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Abstract. We consider as given a discrete time financial market with a risky asset and options

written on that asset and determine both the sub- and super-hedging prices of an American option

in the model independent framework of [6]. We obtain the duality of results for the sub- and super-

hedging prices, as well as the existence of the optimal hedging strategies. For the sub-hedging prices

we discuss whether the sup and inf in the dual representation can be exchanged (a counter example

shows that this is not true in general). For the super-hedging prices we discuss several alternative

definitions and argue why our choice is more reasonable. Then assuming that the path space is

compact, we construct a discretization of the path space and demonstrate the convergence of the

hedging prices at the optimal rate. The latter result would be useful for numerical computation of

the hedging prices. Our results generalize those of [8] to the case when static positions in (finitely

many) European options can be used in the hedging portfolio.

1. Introduction

We consider the problem of pricing and semi-static hedging of American options in the model

uncertainty set-up of [6]. In semi-static hedging stocks are traded dynamically and options are

traded statically. This formulation is frequently used in the literature since options are less liquid

than stocks (see e.g. [7]). In this setting, so far only the super-hedging prices of (path dependent)

European options under (non-dominated) model uncertainty were considered: see e.g. [1], [4] and

[6]. [9] obtained these results for a continuous time financial market. Some results are available on

the pricing of American options in the model independent framework without the static hedging

in options. See for example [8] for duality results in discrete time set-up, and [2, 10, 13] for similar

duality results and in particular the analysis of the related optimal stopping problem.

In this paper, we consider the problems of sub- and super-hedging of American options using

semi-static trading strategies in the model independent set-up of [6]. We first obtain the duality

results for both the sub- and super-hedging prices, as well as the existence of the optimal hedging

strategies. Then for compact state spaces we show how to discretize it in order to obtain the optimal

rate of convergence.

In the first part of this paper, we focus on the sub-and super-hedging dualities. For the sub-

hedging prices we discuss whether the sup and inf in the dual representation can be exchanged.

We show that the exchangeability may fail in general unless there is no hedging option. For the
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super-hedging prices we discuss several alternative definitions. The correct definition involves “non-

anticipative” strategies, which is quite different from the one in the classical case when there is no

hedging option. As for the existence for the optimal hedging strategies, we first develop a new

proof to obtain the existence of an optimal static hedge. Then we use the non-dominated optimal

stopping to obtain the optimal trading strategy in the stock for sub-hedging problem, and the

optional decomposition for super-hedging.

In the second part of this paper, we concentrate on how to use hedging prices in the discretized

market to approximate the ones in the original market. This approximation is useful for numerical

computations since in the discretized market the state space is finite, and thus there exists a

dominating measure on it. Our approximation result is a generalization of [8], but in our case

the construction of the approximation becomes much more complicated due to the presence of the

hedging options. In particular, in contrast to [8], it is not a priori clear that the discretized market

is free of arbitrage. We also show how to pick the prices of the hedging options in the discretized

market in order to obtain the optimal convergence rate. One should note that, although in [8] the

no-arbitrage notions of [1] and [6] coincide (see Appendix D), in our case they are different since

there are hedging options available. We choose to work in the framework of [6].

The rest of the paper is organized as follows: We obtain the duality results for the sub- and super-

hedging prices of American options in Sections 2 and 3, respectively. In Section 4, we discretize the

path space and show that hedging prices in the discretized market converge to the original ones. The

appendix is devoted to verify some of the statements we make in Sections 1, 2 and 3. Of particular

interest, in that section, is the analysis of the adverse optimal stopping problems for nonlinear

expectations in discrete time, which resolves the optimal stopping problems in [8] for more general

state spaces (see Appendix B). This result is useful particularly in showing the existence of the

optimal sub-hedging strategy. The existence of the optimal super hedging strategy is a consequence

of the non-dominated optional decomposition theorem [6] and the analysis in Appendix C.

The remainder of this section is devoted to setting up the notation used in the rest of the paper.

1.1. Notation. We use the set-up in [6]. Let T ∈ N be the time Horizon and let Ω1 be a Polish

space. For t ∈ {0, 1, . . . , T}, let Ωt := Ωt
1 be the t-fold Cartesian product, with the convention that

Ω0 is a singleton. We denote by Ft the universal completion of B(Ωt) and write (Ω,F) for (ΩT ,FT ).

For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given a nonempty convex set Pt(ω) ⊂ P(Ω1) of

probability measures. Here Pt represents the possible models for the t-th period, given state ω at

time t. We assume that for each t, the graph of Pt is analytic, which ensures that Pt admits a

universally measurable selector, i.e., a universally measurable kernel Pt : Ωt → P(Ωt) such that

Pt(ω) ∈ Pt(ω) for all ω ∈ Ωt. Let

P := {P0 ⊗ . . .⊗ PT−1 : Pt(·) ∈ Pt(·), t = 0, . . . , T − 1}, (1.1)

where each Pt is a universally measurable selector of Pt, and

P0 ⊗ . . .⊗ PT−1(A) =

∫
Ω1

. . .

∫
Ω1

1A(ω1, . . . , ωT )PT−1(ω1, . . . , ωT−1; dωT ) . . . P0(dω1), A ∈ Ω.
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Let St : Ωt → R be Borel measure, which represents the price at time t of a stock S that can be

traded dynamically in the market. Let g = (g1, . . . , ge) : Ω→ Re be Borel measurable, representing

the options that can only be traded at the beginning at price 0. Assume NA(P) holds, i.e, for all

(H,h) ∈ H × Re,

(H · S)T + hg ≥ 0 P − q.s. implies (H · S)T + hg = 0 P − q.s.,

whereH is the set of predictable processes representing trading strategies, (H·S)T =
∑T−1

t=0 Ht(St+1−
St), and hg denotes the inner product of h and g. Then from [6, FTAP], for all P ∈ P, there exists

Q ∈ Q such that P � Q, where

Q := {Q martingale measure1 : EQ[gi] = 0, i = 1, . . . , e, and ∃P ′ ∈ P, s.t. Q� P ′}.

In the next section we will consider an American option with pay-off stream Φ. We will assume

that Φ : {0, . . . , T}×Ω→ R is adapted2. Let T be the set of stopping times with respect to the raw

filtration (B(Ωt))
T
t=0, and Tt ⊂ T the set of stopping times that are no less than t. For t = 0, . . . , T

and ω ∈ Ωt, define

Qt(ω) := {Q ∈ P(Ω1) : Q� P, for some P ∈ Pt(ω), and EQ[∆St+1(ω, ·)] = 0}.

By [6, Lemma 4.8], there exists a universally measurable selector Qt such that Qt(·) ∈ Qt(·) on

{Qt 6= ∅}. Using these selectors we define for t ∈ {0, . . . , T − 1} and ω ∈ Ωt,

Mt(ω) := {Qt ⊗ . . .⊗QT−1 : Qi(ω, ·) ∈ Qi(ω, ·) on {Qi(ω, ·) 6= ∅}, i = t, . . . , T − 1} ,

which is similar to (1.1) but starting from time t instead of time 0. In particular M0 =M, where

M := {Q martingale measure : ∃P ∈ P, s.t. Q� P}. (1.2)

We will assume in the rest of the paper that the graph of Mt is analytic, t = 0, . . . , T − 1. Below

we provide a general sufficient condition for the analyticity of graph(Mt) and leave its proof to

Appendix A.

Proposition 1.1. For t = 0, . . . , T − 1 and ω ∈ Ωt, define

Pt(ω) := {Pt ⊗ . . .⊗ PT−1 : Pi(ω, ·) ∈ Pi(ω, ·), i = t, . . . , T − 1},

where each Pi is a universally measurable selector of Pi. If graph(Pt) is analytic, then graph(Mt)

is also analytic.

