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ANALYSIS OF SCHWARZ METHODS FOR A HYBRIDIZABLE

DISCONTINUOUS GALERKIN DISCRETIZATION

MARTIN J. GANDER AND SOHEIL HAJIAN

Abstract. Schwarz methods are attractive parallel solvers for large scale linear systems obtained
when partial differential equations are discretized. For hybridizable discontinuous Galerkin (HDG)
methods, this is a relatively new field of research, because HDG methods impose continuity across el-
ements using a Robin condition, while classical Schwarz solvers use Dirichlet transmission conditions.
Robin conditions are used in optimized Schwarz methods to get faster convergence compared to clas-
sical Schwarz methods, and this even without overlap, when the Robin parameter is well chosen. We
present in this paper a rigorous convergence analysis of Schwarz methods for the concrete case of
hybridizable interior penalty (IPH) method. We show that the penalization parameter needed for
convergence of IPH leads to slow convergence of the classical additive Schwarz method, and propose a
modified solver which leads to much faster convergence. Our analysis is entirely at the discrete level,
and thus holds for arbitrary interfaces between two subdomains. We then generalize the method
to the case of many subdomains, including cross points, and obtain a new class of preconditioners
for Krylov subspace methods which exhibit better convergence properties than the classical additive
Schwarz preconditioner. We illustrate our results with numerical experiments.
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1. Introduction. We consider the elliptic model problem

(1.1)
η(x)u(x) −∇ · (a(x)∇u) = f, in Ω ⊂ R

2,
u = 0, on ∂Ω,

in the weak sense where f ∈ L2(Ω), a(x) ∈ L∞(Ω) and uniformly positive, η0 ≥
η(x) ≥ 0 and Ω is assumed to be a convex polygon for simplicity. Any discretization
of this problem, for example by a finite element method (FEM) or a discontinuous
Galerkin (DG) method, leads to a large sparse linear system

(1.2) Au = f ,

where u is the vector of degrees of freedom representing an approximation of u and A
represents the disretized differential operator. In this paper we consider a hybridizable
interior penalty (IPH1) discretization which results in a symmetric positive definite
(s.p.d.) matrix A. An IPH discretization seeks uh ∈ L2(Ω) over a triangulation of
the domain where uh is not necessarily continuous across elements. As common
to DG methods, IPH imposes the continuity of the solution approximately through
penalization techniques, i.e. penalizing jumps of uh across elements in the bilinear
form. The penalization is controlled by a penalty parameter µ.

Since the matrix A of IPH is s.p.d. and sparse, one can use the Conjugate Gradient
(CG) method to solve the linear system (1.2). The convergence of CG slows down as
the condition number κ(A) grows. It is not hard to show that κ(A) = O(h−2), where
h is the maximum diameter of the elements in the triangulation, see for instance [6].
Therefore preconditioning is unavoidable and domain decomposition (DD) precondi-
tioners have been developed and studied for such discretizations, see [2, 12]. IPH as
local solvers were also used to precondition classical IP discretizations [1]. One can also

1We use the acronym IPH for hybridizable interior penalty because this has become the common
abbreviation following its introduction in [7] as a member of the family of HDG methods.
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design a substructuring preconditioner for a p-version of IPH with poly-logarithmic
growth in the condition number, see for details [24]. For a similar discretization where
the approximation is continuous inside subdomains but discontinuous across subdo-
mains, a substructuring preconditioner was proposed and analyzed for the h-version
with logarithmic growth in the condition number, see [9].

A favorite preconditioner is the additive Schwarz preconditioner, for which the set
of unknowns is partitioned into overlapping or non-overlapping subsets, corresponding
to subdomains with maximum diameter H . In this paper we only consider the non-
overlapping case2 and for simplicity study first only two subdomains, a generalization
is given in Section 5. The non-overlapping two subdomain decomposition results in
a natural partitioning of the unknowns u = (u1,u2)

⊤. The solution of the linear
system by the additive Schwarz method without overlap is equivalent to the block
Jacobi iteration

(1.3) Mu(n+1) = Nu(n) + f , M =

[
A1

A2

]

, N = M −A.

The matrix M is also s.p.d. and can be considered as a preconditioner for CG. It can
be shown that in this case we have κ(M−1A) ≤ O(h−1) in the absence of a coarse
solver; see [12]. Preconditioned CG satisfies then the convergence factor estimate

ρ ≤
√

κ(M−1A)−1√
κ(M−1A)+1

= 1−O(
√
h).

On the other hand it has been recently shown in [15] that the block Jacobi iteration
in (1.3) for an IPH discretization can be viewed as a discretization of a non-overlapping
Schwarz method with Robin transmission conditions, i.e.

(1.4)
(η −∆)u

(n+1)
1 = f in Ω1, (η −∆)u

(n+1)
2 = f in Ω2,

B1u
(n+1)
1 = B1u

(n)
2 on Γ, B2u

(n+1)
2 = B2u

(n)
1 on Γ,

where Biw = µw + ∂w
∂ni

, Γ is the interface between the two subdomains and µ is
precisely the penalty parameter of the IPH discretization. This parameter µ has to
be chosen such that it ensures coercivity and optimal approximation properties. For
an IPH discretization, we must have µ = αh−1 for some constant α > 0 large enough,
independent of h, and this scaling cannot be weakened, since otherwise coercivity is
lost. On the other hand, optimized Schwarz theory suggests that the iteration in (1.4)
converges faster if µ = O(h−1/2), see [13]. In that case for the contraction factor we
have ρ = 1−O(

√
h) while with the choice µ = O(h−1) for IPH, we have ρ = 1−O(h).

The challenge is therefore to design a Schwarz algorithm for IPH with convergence
factor ρ = 1 − O(

√
h), while having the same fixed point as the original additive

Schwarz or block Jacobi method for IPH. An idea for doing this can be found for
Maxwell’s equation in [10]. This approach was also adopted for IPH in [20], where
numerical experiments show that the convergence factor is indeed ρ = 1 − O(

√
h),

while maintaining the same fixed point, but there is no convergence analysis.
We provide in this paper a convergence theory for Schwarz methods applied to

IPH discretizations and prove these numerical observations. A similar analysis exists

2There is a subtle difference between overlap at the continuous level of the subdomains, and the
discrete level of unknowns, see [14]: no overlap at the level of unknowns means minimal overlap of one
mesh size at the continuous level for classical discretizations like finite elements or finite differences.
This becomes however even more subtle here with DG discretizations, since the discrete unknowns
are coupled through Robin conditions, and no overlap at the level of unknowns really means no
overlap at the continuous level, see [15].
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for classical FEM using Schur complement formulations and exploiting eigenvalues of
the Dirichlet-to-Neumann (DtN) operator, see [22]. Our analysis uses similar DtN
arguments, but is substantially different from [22], since in a DG method continuity
conditions are imposed only weakly. We focus in our analysis on the h-version with
polynomial degree one, and do not study the effect of possible jumps in a(x) or higher
polynomial degree.

Our paper is organized as follows: in Section 2 we describe two different but equiv-
alent formulations of IPH, and construct a Schur complement system. In Section 3
we provide mathematical tools to analyze Schwarz methods formulated using Schur
complements. In Section 4 we present the additive Schwarz and a new Schwarz algo-
rithm for IPH in a two subdomain setting and prove their convergence with concrete
contraction factor estimates. Section 5 contains a generalization of the algorithms to
the multi-subdomain case. We show in Section 6 numerical experiments to illustrate
our analysis, and also verify numerically that the new algorithm provides a better
preconditioner for Krylov subspace methods: we observe that the contraction factor
is ρ = 1 − O(h1/4) which is much faster than the CG solver preconditioned by one
level additive Schwarz.

2. Hybridizable Interior Penalty method. This section is devoted to recall
the definition of IPH in two different but equivalent forms, namely the primal and
hybridizable formulation. We later in Section 4 design and analyze two Schwarz meth-
ods for the hybridizable form and show that the first one is slow and equivalent to a
block Jacobi method applied to a primal form, i.e. (1.3). However the second Schwarz
method takes advantage of hybridizable formulation and achieve faster convergence.

IPH was first introduced in [11] as a stabilized discontinuous finite element method
and later was studied as a member of the class of hybridizable DG methods in [7].
It has been shown that it is equivalent to a method called Ultra Weak Variational
Formulation (UWVF) for the Helmholtz equation; see [19]. IPH also fits into the
framework developed in [3] for a unified analysis of DG methods. IPH is further
studied in [21] in the context of incompressible flows.

2.1. Notation. We follow the notation introduced in [3]. Let Th = {K} be
a shape-regular and quasi-uniform triangulation of the domain Ω. Let hK be the
diameter of an element of the triangulation defined by hK := maxx,y∈K |x − y| and
h = maxK∈Th

hK . If e is an edge of an element, we denote by he the length of that
edge. The quasi-uniformity of the mesh implies h ≈ hK ≈ he.

