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Asymptotic Analysis of Stock Price Densities and Implied Volatilities in Mixed
Stochastic Models∗

Archil Gulisashvili† and Josep Vives‡

Abstract. In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin convolution
of functions defined on (0,∞) and use these formulas to characterize the asymptotic behavior of
marginal distribution densities of stock price processes in mixed stochastic models. Special examples
of mixed models are jump-diffusion models and stochastic volatility models with jumps. We apply
our general results to the Heston model with double exponential jumps and perform a detailed
analysis of the asymptotic behavior of the stock price density, the call option pricing function, and
the implied volatility in this model. We also obtain similar results for the Heston model with jumps
distributed according to the normal inverse Gaussian law.
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1. Introduction. The random behavior of the stock price in a mixed model is described
by a stochastic process X = X(1)X(2), where X(1) and X(2) are strictly positive independent
integrable processes on a complete filtered probability space (Ω,F , {Ft},P). Important exam-
ples of mixed models are jump-diffusion models and stochastic volatility models with Lévy-
type jumps. More information on models with jumps can be found in [11] and [26].

In this paper, we obtain asymptotic formulas with error estimates for the distribution
density of the stock price and the implied volatility in special mixed stochastic stock price

models. Let us suppose that the distributions μ
(1)
t and μ

(2)
t of the random variables X

(1)
t

and X
(2)
t in a mixed stochastic model admit densities D

(1)
t and D

(2)
t , respectively. Then the

distribution μt of the stock price Xt also admits density Dt, which can be represented by the
Mellin convolution

(1) Dt(x) = D
(1)
t

M
� D

(2)
t (x), x > 0

(the definition of the Mellin convolution is given below). The fact that the distribution density
of the product of two independent random variables is the Mellin convolution of their densities
was mentioned in [12].

In [5] (see also [9]), Arandelović obtained an asymptotic formula for the Mellin convolution
of functions defined on the half-line (0,∞). However, Arandelović’s formula does not contain
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an error estimate. In subsection 2.3 of the present paper, asymptotic formulas with error
estimates are established for the Mellin convolution (see the formulas in Theorems 8 and
9). These formulas extend Arandelović’s result. They are used in the paper to characterize
the asymptotic behavior of the stock price density in special mixed stochastic stock price
models. Asymptotic expansions of the Mellin convolution under different restrictions than
those imposed in Arandelović’s work and in the present paper were obtained by Handelsman
and Lew (see the presentation of their results in section 3.4 of Wong [27]).

One of the examples considered below is the Heston model with asymmetric double expo-
nential jumps. Theorems 10 and 11 obtained in this paper deal with the case where the jump
part of the mixed model dominates, while Theorems 12 and 13 concern the asymptotics of
the stock price density in the case where the Heston part dominates. Weaker estimates were
obtained earlier in [19]. In section 6, we briefly discuss some other models.

In [22] (see also [23]), Kou introduced and studied a jump-diffusion model that is in fact a
mixture of the Black–Scholes model with the double exponential jump model. An asymptotic
formula (without an error estimate) for the distribution function of the stock price in the Kou
model was obtained in [2, Example 7.6]. In [29] and [15], an asymptotic formula with an
error estimate was found for the call pricing function in the Kou model. In the present paper,
we obtain a similar formula for a class of models, including the Heston model with double
exponential jumps and the Kou model (see (45)). In our opinion the error estimate in formula
(45) is better than that in [15].

In our analysis of the stock price density in the Heston model perturbed by double expo-
nential jumps, we use some of the results obtained in [22]. It is interesting that the asymptotic
behavior of the stock price density in the Heston model without jumps and that of the abso-
lutely continuous part of the distribution associated with the double exponential jump part
are similar (compare (32) with (93) and (33) with (94)). It follows that in the study of the
asymptotic behavior of the stock price density in the mixture of the Heston model with the
double exponential jump model, we have to take into account which part of the mixed model
dominates the other. This dichotomy does not appear in the Kou model since the double ex-
ponential jump part always dominates the Black–Scholes part. A certain similarity between
the asymptotic behavior of the call pricing functions in the Heston model without jumps and
that in the Kou model was observed in [15] too.