For any measurable function f and probability measure P , we define the P -expectation of f as

EP [f ] = EP [f+]− EP [f−] with convention ∞−∞ = −∞. We use | · | to denote the sup norm in

various cases. For ω ∈ Ω and t ∈ {0, . . . , T}, we will use the notation ωt ∈ Ωt to denote the path

up to time t. For a given function f defined on Ω, let us denote

Eτ (f)(ω) := inf
Q∈Mτ(ω)(ω

τ(ω))
EQ[f(ωτ(ω), ·)], ω ∈ Ω,

1That is, Q satisfies EQ[|St+1| |Ft] <∞ and EQ[St+1|Ft] = St, Q-a.s. for t = 0, . . . , T − 1.
2Unless otherwise specified the measurability and related concepts (adaptedness, etc) are with respect to the

filtration (Ft)Tt=0.
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and

Eτ (f)(ω) := sup
Q∈Mτ(ω)(ω

τ(ω))

EQ[f(ωτ(ω), ·)], ω ∈ Ω.

We use the abbreviations u.s.a. for upper-semianalytic, l.s.c. for lower-semicontinuous, and u.s.c.

for upper-semicontinuous.

2. Sub-hedging Duality

We define the sub-hedging price of the American option as

π(Φ) := sup {x ∈ R : ∃(H, τ, h) ∈ H × T × Re, s.t. Φτ + (H · S)T + hg ≥ x, P − q.s.} . (2.1)

Remark 2.1. In the above definition, we require the trading in the stock S to be up to time T

instead of τ . This is because it is possible that the maturities of some options in g are later than τ .

When there is no hedging options involved, for sub-hedging (and in fact also super-hedging) trading

S up to time T is equivalent to up to time τ (e.g. see the beginning of the proof of [3, Proposition

6.1]).

We have the following duality theorem for sub-hedging prices.

Theorem 2.1. Assume that Φt is l.s.a. for t = 1, . . . , T . Then

π(Φ) = sup
τ∈T

inf
Q∈Q

EQ[Φτ ]. (2.2)

Moreover, if supQ∈MEQ[|g|] < ∞, supQ∈MEQ[max0≤t≤T |Φt|] < ∞, and for any h ∈ Re and

t ∈ {0, . . . , T − 1}, the maps Φt + E t(hg) and φ : Ω 7→ Re defined by

φ = E t
(

inf
τ∈Tt+1

E t+1 (Φτ + Eτ (hg))

) (
or φ = E t

(
sup

Q∈Mt+1

inf
τ∈Tt+1

EQ (Φτ + Eτ (hg))

))
are Borel measurable, then there exists (H∗, τ∗, h∗) ∈ H × T × Re, such that

Φτ∗ + (H∗ · S)T + h∗g ≥ π(Φ), P − q.s. (2.3)

Proof. For any τ ∈ T , define

π(Φτ ) := sup {x ∈ R : ∃(H,h) ∈ H × Re, s.t. Φτ + (H · S)T + hg ≥ x, P − q.s.} .

Since Φt is u.s.a. and τ is a stopping time with respect to the raw filtration, it follows that Φτ is

u.s.a. Then applying [6, Theorem 5.1 (b)], we get

π(Φτ ) = inf
Q∈Q

EQ[Φτ ] =⇒ sup
τ∈T

π(Φτ ) = sup
τ∈T

inf
Q∈Q

EQ[Φτ ].

Since π(Φ) ≥ π(Φτ ), ∀τ ∈ T , it follows that π(Φ) ≥ supτ∈T π(Φτ ). Therefore, it remains to show

that π(Φ) ≤ supτ∈T π(Φτ ). For any ε > 0, there exists x ∈ (π(Φ) ∧ (1/ε) − ε, π(Φ) ∧ (1/ε)] and

(Hε, τ ε, hε) ∈ H × T × Re satisfying

Φτε + (Hε · S)T + hεg ≥ x, P − q.s.

As a result,

π(Φ) ∧ 1

ε
− ε < x ≤ π(Φτε) ≤ sup

τ∈T
π(Φτ ),
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from which (2.2) follows since ε is arbitrary.

Let us turn to the proof of the existence of the optimal sub-hedging strategies. Similar to the

proof above, we can show that

π(Φ) = sup
h∈Re

sup
τ∈T

sup{x : ∃H ∈ H, s.t. Φτ+(H ·S)T +hg ≥ x, P−q.s.} = sup
h∈Re

sup
τ∈T

inf
Q∈M

EQ[Φτ+hg].

We shall first show in two steps that the optimal h∗ exists for the above equations.

Step 1: We claim that 0 is in the relative interior of the convex set {EQ[g], Q ∈M}. If not, then

there exists h ∈ Re, such that EQ[hg] ≤ 0, for any Q ∈ M, and moreover there exists Q̄ ∈ M,

such that EQ̄[hg] < 0. By [6, Theorem 4.9], the super-hedging price of hg (using only the stock) is

supQ∈MEQ[hg] ≤ 0, and there exists H ∈ H, such that

(H · S)T ≥ hg, P − q.s.

Then EQ̄[(H · S)T − hg] > 0, and thus, for any P ∈ P dominating Q̄, we have that

P ((H · S)T − hg > 0) > 0,

which contradicts NA(P).

Step 2: Since 0 is a relative interior point of {EQ[g], Q ∈ M}, and supQ∈MEQ[max0≤t≤T |Φt|] <
∞, we know that

π(Φ) = sup
h∈Re

sup
τ∈T

inf
Q∈M

EQ[Φτ + hg] = sup
h∈K

sup
τ∈T

inf
Q∈M

EQ[Φτ + hg]

where K is a compact subset of Re. Define the map ϕ : Re 7→ R by

ϕ(h) = sup
τ∈T

inf
Q∈M

EQ[Φτ + hg].

The function ϕ is continuous since |ϕ(h) − ϕ(h′)| ≤ e|h − h′| supQ∈MEQ|g|. Hence, there exists

h∗ ∈ K ⊂ Re such that

π(Φ) = sup
τ∈T

inf
Q∈M

EQ[Φτ + h∗g] = sup
τ∈T

inf
Q∈M

EQ[Φτ + Eτ (h∗g)], (2.4)

where the second equality above follows from [12, Theorem 2.3]. Using the measurability assump-

tions in the statement of this theorem, we can apply Theorem B.1, and obtain a τ∗ ∈ T that is

optimal for (2.4), i.e.,

π(Φ) = inf
Q∈M

EQ[Φτ∗ + Eτ∗(h∗g)] = sup
τ∈T

inf
Q∈M

EQ[Φτ + h∗g]

= sup{x : ∃H ∈ H, s.t. Φτ∗ + (H · S)T + h∗g ≥ x, P − q.s.} (2.5)

Then by [6, Theorem 4.9], there exists a strategy H∗ ∈ H, such that (2.3) holds. �
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2.1. Exchangeability of the supremum and infimum in (2.2). When there are no options

available for static hedging (then Q =M), Q is closed under pasting. Using this property we show

in Theorem B.1 and Proposition B.1 that the order of “inf” and “sup” in (2.2) can be exchanged

under some reasonable assumptions. These conclusions cover the specific results of [8] which works

with a compact path space. (Although, our no arbitrage assumption seems to be different than

the one in [8], we verify in Proposition D.1 that they are the same when there are no options, i.e.,

e = 0.) The same holds true for our super-hedging result in the next section.

In general, Q may not be stable under pasting due to the distribution constraints imposed by

having to price the given options correctly. Then whether the “inf” and “sup” in (2.2) can be

exchanged is not clear, and in fact may not be possible as the example below demonstrates.

Example 2.1. We consider a two-period model as described by the figure above. The stock price

process is restricted to the finite path space indicated by the graph, where S(t) is the stock price at

time t, t = 0, 1, 2. Let P be all the probability measures on this path space. Then each martingale

measure Q ∈ M can be uniquely characterized by a pair (p, q), 0 ≤ p, q ≤ 1/2, as indicated in the

graph. Assume there is one European option g = [S(2)− 3]+ − 5/6 that can be traded at price 0.

