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Simple Summary: Insulin-like peptide 3 (INSL3) is a hormone produced by the steroidogenic Leydig
cells of the testes and in most mammals acts as a robust blood biomarker for pubertal development
and gonadal function. Using a new immunoassay to measure INSL3 in adult male dogs, we show that
it is much lower than in other species. When a cohort of male beagle dogs is implanted with a GnRH
agonist to induce contraceptive suppression of male fertility, the average circulating INSL3 is first
reduced and then recovers slowly when the implant is removed. Importantly, however, and unlike in
other species, in dogs there is considerable variation in INSL3 expression, with some dogs showing
little or no initial reduction of INSL3, and similarly, there is often only a poor response during the
recovery phase. We conclude that in dogs, unlike in most other mammals, the Leydig-cell production
of INSL3 appears to be less tightly coupled to the functioning of the hypothalamic–pituitary–gonadal
(HPG) hormone axis.

Abstract: Insulin-like peptide 3 (INSL3) is a constitutive product of mature, adult-type Leydig
cells of the testes and consequently in most mammals is an ideal biomarker with which to monitor
pubertal development. A new heterologous time-resolved fluorescence immunoassay was developed
and validated to measure circulating INSL3 in the blood of adult male dogs. Compared to other
species, INSL3 concentration is low with marked variation between individuals, which appears to be
independent of breed, age, or weight. A model system was then used in which a cohort of beagle
dogs was subject to a GnRH-agonist implant to suppress the HPG axis and spermatogenesis, followed
by implant removal and recovery. Unlike testosterone, INSL3 levels were not fully suppressed in
all animals by the GnRH agonist, nor was the recovery of Leydig cell function following implant
removal uniform or complete, even after several weeks. In dogs, and dissimilar from other species
(including humans), Leydig-cell INSL3 appears to be quite variable between individual dogs and
only weakly connected to the physiology of the HPG axis after its suppression by a GnRH-agonist
implant and recovery. Consequently, INSL3 may be less useful in this species for the assessment of
testis function.

Keywords: INSL3; male contraception; GnRH implant; HPG axis; canine

1. Introduction

In the male mammal, the Leydig cells of the testes in the foetus and in the adult are the
principal sources of testosterone, essential for the masculinisation of the male phenotype
and for the maintenance of adult male characteristics and physiology. A disruption of
testosterone synthesis or secretion leads to hypogonadism, which in the adult human male
is significantly associated with loss of sexual function and behaviour, cognitive decline,
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symptoms of metabolic syndrome, bone loss and muscle weakness [1]. There are two main
populations of Leydig cells: the first develops during early pregnancy in the male foetus to
provide testosterone for foetal masculinisation. This population appears to involute around
birth so that in infancy there is no circulating testosterone. Puberty is initiated with the
activation of the hypothalamic–pituitary–gonadal (HPG) axis somewhat later, depending
on the species. Pulsatile GnRH from the hypothalamus stimulates gonadotropes in the
anterior pituitary to produce the phasic gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH). These, in turn, react with specific receptors on testicular
Leydig and Sertoli cells, respectively, to initiate cell differentiation and proliferation, thereby
causing the induction of steroidogenesis and spermatogenesis, which are the hallmarks
of pubertal development. In the adult male, testosterone production remains acutely
regulated by LH from the HPG axis, where it is instrumental via negative feedback to
the hypothalamus and pituitary gland in maintaining sufficient circulating testosterone to
support adult male physiology, also including spermatogenesis.

The Leydig cells of the testes also produce a second circulating hormone: insulin-like
peptide 3 (INSL3) [2]. This hormone is essential to promote the first phase of testicular
descent in the foetus, where it directs the development and shortening of the gubernacular
ligament connecting the testes to the inguinal region and preparing this for eversion of the
testes into the scrotum. INSL3 acts via a unique G-protein-coupled receptor on target cells,
called RXFP2 (relaxin family peptide receptor 2). In the adult, Leydig cells also produce
INSL3, which is involved in promoting spermatogenesis (pigs, rodents, humans [3–5]) and
in supporting bone and skeletal muscle metabolism (humans, rodents [6,7]). Moreover,
in ruminants, the INSL3-RXFP2 hormone-receptor system is functionally linked to horn
growth and status [8,9]. Unlike testosterone, circulating INSL3 is not acutely regulated by
the HPG axis but is nevertheless chronically modulated by LH, or lack of it, through the
role of LH in inducing the differentiation of mature Leydig cells from less-differentiated
precursors or stem cells [10]. Consequently, within adult men with a stable HPG axis,
INSL3 levels remain remarkably constant, reflecting only the number and differentiation
status of the Leydig cells, and hence their functional capacity [11]. Within individuals,
INSL3 concentration declines gradually with age, reflecting the slow decline in Leydig-
cell functional capacity and/or numbers in middle-aged and older men [12,13]. There is,
however, high between-individual variation in INSL3 levels in men, of which the origin is
still not understood.