We denote by E0 the set of interior edges shared by two elements in Th, that is

E0 := {e = ∂K1 ∩ ∂K2, ∀K1,K2 ∈ Th} ,

by E∂ the set of boundary edges, and all edges by E := E∂ ∪ E0. We introduce the
broken Sobolev space Hl(Th) :=

∏

K∈Th
Hl(K) where Hl(K) is the Sobolev space in

K ∈ Th and l is a positive integer. Note that q ∈ Hl(Th) is not necessarily continuous
across elements. Therefore the element boundary traces of functions in Hl(Th) belong
to T(E) = ∏

K∈Th
L2(∂K), where q ∈ T(E) can be double-valued on E0, but is single-

valued on E∂ .

We now define two trace operators: let q ∈ T(E) and qi := q|∂Ki
. Then on

e = ∂K1 ∩ ∂K2 we define the average and jump operators

{{q}} := 1
2 (q1 + q2), [[q]] := q1 n1 + q2 n2,
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where ni is the unit outward normal fromKi on e ∈ E0. It is clear that these operators
are independent of the element enumeration. Similarly for a vector-valued function
σ ∈ [T(E)]2 we define on interior edges

{{σ}} := 1
2 (σ1 + σ2), [[σ]] := σ1 · n1 + σ2 · n2.

On the boundary, we set the average and jump operators to {{σ}} := σ and [[q]] = qn.
We do not need to define {{q}} and [[σ]] on e ∈ E∂ .

We define a finite dimensional subspace of Hl(Th) by

(2.1) Vh :=
{
v ∈ L2(Ω) : v|K ∈ P

k(K), ∀K ∈ Th
}
,

where P
k(K) is the space of polynomials of degree ≤ k in the simplex K ∈ Th. We

denote boundary integrals on an edge e ∈ E by

〈a, b〉e :=
∫

e

a b if a, b ∈ T(e), 〈a, b〉e :=
∫

e

a · b if a, b ∈ [T(e)]2,

and similarly for volume terms on an element K ∈ Th

(a, b)K :=

∫

K

a b if a, b ∈ Hl(K), (a, b)K :=

∫

K

a · b if a, b ∈ [Hl(K)]2.

If Γ is a subset of E , we denote the L2-norm of q ∈ T(E) along Γ by ‖q‖2Γ :=
∑

e∈Γ ‖q‖2e
and ‖q‖2e := 〈q, q〉e. Similarly if Ti is a subset of Th, we denote the L2-norm of a

v ∈ Hl(Ti) by ‖v‖2Ti
:=

∑

K∈Ti
‖v‖2K .

For v ∈ H1(Th) we define functions whose restrictions to each element, K ∈ Th,
are equal to the gradient of v. This operator in the literature is called piecewise
gradient and is usually denoted by ∇h. For the sake of simplicity we use ∇v instead
of ∇hv.

2.2. Primal formulation. To simplify our presentation, we set η ≥ 0 to be a
constant and a(x) = 1 in the model problem (1.1). Let u, v ∈ H2(Th), then the IPH
bilinear form of the model problem (1.1) is defined as

(2.2)
a(u, v) := η (u, v)Th

+ (∇u,∇v)Th
− 〈{{∇u}}, [[v]]〉E − 〈{{∇v}}, [[u]]〉E

+
〈
µ
2 [[u]], [[v]]

〉

E −
〈

1
2µ [[∇u]], [[∇v]]

〉

E0

,

where µ ∈ T(E), µ|e = αh−1
e and α > 0. Observe that a(·, ·) is symmetric. The

definition of the IPH bilinear form is different from the classical Interior Penalty (IP)
method only in the last term, i.e. the last term in a(·, ·) is not present in IP.

There are two natural energy norms which are equivalent at the discrete level.
Let u ∈ V (h) := Vh +H2(Ω) ∩ H1

0(Ω) ⊂ H2(Th) then

(2.3)
‖u‖2

DG
:= η‖u‖2Th

+ ‖∇u‖2Th
+
∑

e∈E µe‖[[u]]‖2e,
‖u‖2

DG,∗ := ‖u‖2
DG
+
∑

K∈Th
h2
K |u|2K,2.

One can show that they are equivalent at the discrete level by a local application of
the inverse inequality (A.1).

Proposition 2.1. Let u ∈ Vh. Then we have

‖u‖2
DG

≤ ‖u‖2
DG,∗ ≤ C2‖u‖2

DG
,
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where C2 > 1 and independent of h and α.
The norm ‖·‖DG,∗ provides a natural norm for boundedness and ‖·‖DG can be

used for showing coercivity. The main ingredients for coercivity are the following
inequalities which hold for all u ∈ Vh:

(2.4)
2 〈{{∇u}}, [[u]]〉E ≤ 1

2‖∇u‖2Th
+
∑

e∈E
C1

he
‖[[u]]‖2e,〈

1
2µ [[∇u]], [[∇u]]

〉

E0

≤ C2

α ‖∇u‖2Th
,

where C1 and C2 are both independent of h and α but depend on the polynomial
degree. This can be obtained from the trace inequality

(2.5) ‖w‖2∂K ≤ c
k2

h
‖w‖2K , ∀w ∈ P

k(K),

where k is the polynomial degree, for details see [26, 3].
Proposition 2.2. If µ = αh−1, for α > 0 and sufficiently large, then we have

a(u, v) ≤ C‖u‖DG,∗‖v‖DG,∗ ∀u, v ∈ V (h),
c C−2‖u‖2

DG,∗ ≤ c‖u‖2
DG

≤ a(u, u) ∀u ∈ Vh,

where c = min{ 1
2 − C2

α , 1 − C1

α } < 1 , C = 1 + C3

α > 1 and both constants are
independent of h.

Note that coercivity holds only for u ∈ Vh and that α > 0 has to be big enough to
result in a positive c. Since C1 and C2 come from the trace inequality, we can choose
α = O(k2) where k is the degree of the polynomials in the simplex. Throughout this
paper we assume that α is chosen big enough to ensure that any term of type 1− c

α
(with c > 0, independent of h and α) is positive.

Having established that a(·, ·) is bounded and coercive, we obtain that the fol-
lowing approximation problem has a unique solution: find uh ∈ Vh such that

(2.6) a(uh, v) = (f, v)Th
, ∀v ∈ Vh.

Assuming the exact solution is regular enough, it can be shown that

‖uh − u‖DG,∗ ≤ c hk|u|k+1,Ω,
‖uh − u‖0 ≤ c hk+1|u|k+1,Ω,

i.e. IPH has optimal approximation order [3, 21]. We emphasize that without setting
µ = αh−1, the coercivity and optimal approximation properties are lost.

2.3. Hybridizable formulation. In this section we exploit the fact that IPH
is a hybridizable method. A method is hybridizable if one can eliminate the degrees
of freedom inside each element to obtain a linear system in terms of a single-valued
function along the edges, say λh. Not all DG methods have this property, for example
classical IP is not hybridizable. A unified hybridization procedure for DG methods
has been introduced and studied in [7] where IPH is also included.

We introduce the general setting by decomposing the domain into two non-
overlapping subdomains Ω1 and Ω2. Denoting the interface by Γ := Ω1 ∩ Ω2, we
assume Γ ⊂ E0, i.e. the cut does not go through any element of the triangulation.
This will result in a natural partitioning of Th into T1 and T2 which do not overlap but
share Γ as a boundary; see for an example Figure 2.1. We denote by H the maximum
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Fig. 2.1. An unstructured mesh with the interface Γ (thick-dashed).

diameter of the subdomains and by HΩ the diameter of the mono-domain Ω. We
assume 0 < h ≤ H < HΩ.

We introduce local spaces on Ω1 and Ω2 by

(2.7) Vh,i :=
{
v ∈ L2(Ωi) : v|K∈Ti

∈ P
k(K)

}
, for i = 1, 2.

Note that this domain decomposition setting implies Vh = Vh,1 ⊕ Vh,2. We define on
the interface the space of broken single-valued functions by

(2.8) Λh :=
{
ϕ ∈ L2(Γ) : ϕ|e∈Γ ∈ P

k(e)
}
.

For the sake of simplicity we denote the restriction of v ∈ Vh on Vh,i by vi. Observe
that the trace of vi ∈ Vh,i on Γ belongs to Λh.