Asymptotic formulas for the stock price density can be used to study the asymptotic
behavior of option pricing functions and the implied volatility. In section 4 of the present
paper, we obtain asymptotic formulas with five explicit terms and error estimates for the
implied volatility at extreme strikes in the Heston model with double exponential jumps.
Similar formulas for the Heston model with normal inverse Gaussian (NIG) type jumps are
established in section 6. We use some of the methods developed in [14] and [17] to estimate
the implied volatility. Slightly weaker asymptotic formulas for the implied volatility with four
explicit terms were established for the Heston model without jumps in [14] and for the Kou
model in [29] and [15]. These formulas can be extended to include five terms and an error
estimate. We would also like to bring to the reader’s attention the paper [3] concerning the
asymptotic behavior of the implied volatility in exponential Lévy models.

We will next briefly overview the contents of the present paper. In subsection 2.1, we define
the Mellin convolution and introduce several related notions. Regularly varying functions play
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an important role in the paper. In subsection 2.2, various definitions and facts from the theory
of regularly varying functions are gathered, while subsection 2.3 is devoted to Arandelović’s
theorem and its generalizations (Theorems 8 and 9). In section 3, we introduce the Heston
model with double exponential jumps and formulate our main results concerning asymptotic
expansions of marginal distribution densities of the stock price process in this model (see
Theorems 10–13). In section 4, sharp asymptotic formulas with error estimates are established
for the implied volatility in the Heston model with double exponential jumps (see Theorems
15 and 16) and for more general models. In section 5, we study marginal distributions of
the exponential Lévy process associated with the perturbed Heston model. The asymptotic
behavior of the density of the absolutely continuous part of such a distribution is characterized
in Corollary 3. We also complete the proofs of Theorems 10–13 in section 5. Finally, section 6
discusses the implied volatility in the Heston model with jumps distributed according to the
symmetric centered NIG law.

2. The Mellin convolution and Arandelović’s theorem. In this section, we discuss the
Mellin transform and the Mellin convolution, formulate Arandelović theorem concerning the
asymptotics of the Mellin convolution, and obtain generalizations of Arandelović’s theorem
(Theorems 8 and 9).

2.1. The Mellin transform and the Mellin convolution.
Definition 1. Let U be a measurable function on (0,∞). The Mellin transform of U is

defined as follows:

(2) MU(z) =

∫ ∞

0
t−zU(t)

dt

t
, z ∈ C.

The domain of the Mellin transform of U is the set of all z ∈ C for which the integral in
(2) converges absolutely.

Definition 2. The Mellin convolution of two real Lebesgue measurable functions f and g on
(0,∞) is defined by

f
M
� g(x) =

∫ ∞

0
f(t−1x)g(t)

dt

t

for those x > 0 for which the integral exists.
It is clear that

f
M
� g(x) =

∫ ∞

0
f(t−1)g(xt)

dt

t
.

Moreover,

(3) f
M
� g(x) = f̃

M
� g̃(x−1),

where

(4) f̃(u) = f(u−1) and g̃(u) = g(u−1)

for all u > 0. We also have

(5) MŨ(z) =MU(−z).
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Let μ be a distribution on [0,∞), and let η be a real number. The moment of order η of
the distribution μ is defined as follows:

(6) mη(μ) =

∫ ∞

0
tηdμ(t).

It is not hard to see that if U is a distribution density, then MU(η) = m−η−1(U) for all real
numbers η in the domain of MU .

2.2. Regularly varying functions. In the present subsection, several notions and results
from the theory of regularly varying functions are discussed. These functions play an impor-
tant role in the paper. A rich source of information about regularly varying functions is the
book by Bingham, Goldie, and Teugels [9].