Circulating INSL3 has been studied in a range of mammal species, mostly varying in
young adult males between 0.5 and 30 ng/mL (Table 1). Dogs appear to be an exception,
with only very low INSL3 concentrations reported [14,15].

Table 1. Estimated circulating concentrations of INSL3 in various mammal species.

Species Mean ± SD/Range (ng/mL) References

Rat (Sprague Dawley) 2.8 ± 0.2 [16]
(Wistar) 1.5 + 0.1 [16]

Mouse 0.78 + 0.03 [16]

Human 1.3 ± 0.5 [12]
1.8 ± 1.1 [17]

1.3 (95%CI 0.9–2.7) [18]
0.94 ± 0.31 [19]

Macaque 0.44 ± 0.13 [20]

Goat 10–30 [21]

Bull 10–20 [22]
3–6 [23]
6-10 [24]

Pig 10–15 [25]

Horse 19.9 ± 17.7 [26]

Dog 0.05–0.43 [14]
0.09 (0.005–0.163) a [15]

a median and interquartile range.
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The present investigation was undertaken firstly to validate the putatively low concen-
tration of circulating INSL3 in different breeds of dog, and secondly, to determine whether a
reduced expression of INSL3 implies an altered relationship with the hormones of the HPG
axis and hence with male physiology. For this purpose, we have made retrospective use of
a large and well-documented historical cohort of beagle dogs subjected to a contraceptive
regimen of a GnRH-agonist implant. The uniformity of the dogs, the suppression of the
HPG axis, and its synchronized recovery phase, in some respects effectively replicating Ley-
dig cell differentiation during puberty, allow detailed insight into the interactions between
INSL3 expression, Leydig cell function, and the physiology of the HPG axis.

2. Materials and Methods
2.1. Validation of a Heterologous Immunoassay to Measure Canine INSL3

From an evolutionary perspective, dogs are more closely related to ruminants than
to primates or rodents [27]. For this reason, a well-established time-resolved fluorescent
immunoassay designed to measure bovine INSL3 [28] was adapted and validated to assess
canine INSL3 in dog blood plasma or serum. A similar approach has also been used
by Pathirana and colleagues [14]. The assay essentially followed the same format as
previously [28] using Eu3+-labelled bovine INSL3 as a tracer and the same anti-bovine
INSL3 primary polyclonal antibody raised in rabbits. Titration of blood from male foetal
calves and male dogs showed complete parallelism (Supplementary Figure S1A). Although
bovine INSL3 was used as a routine internal standard, independent validation using
synthetic canine INSL3 (a generous gift from Professors N. Kawate and E.E. Bullesbach)
showed identical values. The working range of the assay was 0.02 to 10 ng/mL INSL3
(Supplementary Figure S1B), with a lower limit of quantification (LOQ) of 0.05 ng/mL. For
statistical purposes, values generated less than the LOQ were retained without alteration.
The inter- and intra-assay coefficients of variation (COV) were both consistently <5%.
Previous studies have shown that the original assay indicated no cross-reactivity with any
related peptides, including human and porcine relaxin, human and bovine insulin, bovine
IGF1 and IGF2, and human INSL6.

2.2. Animals and Study Design

As part of the original characterization, discarded blood serum from 32 male dogs of
various breeds and of a range of post-pubertal ages (5–12 years) and weights were made
available. Discarded serum samples were also collected from four female dogs and five
previously castrated adult male dogs. All dogs were clinically healthy at the time of sample
collection, and they are referred to as ‘English’ dogs.

