formulate the update in Step 4 of Algorithm 1 in the following way:

xj+1 = argmin
x
〈∇i(j)f(x̂j), (x− xj)i(j)〉+

Lmax

2γ
‖x− xj‖2 + gi(j)((x)i(j)).

(Note that (xj+1)i = (xj)i for i 6= i(j).) From the optimality condition for this
formulation (see (41) in [41]), we have for all x that
〈

(x − xj+1)i(j),∇i(j)f(x̂j)−
Lmax

γ
(∆j)i(j)

〉

+ gi(j)((x)i(j))− gi(j)((xj+1)i(j)) ≥ 0.



14

By rearranging this expression and substituting PS(x) for x, we find that the following
inequality is true for all x:

gi(j)((PS(x))i(j))− gi(j)((xj+1)i(j)) + 〈(PS(x)− xj+1)i(j),∇i(j)f(x̂j)〉

≥ Lmax

γ
〈(PS(x)− xj+1)i(j), (∆j)i(j)〉. (A.2)

From the definition of Lmax, and using the notation (A.1), we have

f(xj+1) ≤ f(xj) + 〈∇i(j)f(xj),−(∆j)i(j)〉+
Lmax

2
|(∆j)i(j)|2,

or equivalently,

〈∇i(j)f(xj), (∆j)i(j)〉 ≤ f(xj)− f(xj+1) +
Lmax

2
|(∆j)i(j)|2. (A.3)

From the definition of x̄j+1 in (4.1), we have

x̄j+1 = argmin
x
〈∇f(x̂j), x− xj〉+

Lmax

2γ
‖x− xj‖2 + g(x),

so, using (41) from [41] again, we have

g(x)− g(x̄j+1) +

〈

x− x̄j+1,∇f(x̂j) +
Lmax

γ
(x̄j+1 − xj)

〉

≥ 0, ∀x. (A.4)

We now define

∆j := xj − x̄j+1, (A.5)

and note that this definition is consistent with (∆j)i(j) defined in (A.1). From (4.2),
we have

Ei(j)(‖xj+1 − xj‖2) =
1

n
‖x̄j+1 − xj‖2. (A.6)

Recalling that the indices in K(j) are sorted in the increasing order from smallest
(oldest) iterate to largest (newest) iterate, we use K(j)t to denote the t-th smallest
entry in K(j). For T = 0, 1, . . . , |K(j)|, we define

x̂j,T := x̂j +

T∑

t=1

(xK(j)t+1 − xK(j)t).

We have the following relations:

x̂j = x̂j,0

xj = x̂j,|K(j)|

xj − x̂j =
|K(j)|−1
∑

t=0

(x̂j,t+1 − x̂j,t)

∇f(xj)−∇f(x̂j) =
|K(j)|−1
∑

t=0

(∇f(x̂j,t+1)−∇f(x̂j,t)).



15

Furthermore, we have

‖∇f(xj)−∇f(x̂j)‖

=

∥
∥
∥
∥
∥
∥

|K(j)|−1
∑

t=0

(∇f(x̂j,t)−∇f(x̂j,t+1))

∥
∥
∥
∥
∥
∥

≤
|K(j)|−1
∑

t=0

‖∇f(x̂j,t)−∇f(x̂j,t+1)‖

≤ Lres

|K(j)|−1
∑

t=0

‖x̂j,t − x̂j,t+1‖

= Lres

|K(j)|
∑

t=1

‖xK(j)t − xK(j)t+1‖

= Lres

∑

d∈K(j)

‖xd+1 − xd‖, (A.7)

where the second inequality holds because x̂j,t and x̂j,t+1 differ in only a single coor-
dinate.

A.2. Proof of Theorem 4.1. Proof. We prove (4.6) by induction. First, note
that for any vectors a and b, we have

‖a‖2 − ‖b‖2 =2‖a‖2 − (‖a‖2 + ‖b‖2)
≤2‖a‖2 − 2〈a, b〉
=2〈a, a− b〉
≤2‖a‖‖b− a‖.

Thus for all j, we have

‖xj−1 − x̄j‖2 − ‖xj − x̄j+1‖2
≤2‖xj−1 − x̄j‖‖xj − x̄j+1 − xj−1 + x̄j‖. (A.8)



16

The second factor in the r.h.s. of (A.8) is bounded as follows:

‖xj − x̄j+1 − xj−1 + x̄j‖

=

∥
∥
∥
∥
∥
xj − P γ

Lmax
g

(

xj −
γ

Lmax
∇f(x̂j)

)

−

(

xj−1 − P γ
Lmax

g

(

xj−1 −
γ

Lmax
∇f(x̂j−1)

))
∥
∥
∥
∥
∥

≤ ‖xj − xj−1‖+
∥
∥
∥
∥
P γ

Lmax
g

(

xj −
γ

Lmax
∇f(x̂j)