Let (u, λ), (v, ϕ) ∈ Vh × Λh and consider the symmetric bilinear form

(2.9) ã((u, λ), (v, ϕ)) := ãΓ(λ, ϕ) +

2∑

i=1

(

ãi(ui, vi) + ãiΓ(vi, λ) + ãiΓ(ui, ϕ)
)

,

where

(2.10)
ãΓ(λ, ϕ) := 2 〈µλ, ϕ〉Γ ,

ãiΓ(vi, ϕ) :=
〈

∂vi
∂ni

− µvi, ϕ
〉

Γ
,

and
(2.11)

ãi(ui, vi) := η (ui, vi)Ti
+ (∇ui,∇vi)Ti

− 〈{{∇ui}}, [[vi]]〉E0

i
− 〈{{∇vi}}, [[ui]]〉E0

i

+
〈
µ
2 [[ui]], [[vi]]

〉

E0

i

−
〈

1
2µ [[∇ui]], [[∇vi]]

〉

E0

i

−
〈

∂ui

∂ni
, vi

〉

∂Ωi

−
〈

∂vi
∂ni

, ui

〉

∂Ωi

+ 〈µui, vi〉∂Ωi
.

This is an IPH discretization of the model problem in Ωi and ∂Ωi is treated as a
Dirichlet boundary. Therefore ãi(·, ·) inherits coercivity and continuity of the original
bilinear form, a(·, ·).
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The global bilinear form ã(·, ·) is also coercive at the discrete level, if α > 0 is
sufficiently large, independent of h. To see this we introduce an energy norm for all
(vi, ϕ) ∈ Vh,i × Λh such that

(2.12) ‖(vi, ϕ)‖2HDG,i := η‖vi‖2Ti
+ ‖∇vi‖2Ti

+ µ‖[[vi]]‖2Ei\Γ + µ‖vi − ϕ‖2Γ, (i = 1, 2).

then by definition of ã(·, ·) for all (v, ϕ) ∈ Vh × Λh we have

(2.13)
ã((v, ϕ), (v, ϕ)) = ãΓ(ϕ, ϕ) +

∑2
i=1

(
ãi(vi, vi) + 2ãiΓ(vi, ϕ)

)
,

=
∑2

i=1

(
ãi(vi, vi) + 2ãiΓ(vi, ϕ) +

1
2 ãΓ(ϕ, ϕ)

)
.

We can bound the contribution of each subdomain from below separately:

ã((v, ϕ), (v, ϕ)) =
∑2

i=1 η‖vi‖2Ti
+ ‖∇vi‖2Ti

−2 〈{{∇vi}}, [[vi]]〉Ei\Γ + µ
2 ‖[[vi]]‖2Ei\Γ − 1

2µ‖[[∇vi]]‖2E0

i

−2
〈

∂vi
∂ni

, vi − ϕ
〉

Γ
+ µ‖vi − ϕ‖2Γ,

≥ c
∑2

i=1 ‖(vi, ϕ)‖2HDG,i,

where we used the inverse inequalities (2.5) for terms acting on the interface and (2.4)
for terms acting inside subdomains. Here 0 < c < 1 is a constant independent of h.
Note that we proved the coercivity in a subdomain by subdomain fashion by splitting
the ãΓ(·, ·) terms.

Consider the following discrete problem: find (uh, λh) ∈ Vh × Λh such that

(2.14) ã((uh, λh), (v, ϕ)) = (f, v)Th
, ∀(v, ϕ) ∈ Vh × Λh,

which has a unique solution since ã(·, ·) is coercive on Vh×Λh. One can eliminate the
interface variable, λh, and obtain a variational problem in terms of uh only. It turns
out that this coincides with the variational problem (2.6); for a proof see [21].

The advantage of the variational problem (2.14) is that each subproblem is com-
municating through the auxiliary unknown λh. Therefore we can eliminate the interior
unknowns, ui, and obtain a Schur complement system. If we test (2.14) with vi 6= 0,
vj = 0 (j 6= i), ϕ = 0 and assume that λh is known, we obtain a local problem: find
ui ∈ Vh,i such that

(2.15) ãi(ui, vi) + ãiΓ(vi, λh) = (f, vi)Ti
, ∀vi ∈ Vh,i.

This is an IPH discretization of the continuous problem

(η −∆)u = f, in Ωi,
u = λh, on Γ,
u = 0, on ∂Ωi \ Γ.

However the boundary condition on Γ is imposed weakly and therefore ui|Γ 6= λh in
the strong sense, see [7, 15, 21].

2.4. Schur complement formulation. We choose nodal basis functions for
P
k(K) and denote the space of degrees of freedom (DOFs) of Vh by V and similarly

for subspaces by {Vi}. The variational form in (2.6) is equivalent to the linear system
Au = f . A is the system matrix and u ∈ V are the corresponding DOFs of the
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approximation uh ∈ Vh. We can partition u into {ui} where ui corresponds to DOFs
of ui ∈ Vh,i. Then we can arrange the entries of A and rewrite the linear system as

(2.16)

[
A1 A12

A21 A2

](
u1

u2

)

=

(
f1

f2

)

.

We use nodal basis functions for Λh and denote by λ the corresponding DOFs for
λh ∈ Λh. Then the variational form (2.14) can be written as

(2.17)





Ã1 Ã1Γ

Ã2 Ã2Γ

ÃΓ1 ÃΓ2 ÃΓ









u1

u2

λ



 =





f1

f2

0



 ,

where ÃΓi = Ã⊤
iΓ. Since this matrix is s.p.d. and the same holds also for its diagonal

blocks, we can form a Schur complement system. We define B̃i := ÃΓiÃ
−1
i ÃiΓ and

gΓ := −∑2
i=1 ÃΓiÃ

−1
i f i. Then the Schur complement system reads

(2.18) S̃Γλ :=
(

ÃΓ −
2∑

i=1

B̃i

)

λ = gΓ.

Definition 2.3 (discrete harmonic extension). For all ϕ ∈ Λh, we denote by
Hi(ϕ) ∈ Vh,i the discrete harmonic extension into Ωi,

(2.19) Hi(ϕ) ≡ −Ã−1
i ÃiΓϕ.

The corresponding ϕ is called generator. In other words ui := Hi(ϕ) is an ap-
proximation obtained from the IPH discretization in Ωi using ϕ as Dirichlet data;
i.e. Ãiui + ÃiΓϕ = 0.

The following result shows that an application of B̃iλ can be viewed as finding
the harmonic extension, ui := Hi(λh), and then evaluating a “Robin-like trace” on
the interface.

Proposition 2.4. Let λh ∈ Λh and define its harmonic extension by ui :=

Hi(λh). Then ϕ⊤B̃iλ =
〈

µui − ∂ui

∂ni
, ϕ

〉

Γ
for all ϕ ∈ Λh.

Proof. Let ui := Hi(λh). Then by definition of B̃i and ãiΓ(·, ·) we have

ϕ⊤B̃iλ = ϕ⊤ÃΓiÃ
−1
i ÃiΓλ = −ϕ⊤ÃΓiui =

〈

µui −
∂ui

∂ni
, ϕ

〉

Γ

,

for all ϕ ∈ Λh, which completes the proof, since ÃΓi = Ã⊤
iΓ.

3. Properties of the Schur complement and technical tools. The main
goal of this section is to provide estimates for the minimum and maximum eigenvalues
of the S̃Γ and B̃i for i = 1, 2. We use the estimate for the B̃i operators to prove
convergence of the Schwarz method and provide the contraction factor later in Section
4. In particular we prove in this section that the following estimates hold for all
ϕ ∈ Λh:

cB µ‖ϕ‖2Γ ≤ ϕ⊤B̃iϕ ≤
(

1− CB
h

Hα

)

µ‖ϕ‖2Γ,(3.1)

c
H

H2
Ω

‖ϕ‖2Γ ≤ ϕ⊤S̃Γϕ ≤ C
α

h
‖ϕ‖2Γ,(3.2)
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where all constants are positive and independent of h, H and HΩ. Since S̃Γ and
B̃i are symmetric, we can use Rayleigh quotient arguments and obtain an estimate
for the minimum and maximum eigenvalues. One can also obtain an estimate with
polynomial degree dependency using the techniques of this section.

The only constraint on the shape of the subdomains is a star-shape assumption.
To prove the above estimates we need trace and Poincaré inequalities for totally
discontinuous functions. The following trace estimate is due to Feng and Karakashian
[12, Lemma 3.1]. The Poincaré inequality is due to Brenner, see [5].

Lemma 3.1 (Trace inequality). Let D be a star-shape domain with diameter HD,
and triangulation Th. Then, for any u ∈ H1(Th), we have

‖u‖2∂D ≤ c
[

H−1
D ‖u‖2D +HD

(
‖∇u‖2D + h−1‖[[u]]‖2E\∂D

)]

.

Lemma 3.2 (Poincaré inequality). Let D be an open connected polygonal domain
with diameter HD, and triangulation Th. Then, for any u ∈ H1(Th) we have

‖u‖2D ≤ cH2
D

[

‖∇u‖2D + h−1‖[[u]]‖2E\∂D + h−1‖u‖2ν
]

,

where ν is a measurable subset of ∂D with nonzero measure.