Let Φ be the payoff of a path-independent American option that needs to be hedged. In the graph,

the number in each circle right below the rectangle (node) represents the value of Φ when the stock

price is at that node.

Each Q ∈ Q ⊂ M is characterized by (p, q) with the additional condition: p + q = 2/3. There

are in total 5 stopping strategies: stop at node S(0) = 3, or continue to node S(1) = k, k = 2, 4,

then choose either to stop or to continue. It is easy to check that

sup
τ∈T

inf
Q∈Q

EQ[Φτ ] = 0 ∨ 11

24
∨

1

8
+ inf

0≤p,q≤1/2
p+q=2/3

q

 ∨
 inf

0≤p,q≤1/2
p+q=2/3

p

2
+

1

3

 ∨
 inf

0≤p,q≤1/2
p+q=2/3

(p
2

+ q
) =

11

24
,
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and

inf
Q∈Q

sup
τ∈T

EQ[Φτ ] = inf
0≤p,q≤1/2
p+q=2/3

[
1

2

(
p ∨ 1

4
+ 2q ∨ 2

3

)
∨ 0

]
=

1

2
> sup

τ∈T
inf
Q∈Q

EQ[Φτ ].

3. The Super-hedging Duality

We define the super-hedging price as

π(Φ) := inf
{
x ∈ R : ∃(H,h) ∈ H′ × Re, s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T

}
, (3.1)

where H′ is the set of processes that have the “non-anticipativity” property, i.e.,

H′ := {H : T 7→ H, s.t. Ht(τ
1) = Ht(τ

2), ∀t < τ1 ∧ τ2}. (3.2)

In other words, the seller of the American option is allowed to adjust the trading strategy according

to the stopping time τ after it is realized.

The following is our duality theorem for the super-hedging prices.

Theorem 3.1. Assume that for (ω, P ) ∈ ΩT ×P(ΩT−t),

the map (ω, P ) 7→ sup
τ∈Tt

EP [Φτ (ωt, ·)] is u.s.a., t = 1, . . . , T. (3.3)

Then

π(Φ) = inf
h∈Re

sup
τ∈T

sup
Q∈M

EQ[Φτ − hg]. (3.4)

Moreover, if supQ∈MEQ[|g|] <∞ and supQ∈MEQ[max0≤t≤T |Φt|] <∞, then there exists (H∗, h∗) ∈
H′ × Re, such that

π(Φ) + (H∗ · S)T + h∗g ≥ Φτ , P − q.s., ∀τ ∈ T . (3.5)

Proof. An argument similar to the one used in the proof of Theorem 2.1 implies that π(Φ) =

infh∈Re π(Φ, h), where

π(Φ, h) = inf
{
x ∈ R : ∃H ∈ H′, s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T

}
.

It is easy to see that π(Φ, h) ≥ supτ∈T supQ∈MEQ[Φτ − hg]. In what follows we will demonstrate

the reverse inequality. Define

Vt = sup
τ∈Tt
E t(Φτ − hg). (3.6)

Using assumption (3.3), we apply Proposition C.1 to show that Vt is u.s.a., Ft-measurable and a

super-martingale under each Q ∈M. As a result, we can apply the optional decomposition theorem

for the nonlinear expectations [6, Theorem 6.1], which implies that there exists H ′ ∈ H, such that

for any τ ∈ T ,

V0 + (H ′ · S)τ ≥ Vτ = sup
ρ∈Tτ
Eτ (Φρ − hg) ≥ Φτ + Eτ (−hg), P − q.s. (3.7)

Let us also define

Wt := E t(−hg).
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Thanks to Proposition C.1, we can apply [6, Theorem 6.1] again and get that there exists H ′′ ∈ H,

such that for any τ ∈ T ,

Wτ + (H ′′ · S)τ,T = Eτ (−hg) + (H ′′ · S)τ,T ≥WT = −hg, P − q.s., (3.8)

where (H ′′ · S)τ,T =
∑T−1

i=τ H
′′
i [Si+1 − Si]. Combining (3.7) and (3.8), we get that

V0 + (H · S)T + hg ≥ Φτ , ∀τ ∈ T , P − q.s.,

where Ht = H ′t1{t<τ} +H ′′t 1{t≥τ}. Note that H ′ in (3.7) is independent of τ , which implies that H

is indeed in H′. Hence, V0 = supτ∈T supQ∈MEQ[Φτ − hg] ≥ π(Φ, h).

As in the proof of Theorem 2.1, there exists h∗ ∈ Re that is optimal for (3.4):

π(Φ) = sup
τ∈T

sup
Q∈M

EQ[Φτ − h∗g] = π(Φ, h∗).

Also observe from the proof above that there exists H∗ ∈ H′, such that

π(Φ, h∗) + (H∗ · S)T + h∗g ≥ Φτ , P − q.s., ∀τ ∈ T ,

which implies (3.5). �

Proposition 3.1 (A sufficient condition on the assumption (3.3) of Theorem 3.1). Assume that

Φt is l.s.c. and bounded from below for t = 1, . . . , T . Then for (ω, P ) ∈ ΩT × P(ΩT−t), the map

(ω, P ) 7→ supτ∈Tt EP [Φτ (ωt, ·)] is l.s.c., and thus u.s.a, t = 1, . . . , T .

Proof. If Φ is uniformly continuous in ω with modulus of continuity ρ, then for (nω, Pn)→ (ω, P ),

we have that

sup
τ∈Tt

EPn [Φτ ((nω)t, ·)]− sup
τ∈Tt

EP [Φτ (ωt, ·)]

= sup
τ∈Tt

EPn [Φτ ((nω)t, ·)]− sup
τ∈Tt

EPn [Φτ (ωt, ·)] + sup
τ∈Tt

EPn [Φτ (ωt, ·)]− sup
τ∈Tt

EP [Φτ (ωt, ·)]

≥ −ρ(||nω − ω||) + sup
τ∈Tt

EPn [Φτ (ωt, ·)]− sup
τ∈Tt

EP [Φτ (ωt, ·)]. (3.9)

Noting that the map P 7→ supτ∈Tt EP [Φτ (ωt, ·)] is l.s.c. (e.g, see in [11, Theorem 1.1]), we know

that the map (P, ω) 7→ supτ∈Tt EP [Φτ (ωt, ·)] is l.s.c. by taking the limit in (3.9). In general, if Φt

be l.s.c. and bounded from below, then there exists uniformly continuous functions (Φn
t )n, such

that Φn
t ↗ Φt pointwise (see e.g., [5, Lemma 7.14]), t = 1, . . . , T . Therefore,

sup
τ∈Tt

EP [Φτ (ωt, ·)] = sup
τ∈Tt

sup
n
EP [Φn

τ (ωt, ·)] = sup
n

sup
τ∈Tt

EP [Φn
τ (ωt, ·)],

which implies that the map (ω, P ) 7→ supτ∈Tt EP [Φτ (ωt, ·)] is l.s.c. �

3.1. Comparison of several definitions of super-hedging. In the duality result (3.4), one

would expect that π(Φ) = supτ∈T supQ∈QEQ[Φτ ]. More precisely, if the orders in (3.4) could be

exchanged for then we would have

π(Φ) = inf
h∈Re

sup
τ∈T

sup
Q∈M

EQ[Φτ − hg] = sup
τ∈T

sup
Q∈M

inf
h∈Re

EQ[Φτ − hg] = sup
τ∈T

sup
Q∈Q

EQ[Φτ ].
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But the latter is in fact equal to

π̂(Φ) := inf{x ∈ R : ∀τ ∈ T ,∃(H,h) ∈ H × Re, s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s.}. (3.10)

That is,

π̂(Φ) = sup
τ∈T

sup
Q∈Q

EQ[Φτ ]. (3.11)

Since for the definition of π̂ in (3.10) the seller knows the buyer’s stopping strategy τ in advance

(which is unreasonable for super-hedging), we may expect that in general it is possible π(Φ) > π̂(Φ).

We shall provide Example 3.1 showing π(Φ) > π̂(Φ) at the end of this section.