)

− P γ
Lmax

g

(

xj−1 −
γ

Lmax
∇f(x̂j−1)

)∥
∥
∥
∥

≤ 2‖xj − xj−1‖+
γ

Lmax
‖∇f(x̂j)−∇f(x̂j−1)‖

(

by the nonexpansive property of P γ
Lmax

g

)

= 2‖xj − xj−1‖+
γ

Lmax
‖∇f(x̂j)−∇f(xj) +∇f(xj)−∇f(xj−1)

+∇f(xj−1)−∇f(x̂j−1)‖
≤ 2‖xj − xj−1‖+

γ

Lmax

(
‖∇f(x̂j)−∇f(xj)‖+ ‖∇f(xj)−∇f(xj−1)‖

+ ‖∇f(xj−1)−∇f(x̂j−1)‖
)

≤ (2 + Λγ) ‖xj − xj−1‖+
γ

Lmax
‖∇f(x̂j)−∇f(xj)‖

+
γ

Lmax
‖∇f(xj−1)−∇f(x̂j−1)‖

≤ (2 + Λγ) ‖xj − xj−1‖+ Λγ
∑

d∈K(j)

‖xd − xd+1‖

+ Λγ
∑

d∈K(j−1)

‖xd − xd+1‖ (from (A.7)) (A.9)

≤ (2 + Λγ) ‖xj − xj−1‖+ Λγ

j−1
∑

d=j−τ

‖xd − xd+1‖+ Λγ

j−2
∑

d=j−1−τ

‖xd − xd+1‖

≤ (2 + 2Λγ) ‖xj − xj−1‖+ 2Λγ

j−2
∑

d=j−1−τ

‖xd − xd+1‖, (A.10)

where the fourth inequality uses ‖∇f(xj) − ∇f(xj−1)‖ ≤ Lres‖xj − xj−1‖, since xj
and xj−1 differ in just one component.

We set j = 1, and note that K(0) = ∅ and K(1) ⊂ {0}. In this case, we obtain a
bound from (A.9)

‖x1 − x̄2 + x0 − x̄1‖ ≤ (2 + Λγ) ‖x1 − x0‖+ Λγ‖x1 − x0‖ = (2 + 2Λγ) ‖x1 − x0‖.

By substituting this bound in (A.8) and setting j = 1, and taking expectations, we
obtain

E(‖x0 − x̄1‖2)− E(‖x1 − x̄2‖2) ≤ 2E(‖x0 − x̄1‖‖x1 − x̄2 − x0 + x̄1‖)
≤ (4 + 4Λγ)E(‖x̄1 − x0‖‖x1 − x0‖). (A.11)



17

For any positive scalars µ1, µ2, and α, we have

µ1µ2 ≤
1

2
(αµ2

1 + α−1µ2
2). (A.12)

It follows that

E(‖xj − xj−1‖‖x̄j − xj−1‖) ≤
1

2
E(n1/2‖xj − xj−1‖2 + n−1/2‖x̄j − xj−1‖2)

=
1

2
E(n1/2

Ei(j−1)(‖xj − xj−1‖2) + n−1/2‖x̄j − xj−1‖2)

=
1

2
E

(

n−1/2‖x̄j − xj−1‖2 + n−1/2‖x̄j − xj−1‖2
)

(from (A.6))

= n−1/2
E‖x̄j − xj−1‖2. (A.13)

By taking j = 1 in (A.13), and substituting in (A.11), we obtain

E(‖x0 − x̄1‖2)− E(‖x1 − x̄2‖2) ≤ n−1/2 (4 + 4Λγ)E‖x̄1 − x0‖2,

which implies that

E(‖x0 − x̄1‖2) ≤
(

1− 4 + 4γΛ√
n

)−1

E(‖x1 − x̄2‖2) ≤ ρE(‖x1 − x̄2‖2).

To see the last inequality, one only needs to verify that

ρ−1 ≤ 1− 4 + 4γΛ√
n

⇔ γ ≤
√
n(1− ρ−1)− 4

4Λ
,

where the last inequality follows from the second bound for γ in (4.5). We have thus
shown that (4.6) holds for j = 1.

To take the inductive step, we assume that (4.6) holds up to index j−1. We have
for j − 1− τ ≤ d ≤ j − 2 and any β > 0 (using (A.12) again) that

E(‖xd − xd+1‖‖x̄j − xj−1‖)

≤ 1

2
E(n1/2β‖xd − xd+1‖2 + n−1/2β−1‖x̄j − xj−1‖2)

=
1

2
E(n1/2βEi(d)(‖xd − xd+1‖2) + n−1/2β−1‖x̄j − xj−1‖2)

=
1

2
E(n−1/2β‖xd − x̄d+1‖2 + n−1/2β−1‖x̄j − xj−1‖2) (from (A.6))

≤ 1

2
E(n−1/2βρj−1−d‖xj−1 − x̄j‖2 + n−1/2β−1‖x̄j − xj−1‖2)

(by the inductive hypothesis).