3.1. Eigenvalue estimates for B̃i. In order to obtain estimates for the eigen-
values of the B̃i operator, we first recall Definition 2.3 of a harmonic extension:
ui ∈ Vh,i is called harmonic extension of ϕ ∈ Λh if it satisfies Ãiui + ÃiΓϕ = 0.
Now multiplying this relation by u⊤

i from left we get

u⊤
i Ãiui + u⊤

i ÃiΓϕ = 0

⇔ u⊤
i Ãiui −ϕ⊤ÃΓiÃ

−1
i ÃiΓϕ = 0

⇔ u⊤
i Ãiui −ϕ⊤B̃iϕ = 0,

where we used ui = −Ã−1
i ÃiΓϕ, ÃΓi = Ã⊤

iΓ and the definition of B̃i. Hence if
ui = Hi(ϕ) then we have

(3.3) ϕ⊤B̃iϕ = ãi(ui, ui).

Now recall that ãi(·, ·) is coercive and bounded over Vh,i, therefore c‖ui‖2DG ≤ ãi(ui, ui) ≤
C‖ui‖2DG. Thus if we relate the energy norm of the harmonic extension, ui := Hi(ϕ) ∈
Vh,i, to the L2-norm of ϕ we obtain the desired estimate (3.1). More precisely we can
show that the estimate

(3.4) cH · µ‖ϕ‖2Γ ≤ ‖ui‖2DG ≤ CH · µ‖ϕ‖2Γ

holds, where 0 < cH < 1 and CH > 1 are constants independent of h. Observe that
CH > 1 while the upper bound estimate in (3.1) is less than one. We show later how
one can obtain a sharp upper bound estimate as in (3.1).

Let us start with the lower bound of inequality (3.4). First we introduce an
extension by zero operator θi : Λh → Vh,i which is defined for all ϕ ∈ Λh as

θi(ϕ) :=

{
ϕ on edges belonging to Γ,
0 on other nodes.

For a graphical illustration see Figure 3.1. Note that there are elements like K2 which
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e1e2

Γ

K1

K2

K3

T

Fig. 3.1. Illustration of the extension by zero, θi(ϕ), for elements which share an edge with
the interface, e.g. {K1,K3}, and those which do not, e.g. K2.

physically share a node and not an edge with the interface, but we leave θi(ϕ) in K2

to be zero. More precisely, only those elements which share an edge with the interface
are non-zero.

We show in the Appendix, see also [23], that in an element, K ∈ Ti, with an edge
e ∈ Γ we have

(3.5)
‖θi(ϕ)‖2K ≤ C3 h‖ϕ‖2e,
‖∇θi(ϕ)‖2K ≤ C4h

−1‖ϕ‖2e,
‖[[θi(ϕ)]]‖2Ei

≤ C5‖ϕ‖2Γ,

where C3 > 0, C4 > 0 and C5 ≥ 1 and all are independent of h. This yields the
following result which relates the energy of the extension by zero to its L2-norm on
the interface.

Lemma 3.3. Let ϕ ∈ Λh and θi(ϕ) be its extension by zero into Ωi. We have

‖θi(ϕ)‖2DG ≤ µCθ ‖ϕ‖2Γ,

where Cθ = C3η + C4α
−1 + C5 > 1.

Proof. First note that by definition θi(ϕ) and ∇θi(ϕ) are non-zero only on those
elements which share an edge with the interface. We call them {KΓ} ⊂ Ti. Then we
have

‖θi(ϕ)‖2DG =
∑

K∈{KΓ}
η‖θi(ϕ)‖2K + ‖∇θi(ϕ)‖2K + µ‖[[θi(ϕ)]]‖2Ei

≤ C3 η h‖ϕ‖2Γ + C4

h ‖ϕ‖2Γ + C5 µ‖ϕ‖2Γ
≤ µ

(
C3 η + C4

α + C5

)
‖ϕ‖2Γ,

which completes the proof with Cθ := C3 η + C4

α + C5 > 1.
Now we are able to relate the energy of a harmonic extension, ui := Hi(ϕ), to

the L2-norm of ϕ on the interface.
Lemma 3.4. Let ϕ ∈ Λh and ui := Hi(ϕ) be its harmonic extension into Ωi.

Then we have

cH · µ‖ϕ‖2Γ ≤ ‖ui‖2DG,

where cH = (1− c
α )

2 · 1

CθC
2 < 1.

Proof. Since ui is the harmonic extension of ϕ, it satisfies (2.15) (with f = 0).
Let v = θi(ϕ). Then by definition of ãiΓ(·, ·) we have

ãi(ui, θi(ϕ)) =

〈

µ θi(ϕ) −
∂θi(ϕ)

∂ni
, ϕ

〉

Γ

.
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Note that θi(ϕ)|Γ = ϕ. We can bound the right-hand side from below, therefore

ãi(ui, θi(ϕ)) ≥ µ‖ϕ‖2Γ − ‖∂θi(ϕ)
∂ni

‖Γ ‖ϕ‖Γ
≥ µ‖ϕ‖2Γ − c√

h
‖∇θi(ϕ)‖KΓ

‖ϕ‖Γ by ineq. (2.5)

≥ µ‖ϕ‖2Γ − c′

h ‖ϕ‖2Γ by ineq. (3.5)

= µ
(

1− c′

α

)

‖ϕ‖2Γ,

which is positive if α > 0 and sufficiently large. By continuity of ãi(·, ·) we have

µ

(

1− c′

α

)

‖ϕ‖2Γ ≤ C ‖ui‖DG · ‖θi(ϕ)‖DG.

Note that we are able to use ‖·‖DG instead of ‖·‖DG,∗ since we work with discrete spaces.

An application of Lemma 3.3 completes the proof with cH = (1− c′

α )
2 · 1

CθC
2 < 1.

The upper bound in (3.4) can be obtained much easier using coercivity of the
ãi(·, ·).

Lemma 3.5. Let ϕ ∈ Λh and ui := Hi(ϕ) be its harmonic extension into Ωi.
Then we have

‖ui‖2DG ≤ CH · µ‖ϕ‖2Γ,

where CH =
(

1 + C√
α

)2

· 1
c2 > 1.

Proof. Since ui is the harmonic extension of ϕ, it satisfies (2.15) (with f = 0).
Using the fact that ãi(·, ·) is coercive we have

c‖ui‖2DG ≤ ãi(ui, ui) = −ãiΓ(ui, ϕ)

=
〈

µui − ∂ui

∂ni
, ϕ

〉

Γ

≤ µ‖ui‖Γ‖ϕ‖Γ + ‖ ∂ui

∂ni
‖Γ‖ϕ‖Γ

≤ µ‖ui‖Γ‖ϕ‖Γ + C√
h
‖∇ui‖Ti

‖ϕ‖Γ
≤ µ

1

2

(

1 + C√
α

)

‖ui‖DG · ‖ϕ‖Γ,

which completes the proof with CH :=
(

1 + C√
α

)2

· 1
c2 > 1.

We see that CH > 1, which does not provide a sharp estimate for the maximum
eigenvalue of B̃i. We now show how to obtain a sharp estimate for the maximum
eigenvalue of the B̃i. Recall that the global matrix Ã is s.p.d. and the positive defi-
niteness is proved by using for each subdomain 1

2 ÃΓ in (2.13). Therefore we consider
the s.p.d. matrix

Â :=

[
Ãi ÃiΓ

ÃΓi
1
2 ÃΓ

]

.

To show positive-definiteness, let w := (ui,ϕ)
⊤ and observe

(3.6) w⊤Âw = ãi(ui, ui) + 2ãiΓ(ui, ϕ) +
1

2
ãΓ(ϕ, ϕ) ≥ c‖(ui, ϕ)‖2HDG,i,

for all ui ∈ Vh,i and ϕ ∈ Λh. Now let ui = Hi(ϕ), then by a simple manipulation we

have ϕ⊤( 1
2 ÃΓ − B̃i

)
ϕ = w⊤Âw. Combining with (3.6) and recalling that ϕ⊤ÃΓϕ =

2µ‖ϕ‖2Γ we obtain

(3.7) µ‖ϕ‖2Γ − c‖(Hi(ϕ), ϕ)‖2HDG,i ≥ ϕ⊤B̃iϕ.
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This gives a sharp estimate for the maximum eigenvalue of B̃i if we can bound the
second term from below which is stated in the following lemma.

Lemma 3.6. Let ϕ ∈ Λh and ui ∈ Vh,i for i = 1, 2. Let Hi be the diameter of the
subdomain. Then we have

c

Hi
‖ϕ‖2Γ ≤ ‖(ui, ϕ)‖2HDG,i.