Secondly, archived blood (stored at −25 ◦C) was made available from a cohort of
59 adult male beagle dogs (aged 1–6 years), which are later referred to as ‘German’ beagles.
Previous studies have shown that INSL3 is very stable over long periods when stored at
−20 ◦C [2] (and unpublished). Thirty-five of these dogs had received a depot implant of a
GnRH agonist (18.5 mg azagly-nafarelin; Gonazon®; Intervet Pharma, Angers Technologie,
Beaucouzé, France) to suppress the HPG axis and hence spermatogenesis. As part of
a previously reported, ethically approved research study, the implant was retained for
5 months and then removed, with blood sampling for each animal before implantation,
4 and 8 weeks after implantation, and then weekly after the removal of the implant at
5 months up to a maximum of 24 weeks (Figure 1). In addition, though not used for the
present study, some animals were castrated, and the testes were subject to histology and
RT-PCR analysis at intervals following removal of the Gonazon® implant. This cohort
has been the subject of several studies relating to testis function and endocrinology, with
detailed descriptions already provided [29–32]. Some relevant results from these earlier
studies are included in Supplementary Figure S2.
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Figure 1. Scheme for the German cohort of Beagle dogs to indicate timing of Gonazon® implant
insertion and removal, as well as blood sampling strategy. The week in which the implant was
removed is labelled week 1.

2.3. Statistics

All data were analysed using simple descriptive and column statistics employing
GraphPad Prism (version 8.0). Significant differences (p < 0.05) were estimated using one-
way ANOVA followed by Dunnett’s multiple comparison tests or, where appropriate, t-tests.

2.4. Ethical Approvals

All English blood samples from clinical cases were collected for routine clinical health
monitoring as allowed under the UK Veterinary Surgeons Act; any blood that was collected
that was in excess of that required for the clinical reason was used with the permission of
the owner for the purposes of this study. For the study in beagles, animal experimenta-
tion was approved by the respective authority (permit No. AZ V54-19c20/15c GI18/14,
Regierungspräsidium Giessen).

3. Results
3.1. Effect of Breed, Age, and Weight

Altogether, six different breeds of dog were studied, including unimplanted controls
from the cohort of beagles (Figure 2). There were no significant differences between any
of the assessed English dog breeds. However, the German beagles indicated a mean
INSL3 concentration significantly lower than the other breeds. This may have been due
to the average younger age of these dogs, their overall smaller size, or greater unifor-
mity. Of the non-beagle breeds, no significant relationship was identified between INSL3
concentration and body weight, nor with age (Figure 3). The four female dogs indicated
significantly lower INSL3 concentrations compared to the male dogs of similar breeds
(Figure 3A). The five castrated male dogs all indicated INSL3 concentrations below the
LOQ (0.029 ± 0.009 ng/mL).
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Figure 3. (A) Circulating INSL3 (mean ± 95% CI) in serum from English male dogs (excluding
Beagles) compared to similarly aged females of equivalent breeds (**, p < 0.01). (B) Scatterplot of
INSL3 vs. age and (C) Scatterplot of INSL3 vs. weight for all English male dogs. (B,C) indicated no
significant relationship.

3.2. Effect of HPG Axis Suppression

For the whole cohort of beagles, circulating INSL3 concentration was significantly
suppressed by the depot GnRH-agonist implant, though at 8 weeks this still did not indicate
the complete suppression of mature Leydig cell function (Figure 4). This was largely due to
heterogeneity between individual animals, with some animals indicating good suppression
(e.g., Figure 5A,C,D,G) and others only having poor or no apparent Leydig cell suppression
at this stage (e.g., Figure 5D,E,H).
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Figure 5. Profiles of circulating INSL3 (single values) in individual male dogs (panels (A–H)) selected
from the German Beagle cohort to illustrate variation in response to the Gonazon® implant and its
removal. Data represented up to week 12 following implant removal.

3.3. Recovery of Leydig-Cell Functional Capacity Following Removal of the Gonazon® Implant

For the entire beagle cohort, there was evident recovery of circulating INSL3 to pre-
implantation levels already at 2–3 weeks, attaining a maximum at 4–5 weeks (Figure 4).
Thereafter, there appeared to be a downward trend in circulating INSL3 levels, though trend
analysis showed this not to be significant, probably due to the high between-individual
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variation in response. This variation is illustrated for selected individuals in Figure 5, which
indicates good recovery in some animals (e.g., Figure 5A,C or Figure 5D) and either poor
(e.g., Figure 5G) or sporadic recovery (e.g., Figure 5B) in others. These individuals were
selected to show the range of profile variation encountered, including extreme cases. Dogs
not illustrated showed profiles intermediate between those shown in Figure 5.