Thus by setting β = ρ(d+1−j)/2, we obtain

E(‖xd − xd+1‖‖x̄j − xj−1‖) ≤
ρ(j−1−d)/2

n1/2
E
(
‖x̄j − xj−1‖2

)
. (A.14)



18

By substituting (A.10) into (A.8) and taking expectation on both sides of (A.8),
we obtain

E(‖xj−1 − x̄j‖2)− E(‖xj − x̄j+1‖2)
≤2E(‖x̄j − xj−1‖‖x̄j − x̄j+1 + xj − xj−1‖)

≤2E



‖x̄j − xj−1‖



(2 + 2Λγ) ‖xj − xj−1‖+ 2Λγ

j−2
∑

d=j−1−τ

‖xd − xd+1‖









=(4 + 4Λγ)E(‖x̄j − xj−1‖‖xj − xj−1‖) + 4Λγ

j−2
∑

d=j−1−τ

E(‖x̄j − xj−1‖‖xd − xd+1‖)

≤n−1/2(4 + 4Λγ)E(‖x̄j − xj−1‖2)

+ n−1/24ΛγE(‖xj−1 − x̄j‖2)
j−2
∑

d=j−1−τ

ρ(j−1−d)/2 (from (A.13) and (A.14))

≤n−1/2(4 + 4Λγ)E(‖x̄j − xj−1‖2) + n−1/24ΛγE(‖xj−1 − x̄j‖2)
τ∑

t=1

ρt/2

=n−1/2 (4 + 4Λγ(1 + θ))E(‖xj−1 − x̄j‖2),

where the last equality follows from the definition of θ in (4.4). It follows that

E(‖xj−1 − x̄j‖2) ≤
(

1− n−1/2 (4 + 4Λγ(1 + θ))
)−1

E(‖xj − x̄j+1‖2)
≤ρE(‖xj − x̄j+1‖2).

To see the last inequality, one only needs to verify that

ρ−1 ≤ 1− 4 + 4γΛ(1 + θ)√
n

⇔ γ ≤
√
n(1− ρ−1)− 4

4Λ(1 + θ)
,

and the last inequality is true because of the upper bound of γ in (4.5). We have thus
proved (4.6).

Next we will show the expectation of the objective F is monotonically decreasing.
We have by using the definition (A.1) and (4.2) that

Ei(j)F (xj+1) = Ei(j)

[
f(xj − (∆j)i(j)ei(j)) + g(xj+1)

]

≤ Ei(j)

[

f(xj) + 〈∇i(j)f(xj), (x̄j+1 − xj)i(j)〉+
Lmax

2
‖(xj+1 − xj)i(j)‖2

+ gi(j)((xj+1)i(j)) +
∑

l 6=i(j)

gl((xj+1)l)

]

= Ei(j)

[

f(xj) + 〈∇i(j)f(xj), (x̄j+1 − xj)i(j)〉+
Lmax

2
‖(xj+1 − xj)i(j)‖2

+ gi(j)((xj+1)i(j)) +
∑

l 6=i(j)

gl((xj)l)

]

= f(xj) +
n− 1

n
g(xj) + n−1

(

〈∇f(xj), x̄j+1 − xj〉+
Lmax

2
‖x̄j+1 − xj‖2 + g(x̄j+1)

)

,



19

where we used Ei(j)

∑

l 6=i(j) gl(xj)l =
n−1
n g(xj) in the last equality. By adding and

subtracting a term involving ∇f(x̂j), we obtain

Ei(j)F (xj+1)

≤ F (xj) +
1

n

(

〈∇f(x̂j), x̄j+1 − xj〉+
Lmax

2
‖x̄j+1 − xj‖2 + g(x̄j+1)− g(xj)

)

+
1

n
〈∇f(xj)−∇f(x̂j), x̄j+1 − xj〉

≤ F (xj) +
1

n

(
Lmax

2
‖x̄j+1 − xj‖2 −

Lmax

γ
‖x̄j+1 − xj‖2

)

+
1

n
〈∇f(xj)−∇f(x̂j), x̄j+1 − xj〉 (from (A.4) with x = xj)

= F (xj)−
(
1

γ
− 1

2

)
Lmax

n
‖x̄j+1 − xj‖2 +

1

n
〈∇f(xj)−∇f(x̂j), x̄j+1 − xj〉. (A.15)

Consider the expectation of the last term on the right-hand side of this expression.
We have