Definition 3. A nonnegative measurable function f on (0,∞) is called regularly varying
with index ρ ∈ R if for every λ > 0,

(7)
f(λx)

f(x)
→ λρ

as x → ∞. The class of all regularly varying functions with index ρ is denoted by Rρ.
Functions from the class R0 are called slowly varying functions.

The next result is known as the uniform convergence theorem for regularly varying func-
tions.

Theorem 1 (see Theorem 1.5.2 in [9]). Let f be a nonnegative measurable function on (0,∞).
Then the following are true:

1. Suppose f ∈ Rρ with ρ > 0 and f is bounded on every interval (0, a] with a > 0. Then
formula (7) holds uniformly in λ on each interval (0, a], a > 0.

2. The condition f ∈ R0 implies that formula (7) holds uniformly in λ on each interval
[a, b] with 0 < a < b <∞.

3. The condition f ∈ Rρ with ρ < 0 implies that formula (7) holds uniformly in λ on
each interval [b,∞), b > 0.

Another fundamental result in the theory of slowly varying functions is the representation
theorem (see [9, Thm. 1.3.1]).

Theorem 2. For a nonnegative measurable function l, the condition l ∈ R0 is equivalent to
the

(8) l(x) = c(x) exp

{∫ x

a

ε(u)

u
du

}
, x > a,

for some a > 0, where the functions c and ε are such that c(x) → c ∈ (0,∞) as x → ∞ and
ε(u) → 0 as u→ ∞.

Definition 4. A function l ∈ R0 is called a normalized slowly varying function provided that
the function x �→ c(x) in (8) is constant on the interval [a,∞) for some a > 0.

Let l be a normalized slowly varying function. Then Theorem 2 shows that

(9) l(x) = exp

{
C +

∫ x

a

ε(u)

u
du

}
, x > a,
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for some C ∈ R and a > 0, where the function ε is such that ε(u) → 0 as u→ ∞.
For a normalized slowly varying function l, we have

(10) ε(x) =
xl′(x)
l(x)

almost everywhere

(see [9, p. 15]). If the function l is differentiable, then the equality in (10) holds everywhere
on (a,∞).

Definition 5. A nonnegative measurable function l defined on (0,∞) belongs to the Zyg-
mund class Z if, for every α > 0, the function φα(x) = xαl(x) is ultimately increasing and
the function ψα(x) = x−αl(x) is ultimately decreasing.

Remark 1. The class of functions, satisfying the conditions in Definition 5, was introduced
by Zygmund (see, e.g., [28, p. 186]), who called such functions slowly varying functions. A
generally accepted definition of slow variation is given above (see Definition 3). The term “the
Zygmund class” is used in [9, sect. 1.5.3].

The following well-known statement gives a description of the Zygmund class.
Theorem 3 (see Theorem 1.5.5. in [9]). The class Z coincides with the class of normalized

slowly varying functions.
In the present paper, we discuss various asymptotic formulas. Let ψ1 and ψ2 be real

positive functions defined on (0,∞). Throughout the paper the statement φ1(x) = O(φ2(x))
as x→ ∞ means that there exist c > 0 and x0 > 0 such that |φ1(x)| ≤ cφ2(x) for all x > x0,

while the statement φ1(x) ∼ φ2(x) as x→ ∞ means that limx→∞
φ1(x)
φ2(x)

= 1. The explanation

of the statements φ1(x) = O(φ2(x)) as x→ 0 and φ1(x) ∼ φ2(x) as x→ 0 is similar.
The following known definition introduces slowly varying functions with remainder (see

[16]; see also [9]).
Definition 6. Let l and g be nonnegative measurable functions on (0,∞) with g(x) → 0 as

x→ ∞. The function l is called slowly varying with remainder g if for all λ > 1,

(11)
l(λx)

l(x)
− 1 = O(g(x))

as x→ ∞.
We will denote the class of slowly varying functions with remainder g by Rg

0. It is not
hard to see that Rg

0 ⊂ R0. The uniform convergence theorem for slowly varying functions
with remainder is as follows.