Proof. We first invoke triangle inequality and then Young’s inequality

‖ϕ‖2Γ ≤ ‖ui − ϕ‖2Γ + ‖ui‖2Γ ≤ Hih
−1‖ui − ϕ‖2Γ + ‖ui‖2Γ,

where the last inequality is due to the fact that h ≤ Hi. Now for the second term on
the right-hand side we apply the trace inequality from Lemma 3.1, and subsequently
the Poincaré inequality from Lemma 3.2 with ν = ∂Ωi \ Γ. We obtain

‖ϕ‖2Γ ≤ Hih
−1‖ui − ϕ‖2Γ + c1Hi

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\Γ
)

≤ c2Hi‖(ui, ϕ)‖2HDG,i,

which completes the proof.
We are now in the position to prove the estimate for the eigenvalues of B̃i.
Lemma 3.7. There exists α > 0, sufficiently large, such that

cBµ‖ϕ‖2Γ ≤ ϕ⊤B̃iϕ ≤
(

1− CB
h

Hα

)

µ‖ϕ‖2Γ, ∀ϕ ∈ Λh,

where 0 < cB < 1. Therefore B̃i is s.p.d. Moreover ÃΓ − 2B̃i is s.p.d.
Proof. To show the proof of the lower bound we use (3.3), coercivity of ãi(·, ·)

and Lemma 3.4 to obtain

ϕ⊤B̃iϕ = ãi(ui, ui) ≥ c‖ui‖2DG ≥ c · cH · µ‖ϕ‖2Γ.

This completes the lower bound by setting cB := c · cH < 1. For the upper bound we
use inequality (3.7) and Lemma 3.6 where we obtain

ϕ⊤B̃iϕ ≤
(

1− c

H

h

α

)

µ‖ϕ‖2Γ.

Finally from inequality (3.7) we have that ÃΓ − 2B̃i is s.p.d.
Remark 1. This estimate shows that the condition number satisfies

κ(B̃i) ≤ c−1
B

(
1− CB

h

Hα

)
,

which implies that B̃i is scalable. In other words if we keep the ratio h/H constant
the condition number does not change. Geometrically that is equivalent of scaling the
subdomain and the triangulation at the same rate which does not change the entries of
the B̃i nor its size. Therefore the condition number of B̃i is expected not to change.

3.2. Eigenvalue estimate for S̃Γ. Estimating eigenvalues of the Schur comple-
ment is similar to estimating eigenvalues of B̃i. To show the lower bound in estimate
(3.2), we need the following lemma.
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Lemma 3.8. Let ϕ ∈ Λh and ui ∈ Vh,i for i = 1, 2. Let HΩ be the diameter of
the domain and H be the maximum diameter of the subdomains. Then we have

c
H

H2
Ω

‖ϕ‖2Γ ≤
2∑

i=1

‖(ui, ϕ)‖2HDG,i.

Proof. First we invoke a triangle inequality

Hi‖ϕ‖2Γ ≤ Hi‖ui − ϕ‖2Γ +Hi‖ui‖2Γ ≤ H2
i h

−1‖ui − ϕ‖2Γ +Hi‖ui‖2Γ,

where the last inequality is due to the fact that h ≤ Hi. Now for the second term on
the right-hand side, observe that using Lemma 3.1 we have

ciHi‖ui‖2Γ ≤ ciHi‖ui‖2∂Ωi
≤ ‖ui‖2Ωi

+H2
i

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\∂Ωi

)
.

We sum over both subdomains and invoke Lemma 3.2 for the L2-norm of u over Ω

cH
∑2

i=1 ‖ui‖2Γ ≤ ‖u‖2Ω +H2
∑2

i=1

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\∂Ωi

)

≤ CH2
Ω

(
‖∇u‖2Ω + h−1‖[[u]]‖2E\∂Ω + h−1‖u‖2∂Ω

)

+H2
∑2

i=1

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\∂Ωi

)
.

Noting that H ≤ HΩ and by definition of ‖(ui, ϕ)‖HDG,i we obtain

cH
∑2

i=1 ‖ui‖2Γ ≤ H2
Ω

∑2
i=1

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\∂Ωi
+ h−1‖ui‖2∂Ω∩∂Ωi

)

+H2
Ωh

−1‖[[u]]‖2Γ
≤ H2

Ω

∑2
i=1

(
‖∇ui‖2Ωi

+ h−1‖[[ui]]‖2Ei\∂Ωi
+ h−1‖ui‖2∂Ω∩∂Ωi

)

+H2
Ωh

−1
(
‖u1 − ϕ‖2Γ + ‖u2 − ϕ‖2Γ

)

≤ H2
Ω

∑2
i=1 ‖(ui, ϕ)‖2HDG,i.

Substituting back into the first inequality completes the proof.
Lemma 3.9. There exists α > 0, sufficiently large, such that

c
H

H2
Ω

‖ϕ‖2Γ ≤ ϕ⊤S̃Γϕ ≤ 2α

h
‖ϕ‖2Γ,

Therefore S̃Γ is s.p.d. Moreover ÃΓ − B̃i is s.p.d.

Proof. The symmetry is easy to check since ÃΓ and B̃1, B̃2 are symmetric. For
the upper bound in the estimate we recall that B̃1, B̃2 are positive definite and hence

ϕ⊤S̃Γϕ = ϕ⊤(ÃΓ −
2∑

i=1

B̃i)ϕ ≤ ϕ⊤ÃΓϕ = 2µ‖ϕ‖2Γ.

Now let ui := Hi(ϕ) and v := (u1,u2,ϕ)
⊤. A straightforward calculation shows that

ϕ⊤S̃Γϕ = v⊤Ãv. Then the coercivity of the bilinear form ã(·, ·) and an application
of Lemma 3.8 yields

ϕ⊤S̃Γϕ = v⊤Ãv ≡ ã((u, ϕ), (u, ϕ)) ≥ c

2∑

i=1

‖(ui, ϕ)‖2HDG,i ≥ c
H

H2
Ω

‖ϕ‖2Γ.
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For the final statement, observe that for all ϕ 6= 0 we have

ϕ⊤(ÃΓ − B̃i)ϕ > ϕ⊤(ÃΓ −
2∑

j=1

B̃j)ϕ > 0,

since the {B̃i} are positive definite. This completes the proof.
Remark 2. Note that Lemma 3.9 provides an upper bound for the condition num-

ber, κ(S̃Γ) ≤ O(αh ). A similar result also holds for classical FEM, see [4] and [25,
Lemma 4.11].

4. Schwarz methods and the Schur complement. In order to solve the
Schur complement system we can devise a Schwarz method to obtain λh. We will
prove that a natural Schwarz method for the Schur complement is equivalent to the
block Jacobi iteration in (1.3), but it suffers from slow convergence. Later we show how
to obtain an optimized Schwarz method for the Schur complement which converges
much faster to the same fixed point.

Let us relax the constraint that λh is single-valued. Let λh,1, λh,2 ∈ Λh. Assume
λh,2 is known; that is we know u2 ∈ Vh,2. Then we can split the Schur complement
system (2.18) and obtain an approximation for λh,1 and consequently u1 ∈ Vh,1 from

(ÃΓ − B̃1)λ1 = B̃2λ2 + gΓ.

As a consequence of Lemma 3.9, (ÃΓ − B̃1) is invertible and we can obtain λh,1. This
suggests an iterative method to obtain λh. We will see that this produces identical
iterates as the block Jacobi method.

Algorithm 1. Let λ
(0)
h,1, λ

(0)
h,2 ∈ Λh be two random initial guesses. Then for

n = 1, 2, . . . find
{
λ
(n)
h,i

}
such that

(4.1)
(ÃΓ − B̃1)λ

(n)
1 = B̃2λ

(n−1)
2 + gΓ,

(ÃΓ − B̃2)λ
(n)
2 = B̃1λ

(n−1)
1 + gΓ.

At convergence, we have ÃΓ(λ1 − λ2) = 0 which implies λ1 = λ2 = S̃−1
Γ gΓ.

The following result shows that the above method generates the same iterates as
the block Jacobi iteration (1.3). By linearity it suffices to consider the error equation,
f = 0, which implies gΓ = 0.

Proposition 4.1. Let λ
(0)
h,1, λ

(0)
h,2 be two random initial guesses of Algorithm 1

and without loss of generality suppose f = 0. Set the initial guess of the block Jacobi

iteration (1.3) to be u
(0)
i = Hi(λ

(0)
h,i). Then u

(n)
i = Hi(λ

(n)
h,i ) for all n > 0, i.e. both

methods produce the same iterates.
Proof. See [20].