E〈∇f(xj)−∇f(x̂j), x̄j+1 − xj〉
≤ E (‖∇f(xj)−∇f(x̂j)‖‖x̄j+1 − xj‖)

≤ LresE




∑

d∈K(j)

‖xd+1 − xd‖‖x̄j+1 − xj‖



 (from (A.7))

≤ Lres

j−1
∑

d=j−τ

ρ(j−d)/2

n1/2
E(‖xj − x̄j+1‖2) (from (A.14), and replacing j by j + 1)

≤ n−1/2LresθE(‖xj − x̄j+1‖2) (from (4.4)). (A.16)

By taking expectations on both sides of (A.15) and substituting (A.16), we obtain

EF (xj+1) ≤ EF (xj)−
1

n

((
1

γ
− 1

2

)

Lmax −
Lresθ

n1/2

)

E‖x̄j+1 − xj‖2.

To see
(

1
γ − 1

2

)

Lmax − Lresθ
n1/2 ≥ 0 or equivalently

(
1
γ − 1

2

)

− Λθ
n1/2 ≥ 0, we note from

(4.4) and (4.5) that

γ−1 ≥ ψ ≥ 1

2
+

Λθ√
n
.

Therefore, we have proved the monotonicity of the expectation of the objectives, that
is,

EF (xj+1) ≤ EF (xj), j = 0, 1, 2, . . . . (A.17)

Next we prove the sublinear convergence rate for the constrained smooth convex



20

case in (4.8). We have

‖xj+1 − PS(xj+1)‖2 ≤ ‖xj+1 − PS(xj)‖2

= ‖xj − (∆j)i(j)ei(j) − PS(xj)‖2

= ‖xj − PS(xj)‖2 + |(∆j)i(j)|2 − 2〈(xj − PS(xj))i(j), (∆j)i(j)〉
= ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 − 2〈(xj − PS(xj))i(j) − (∆j)i(j), (∆j)i(j)〉
= ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 + 2〈PS(xj)− xj+1)i(j), (∆j)i(j)〉 (from (A.1))

≤ ‖xj − PS(xj)‖2 − |(∆j)i(j)|2+
2γ

Lmax

[
〈(PS(xj)− xj+1)i(j),∇i(j)f(x̂j)〉+ gi(j)((PS(xj))i(j))− gi(j)((xj+1)i(j))

]

(from (A.2))

= ‖xj − PS(xj)‖2 − |(∆j)i(j)|2+
2γ

Lmax

[
〈(PS(xj)− xj)i(j),∇i(j)f(x̂j)〉+ gi(j)((PS(xj))i(j))− gi(j)((xj+1)i(j))

]
+

2γ

Lmax

(
〈(∆j)i(j),∇i(j)f(xj)〉+ 〈(∆j)i(j),∇i(j)f(x̂j)−∇i(j)f(xj)〉

)

≤ ‖xj − PS(xj)‖2 − |(∆j)i(j)|2+
2γ

Lmax

[
〈(PS(xj)− xj)i(j),∇i(j)f(x̂j)〉+ gi(j)((PS(xj))i(j))− gi(j)((xj+1)i(j))

]
+

2γ

Lmax

(

f(xj)− f(xj+1) +
Lmax

2
|(∆j)i(j)|2 + 〈(∆j)i(j),∇i(j)f(x̂j)−∇i(j)f(xj)〉

)

(from (A.3))

= ‖xj − PS(xj)‖2 − (1− γ)|(∆j)i(j)|2 +
2γ

Lmax
〈(PS(xj)− xj)i(j),∇i(j)f(x̂j)〉
︸ ︷︷ ︸

T1

+

2γ

Lmax
〈(∆j)i(j),∇i(j)f(x̂j)−∇i(j)f(xj)〉
︸ ︷︷ ︸

T2

+

2γ

Lmax

[
f(xj)− f(xj+1) + gi(j)((PS(xj))i(j))− gi(j)((xj+1)i(j))

]

︸ ︷︷ ︸

T3

. (A.18)

We now seek upper bounds on the quantities T1, T2, and T3 in the expectation sense.
For simplicity, we construct a vector b ∈ R

|K(j)| with bt = ‖x̂j,t−1 − x̂j,t‖. We have
from elementary arguments that

E(‖b‖2) =
|K(j)|−1
∑

t=0

E(‖x̂j,t − x̂j,t+1‖2) =
|K(j)|
∑

t=1

E(‖xK(j)t − xK(j)t+1‖2)

=
∑

d∈K(j)

E(‖xd − xd+1‖2) =
1

n

∑

d∈K(j)

E‖xd − x̄d+1‖2 ≤
1

n

j−1
∑

d=j−τ

E‖xd − x̄d+1‖2

≤ 1

n

τ∑

t=1

ρtE‖xj − x̄j+1‖2 (from (4.6))