Theorem 4 (see Corollary 2.2.1 in [9]). Let l ∈ Rg
0 where g ∈ R0. Then condition (11) holds

uniformly in λ on every interval [1, b], b > 1.
The next statement, which is stronger than Theorem 4, provides a growth estimate in the

variable λ in the uniform convergence result for slowly varying functions with remainder.
Theorem 5. Fix δ 	= 0, and let f and g be positive functions on [0,∞) such that g ∈ R0,

g(x) → 0 as x → ∞, and f ∈ Rg
0. Suppose also that the functions f , g, 1

f , and
1
g are locally

bounded on [0,∞). Then there exists A > 0 such that

(12) |f(λx)− f(x)| ≤ Af(x)g(x)max{λδ , λ−δ}

for all λ > 0 and x ≥ 0.
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Proof. For l ∈ R0, the class OΠl consists of measurable functions h such that for every
λ ≥ 1, h(λx) − h(x) = O(l(x)) as x→ ∞ (see estimate (3.0.6) on page 129 in [9]). It follows
from the condition f ∈ Rg

0 that f ∈ OΠfg. The previous condition and the local boundedness
conditions in the formulation of Theorem 5 allow us to use part (b) of Theorem 3.8.6 in [9];
estimate (12) in Theorem 5 follows from estimate (3.8.10) in [9].

This completes the proof of Theorem 5.
The structure of slowly varying functions with remainder is known. The next result is the

representation theorem for slowly varying functions with remainder (see [16]; see also [9]).
Theorem 6. Let g ∈ R0 and g(x) → 0 as x→ ∞. Then l ∈ Rg

0 if and only if

(13) l(x) = exp

{
C +O(g(x)) +

∫ x

a
O(g(t))t−1dt

}
as x→ ∞, where C ∈ R, and the O functions are locally integrable.

Corollary 1. Let l ∈ Z. Then l ∈ R
|ε|
0 , where ε is the function appearing in formula (9).

Proof. Since l is a normalized slowly varying function, formula (9) holds. This implies
that formula (13) holds with g = |ε|. Next, using Theorem 6, we establish Corollary 1.

2.3. Arandelovic’s theorem and its generalizations. The next statement was obtained
by Arandelović (see [5, 9]).

Theorem 7. Suppose the Mellin transform MU of a measurable function U converges at
least in the strip σ ≤ �(z) ≤ τ , where −∞ < σ < τ < ∞. Let f be a measurable function on
(0,∞), and assume the following two conditions hold:

1. f(x) ∼ xρl(x) as x→ ∞, where ρ ∈ (σ, τ) and l ∈ R0.
2. The function x �→ x−σf(x) is bounded on every interval (0, a], where a > 0.
Then

(14) U
M
� f(x) ∼MU(ρ)[xρl(x)]

as x→ ∞.
In formula (14), there is no error estimate. The next assertion provides such an estimate

under certain additional restrictions.
Theorem 8. Suppose the Mellin transform MU of a measurable function U converges at

least in the strip σ ≤ �(z) ≤ τ where −∞ < σ < τ < ∞. Let f be a measurable function on
(0,∞), and assume the following conditions hold:

1. f(x) = xρl(x)(1 + O(h(x))) as x → ∞ where ρ ∈ (σ, τ), l ∈ Rg
0 with g ∈ R0, and

h ∈ Z. The functions g and h in the previous formula satisfy g(x) → 0 and h(x) → 0
as x→ ∞.