An alternative way to define the super-hedging price is:

π̃(Φ) := inf {x ∈ R : ∃(H,h) ∈ H × Re, s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T } . (3.12)

However, this definition is not as useful since any reasonable investor would adjust her strategy after

observing how the buyer of the option behaves. (In fact, H can be treated as a subset of H′, and

each element in H is indifferent to stopping strategies used by the buyer, and the non-anticipativity

is automatically satisfied.) Due to the fact that for π̃ the seller fails to use the information of the

realization of τ , it could very well be the case that π(Φ) < π̃(Φ). We shall see in Example 3.1 that

it is indeed the case.

If P is the set of all probability measures on a subset Ω′ of Ω, then under the definition of (3.12),

super-hedging the American option is equivalent to super-hedging the lookback option maxt≤T Φt.

To wit, suppose for x ∈ R and (H,h) ∈ H × Re, we have that

x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ω′, ∀τ ∈ T , (3.13)

and

x+ (H · S)T + hg < max
t≤T

Φt, along some path s∗ = (s∗0 = 1, s∗1, . . . , s
∗
T ) ∈ Ω′.

Let t∗ = arg maxt≤T Φt(s
∗) and define τ∗ ∈ T with the property that τ(s∗) = t∗, i.e., the holder of

the American option will stop at time t∗ once she observes (s∗0, . . . , s
∗
t∗) happens. Then (3.13) does

not hold if we take τ = τ∗ and s = s∗. So the super-hedging price under the definition of (3.12) is:

π̃(Φ) = sup
Q∈Q

EQ

[
max
t≤T

Φt

]
.

Example 3.1 below shows that it is possible that π̂(Φ) < π(Φ) < π̃(Φ), which indicates that the

super-hedging definitions in (3.10) and (3.12) are unreasonable.

Example 3.1. We will use the set-up in Example 2.1. An easy calculation shows that

π(Φ) = inf
h∈R

sup
Q∈M

sup
τ∈T

EQ[Φτ − hg] = inf
h∈R

sup
0≤p,q≤1/2

[
p

2
∨ 1

8
+ q ∨ 1

3
− h

(
p

2
+
q

2
− 1

3

)]
= inf

h∈R

[(
11

24
+
h

3

)
∨
(

5

8
+

h

12

)
∨
(

7

12
+

h

12

)
∨
(

3

4
− h

6

)]
=

2

3
,

where the infimum is attained when h = 1/2. On the other hand,

π̃(Φ) = sup
Q∈Q

EQ

[
max
t≤T

Φt

]
= sup

0≤p,q≤1/2
p+q=2/3

(
3

8
p+

2

3
q +

11

24

)
=

41

48
> π(Φ),



10

and

π̂(Φ) = sup
τ∈T

sup
Q∈Q

EQ[Φτ ] = sup
0≤p,q≤1/2
p+q=2/3

(
p

2
∨ 1

8
+ q ∨ 1

3

)
=

5

8
< π(Φ).

4. Approximating the hedging-prices by discretizing the path space

In this section, we take P to be the set of all the probability measures on Ω and consider the

hedging problems path-wise. We will make the same no-arbitrage assumption and also assume that

no hedging option is redundant (see Assumption 4.1(ii)). We will discretize the path space to obtain

a discretized market, and show that the hedging prices in the discretized market converges to the

original ones. We also get the rate of convergence. Theorems 4.2 and 4.3 are the main results of

this section.

We will now collect some notation that will be used in the rest of this section. The meaning of

some of the parameters will become clear when they first appear in context.

4.1. Notation.

• Ω = {1}× [a1, b1]× . . .× [aT , bT ], where 0 ≤ aT < . . . < a1 < 1 < b1 < . . . < bT <∞. (This

means that the wingspan of the discrete-time model is growing as for example it does in a

binomial tree market.)

• Ωn = Ω ∩ {0, 1/2n, 2/2n, . . . }T+1.

• P all the probability measures on Ω.

• Pn all the probability measures on Ωn.

• Q := {Q martingale measure on Ω : EQgi = 0, i = 1, . . . , e}.
• Qn := {Q martingale measure on Ωn : EQgi = cni , i = 1, . . . , e}.
• H is the set of trading strategiesH = (Hi)

T−1
i=0 consists of functionsHi defined on

∏i
j=1[ai, bi], i =

0, . . . , T − 1.

• Hn is the set of trading strategies H = (Hi)
T−1
i=0 consists of functions Hi defined on∏i

j=1[anj , b
n
j ] ∩ {0, 1/2n, 2/2n, . . . }i, i = 0, . . . , T − 1.

• T is the set of stopping times τ : Ω → {0, 1, . . . , T}, i.e., for k = 0, 1, . . . , T, sj =

(sj0, . . . , s
j
T ) ∈ Ω, j = 1, 2,

if τ(s1) = k, and s1
i = s2

i , i = 0, . . . , k, then τ(s2) = k.

• T n is the set of stopping times τ : Ωn → {0, 1, . . . , T}.
• H′ := {H : T 7→ H, s.t. Ht(τ

1) = Ht(τ
2), ∀t < τ1 ∧ τ2}.

• Hn′ := {H : T n 7→ Hn, s.t. Ht(τ
1) = Ht(τ

2), ∀t < τ1 ∧ τ2}.
• | · | represents the sup norm in various cases.

• D = ∪n{0, 1/2n, 2/2n, . . . }.

4.2. Original market. We restrict the price process, denoted by S = (S0, . . . , ST ), to take values

in some compact set Ω. In other words, we take S to be the canonical process Si(s0, . . . , sT ) = si

for any (s0, . . . , sT ) ∈ Ω, and denote by {Fi}i=1,... ,T the natural filtration generated by S. The

options (gi)
e
i=1, which can be bought at price 0, and the American option Φ are continuous. We

assume that NA(P) holds and that no hedging option is redundant, i.e., it cannot be replicated by
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the stock and other options available for static hedging. Besides, from the structure of Ω, we know

that for H ∈ H, if (H · S)T ≥ 0, ∀s ∈ Ω, then H ≡ 0. Thus, we will make the following standing

assumption.

Assumption 4.1. (i) g and Φ are continuous. (ii) For any (H,h) ∈ H × Re, if h 6= 0, then there

exists s ∈ Ω, such that along the path s,

(H · S)T + hg < 0.

Example 4.1. Consider the market with Ω = {1} × [2/3, 4/3]× [1/3, 5/3], with a European option

(S2 − 1)+ − 1/5 that can be traded at price 0. A simple calculation can show that Assumption 4.1

is satisfied.

We consider the sub-hedging price π(Φ) and the super-hedging price π(Φ) with respect to (Ω,P),

i.e.,

π(Φ) := sup {x ∈ R : ∃(H, τ, h) ∈ H × T × Re, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω} ,

and

π(Φ) := inf
{
x ∈ R : ∃(H,h) ∈ H′ × Re, s.t. x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ω, ∀τ ∈ T

}
.

Recall that π(Φ) and π(Φ) satisfy the dualities in (2.2) and (3.4) respectively.

4.3. Discretized market. For simplicity, we assume that ai, bi ∈ D, i = 1, . . . , T , in the notation

of Ω, and we always start from n large enough, such that Ωn has the end points ai, bi at each time i.

Let {cn = (cn1 , . . . , c
n
e )}n be a sequence such that |cn| → 0. Now for each n, consider the following

discretized market: The stock price process takes values in the path space Ωn, and the options

(gi)
e
i=1 can be traded at the beginning at price (cni )ei=1.

We consider the sub-hedging price πn(Φ) and the super-hedging price πn(Φ) with respect to

(Ωn,Pn), i.e.,

πn(Φ) := sup {x ∈ R : ∃(H, τ, h) ∈ Hn × T n × Re, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn} ,

and

πn(Φ) := inf
{
x ∈ R : ∃(H,h) ∈ Hn′ × Re, s.t. x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ωn, ∀τ ∈ T n

}
.