≤ θ′

n
E‖xj − x̄j+1‖2 (from (4.4)). (A.19)



21

For the expectation of T1, defined in (A.18), we have

E(T1) = E
(
(PS(xj)− xj)i(j)∇i(j)f(x̂j)

)

= n−1
E〈PS(xj)− xj ,∇f(x̂j)〉

= n−1
E〈PS(xj)− x̂j ,∇f(x̂j)〉+ n−1

E

|K(j)|−1
∑

t=0

〈x̂j,t − x̂j,t+1,∇f(x̂j)〉

= n−1
E〈PS(xj)− x̂j ,∇f(x̂j)〉

+ n−1
E

|K(j)|−1
∑

t=0

(〈x̂j,t − x̂j,t+1,∇f(x̂j,t)〉+ 〈x̂j,t − x̂j,t+1,∇f(x̂j)−∇f(x̂j,t)〉)

≤ n−1
E(f∗

j − f(x̂j))

+ n−1
E

|K(j)|−1
∑

t=0

(

f(x̂j,t)− f(x̂j,t+1) +
Lmax

2
‖x̂j,t − x̂j,t+1‖2

)

+ n−1
E

|K(j)|−1
∑

t=0

〈x̂j,t − x̂j,t+1,∇f(x̂j)−∇f(x̂j,t)〉 (from (1.3))

= n−1
E(f∗

j − f(xj)) +
Lmax

2n
E‖b‖2

+ n−1
E

|K(j)|−1
∑

t=0

〈x̂j,t − x̂j,t+1,∇f(x̂j)−∇f(x̂j,t)〉

= n−1
E(f∗

j − f(xj)) +
Lmax

2n
E‖b‖2

+ n−1
E

|K(j)|−1
∑

t=0

〈

x̂j,t − x̂j,t+1,

t−1∑

t′=0

∇f(x̂j,t′)−∇f(x̂j,t′+1)

〉

≤ n−1
E(f∗

j − f(xj)) +
Lmax

2n
E‖b‖2

+ n−1
E

|K(j)|−1
∑

t=0

Lmax

(

‖x̂j,t − x̂j,t+1‖
t−1∑

t′=0

‖x̂j,t′ − x̂j,t′+1‖
)

= n−1
E(f∗

j − f(xj)) +
Lmax

2n
E‖b‖2 + n−1LmaxE

|K(j)|−1
∑

t=0

(

bt+1

t−1∑

t′=0

bt′+1

)

= n−1
E(f∗

j − f(xj)) +
Lmax

2n
E‖b‖2 + Lmax

2n
E(‖b‖21 − ‖b‖2)

= n−1
E(f∗

j − f(xj)) +
Lmax

2n
E(‖b‖21)

≤ n−1
E(f∗

j − f(xj)) +
Lmaxτ

2n
E(‖b‖2) (since ‖b‖1 ≤

√

|K(j)|‖b‖ ≤ √τ‖b‖)

≤ n−1
E(f∗

j − f(xj)) +
Lmaxτθ

′

2n2
E(‖xj − x̄j+1‖2) (from (A.19)). (A.20)

For the expectation of T2, we have



22

E(T2) = E(∆j)i(j)
(
∇i(j)f(x̂j)−∇i(j)f(xj)

)

= n−1
E〈∆j ,∇f(x̂j)−∇f(xj)〉

≤ n−1
E(‖∆j‖‖∇f(x̂j)−∇f(xj)‖)

≤ Lres

n
E





j−1
∑

d=j−τ

‖∆j‖‖xd − xd+1‖



 (from (A.7))

=
Lres

n
E





j−1
∑

d=j−τ

‖xj − x̄j+1‖‖xd − xd+1‖





≤ Lres

n3/2

j−1
∑

d=j−τ

ρ(j−d)/2
E‖xj − x̄j+1‖2 (from (A.14) with j replacing j − 1)

≤ Lresθ

n3/2
E‖xj − x̄j+1‖2 (from (4.4)). (A.21)

For T3, let us look the expectation of several individual terms first

Ei(j)gi(j)((PS(xj))i(j)) = n−1g(PS(xj)) = n−1g∗j ,

and

Ei(j)gi(j)((xj+1)i(j)) = Ei(j)(g(xj+1)− g(xj) + gi(j)((xj)i(j)))

= Ei(j)g(xj+1)− g(xj) + n−1g(xj)

= Ei(j)g(xj+1)−
n− 1

n
g(xj).