2. The functions g, l−1, and g−1 are locally bounded on the interval (x0,∞) for some
x0 > 0.

3. The function x �→ x−σf(x) is bounded on every interval (0, a] where a > 0.
Then

(15) U
M
� f(x) =MU(ρ)[xρl(x)](1 +O(g(x)) +O(h(x)))

as x→ ∞.
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Proof. Let us first assume that

(16) f(y) = yρl(y) for y > y0,

and then put x1 = max{x0, y0}, where x0 is as in condition 2. Then we have

U
M
� f(x) =

∫ x1
x

0
f(xv)U(v−1)

dv

v
+ xρ

∫ ∞

x1
x

vρl(xv)U(v−1)
dv

v

= I1(x) + I2(x).(17)

Since xv < x1 in the first integral in (17), condition 3 implies the following:

I1(x) ≤ cxσ
∫ x1

x

0
vσU(v−1)

dv

v
= cxσ

∫ ∞

x
x1

y−σ−1U(y)dy

≤ cMU(σ)xσ .

Fix ε > 0 such that ε < ρ−σ and take into account that lg ∈ R0. Then the previous estimates
imply that I1(x) = O(xσ) = O(xρ−ε), and hence

(18) I1(x) = O(xρl(x)g(x)) as x→ ∞.

It follows that the integral I1 can be incorporated into the error term in formula (15).
Our next goal is to estimate the integral I2. It is clear that

I2(x) = xρ
∫ ∞

x1
x

[l(xv)− l(x)]vρU(v−1)
dv

v
+ xρl(x)

∫ ∞

x1
x

vρU(v−1)
dv

v

= xρl(x)

∫ ∞

0
vρU(v−1)

dv

v
− xρl(x)

∫ x1
x

0
vρU(v−1)

dv

v

+ xρ
∫ ∞

x1
x

[l(xv)− l(x)]vρU(v−1)
dv

v

=MU(ρ)[xρl(x)]− xρl(x)

∫ ∞

x
x1

y−ρU(y)
dy

y

+ xρ
∫ ∞

x1
x

[l(xv)− l(x)]vρU(v−1)
dv

v

=MU(ρ)[xρl(x)] + J1(x) + J2(x).(19)

Fix ε > 0 such that ε < ρ− σ. Then, for large values of x, we have

|J1(x)| ≤ xρl(x)

∫ ∞

x
x1

y−σ−εU(y)
dy

y
≤ xρ−εl(x)xε1MU(σ).

Since g ∈ R0 and MU(σ) <∞, we obtain

(20) J1(x) = O(xρl(x)g(x)) as x→ ∞.
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It remains to estimate J2. Denote by l̃ and g̃ the functions l and g extrapolated by positive
constants from (x1,∞) to [0,∞). Then l̃ ∈ Rg̃

0. Moreover, condition 2 and the definition of

the functions l̃ and g̃ imply that the functions l̃, g̃, l̃−1, and g̃−1 are locally bounded on [0,∞).
Now, using Theorem 5, we see that for every δ > 0 there exists a constant A > 0 such that

|l̃(xv) − l̃(x)| ≤ Al̃(x)g̃(x)max{vδ , v−δ}
for all v > 0 and x ≥ 0. Recalling the definition of the functions l̃ and g̃, we see that for
x > x1 and v > x1

x ,

(21) |l(xv)− l(x)| ≤ Al(x)g(x)max{vδ , v−δ}.
It follows from the estimate in (21) that for every δ > 0 there exists x1 > 0 depending on δ
and such that

|J2(x)| ≤ Axρl(x)g(x)

∫ ∞

x1
x

max{vδ, v−δ}vρU(v−1)
dv

v

≤ Axρl(x)g(x)

∫ ∞

0
max{vδ, v−δ}vρU(v−1)

dv

v
(22)

for all x > x1. It is not hard to see that for small enough values of δ, the last integral in
(22) is finite. Here we use the fact that MU(s) < ∞ for all σ ≤ s ≤ τ and the inequalities
σ < ρ < τ . Now, (22) implies that

(23) J2(x) = O(xρl(x)g(x)) as x→ ∞.