Recall that πn(Φ) and πn(Φ) satisfy the dualities in (2.2) and (3.4) respectively.

Remark 4.1. Assuming ai, bi ∈ D and the points in Ωn is equally spaced is without loss of generality.

In fact, as long as Ωn ∩ Ω are increasing and ∪n(Ωn ∩ Ω) = Ω, we will have the same results with

only a little adjustment in the proofs.



12

4.4. Consistency. The following theorem states that for n large enough, the discretized market is

well defined, i.e., NA(Pn) holds.

Theorem 4.1. For n large enough, NA(Pn) holds.

Proof. If not, then there exists (Hn, hn) ∈ Hn × Re, such that

(Hn · S)T + hn(g − cn) ≥ 0, ∀s ∈ Ωn, (4.1)

and is strictly positive along some path in Ωn. Obviously, hn 6= 0, so without loss of generality we

will assume that |hn| = 1. On the other hand, since g is continuous on a compact set it is bounded.

Then there exists a constant C > 0 independent of n, such that

(Hn · S)T > −C. (4.2)

We will need the following result in order to carry out the proof of the theorem. We preferred

to separate this result from the proof of the theorem since it will be used again in the proof of the

convergence result.

Lemma 4.1. If (Hn · S)T > −C, then there exists a constant M = M(C) > 0 independent of n,

such that |Hn| ≤M .

Proof. Let α := min1≤i≤T {ai−1 − ai, bi − bi−1} > 0, with a0 := b0 := 1. We will prove this by an

induction argument. Take the path (s0 = 1, s1 = a1, s2 = a1, . . . , sT = a1), then (4.2) becomes

Hn
0 (a1 − 1) > −C,

which implies Hn
0 < C/α. Similarly, we can show that Hn

0 > −C/α by taking the path (s0 =

1, s1 = b1, s2 = b1, . . . , sT = b1). Hence, Hn
0 is bounded uniformly in n. Now assume there exists

K = K(C) > 0 independent of n, such that |Hn
j | ≤ K, j ≤ i − 1 ≤ T − 1. Since Ωn is uniformly

bounded and by the induction hypothesis, we have that

T−1∑
j=i

Hn
j (s1, . . . , sj)(sj+1 − sj) > −C ′,

where C ′ > 0 only depends on C. For any (s1, . . . , si) ∈
∏i
j=1([aj , bj ] ∩ {k/2n, k ∈ N}), by taking

the paths (1, s1, . . . , si, si+1 = ai+1, . . . , sT = ai+1) and (1, s1, . . . , si, si+1 = bi+1, . . . , sT = bi+1),

we can show that |Hn
i (s1, . . . , si)| ≤ C ′/α. �

Proof of Theorem 4.1 continued. We proved in Lemma 4.1 that |Hn| ≤ M for some M > 0

independent of n. By a standard selection (using a diagonalization argument, e.g., see [14, Page

307]), we can show that there exists a subsequence (Hnk , hnk)
|·|→ (H,h), where H = (Hi)

T−1
i=0

consists of functions Hi defined on
∏i
j=1([aj , bj ] ∩D), i = 0, . . . , T − 1, with |H| ≤M , and h ∈ Re

with |h| = 1. By taking the limit on both sides of (4.1) along (nk), we have

(H · S)T + hg ≥ 0, ∀s ∈ Ω ∩ DT+1. (4.3)

If we can extend the domain of function H from Ω∩DT+1 to Ω, such that the inequality (4.3) still

holds on Ω, we would obtain a contradiction to Assumption 4.1 since h 6= 0.
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Define

Ω̃i = {1} × [a1, b1]× . . .× [ai, bi]×
(
[ai+1, bi+1] ∩ D

)
× . . .×

(
[aT , bT ] ∩ D

)
for i = 1, . . . , T − 1. We will do the extension inductively as follows (the notation for H will not

be changed during the extension):

(i) For each s1 ∈ [a1, b1] \ D, using the standard selection argument, we can choose [a1, b1] ∩ D 3
sn1 → s1, such that for any j ∈ {1, . . . , T − 1} and (s2, . . . , sj) ∈

∏j
k=2

(
[ak, bk] ∩ D

)
, the limit

limn→∞H(sn1 , s2, . . . , sj) exists. Define

Hj(s1, . . . , sj) := lim
n→∞

Hj(s
n
1 , s2, . . . , sj).

Then we extend the domain of H to Ω̃1. It’s easy to check that (4.3) still holds on Ω̃1.

(ii) In general, assume that we have already extended the domain of H to Ω̃i, i ≤ T − 2, such that

(4.3) holds on it. Then for each (s1, . . . , si) ∈
∏i
j=1[aj , bj ] and si+1 ∈ [ai+1, bi+1] \ D, performing

the same selection and extension as in (i) (we fix (s1, . . . , si) while doing the selection), we can see

that (4.3) still holds on Ω̃i+1.

Therefore, we can extend H to Ω̃T−1, such that (4.3) holds. Clearly, (4.3) also holds on Ω. �

4.5. Convergence. We shall prove the convergence result for sub-hedging (Theorem 4.2). The

super-hedging case is similar, and thus we shall only provide the corresponding result (Theorem 4.3)

without proof.

Lemma 4.2. For (Hn, τn, hn) ∈ Hn × T n × Re, if for x ∈ R

Φτn + (Hn · S)T + hn(g − cn) ≥ x, ∀s ∈ Ωn, (4.4)

then (Hn)n and (hn)n are bounded.

Proof. We first show that (hn)n are bounded. If not, by extracting a subsequence, we can without

loss of generality assume that 0 < β < |hn| → ∞. We consider two cases:

(a) |Hn|/|hn| is not bounded. Then we can rewrite (4.4) as(
Hn

|hn|
· S
)
T

≥ − hn

|hn|
(g − cn) +

1

|hn|
Φτn +

x

|hn|
, ∀s ∈ Ωn.

Since g and Φ are continuous on a compact set, they are bounded. Hence, there exists C > 0, such

that (
Hn

|hn|
· S
)
T

≥ −C,

which contradicts with Lemma 4.1.

(b) |Hn|/|hn| is bounded. Let us rewrite (4.4) as(
Hn

|hn|
· S
)
T

+
hn

|hn|
(g − cn) ≥ x+ Φτn

|hn|
, ∀s ∈ Ωn.

Since (x + Φτn)/|hn| → 0, we can follow the proof of Theorem 4.1 to get a contradiction with

Assumption 4.1.

Next we show that (Hn)n is a bounded collection. Let us rewrite (4.4) as

(Hn · S)T ≥ −Φτn − hn(g − cn) + x, ∀s ∈ Ωn.
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Since (hn)n and (g− cn)n are bounded, then right-hand-side is bounded. Therefore, the conclusion

follows from Lemma 4.1. �

Proposition 4.1. For n large enough, there exists some N > 0 independent of n, such that

πn(Φ) = sup {x ∈ R : ∃(H, τ, h) ∈ Hn × T n × Re, |H|, |h| ≤ N, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn} .
(4.5)

and

π(Φ) = sup {x ∈ R : ∃(H, τ, h) ∈ H × T × Re, |H|, |h| ≤ N, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω} .
(4.6)

Proof. Let x := min(t,s)∈{1,... ,T}×Ω Φ(t, s). It is easy to see that

πn(Φ) = sup {x ≥ x : ∃(H, τ, h) ∈ Hn × T n × Re, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn} . (4.7)

For n large enough, the set

{(Hn, hn) ∈ Hn × Re : ∃τ ∈ T n, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn}

is uniformly bounded in n, which is indicated by Lemma 4.2. Since this set of strategies is the

largest among the ones we need to consider for sub-hedging, thanks to (4.7), there exists a constant

N > 0, such that for n large enough,

πn(Φ) = sup {x ≥ x : ∃(H, τ, h) ∈ H × T × Re, |Hn|, |hn| ≤ N s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn} ,

which implies (4.5).