Now we take the expectation on T3 and use the equalities above to obtain:

E(T3) = Ef(xj)− Ef(xj+1) + Egi(j)((PS(xj))i(j))− Egi(j)((xj+1)i(j))

= Ef(xj)− Ef(xj+1) + n−1
Eg∗j − Eg(xj+1) +

n− 1

n
Eg(xj). (A.22)

By substituting the upper bounds from (A.20), (A.21), and (A.22) into (A.18), we
obtain

E‖xj+1 − PS(xj+1)‖2 ≤ E‖xj − PS(xj)‖2 − (1 − γ)E|(∆j)i(j)|2

+
2γ

Lmax

(
1

n
E(f∗

j − f(xj)) +
Lmaxτθ

′

2n2
E(‖xj − x̄j+1‖2)

)

+
2γ

Lmax

(
Lresθ

n3/2
E‖xj − x̄j+1‖2

)

+
2γ

Lmax

(

Ef(xj)− Ef(xj+1) + n−1
Eg∗j − Eg(xj+1) +

n− 1

n
Eg(xj)

)

.

By using

Ei(j)(|(∆j)i(j)|2) = n−1‖xj − x̄j+1‖2,



23

it follows that

E‖xj+1 − PS(xj+1)‖2 ≤ E‖xj − PS(xj)‖2

− 1

n

(

1− γ − τθ′

n
γ − 2Λθ

n1/2
γ

)

E‖xj − x̄j+1‖2

+
2γ

Lmaxn
(Ef∗

j − Ef(xj) + Eg∗j )

+
2γ

Lmax
(Ef(xj) +

n− 1

n
Eg(xj)− Ef(xj+1)− Eg(xj+1))

≤ E‖xj − PS(xj)‖2 +
2γ

Lmaxn
(Ef∗

j − Ef(xj) + Eg∗j )

+
2γ

Lmax

(

Ef(xj) +
n− 1

n
Eg(xj)− Ef(xj+1)− Eg(xj+1)

)

≤ E‖xj − PS(xj)‖2 +
2γ

Lmaxn
(F ∗ − EF (xj)) +

2γ

Lmax
(EF (xj)− EF (xj+1)).

(A.23)

In the second inequality, we were able to drop the term involving E‖xj − x̄j+1‖2 by
using the fact that

1− γ
(

1 +
τθ′

n
+

Λθ√
n

)

= 1− γψ ≥ 0,

which follows from the definition (4.4) of ψ and from the first upper bound on γ in
(4.5). It follows from (A.23) that

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(EF (xj+1)− F ∗)

≤ E‖xj − PS(xj)‖2 +
2γ

Lmax
(EF (xj)− F ∗)− 2γ

Lmaxn
(EF (xj)− F ∗). (A.24)

Defining

Sj := E(‖xj − PS(xj)‖2) +
2γ

Lmax
E(F (xj)− F ∗), (A.25)

we have from (A.24) that

Sj+1 ≤ Sj −
2γ

Lmaxn
E(F (xj)− F ∗), (A.26)

so by induction, we have

Sj+1 ≤ S0 −
2γ

Lmaxn

j
∑

t=0

(EF (xt)− F ∗) ≤ S0 −
2γ(j + 1)

Lmaxn
(F (x0)− F ∗), (A.27)

where the second inequality follows from monotonicity of EF (xj) (A.17). Note that

S0 := ‖x0 − PS(x0)‖2 +
2γ

Lmax
(F (x0)− F ∗).



24

By substituting the definition of Sj+1 into (A.27), we obtain

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(EF (xj+1)− F ∗) +

2γ(j + 1)

Lmaxn
(EF (xj+1)− F ∗)

≤ ‖x0 − PS(x0)‖2 +
2γ

Lmax
(F (x0)− F ∗).

The sublinear convergence expression (4.8) follows when we drop the (nonnegative)
first term on the left-hand side of this expression, and rearrange.

Finally, we prove the linear convergence rate (4.7) for the optimally strongly
convex case. All bounds proven above continue to hold, and we make use the optimal
strong convexity property in (1.2):

F (xj)− F ∗ ≥ l

2
‖xj − PS(xj)‖2.

By using this result together with some elementary manipulation, we obtain

F (xj)− F ∗ =

(

1− Lmax

lγ + Lmax

)

(F (xj)− F ∗) +
Lmax

lγ + Lmax
(F (xj)− F ∗)

≥
(

1− Lmax

lγ + Lmax

)

(F (xj)− F ∗) +
Lmaxl

2(lγ + Lmax)
‖xj − PS(xj)‖2

=
Lmaxl

2(lγ + Lmax)

(

‖xj − PS(xj)‖2 +
2γ

Lmax
(F (xj)− F ∗)

)

. (A.28)

By taking expectations of both sides in this expression, and comparing with (A.25),
we obtain

E(F (xj)− F ∗) ≥ Lmaxl

2(lγ + Lmax)
Sj .