Next, taking into account formulas (19), (20), and (23), we obtain

(24) I2(x) =MU(ρ)[xρl(x)] +O(xρl(x)g(x))

as x → ∞. Finally, it is easy to see that formulas (17), (18), and (24) imply formula (15).
This establishes Theorem 8 in a special case where (16) holds.

We will next prove Theorem 8 in the general case. Suppose the conditions in the formu-
lation of Theorem 8 hold. Then there exists x1 > 0 such that f(x) = xρl(x) + xρl(x)η(x)
for all x > x1, where η is a measurable function such that |η(x)| ≤ Ah(x) for all x > x1
and for some constant A > 0. Put f1(x) = f(x)χ{0<x<x1}, f2(x) = xρl(x)χ{x>x1}, and
f3(x) = xρl(x)η(x)χ{x>x1}. Then

(25) U
M
� f(x) = U

M
� f1(x) + U

M
� f2(x) + U

M
� f3(x).

Applying the special case of Theorem 8 established above to the function f2, we obtain

(26) U
M
� f2(x) =MU(ρ)[xρl(x)](1 +O(g(x)))

as x→ ∞. In addition, reasoning as in the proof of (18), we obtain

(27) U
M
� f1(x) = O(xρl(x)g(x))
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as x→ ∞.

We will next estimate the function U
M
� f3, using the same ideas as in the estimate for the

function U
M
� f2. However, we will use the function l̃ = lh instead of the function l. Recall

that l ∈ Rg
0. Moreover, h ∈ R

|ε|
0 , where ε is the function appearing in formula (9) for the

function h (see Corollary 1).
We have ∣∣∣∣∣ l̃(xv)l̃(x)

− 1

∣∣∣∣∣ ≤
∣∣∣∣ l(xv)l(x)

− 1

∣∣∣∣ h(xv)h(x)
+

∣∣∣∣h(xv)h(x)
− 1

∣∣∣∣ .
Therefore, l̃ ∈ R

g+|ε|
0 . It is clear that∣∣∣∣U M

� f3(x)

∣∣∣∣ ≤ Axρ
∫ ∞

x1
x

vρl(xv)h(xv)U(v−1)
dv

v
.

Now, reasoning as in the proof of formula (24), we see that

U
M
� f3(x) = O (xρl(x)[h(x) + h(x)g(x) + h(x)|ε(x)|])

= O (xρl(x)h(x))(28)

as x→ ∞.
Finally, taking into account formulas (25)–(28), we see that formula (15) holds. This

completes the proof of Theorem 8.
A similar theorem characterizes the asymptotic behavior of the Mellin convolution near

zero.
Theorem 9. Suppose the Mellin transform MU of a measurable function U converges at

least in the strip σ ≤ �(z) ≤ τ , where −∞ < σ < τ < ∞. Let f be a measurable function on
(0,∞), and assume the following conditions hold:

1. f(y−1) = y−ρl(y)(1 + O(h(y))) as y → ∞, where ρ ∈ (σ, τ), l ∈ Rg
0 with g ∈ R0, and

h ∈ Z. The functions g and h in the previous formula satisfy g(y) → 0 and h(y) → 0
as y → ∞.

2. The functions g, l−1, and g−1 are locally bounded on the interval (x0,∞) for some
x0 > 0.

3. The function y �→ yτf(y−1) is bounded on every interval (0, a], where a > 0.
Then

U
M
� f(x) =MU(ρ)[xρl(x−1)](1 +O(g(x−1)) +O(h(x−1)))

as x→ 0.
Proof. Theorem 9 follows from Theorem 8, applied to the functions f̃(x) = f

(
x−1

)
and

Ũ(x) = U
(
x−1

)
. Here we take into account (3), (4), and (5).