4. Discussion

Whereas all other mammalian species whose INSL3 has been measured in peripheral
blood have healthy adult male concentrations ranging from 0.5 to 30 ng/mL (Table 1),
dogs appear to be unusual in having much lower circulating post-pubertal concentrations
(0.02–0.46 ng/mL, present study; 0.005–0.43 ng/mL [14,15]). Why this is so is unclear,
though it may reflect an adult physiology largely dependent on paracrine rather than
endocrine INSL3 functionality. It is of interest that the female dogs used as controls also
indicated low but significant circulating INSL3 levels (Figure 3A). This has also been shown
for young women of reproductive age [33] as well as in cows [28] and largely reflects local
paracrine roles within the ovaries. This is also implied by the circulating values of INSL3 in
the castrated dogs, which were all below the LOQ, suggesting no alternative non-gonadal
sources of INSL3. Appropriate studies in female dogs are lacking.

The application of an endocrine male contraceptive paradigm, here through the
suppression of the HPG axis by use of a GnRH-agonist implant in young adult animals,
is particularly informative. Not only does such a paradigm provide information as to the
extent to which spermatogenesis and/or steroidogenesis is dependent on a functional HPG
axis, but the recovery phase following the removal of the implant is considered to reflect
those developmental and differentiation steps that otherwise only occur during puberty
or in seasonal breeders. Something similar also occurs, for example, during HPG axis
suppression induced by anabolic steroid misuse [34].

In the present retrospective study, it is evident that the GnRH agonist fulfilled its
purpose of suppressing the production by the anterior pituitary of both gonadotropins,
FSH and LH, to very low levels (Supplementary Figure S2), with a concomitant, almost
complete suppression of spermatogenesis [29], as well as of testosterone production by the
Leydig cells (Supplementary Figure S2). After implant removal, the HPG axis was restored
and circulating levels of FSH, LH, and testosterone attained similar values to those prior
to implant insertion. This occurs after 3 weeks for FSH, 6 weeks for LH, and 8 weeks for
testosterone, reflecting the approximate timescale for re-establishing appropriate endocrine
feedback criteria for the HPG axis, and similar to the expected dynamics in puberty. Full
spermatogenesis required a longer time, with elongated spermatids first evident only after
9 to 24 weeks (mean 16.9 weeks [29]).

INSL3 expression appears to follow a less predictable pattern. Firstly, unlike the
hormones of the HPG axis, INSL3 is not suppressed by the GnRH-agonist implant to
very low circulating levels, except in a few dogs only. In other mammals, such as rodents
or humans [11], INSL3 synthesis and secretion is a biomarker of mature Leydig cells,
which have attained advanced differentiation status. For this reason, it is an excellent
biochemical marker for pubertal development in most male mammals studied [8]. Whereas
the proliferation and differentiation of early-stage Leydig cells are under LH control, the
acute production of INSL3 is not, unlike testosterone [35]. In the adult male, INSL3 is
effectively constitutive, reflecting only the numbers and/or differentiation status of the
Leydig cells. Therefore, in seasonal breeders [11,36], or in men subject to a steroidal
contraceptive regimen [37], reduced INSL3 reflects the loss and/or dedifferentiation of
the mature Leydig cells. For example, Amory et al. [4] showed that circulating INSL3 was
reduced from ca. 0.8 ng/mL to less than 0.1 ng/mL in men receiving steroidal contraception.
Very similar results were obtained for men receiving a GnRH agonist as therapy for prostate
cancer or in the treatment of MF transgender subjects [37]). In these examples, suppression
of the HPG axis leads to an almost complete loss of INSL3 expression by the Leydig cells.
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Secondly, in the recovery phase in dogs, the pattern of INSL3 is not consistent. In
this phase, elevated LH should be encouraging the re-differentiation of Leydig cells and
regeneration of new Leydig cells from resident precursor and stem cells. Although the
average INSL3 concentration regains pre-implant levels at 4 weeks, individual profiles
exhibit very high heterogeneity, suggesting that individual animals or their Leydig cells
may not be uniform in their responsiveness to the gonadotropin. Using an immunohisto-
chemical approach in the same cohort, Gentil et al. [32] suggested that the “upregulation of
protein synthesis in individual Leydig cells occurs at a faster rate than the reactivation of
resting cells”. Adult men also show high between-individual variance in circulating INSL3
concentration [13]. Although few studies are available for comparison, it is notable that in
young men (mean age 24 years) receiving a steroidal contraceptive regimen, circulating
INSL3 recovers to pre-treatment levels [37], whereas in somewhat older individuals (mean
age 34 ± 8 years) recovering from anabolic steroid application, circulating INSL3 in long-
term recovery remains significantly below control levels [34]. We have also shown that in
middle-aged and older men with so-called “compensated” hypogonadism, where elevated
gonadotropins have promoted testosterone production to normal eugonadal levels [38],
circulating INSL3 still remains significantly reduced [39]. Taken together, such observa-
tions suggest that the full recovery of Leydig-cell functional capacity in men following the
reinstatement of the HPG axis may be age-dependent, with younger individuals better able
to respond to gonadotropins than those older.