By substituting into (A.26), we obtain

Sj+1 ≤Sj −
(

2γ

Lmaxn

)
Lmaxl

2(lγ + Lmax)
Sj

=

(

1− lγ

n(lγ + Lmax)

)

Sj

≤
(

1− lγ

n(lγ + Lmax)

)j+1

S0,

where the last inequality follows from induction over j. We obtain (4.7) by substitut-
ing the definition (A.25) of Sj .

A.3. Proof of Corollary 4.2. Proof. Note that for ρ defined by (4.10), and
using (4.9), we have

ρ(1+τ)/2 =

(

1 +
4eΛ(τ + 1)√

n

)1+τ

=





(

1 +
4eΛ(τ + 1)√

n

)
√

n
4eΛ(τ+1)





4eΛ(τ+1)2
√

n

≤ e
4eΛ(τ+1)2√

n ≤ e. (A.29)



25

Thus from the definition of ψ (4.4), we have that

ψ = 1 +
τθ′

n
+

2Λθ√
n

≤ 1 +
τ2ρτ

n
+

2Λτρτ/2√
n

(

from θ =
τ∑

t=1

ρt/2 ≤ τρτ/2 and θ′ =
τ∑

t=1

ρt ≤ τρτ
)

≤ 1 +
τ2e2

n
+

2Λτe√
n

(from (A.29))

≤ 1 +
1

16
+

1

2
≤ 2,

where for the second-last inequality we used (4.9) to obtain

Λτe√
n
≤ Λτe

4eΛ(τ + 1)2
≤ 1

4
,

τ2e2

n
=

(
τe√
n

)2

≤
(
Λτe√
n

)

≤ 1

16
.

Thus, the steplength parameter choice γ = 1/2 satisfies the first bound in (4.5). To
show that the second bound in (4.5) holds also, we have

√
n(1− ρ−1)− 4

4(1 + θ)Λ

≥
√
n(1− ρ−1)

4(1 + θ)Λ
− 1

2
(from θ ≥ 1 and Λ ≥ 1)

≥
√
n(1− ρ−1/2)

4(1 + θ)Λ
− 1

2

=

√
n(ρ1/2 − 1)

4(1 + θ)ρ1/2Λ
− 1

2

≥
√
n(ρ1/2 − 1)

4(τ + 1)ρ(τ+1)/2Λ
− 1

2

(

from (1 + θ)ρ1/2 ≤ (1 + τρτ/2)ρ1/2 ≤ (1 + τ)ρ(τ+1)/2
)

≥ 4eΛ(τ + 1)

4e(τ + 1)Λ
− 1

2
(from (4.10) and (A.29))

≥ 1− 1

2
=

1

2
.

We can thus set γ = 1/2, and by substituting this choice into (4.7), we obtain (4.11).
We obtain (4.12) by making the same substitution into (4.8).

REFERENCES

[1] A. Agarwal and J. C. Duchi, Distributed delayed stochastic optimization, in Proceedings of
the Conference on Decision and Control, 2012, pp. 5451–5452.

[2] M. Anitescu, Degenerate nonlinear programming with a quadratic growth condition, SIAM
Journal on Optimization, 10 (2000), pp. 1116–1135.

[3] H. Avron, A. Druinsky, and A. Gupta, Revisiting asynchronous linear solvers: Provable

convergence rate through randomization, in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, May 2014.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.
[5] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods,

SIAM Journal on Optimization, 23 (2013), pp. 2037–2060.



26

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods, Prentice Hall, 1989.
[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Foundations and
Trends in Machine Learning, 3 (2011), pp. 1–122.

[8] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, Parallel coordinate descent for

L1-regularized loss minimization, in International Conference on Machine Learning, 2011.
[9] C. Cortes and V. Vapnik, Support vector networks, Machine Learning, (1995), pp. 273–297.

[10] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, Better mini-batch algorithms via ac-

celerated gradient methods, in Advances in Neural Information Processing Systems, vol. 24,
2011, pp. 1647–1655.

[11] J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimiza-

tion: Convergence analysis and network scaling, IEEE Transactions on Automatic Control,
57 (2012), pp. 592–606.

[12] L. Elsner, I. Koltracht, and M. Neumann, Convergence of sequential and asyn-

chronous paracontractions nonlinear paracontractuions, Numerische Mathematik, 62
(1992), pp. 305–316.

[13] F. Facchinei, S. Sagratella, and G. Scutari, Flexible parallel algorithms for big data opti-

mization, technical report, Department of Computer, Control, and Management Engineer-
ing, University of Rome ”La Sapienza”, November 2013. arXiv:1311.2444v1.

[14] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent, technical
report, School of Mathematics, University of Edinburgh, 2013. arXiv: 1312.5799.

[15] , Smooth minimization of nonsmooth functions by parallel coordinate descent, technical
report, School of Mathematics, University of Edinburgh, 2013. arXiv:1309.5885.