Similarly, we have that the set

{(H,h) ∈ H × Re : ∃τ ∈ T , s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω}

is bounded. Otherwise, there exists (Hm, τm, hm) ∈ H × T × Re, such that

Φτm + (Hm · S)T + hmg ≥ x, ∀s ∈ Ω ∩ DT+1,

with |Hm|+ |hm| → ∞. Then we can use a similar argument to the one in the proof of Theorem 4.1

to get a contradiction. Now (4.6) follows. �

Theorem 4.2. Under Assumption 4.1, we have

lim
n→∞

πn(Φ) = π(Φ). (4.8)

Furthermore, if Φ and g are Lipschitz continuous, then

|πn(Φ)− π(Φ)| = O(1/2n) (4.9)

by taking |cn| = O(1/2n).

Proof. For x ∈ (π(Φ)− ε, π(Φ)], there exists (H, τ, h) ∈ H × T × Re,with |H|, |h| ≤ N , such that

Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω.

Hence,

Φτ + (H · S)T + h(g − cn) ≥ x− eN |cn|, ∀s ∈ Ωn.
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Therefore,

π(Φ)− ε− eN |cn| ≤ x− eN |cn| ≤ πn(Φ).

By letting ε→ 0, we have

πn(Φ) ≥ π(Φ)− eN |cn|. (4.10)

On the other hand, for xn ∈ (πn(Φ) − ε, πn(Φ)], there exists (Hn, τn, hn) ∈ Hn × T n × Re,with

|Hn|, |hn| ≤ N , such that

Φτn + (Hn · S)T + hn(g − cn) ≥ xn, ∀s ∈ Ωn. (4.11)

Consider the map φn : Ω→ Ωn given by

φn(1, s1, . . . , sT ) = (1, b2ns1c/2n, . . . , b2nsT c/2n), ∀(1, s1, . . . , sT ) ∈ Ω.

Also define (H, τ) ∈ H × T as

H(s) = Hn(φn(s)) and τ(s) = τn(φn(s)) (4.12)

Since Φ and g are continuous on a compact set, they are uniformly continuous. Also (Hn, qn)n are

uniformly bounded, and cn → 0. Then from (4.11) we have that for n large enough, the trading

strategy (H, τ) defined in (4.12) satisfies

Φτ + (H · S)T + hng ≥ xn − ε, ∀s ∈ Ω, (4.13)

by noting that φn(s) → s uniformly and τ(s) = τ(φn(s)). Thus, π(Φ) > πn(Φ) − 2ε. Combining

with (4.10), we have (4.14).

If Φ and g are Lipschitz continuous, then we have a stronger version of (4.13):

Φτ + (H · S)T + hng ≥ xn − eN |cn| − C/2n, ∀s ∈ Ω,

where C > 0 is a constant only depends on N, e, T and the Lipschitz constants of Φ and g. Hence,

πn(Φ)− ε− eN |cn| − C/2n ≤ xn − eN |cn| − C/2n ≤ π(Φ).

Letting ε→ 0 and taking |cn| = O(1/2n), and combining with (4.10), we obtain (4.15). �

Similar to the proof of the sub-hedging case, we can show the following convergence result for

super-hedging.

Theorem 4.3. Under Assumption 4.1, we have

lim
n→∞

πn(Φ) = π(Φ). (4.14)

Furthermore, if Φ and g are Lipschitz continuous, then

|πn(Φ)− π(Φ)| = O(1/2n) (4.15)

by taking |cn| = O(1/2n).
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4.6. A suitable construction for cn and Qn. In Section 4.4 we obtained that as long as cn → 0,

then for n large enough, NA(Pn) holds, which implies Qn 6= ∅ (see [1, Theorem 1.3] or [6, FTAP]).

The theorem below gives a more specific way to construct cn, such thatQn 6= ∅ for all n with Ωn ⊂ Ω,

when all the hedging options are vanilla. [This analysis would be useful for the consistency, when

there are infinitely many options and the marginal distribution of the stock price (at the maturities

of the hedging European options) under the martingale measures appearing in the duality are fixed.]

Proposition 4.2. Let µ0, . . . , µT be the marginal of a martingale measure on RT+1
+ . Then there

exist a collection of probability measures {µni : i = 0, . . . , T, n ∈ N} on R such that

(1) µni
w→ µi, i = 0, . . . , T ,

(2) µni (Kn) = 1, i = 0, . . . , T ,

(3) For each n ∈ N, Mn 6= ∅,

where Kn = {0, 1/2n, 2/2n, . . . } and Mn is the set of martingale measures on (Kn)T+1 with

marginals (µni )Ti=0.

Proof. Fix i ∈ {0, · · · , T}. For any n ∈ N, define a measure µni on {0, 1/2n, 2/2n, · · · } by

µni ({0}) :=

∫ 1/2n

0
(1− 2nx)dµi(x),

µni ({k/2n}) :=

∫ k/2n

(k−1)/2n
(2nx+ 1− k)dµ(x) +

∫ (k+1)/2n

k/2n
(1 + k − 2nx)dµ(x), ∀k ∈ N.

By construction, we have
∑

k∈N∪{0} µ
n
i ({k/2n}) =

∫
R+
dµi(x) = 1. It follows that µni is a probability

measure on {0, 1/2n, 2/2n, · · · }.
For any function h : R 7→ R, consider the piecewise linear function hn defined by setting

hn(k/2n) := h(k/2n) for k ∈ N ∪ {0}. We define hn(x) for x ∈ R+ \ {0, 1/2n, 2/2n, · · · } using

linear interpolation. That is, for any x ∈ R+,

hn(x) := (1 + b2nxc − 2nx)h

(
b2nxc

2n

)
+ (2nx− b2nxc)h

(
1 + b2nxc

2n

)
= h

(
k

2n

)
(1 + k − 2nx) + h

(
k + 1

2n

)
(2nx− k), ∀k ∈ N ∪ {0}.

From the above identity and the definition of µni , we observe that∫
R+

hdµni =

∫
R+

hndµi. (4.16)

Now, if we take h to be an arbitrary bounded continuous function, then hn → h pointwise and

the integrals in (4.16) are finite. By using (4.16) and the dominated convergence theorem, we

have
∫
R+
hdµni →

∫
R+
hdµi. This shows that µni

w→ µi. On the other hand, if we take h to be

an arbitrary convex function, then hn by definition is also convex. Thanks to [15, Theorem 8],

the convexity of hn imply that
∫
R+
hndµi is nondecreasing in i. We then obtain form (4.16) that∫

R+
hdµni is nondecreasing in i. Since this holds for any given convex function h, we conclude from

[15, Theorem 8] that Mn 6= ∅. �
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Now we further assume that the finitely many options are vanilla. Take Q ∈ Q and let µi be the

distribution of Si under Q for i = 1, . . . , T . From the theorem above (and the construction of µni ),

there exists a martingale measures Qn supported on Ωn, with marginals µni
w→ µi, for i = 1, . . . , T .

Set

cni := EQn [gi]− EQ[gi], i = 1, . . . , e.

Then, we have cn → 0 by the weak convergence of the marginals, and Qn 6= ∅ for all n with Ωn ⊂ Ω,

since Qn ∈ Qn. In addition, if g is Lipschitz continuous, we have that |cn| = O(1/2n).

APPENDIX

A. Proof of Proposition 1.1

Proof of Proposition 1.1. Following the proof of [3, Lemma 5.3], it can be shown that for t ∈
{0, . . . , T − 1} and ω ∈ ΩT−t,

Mt(ω) = {Q ∈ P(ΩT−t) : Q� P for some P ∈ Pt(ω), (Sk(ω, ·))k=t,... ,T is a Q-martingale}.

Hence, in order to show the analyticity of graph(Mt), it suffices to show that the sets

I := {(ω,Q) ∈ Ωt ×P(ΩT−t) : Q� P for some P ∈ Pt(ω)}

and

J := {(ω,Q) ∈ Ωt ×P(ΩT−t) : (Sk(ω, ·))k=t,... ,T is a Q-martingale}

are analytic.