In beagles, the first motile sperm are evident in ejaculates at ca. 8–9 months [39],
with maximum sperm concentration at 10–11 months [40], similar to the final fusion
of bone ossification centres [41]. Thus, age does not appear to be a key factor in the
beagle cohort since the majority of animals were aged 12–15 months (i.e., after the stable
establishment of the HPG axis in this breed). Moreover, in the few (n = 5) older dogs
(aged 5–6 years), the profile pattern was similarly diverse, with no evident impact of age.
However, this may imply that the regulation of INSL3 expression in male dogs is less tightly
controlled than in other species, unlike for testosterone. It is possible that domestication
and artificial selection for non-survival traits have allowed a relaxation of selection pressure
on Leydig cell development. This might also account for the unusually low and variable
circulating concentration of INSL3 in adult dogs. A similarly diverse response to FSH was
also observed in these dogs during the recovery phase regarding spermatogenesis, with
considerable variation evident in the timing of germ-cell differentiation [29]. In a recent
study of Bernese Mountain dogs [15], there was similarly no relationship evident between
INSL3 concentration and age, weight, or seminal parameters.

Histological assessment of the testes from the beagle cohort at the completion of the
original study showed that none of the dogs had signs of tumours or larger lesions [28,30],
except for one (excluded from the present investigation), even though treatment with the
slow-release GnRH-agonist implant induced an arrest of spermatogenesis at the level of
spermatogonia/spermatocytes [29]. Even if no major/large “pathological” abnormalities
were identified in the testes, it cannot be completely excluded that small local lesions might
have existed, since the evaluation of the entire testes was not practicable. Additionally,
it is well known that, even in healthy animals with physiological endocrine parameters,
histopathological deviations (local Sertoli cells only, local arrests of spermatogenesis) can be
observed [42]. In summary, it appears unlikely that aberrant histopathology could account
for the variation in INSL3 profiles.

Furthermore, although male dogs are not considered seasonal in their testicular status,
they are evidently responsive to some environmental cues, such as temperature, pho-
toperiod, or the presence of female pheromones, leading to a large temporal variance
in reproductive behaviour [43,44]. Such individual variance is also evident in the uncer-
tainty about determining pubertal dynamics [44]. Future studies will need to assess the
extent to which INSL3 expression could be useful as an additional parameter to monitor
such development.
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5. Conclusions

A well-validated, robust, specific, and sensitive heterologous immunoassay was devel-
oped to measure INSL3 in adult male dogs. Applied to male dogs receiving a GnRH-agonist
implant to ensure the contraceptive suppression of spermatogenesis, followed by recovery
after implant removal, the immunoassay revealed that unlike the hormones of the HPG axis,
INSL3 in this species appears to be less tightly coupled to HPG axis physiology, possibly
reflecting domestic canine evolutionary history. As a result, INSL3 may not be as significant
a biochemical parameter for the assessment of testicular function as in other species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14050675/s1, Figure S1: A. Serial dilution of sera from two fetal
calves and two male dogs, to indicate assay parallelism. B. Titration curve for the Eu3+-labelled tracer
against pure canine INSL3 using the heterologous bovine INSL3 assay; Figure S2: Hormone profiles
measured in blood samples collected at the indicated times from the cohort of German male Beagle
dogs. A. Testosterone. B. LH. C. FSH. For details see [28].
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