4.1. Analysis of classical Schwarz for the Schur complement. By linearity

we consider the error equations and we denote by e
(n)
i := λ

(n)
i − λ. The iterations in

(4.1) can be rewritten in a more suitable form for analysis. Since ÃΓ is s.p.d. (it is

just a scaled mass matrix), the square-root Ã
1/2
Γ exists and is also s.p.d. Therefore,

for i, j ∈ {1, 2} and i 6= j we can write equivalently

(ÃΓ − B̃i)e
(n)
i = B̃je

(n−1)
j

⇔ Ã
1/2
Γ (I − Ã

−1/2
Γ B̃iÃ

−1/2
Γ )Ã

1/2
Γ e

(n)
i = B̃je

(n−1)
j

⇔ (I − Ã
−1/2
Γ B̃iÃ

−1/2
Γ )ẽ

(n)
i = (Ã

−1/2
Γ B̃jÃ

−1/2
Γ )ẽ

(n−1)
j ,
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where ẽi = Ã
1/2
Γ ei. We define

(4.2) Ci := Ã
−1/2
Γ B̃iÃ

−1/2
Γ ,

which is invertible and symmetric. Since ÃΓ − B̃i is invertible and Ã
1/2
Γ exists we can

conclude that I − Ci is also invertible by definition. Therefore we have

(I − Ci)ẽ
(n)
i = Cj ẽ

(n−1)
j = Cj(I − Cj)

−1Ciẽ
(n−2)
i ,

or

ϕ
(n)
i = Cj(I − Cj)

−1 · Ci(I − Ci)
−1ϕ

(n−2)
i ,

where ϕi = (I − Ci)ẽi. Finally the iterations can be rewritten as

(4.3) ϕ
(n)
i = (C−1

j − I)−1 · (C−1
i − I)−1ϕ

(n−2)
i .

We show how the contraction factor of the iteration in (4.3) is related to the
eigenvalues of {Ci}. Let ‖ · ‖2 be the usual 2-norm in R

n, and denote by Di :=
(C−1

i − I)−1. Then we can estimate

‖ϕ(n)
i ‖2 ≤ ‖DjDi‖2 ‖ϕ(n−2)

i ‖2 ≤ ‖Dj‖2 ‖Di‖2 ‖ϕ(n−2)
i ‖2 = ρ(Dj) ρ(Di) ‖ϕ(n−2)

i ‖2,
since {Di} are symmetric. In other words we have used a different norm for the error:

with Ei := (I − Ci)Ã
1/2
Γ , which is invertible, we have

‖ei‖E⊤

i
E

i
= ‖Eiei‖2 = ‖ϕi‖2.

Let σ(M) denote an eigenvalue of a given matrix M . Then we have

ρ(Di) := max
σ(Di)

|σ(Di)| = max
σ(Ci)

∣
∣
∣
∣

σ(Ci)

1− σ(Ci)

∣
∣
∣
∣
.

Hence a sufficient condition for convergence is that σ(Ci) ∈ (−∞, 1/2). On the other
hand by definition of Ci we know that σ(Ci) are the eigenvalues of the generalized
eigenvalue problem B̃iϕ = σ ÃΓϕ. Since both ÃΓ and B̃i are s.p.d., σ(Ci) is positive.
Therefore a sufficient condition for convergence is to show that σ(Ci) ∈ (0, 1/2).

Recall that since Ci is symmetric we have

(4.4) σmin(Ci) = inf
ϕ 6=0

ϕ⊤B̃iϕ

ϕ⊤ÃΓϕ
= inf

ϕ 6=0

ϕ⊤B̃iϕ

2µ‖ϕ‖2Γ
≥ cB

2
,

where we have used the lower bound estimate of Lemma 3.7. Here 0 < cB < 1. The
upper bound for σmax(Ci) can also be obtained using Lemma 3.7. Hence

(4.5) σmax(Ci) = sup
ϕ 6=0

ϕ⊤B̃iϕ

2µ‖ϕ‖2Γ
≤ 1

2

(

1− C
h

αH

)

,

which is strictly less than 1
2 . Consequently for the eigenvalues of Di, we obtain the

estimate

0 <
cB

2− cB
≤ σ(Di) ≤ 1− C

h

αH
< 1.

We summarize the convergence result in the following theorem.
Theorem 4.2. There exists an α > 0 independent of H and h such that Algo-

rithm 1 converges and the contraction factor is bounded by

(4.6) ρ ≤ 1−O(h).
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4.2. Analysis of an optimized Schwarz method for the Schur comple-

ment. As it has been shown in [15], the IPH discretization is imposing Robin trans-
mission conditions between subdomains, and the Robin parameter is precisely the
penalty parameter µ of the DG method. For approximation purposes and ensuring
coercivity, µ is set to be αh−1 for some α > 0 large and independent of h.

In the Schwarz theory with Robin transmission conditions this choice of µ cor-
responds to damping high frequencies of the DtN operator. In other words, the
low frequencies are responsible for the slow convergence of the algorithm that we
have analyzed in the previous subsection; as we have shown the contraction factor is
ρ = 1 − O(h). Optimized Schwarz theory suggests to choose the Robin parameter
O(h−1/2), see [13], while this is not possible for an IPH discretization since we lose
coercivity and optimal approximation properties.

The remedy comes from an idea first introduced in [8] and later independently
in [10] for Maxwell’s equations. The idea is to perturb the transmission conditions
such that while iterating we produce a different sequence but obtaining the same
fixed-point as the original Schwarz algorithm.

Let us introduce two new unknowns, one for each subdomain, along the interface
called {r12, r21} such that rij ∈ Λh. Recall that by Proposition 2.4 an application

of B̃iλi is equivalent to µui − ∂ui

∂ni
on the interface where ui := Hi(λh,i). Now let

rij = (µuj − ∂uj

∂nj
)|Γ. Let us denote by MΓ the mass matrix along the interface and

rij the corresponding DOFs of rij . Then we observe that

ϕ⊤MΓrij = 〈rij , ϕ〉Γ =

〈

µuj −
∂uj

∂nj
, ϕ

〉

Γ

= ϕ⊤B̃jλj , ∀ϕ ∈ Λh.

Therefore we conclude that

MΓrij = B̃jλj ,

and the Schwarz iteration (4.1) can be rewritten as

(ÃΓ − B̃i)λ
(n)
i = MΓr

(n)
ij + gΓ,

MΓr
(n)
ij = B̃jλ

(n−1)
j .

We modify the second equation as suggested in [10] and [20] to the form

MΓr
(n)
ij − p̂ B̃iλ

(n)
i = B̃jλ

(n−1)
j − p̂MΓr

(n−1)
ji ,

for i, j ∈ {1, 2} and i 6= j. Here 0 ≤ p̂ < 1 is a parameter which we use for optimiza-
tion. At convergence one recovers the original equations and therefore the fixed point
of the iteration is the same as for the original method.

Remark 3. The above modification is shown in [20] to be equivalent (at the con-
tinuous level) to imposing

(4.7)
(1− p̂

1 + p̂
µ+

∂

∂ni

)

u
(n)
i =

(1− p̂

1 + p̂
µ+

∂

∂ni

)

u
(n−1)
j

for i, j ∈ {1, 2} and i 6= j. Note that if p̂ = 1−
√
h

1+
√
h
then 1−p̂

1+p̂µ ∝ 1√
h
which is the right

choice of parameter according to optimized Schwarz theory. We will see that this is
exactly the right choice for p̂ at the discrete level.
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The analysis of this algorithm is possible using the framework established for the
original method. We can eliminate the {rij} as follows:

(ÃΓ − B̃i)λ
(n)
i = p̂B̃iλ

(n)
i + B̃jλ

(n−1)
j − p̂MΓr

(n−1)
ji +gΓ

= p̂B̃iλ
(n)
i + B̃jλ

(n−1)
j − p̂(ÃΓ − B̃j)λ

(n−1)
j +(1 + p̂)gΓ,

which simplifies to

(ÃΓ − (1 + p̂)B̃i)λ
(n)
i = −(p̂ÃΓ − (1 + p̂)B̃j)λ

(n−1)
j + (1 + p̂)gΓ.

Algorithm 2. Let λ
(0)
h,1, λ

(0)
h,2 ∈ Λh be two random initial guesses. Then for

n = 1, 2, . . . find
{
λ
(n)
h,i

}
such that

(4.8)
(ÃΓ − (1 + p̂)B̃1)λ

(n)
1 = −(p̂ÃΓ − (1 + p̂)B̃2)λ

(n−1)
2 + (1 + p̂)gΓ,

(ÃΓ − (1 + p̂)B̃2)λ
(n)
2 = −(p̂ÃΓ − (1 + p̂)B̃1)λ

(n−1)
1 + (1 + p̂)gΓ.

Since p̂ < 1, we can use Lemma 3.7 and conclude that the left hand side is positive
definite and therefore invertible. At convergence we have (1−p̂)ÃΓ(λ1−λ2) = 0 which
implies λ1 = λ2 = S̃−1

Γ gΓ if p̂ 6= 1.
Comparing to the original Schwarz method, Algorithm 1, we weakened the positive-

definiteness of the left-hand side. This plays a key role in faster convergence. The
optimized algorithm can be viewed as a different splitting of the Schur complement.
More precisely we multiplied it by (1+ p̂) and this time a fraction of ÃΓ, namely p̂ÃΓ,
has been put to the right-hand side.