Thanks to the analyticity of graph(Pt), we can follow the argument in the proof of [6, Lemma

4.8] to show that I is analytic. Now let us consider J . For k = t, . . . , T −1, there exists a countable

algebra (Aki )
∞
i=1 generating Fk. Then

I =

T−1⋂
k=t

∞⋂
i=1

{(ω,Q) ∈ Ωt ×P(ΩT−t) : EQ[∆Sk(ω, ·)1Aki (ω, ·)] = 0}.

By a monotone class argument, we can show that for (ω,Q) ∈ Ωt ×P(ΩT−t), the map

(ω,Q) 7→ EQ[∆Sk(ω, ·)1Aki (ω, ·)]

is Borel measurable (e.g., see the first paragraph in the proof of [12, Theorem 2.3]). Therefore, the

set J is Borel measurable, and in particular it is analytic. �

B. Optimal Stopping for Adverse Nonlinear Expectations

In this section, we analyze both the adverse optimal stopping problems for nonlinear expectations.

This result is used in Theorem 2.1 for showing the existence of the sub hedging strategy. Note that

[2, 10, 13] analyze similar problems in continuous time. Instead of referring to these papers directly,

we decided to include a short analysis here because it is much simpler to carry it out in discrete

time using backward induction.
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For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given a nonempty convex set Rt(ω) ⊂ P(Ω1) of

probability measures. We assume that for each t, the graph of Rt is analytic, and thus admits a

universally measurably selector. For t = 0, . . . , T − 1 and ω ∈ Ωt, define

Rt(ω) := {Pt ⊗ . . .⊗ PT−1 : Pi(ω, ·) ∈ Ri(ω, ·), i = t, . . . , T − 1},

where each Pi is a universally measurable selector of Ri. We write R for R0 for short. We assume

the graph of Rt is analytic for t = 0, . . . , T − 1. Let ξ be a u.s.a. function. For ω ∈ Ω, define the

nonlinear conditional expectation as

Et[ξ](ω) = sup
P∈Rt(ωt)

EP [ξ(ωt, ·)].

We also write E for E0 for short. By [12, Theorem 2.3], we know that the function Et[ξ] is u.s.a.

and Ft-measurable, and the nonlinear conditional expectation satisfies the tower property, i.e., for

0 ≤ s < t ≤ T , it holds that

EsEt[ξ] = Es[ξ]. (B.1)

Moreover, by Galmarino’s test (see [12, Lemma 2.5]), it follows that if a function is Ft-measurable,

it only depends on the path up to time t. Throughout this section, we will assume that f is an

adapted process with respect to the raw filtration (B(Ωt))
T
t=0.

We consider the optimal stopping problem

X := inf
τ∈T
E [fτ ]. (B.2)

and define the upper value process

Xt := inf
τ∈Tt
Et[fτ ], (B.3)

and the lower value process

Yt(ω) := sup
P∈Rt(ωt)

inf
τ∈Tt

EP [fτ (ωt, ·)]. (B.4)

In particular X = X0. We have the following result:

Theorem B.1. Assume for t = 1, . . . , T − 1, Et[Xt+1] (or Et[Yt+1]) is B(Ωt)-measurable. Then

Xt = Yt, t = 0, . . . , T . In particular, the game defined in (B.2) has a value, i.e.,

inf
τ∈T
E [fτ ] = sup

P∈R
inf
τ∈T

E[fτ ]. (B.5)

Moreover, there exists an optimal stoping time described by

τ∗ = inf{t ≥ 0 : ft = Xt}. (B.6)

Proof. We shall prove the result under the Borel measurability assumption for Et[Xt+1]. In fact,

it could be seen from the proof later on that the Borel measurability assumption on Et[Xt+1] is

equivalent to that on Et[Yt+1].

Step 1: We first show that for s ∈ {0, . . . , T},

Xs = inf
τ∈Ts
Es(fτ1{τ<t} +Xt1{τ≥t}), 0 ≤ s < t ≤ T. (B.7)
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We shall prove it by a backward induction. For s = T −1, since τ equals either T −1 or T , we have

from (B.3) that XT−1 = fT−1 ∧ ET−1(fT ) = fT−1 ∧ ET−1(XT ), and thus (B.7) holds. Assume for

s+ 1 ∈ {0, . . . , T − 1} the corresponding conclusion holds. Let t ∈ {s+ 1, . . . , T}. For any τ ∈ Ts,
using the tower property (B.1) and the definition of Xt in (B.3), we have that

Es(fτ ) = Es
(
fτ1{τ<t} + Et(fτ∨t)1{τ≥t}

)
≥ Es

(
fτ1{τ<t} +Xt1{τ≥t}

)
,

which implies the inequality “≥” in (B.7).

Let us turn to the inequality “≤” in (B.7). By the induction assumption, we have that for

k ≥ s+ 1,

Xk = inf
τ∈Tk
Ek(fτ1{τ<k+1} +Xk+11{τ≥k+1}) = fk ∧ Ek(Xk+1). (B.8)

Define

As := {fs ≤ Es(Xs+1)} ∈ B(Ωs),

Ak :=
[
{fk ≤ Ek(Xk+1)} \ (∪k−1

i=s Ai)
]

=
[
{fk = Xk} \ (∪k−1

i=s Ai)
]
∈ B(Ωk), k = s+ 1, . . . , T.

Note that AT = (∪T−1
i=s Ai)

c ∈ B(ΩT−1). Denoting

τ̄ =
T∑
k=s

k1Ak ∈ Ts. (B.9)

and using the tower property repeatedly, we obtain that

Xs ≤ Es(fτ̄ )

= Es

(
T−2∑
k=s

fk1Ak + fT−11AT−1
+ ET−1(XT )1(∪T−1

i=s Ai)
c

)

= Es

(
T−2∑
k=s

fk1Ak +XT−11(∪T−2
i=s Ai)

c

)

= Es

(
T−3∑
k=s

fk1Ak + fT−21AT−2
+ ET−2(XT−1)1(∩T−2

k=s Ak)c

)
= . . .

= Es
(
fs1As +Xs+11Acs

)
= fs ∧ Es(Xs+1). (B.10)

On the other hand, for t ∈ {s+ 1, . . . , T}, by (B.8) and the tower property, we have that

Xs ≥ inf
τ∈Ts
Es
(
fτ1{τ<t} +Xt1{τ≥t}

)
≥ inf

τ∈Ts
Es
(
fτ1{τ<t−1} +Xt−11{τ=t−1} + Et−1(Xt)1{τ≥t}

)
≥ inf

τ∈Ts
Es
(
fτ1{τ<t−1} +Xt−11{τ≥t−1}

)
≥ . . .

≥ inf
τ∈Ts
Es
(
fτ1{τ<s+1} +Xs+11{τ≥s+1}

)
= fs ∧ Es(Xs+1). (B.11)
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Hence, we have (B.7) holds for s.

Step 2: Define τ̂ =
∑T

k=0 k1Ak , same as τ̄ defined in (B.9) for s = 0. From (B.10) & (B.11) in

Step 1, we have that X = E(fτ̂ ). Noting A0 = {f0 ≤ E(X1)} = {f0 = X}, we have τ̂ = τ∗.

Step 3: Using (B.7), we can follow the proof of [13, Lemma 4.11] mutatis mutandis, to show by a

backward induction that Xt = Yt, t = 0, . . . , T . In particular (B.5) holds. �

The next remark is concerned with the “sup sup” version of the optimal stopping problem:

Remark B.1. For the optimal stopping problem

Z := sup
τ∈T
E [fτ ],

let us define

Zt := sup
τ∈Tt
Et[fτ ], t = 0, . . . , T.

In particular Z = Z0. Following Steps 1 and 2 in the proof of Theorem B.1, we can show that if

Et[Zt+1] is B(Ωt)-measurable for t = 1, . . . , T − 1, then

Zt = ft ∨ Et(Zt+1), t = 0, . . . , T,

and τ∗∗ := inf{t ≥ 0 : ft = Zt} is optimal.