[16] M. C. Ferris and O. L. Mangasarian, Parallel variable distribution, SIAM Journal on Op-
timization, 4 (1994), pp. 815–832.

[17] A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and
Applied Mathematics, 123 (2000), pp. 201–216.

[18] D. Goldfarb and S. Ma, Fast multiple-splitting algorithms for convex optimization, SIAM
Journal on Optimization, 22 (2012), pp. 533–556.

[19] A. J. Hoffman, On approximate solutions of systems of linear inequalities, Journal of Research
of the National Bureau of Standards, 49 (1952), pp. 263–265.

[20] M. Lai and W. Yin, Augmented L1 and nuclear-norm models with a globally linearly conver-

gent algorithm, SIAM Journal on Imaging Sciences, 6 (2013), pp. 1059–1091.
[21] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, An asynchronous parallel stochastic

coordinate descent algorithm, technical report, Computer Sciences Department, University
of Wisconsin-Madison, February 2014. arXiv: 1311.1873.

[22] J. Liu, S. J. Wright, and S. Sridhar, An asynchronous parallel randomized Kaczmarz algo-

rithm, technical report, Computer Sciences Department, University of Wisconsin-Madison,
2014. arXiv: 1401.4780.

[23] Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods,
Technical Report MSR-TR-2013-53, Microsoft Research, May 2013. arXiv:1305.4723.

[24] Z.-Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex

differentiable minimization, Journal of Optimization Theory and Applications, 72 (1992),
pp. 7–35.

[25] O. L. Mangasarian, Parallel gradient distribution in unconstrained optimization, SIAM Jour-
nal on Optimization, 33 (1995), pp. 916–1925.

[26] I. Necoara and D. Clipici, Efficient parallel coordinate descent algorithm for convex op-

timization problems with separable constraints: application to distributed MPC, techni-
cal report, Automation and Systems Engineering Department, University Politechnica
Bucharest, 2013. arXiv: 1302.3092.

[27] I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization prob-

lems with composite objective function and linear coupled constraints, technical report, Au-
tomation and Systems Engineering Department, University Politechnica Bucharest, 2013.
arXiv: 1302.3074.

[28] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation

approach to stochastic programming, SIAM Journal on Optimization, 19 (2009), pp. 1574–
1609.

[29] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Aca-
demic Publishers, 2004.

[30] , Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM
Journal on Optimization, 22 (2012), pp. 341–362.



27

[31] F. Niu, B. Recht, C. Ré, and S. J. Wright, Hogwild: A lock-free approach to parallelizing

stochastic gradient descent, Advances in Neural Information Processing Systems, 24 (2011),
pp. 693–701.

[32] Z. Peng, M. Yan, and W. Yin, Parallel and distributed sparse optimization, tech. report,
Department of Mathematics, UCLA, 2013.

[33] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent

methods for minimizing a composite function, Mathematical Programing, Series A, (2012).
(Published Online).

[34] , Parallel coordinate descent methods for big data optimization, technical report, Math-
ematics Department, University of Edinburgh, 2012. arXiv: 1212.0873.

[35] A. Saha and A. Tewari, On the nonasymptotic convergence of cyclic coordinate descent

methods, SIAM Journal on Optimization, 23 (2013), pp. 576–601.
[36] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin, Feature clustering for accel-

erating parallel coordinate descent, in Advances in Neural Information Processing, vol. 25,
2012, pp. 28–36.

[37] S. Shalev-Shwartz and T. Zhang, Accelerated mini-batch stochastic dual coordinate as-

cent, in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds., vol. 26, 2013, pp. 378–385.

[38] O. Shamir and T. Zhang, Stochastic gradient descent for non-smooth optimization: Conver-

gence results and optimal averaging schemes, in Proceedings of the International Confer-
ence on Machine Learning, 2013.

[39] S. Sridhar, V. Bittorf, J. Liu, C. Zhang, C. Ré, and S. J. Wright, An approximate

efficient solver for LP rounding, in Advances in Neural Information Processing Systems,
vol. 26, 2013.

[40] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimiza-

tion, Journal of Optimization Theory and Applications, 109 (2001), pp. 475–494.
[41] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, technical

report, University of Washington, 2008.
[42] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable mini-

mization, Mathematical Programming, Series B, 117 (2009), pp. 387–423.
[43] , A coordinate gradient descent method for linearly constrained smooth optimization

and support vector machines training, Computational Optimization and Applications, 47
(2010), pp. 179–206.

[44] P.-W. Wang and C.-J. Lin, Iteration complexity of feasible descent methods for convex opti-

mization, technical report, Department of Computer Science, National Taiwan University,
2013.

[45] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by separable

approximation, IEEE Transactions on Signal Processing, 57 (2009), pp. 2479–2493.