We consider the error equation and we can proceed as before to obtain an iteration
for ei only,

(ÃΓ − (1 + p̂)B̃i)e
(n)
i =

(p̂ÃΓ − (1 + p̂)B̃j) · (ÃΓ − (1 + p̂)B̃j)
−1 · (p̂ÃΓ − (1 + p̂)B̃i)e

(n−2)
i .

With ϕi = (I − (1 + p̂)Ci)Ã
1/2
Γ ei, we have

ϕ
(n)
i = (p̂I − (1 + p̂)Cj) · (I − (1 + p̂)Cj)

−1

·(p̂I − (1 + p̂)Ci) · (I − (1 + p̂)Ci)
−1ϕ

(n−2)
i .

Denoting by D̂i := (p̂I − (1 + p̂)Ci) · (I − (1 + p̂)Ci)
−1 and simplifying, we get

(4.9) D̂i = I − (1− p̂)
(
I − (1 + p̂)Ci

)−1
,

which shows that D̂i is symmetric. Therefore we have

‖ϕ(n)
i ‖2 ≤ ρ(D̂j) ρ(D̂i) ‖ϕ(n−2)

i ‖2.

The estimate for the eigenvalues of D̂i can be obtained as before. More precisely we
have

σ(D̂i) = 1− 1− p̂

1− (1 + p̂)σ(Ci)
.
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Recall that σ(Ci) ∈
[
1
2 − c, 1

2 − C h
αH

]
for 0 < c < 1

2 and C > 0 and independent of

h, H . We can use p̂ to optimize ρ(D̂i). Following Remark 3, let us make the ansatz

p̂ =
1− ( hα )

γ

1 + ( hα )
γ
< 1, γ ∈ R

+.

This implies that

(4.10) 1− 1
1
2 + C

H ( hα )
1−γ

≤ σ(D̂i) ≤ 1− 1
1
2 + c( hα )

−γ
,

Best performance is achieved, if γ := 1
2 which as h → 0 leads to

(4.11) − 1 + c1

√

h

α
≤ σ(D̂i) ≤ 1− c2

√

h

α
.

Note that the iteration matrix, D̂i, is not positive definite anymore but it has a con-
verging spectrum and the contraction factor is much better than the one in Algorithm
1. We summarize our results in

Theorem 4.3. There exists an α > 0 independent of H and h such that Algo-
rithm 2 converges and the contraction factor is bounded by

(4.12) ρ ≤ 1−O(
√
h).

5. A multi subdomain algorithm. We have introduced and analyzed a two
subdomain optimized Schwarz method (OSM) so far. In this section we introduce a
multi subdomain algorithm for the IPH discretization. This algorithm is a natural
generalization of the two subdomain method. Often special care has to be taken in
OSMs for classical FEM discretizations at cross-points, that is a node which is shared
by more than two subdomains, see [16, 17, 18]. This is not the case when we work with
a DG discretization because subdomains communicate with each other only if they
have an intersection of non-zero measure. Therefore the problem with cross-points
does not arise, since a cross-point is of measure-zero, as at the continuous level.

Let us start defining the multi-subdomain geometry. We first partition the mono-
domain Ω into Ns subdomains such that the interface, Γ between them is a subset
of internal edges, E0. More precisely, we denote the subdomains by {Ωi}Ns

i=1 and the
interface between two subdomain by

Γij := ∂Ωi ∩ ∂Ωj , (i 6= j),

and the global interface by

Γ :=
⋃

i6=j

Γij ⊂ E0.

Now the hybridizable formulation of IPH can be written as: find (uh, λh) ∈ Vh×Λh

such that

(5.1) ã((uh, λh), (v, ϕ)) = (f, v)Th
, ∀(v, ϕ) ∈ Vh × Λh,
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e1e2
Γ

K1

K2

K3

Ω1 Ω2

Ω3

λh,1

λh,2
λh,3

T

Fig. 5.1. A multi-subdomain configuration with an interface variable, {λh,i}, assigned to each
subdomain, Ωi.

where the bilinear form is defined as

(5.2) ã((u, λ), (v, ϕ)) := ãΓ(λ, ϕ) +

Ns∑

i=1

(
ãi(ui, vi) + ãiΓ(ui, ϕ) + ãiΓ(vi, λ)

)
.

The only modified bilinear form is ãiΓ(·, ·) since it acts now on ∂Ωi, that is

(5.3) ãiΓ(ui, ϕ) :=

〈
∂ui

∂ni
− µui, ϕ

〉

∂Ωi

.

Let us focus on two subdomains which share an interface, Γij . We observe that
there are two sub-problems which are communicating through λh on Γij . That is

ãi(ui, vi) + ãiΓ(vi, λh) = (f, vi)Ti
, ∀vi ∈ Vh,i,

ãj(uj , vj) + ãjΓ(vj , λh) = (f, vj)Tj
, ∀vj ∈ Vh,j ,

and the continuity is imposed using

(5.4) λh =
1

2µ

(

µui −
∂ui

∂ni

)

+
1

2µ

(

µuj −
∂uj

∂nj

)

, onΓij .

Now we relax the constraint that λh is single-valued on Γ and allocate λh,i to each
subdomain Ωi. Each λh,i is defined on ∂Ωi \ ∂Ω; for an example see Figure 5. We
have therefore twice DOFs along Γij . Therefore we should split the continuity equa-
tion (5.4) to provide two conditions; one for each λh,i. We use the same idea as in
Algorithm 2 and relax the continuity equation in the same fashion:

1

1 + p̂
λh,i +

p̂

1 + p̂
λh,j =

1

2µ

(

µui −
∂ui

∂ni

)

+
1

2µ

(

µuj −
∂uj

∂nj

)

, (i 6= j).

Here p̂ is a parameter which is used for optimization purposes. This suggests the

following iterative method to find the pairs
{
(ui, λh,i)

}Ns

i=1
in parallel:

Algorithm 3. Let
{
(u

(0)
i , λ

(0)
h,i)

}Ns

i=1
be a set of initial guesses for all subdomains.

Then for n = 1, 2, . . . find
{
(u

(n)
i , λ

(n)
h,i )

}Ns

i=1
such that

(5.5) ãi(u
(n)
i , vi) + ãiΓ(vi, λ

(n)
h,i ) = (f, vi)Ti

, ∀vi ∈ Vh,i,
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and the continuity condition on Γij reads

(5.6)
1

1 + p̂
λ
(n)
h,i −

1

2µ

(

µui −
∂ui

∂ni

)(n)

= − p̂

1 + p̂
λ
(n−1)
h,j +

1

2µ

(

µuj −
∂uj

∂nj

)(n−1)

.

At convergence we obtain (1− p̂)(λh,i − λh,j) = 0. Therefore if p̂ 6= 1, we recover
that λh is single valued.

Remark 4. We can make an ansatz for the optimal choice of p̂ similar to the two-
subdomain case. The transmission condition (5.4) can be viewed as a Robin trans-
mission condition at the continuous level. The Robin parameter is µ⋆ := 1−p̂

1+p̂µ. In

order to converge fast we should set µ⋆ = O(h−1/2). This corresponds to the choice

p̂ := 1−
√
h

1+
√
h
< 1.

5.1. OSM as a preconditioner. We show now how one can use OSM as a
preconditioner for a Krylov subspace method. We start by writing Algorithm 3 at
the algebraic level. We first partition the DOFs associated with uh ∈ Vh into

u := (u1,u2, . . . ,uNs
)⊤.

Then we form DOFs associated to the interface unknowns {λh,i}Ns

i=1 by

ℓ := (λ1,λ2, . . . ,λNs
)⊤,

and define the augmented DOFs by w := (u, ℓ)⊤.
Algorithm 3 can be written at the algebraic level as

(5.7)

[
Kuu Kuℓ

Kℓu Kℓℓ

]

︸ ︷︷ ︸

K

w(n) =

[
0 0

Lℓu Lℓℓ

]

︸ ︷︷ ︸

L

w(n−1) +

(
f

0

)

︸ ︷︷ ︸

g

.

Note that the left-hand side matrix K consists of block matrices communicating only
with each pair (uh,i, λh,i). Therefore we can “invert” subdomain blocks independently
and in parallel. This gives a parallel preconditioner for a Krylov subspace method
applied to the system (K − L)w = g.

Since the stationary iterates (5.7) converge with the contraction factor ρ ≤ 1 −
O(

√
h), we expect that a preconditioned Krylov subspace method achieves another

square-root in the contraction factor, that is ρ ≤ 1−O(h1/4). This is observed in the
numerical experiments. Therefore this is a more attractive method compared to the
CG method with an additive Schwarz preconditioner which has the contraction factor
ρ ≤ 1−O(

√
h).