B.1. An example in which Et[Yt+1] is Borel measurable. Let S = (Si)
T
i=1 be the canonical

process and R be the set of martingale measures on some compact set K ⊂ ΩT . Assume R 6= ∅.
Then for ω ∈ K, Rt(ω

t) is the set of martingale measures on K from time t to T given the previous

path ωt. Proposition B.1 below indicates that the assumption in Theorem B.1 is satisfied provided

f is u.s.c. in ω.

Proposition B.1. Assume that ft is u.s.c. for t = 1, . . . , T . Then Et[Yt+1] is u.s.c., and thus

B(Ωt)-measurable, t = 1, . . . , T .

Proof. Since K is compact, it is easy to check that the set {(ω, P ) : ω ∈ K, P ∈ Rt(ω
t)} is

closed. By [5, Proposition 7.33], Yt defined in (B.4) is u.s.c. Following the proof similar to that of

Proposition 3.1, it could be shown that for (ω, P ) ∈ ΩT ×P(ΩT−t), the map (ω, P ) 7→ EP [Y (ωt, ·)]
is u.s.c. Then applying [5, Proposition 7.33] again, we know that Et[Yt+1] is u.s.c. �

C. Upper-semianalyticity and the super-martingale property

The result in this section is used in the proof of Theorem 3.1. Let us use the setting in Section

B. Let φ = (φt)
T
t=0 be an adapted process, and g be u.s.a. Define the process U = (Ut)

T
t=0 as

Ut := sup
τ∈Tt
Et[φτ + g]. (C.1)

We have the following result.

Proposition C.1. Assume for (ω, P ) ∈ ΩT ×P(ΩT−t), the map (ω, P ) 7→ supτ∈Tt EP [φτ (ωt, ·)] is

u.s.a., t = 1, . . . , T . Then Ut defined in (C.1) is u.s.a. and Ft-measurable for t = 1, . . . , T , and

U = (Ut)
T
t=0 is a super-martingale under each P ∈ R.
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Proof. Using the fact that the map (ω, P ) 7→ Ep[g(ωt, ·)] is u.s.a. for (ω, P ) ∈ ΩT×P(ΩT−t) (see the

last paragraph on page 8 in [12]), we deduce that the map (ω, P ) 7→ supτ∈Tt EP [φτ (ωt, ·)+g(ωt, ·)] is

u.s.a. Since Rt(ω
t) is the ω-section of an analytic set, we can apply [5, Proposition 7.47] to conclude

that Ut is u.s.a., t = 1, . . . , T . As Ut only depends on the path up to time t, it is Ft-measurable.

In the rest of the proof, we shall show that

Ut ≥ Et[Ut+1], (C.2)

which will imply the super-martingale property of U under each P ∈ R. Fix (t, ω) ∈ {0, . . . , T}×ΩT

and let P = Pt⊗. . .⊗PT−1 ∈ Rt(ω
t). For any ε > 0, since the map (ω̃, P ) 7→ supτ∈Tt EP [φτ (ωt, ω̃, ·)+

g(ωt, ω̃, ·)] is u.s.a. for (ω̃, P ) ∈ Ω1 × P(ΩT−t−1), and Rt+1(ωt, ω̃) is the ω̃-section of an analytic

set, we can apply theorem [5, Proposition 7.50] and get that there exists a universally measurable

selector P ε(ωt, ·), such that P ε(ωt, ω̃) = P εt+1(ωt, ω̃)⊗ . . .⊗ P εT−1(ωt, ω̃, ·) ∈ Rt+1(ωt, ω̃), and(
sup

P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ωt, ω̃, ·) + g(ωt, ω̃, ·)]− ε

)
1A+

1

ε
1Ac ≤ sup

τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ωt, ω̃, ·)+g(ωt, ω̃, ·)],

where

A = {ω̃ ∈ Ω1 : sup
P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ωt, ω̃, ·) + g(ωt, ω̃, ·)] <∞}.

Define

P ∗ := Pt ⊗ P εt+1 ⊗ . . .⊗ P εT−1 ∈ Rt(ω
t).

Then we have that

EP

[(
Ut+1(ωt, ·)− ε

)
1A +

1

ε
1Ac

]
= EP

[(
sup

P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ωt, ω̃, ·) + g(ωt, ω̃, ·)]− ε

)
1A +

1

ε
1Ac

]

≤ EP

[
sup

τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ωt, ω̃, ·) + g(ωt, ω̃, ·)]

]

= EP ∗

[
sup

τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ωt, ω̃, ·) + g(ωt, ω̃, ·)]

]

= EP ∗

[
sup

τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ωt, ω̃, ·)]

]
+ EP ∗ [g(ωt, ·)]

≤ sup
τ∈Tt

EP ∗ [φτ (ωt, ·)] + EP ∗ [g(ωt, ·)]

≤ Ut(ω),

where the fourth line follows from the fact that P ∗ = P from time t to t+1, the fifth line follows from

the tower property as P ∗ = Pt ⊗ P ε, and the sixth line follows from the classical optimal stopping

theory under a single probability measure P ∗. As t, ω, P and ε are arbitrary, (C.2) holds. �
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D. No arbitrage when there are no options for static hedging

Let S = (St)t=0,... ,T be the canonical process taking values in some path space K ⊂ {1} × RT ,

which represents the stock price process. We take P to be the set of all the probability measures

on K. In this secton, we assume that there is no hedging option available, i.e., e = 0. Let us first

identify the reasonable path spaces:

Definition D.1. K ⊂ {1} × RT is called a reasonable path space, if for any t ∈ {0, . . . , T} and

(s0 = 1, s1, . . . , sT ) ∈ K,

(i) if st > 0, then there exists (s0, . . . , st, , s
i
t+1, . . . , s

i
T ) ∈ K, i = 1, 2, such that s1

t+1 < st <

s2
t+1;

(ii) if st = 0, then sk = 0, k ≥ t+ 1.

Obviously, if K is a reasonable path space, then a martingale measure on K is easy to construct,

and thus the no arbitrage in [1] is satisfied. The following proposition states that NA(P) also holds.

So the no arbitrage definitions in [1] and [6] in fact coincide in the case when K is a reasonable path

space and e = 0.

Proposition D.1. If K is a reasonable path space, then NA(P) holds.

Proof. Let H = (H0, . . . , HT−1(s1, . . . , sT−1)) be a trading strategy such that

(H · S)T ≥ 0, ∀s ∈ K. (D.1)

We need to show (H · S)T = 0,∀s ∈ K. It suffices to show that

Hk(s1, . . . , sk) = 0, for sk > 0, (D.2)

for k = 0, . . . , T − 1. We shall show (D.2) by the induction.

Assume H0 6= 0. Then take s∗1 > s0 if H0 < 0, and take s∗1 < s0 if H0 > 0. In general, for

j = 1, . . . T − 1, take s∗j+1 ≥ s∗j if H(s∗1, . . . , s
∗
j ) ≤ 0 and s∗j+1 ≤ s∗j if H(s∗1, . . . , s

∗
j ) > 0. Then

(H · S)T (s0, s
∗
1, . . . , s

∗
T ) < 0, which contradicts (D.1). Hence H0 = 0 and (D.2) holds for k = 0.

Assume (D.2) holds for k ≤ t− 1. Then for any (s0, . . . , st) with st > 0, by assumption (ii), we

have that si > 0, i = 0, . . . , t − 1, and thus Hi(s1, . . . , si) = 0, i = 0, . . . , t − 1 by the induction

hypothesis. If Ht(s1, . . . , st) 6= 0, then we can similarly construct (s∗t+1, . . . , s
∗
T ) as above, such that

(H · S)T (s0, . . . , st, s
∗
t+1, . . . , s

∗
T ) < 0, which contradicts (D.1). Hence Ht(s1, . . . , st) = 0 and (D.2)

holds for k = t. �
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