6. Numerical experiments. We perform numerical experiments on the model
problem

(6.1)
(η −∆)u = f, in Ω,

u = 0, on ∂Ω,

where η = 1 and Ω is either a unit square, i.e. (0, 1)2, or an L-shaped (non-convex)
domain. The interface is such that it does not cut through any element, therefore
Γ ⊂ E . We use P

1 elements and α = c(k + 1)(k + 2) where c > 0 is a constant
independent of h and k = 1 (polynomial degree). The algorithms are implemented
using a FORTRAN90 library for DG methods called GDG90. The codes are accessible
at

http://unige.ch/~hajian/gdg90/

http://unige.ch/~hajian/gdg90/
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Table 6.1
Minimum and maximum eigenvalues of Ci.

√
N 6 13 26 55 112 225

σmin 0.295 0.288 0.286 0.286 0.286 0.286
σmax 0.335 0.415 0.457 0.478 0.489 0.494

10
−3

10
−2

10
−1

10
0

1 10 100 1000√
N

1

2
− σmax

1/
√

N

Fig. 6.1. Behavior of ( 1
2
− σmax) versus total number of unknowns, N .

6.1. Minimum and maximum eigenvalues of Bi. Before performing conver-
gence experiments on the Algorithm 1 and 2, let us validate numerically the asymp-
totic behavior of the minimum and maximum eigenvalues of the operator Bi, i.e. in-
equality (3.1). To do so, we should measure the minimum and maximum eigenvalues

of Ci := Ã
−1/2
Γ BiÃ

−1/2
Γ . We generate a sequence of quasi-uniform triangulations and

construct the operators Bi and ÃΓ for each triangulation. We denote the size of each
operator by N , i.e. Bi ∈ R

N×N . We have 1/h ∝
√
N as h goes to zero.

According to (4.4), the minimum eigenvalue of Ci is bounded from below inde-
pendently of the mesh size. This can be seen from Table 6.1. For the maximum
eigenvalues of Ci, observe that σmax is less than 1

2 and is increasing. In order to see

the growth rate we plot 1
2 − σmax in Figure 6.1 which decreases like 1/

√
N = O(h) as

N goes to infinity. This is in agreement with (4.5).

6.2. Two subdomain case. In this section we compare the contraction factor
of the two Schwarz algorithms with respect to h-dependency. We perform both algo-
rithms on a sequence of unstructured meshes. We measure the number of iterations
required to reduce the relative error to tol := 1e-10 while refining the mesh, that is

‖u(n)
h − uh‖0 ≤ tol ‖f‖0.

This level of accuracy is not necessary in practice since the error between the exact
and approximate solution, ‖u−uh‖0, is much bigger and one usually can terminate the
iteration after reaching the accuracy level of the method. The domain is partitioned
into two by a non-straight interface; see Figure 2.1 (left).

As we see in the Figure 6.2 (left), on a square domain the number of iterations for
Algorithm 1 grows like 1/h, which is equivalent to ρ ≤ 1−O(h), while for Algorithm
2 it behaves like 1/

√
h, or in other words we have ρ ≤ 1 − O(

√
h), which illustrates

well our analysis. This is the case for the L-shape domain too, see Figure 6.2 (right).
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Fig. 6.2. Convergence of Schwarz methods on a square domain (left) and L-shape domain (right).

Table 6.2
Convergence of OSM for four subdomains

Mesh size h0 h0/2 h0/4 h0/8 h0/16
# iterations 25 35 57 82 117

6.3. Multi subdomains case. We now show some numerical results on the
multi subdomain algorithm. The subdomains are formed by a coarse triangulation of
the domain which we call TH . We consider a nested fine mesh and therefore TH ⊂ Th.
An example is given in Figure 2.1 (right). We consider here four subdomains which
share a cross-point, and similarly to the two subdomain case we measure the number
of iterations necessary to reach the desired tolerance. We observe in Table 6.2 that the
contraction factor asymptotically is ρ = 1−O(

√
h), i.e. 82/57 ≈ 1.43 or 117/82 ≈ 1.42

which are close to
√
2.

6.4. OSM as a preconditioner. We use now the optimized Schwarz method
as a preconditioner for GMRES with the tolerance tol := 1e-6. In order to provide a
qualitative comparison we also consider the widely used conjugate gradient method
with a one-level additive Schwarz preconditioner applied to the original system (1.2).
We consider 16 subdomains illustrated in Figure 2.1 (right). We observe in Table
6.3 that the number of iterations for OSM-GMRES grows like O(h−1/4). This is
because Krylov methods benefit often from another square-root in their contraction
factor compared to the stationary iteration method. Therefore the contraction factor
of OSM-GMRES is ρ = 1 − O(h1/4), i.e. 72/60 ≈ 1.2, 87/72 ≈ 1.2 which are close
to 21/4. For preconditioned (additive Schwarz) conjugate gradient method, we have
ρ = 1−O(

√
h).

We would like to comment on the size of the augmented system. In case of mesh
size h0/16 we have 19,032 DOFs for the primal variable uh and 1,296 DOFs for the
interface unknowns. Therefore the augmented system is very little changed in size
compared to the original system.

7. Conclusion. We have presented and analyzed classical and optimized Schwarz
methods for IPH discretizations. The interesting fact is that both use Robin trans-
mission conditions, but we proved that for an arbitrary two-subdomain decomposition
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Table 6.3
Number of iterations required by OSM-GMRES and PCG to reach the desired tolerance.

Mesh size h0 h0/2 h0/4 h0/8 h0/16
OSM-GMRES 20 52 60 72 87
PCG 14 38 55 104 154

the classical Schwarz algorithm has a convergence factor 1−O(h), while the optimized
one has a contraction factor 1 − O(

√
h). This is because the IPH discretization im-

poses a bad choice of the Robin parameter on the method. We then generalized the
definition of the algorithms to the multi-subdomain case, and showed by numerical
experiments that our theoretical results still hold. We finally illustrated the potential
benefit that one obtains using OSM as a preconditioner compared to PCG.

Appendix. In this part we provide some proofs regarding the extension by zero
operator, θi(·). First we recall inverse and mass matrix inequalities; see [25, Appendix
B] and references therein. All constants are independent of h. Let w ∈ P

1(K) where
K is a simplex in R

d. Then the inverse inequality

(A.1) ‖∇w‖K ≤ c

h
‖w‖K

holds. Let w be the DOFs of w and Md be the corresponding mass matrix. Then we
have

c1 h
d w⊤w ≤ w⊤Mdw ≤ c2 h

dw⊤w.

Lemma A.1. Let ϕ ∈ Λh and θi(ϕ) be its extension by zero operator into Ωi.
For an element K which shares an edge with the interface, we have

‖∇θi(ϕ)‖2K ≤ C1h
−1‖ϕ‖2e,

‖θi(ϕ)‖2K ≤ C2 h‖ϕ‖2e.

Proof. Let ϕe := (ϕ1, ϕ2) be the DOFs of ϕ on the edge shared with the interface.
Moreover let w = θi(ϕ)|K . Then we have w = (ϕ1, ϕ2, 0). For the first inequality we
invoke the inverse inequality. Assuming the mesh is quasi-uniform, i.e. he ≈ hK ≈ h,
we get

‖∇w‖2K ≤ c2

h2 ‖w‖2K ≤ c1h
d−2(ϕ2

1 + ϕ2
2 + 0)

≤ c2h
d−2h

−(d−1)
e ϕ⊤

e Md−1ϕe

≤ c3h
−1ϕ⊤

e Md−1ϕe

= c3h
−1‖ϕ‖2e.

The proof for the second inequality follows the same steps.
Lemma A.2. Let ϕ ∈ Λh and θi(ϕ) be its extension by zero operator into Ωi.

Then

‖[[θi(ϕ)]]‖2Ei
≤ C‖ϕ‖2Γ,

where C ≥ 1.



24 Martin J. Gander and Soheil Hajian

Proof. We start by those edges which are part of the interface, see Figure 3.1,
e.g. e1 and e3. We have

∑

e∈Γ

‖[[θi(ϕ)]]‖2e =
∑

e∈Γ

‖θi(ϕ)‖2e =
∑

e∈Γ

‖ϕ‖2e = ‖ϕ‖2Γ,

which shows already that C ≥ 1. Consider those edges e ∈ Ei that are not on the
interface but belong to an element which shares an edge with the interface, e.g. e∗ :=
∂K1 ∩ ∂K2 in Figure 3.1. Let ϕe := (ϕ1, ϕ2) be the DOFs of ϕ on e2 and assume ϕ2

is the DOF which is also located on e∗. Then we have

‖[[θi(ϕ)]]‖2e∗ = (ϕ2, 0)Md−1(ϕ2, 0)
⊤ ≤ chd−1

e∗ ϕ2
2 ≤ chd−1

e∗ (ϕ2
2 + ϕ2

1) ≤ c1‖ϕ‖2e,

where we again used the quasi-uniformity of the mesh (he ≈ h ≈ he∗). The other case
would be K1 and K3 share an edge, for which we can use the same argument. For
other edges [[θi(ϕ)]] is simply zero.
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