3. The Heston model with double exponential jumps. Main results. In this section,
we gather several known results for the Heston model, which is a popular stochastic volatility
model. The stock price process X and the variance process Y in the Heston model satisfy the
following system of stochastic differential equations:

(29)

{
dXt = μXtdt+

√
YtXtdWt,

dYt = (a− bYt)dt+ c
√
YtdZt,
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where μ ∈ R, a ≥ 0, b ≥ 0, c > 0. In (29), W and Z are correlated standard Brownian
motions such that d〈W,Z〉t = ρdt with ρ ∈ (−1, 1). It will be assumed in what follows that
the interest rate r is equal to zero. In the Heston model, the distribution μt of the stock price

Xt admits density D
(1)
t . The initial conditions for the processes X and Y will be denoted by

x0 and y0, respectively. The Heston model was introduced and studied in [20].
We have

Xt = x0 exp

{
μt− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdWs

}
,

and the following formulas hold for the density D
(1)
t in the Heston model in the case where

μ = 0 and x0 = 1:

(30) D
(1)
t (x) = A1x

−A3 exp
{
A2

√
log x

}
(log x)−

3
4
+ a

c2
(
1 +O((log x)−

1
2 )
)

as x→ ∞, and

(31) D
(1)
t (x) = Ã1x

˜A3 exp

{
Ã2

√
log

1

x

}(
log

1

x

)− 3
4
+ a

c2

(
1 +O

((
log

1

x

)− 1
2

))

as x → 0. The constants appearing in formulas (30) and (31) will be described below (see
Remark 4). Formulas (30) and (31) were obtained in [18] in the case where ρ = 0 and in [13]
for −1 < ρ < 0. A more detailed discussion of those and similar results can be found in [17].

For general x0 and μ, we have

(32) D
(1)
t (x) = B1x

−A3 exp
{
A2

√
log x

}
(log x)−

3
4
+ a

c2
(
1 +O((log x)−

1
2 )
)

as x→ ∞, and

(33) D
(1)
t (x) = B̃1x

˜A3 exp

{
Ã2

√
log

1

x

}(
log

1

x

)− 3
4
+ a

c2

(
1 +O

((
log

1

x

)− 1
2

))

as x→ 0. In (32) and (33), the constants B1 and B̃1 are defined as follows:

B1 = A1

(
x0e

μt
)−A3−1

and

B̃1 = Ã1

(
x0e

μt
)
˜A3−1

.

The proof of (33) uses (30) and the following simple formulas:

exp
{
r1
√

log x+ r2

}
= exp

{
r1
√

log x
}(

1 +O((log x)−
1
2 )
)
, x→ ∞, r1 ∈ R, r2 ∈ R,

and
(log x+ r3)

r4 = (log x)r4
(
1 +O((log x)−

1
2 )
)
, x→ ∞, r3 ∈ R, r4 ∈ R.

The proof of (33) is similar. It is based on formula (31).
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Let N be a standard Poisson process with intensity λ > 0, and consider a compound
Poisson process defined by

Jt =

Nt∑
i=1

(Vi − 1), t ≥ 0,

where Vi are positive identically distributed random variables such that the distribution den-
sity g of the random variable Ui = log Vi is double exponential. This means that

g(u) = pη1e
−η1uχ{u≥0} + qη2e

η2uχ{u<0},

where η1 > 1, η2 > 0, and p and q are positive numbers such that p + q = 1. The condition
η1 > 1 is necessary and sufficient for the random variable Jt to have finite expectation.

S. Kou introduced and studied a perturbation of the Black–Scholes model based on the
jump process described above (see [22]; see also [23]). In [19], we considered a similar per-
turbation of the Heston model. The stock price process and the variance process Y in the
perturbed Heston model satisfy the following system of stochastic differential equations:

(34)

{
dX̃t = μX̃t−dt+

√
YtX̃t−dWt + X̃t−dJt,

dYt = (a− bYt) dt+ c
√
YtdZt.

It is assumed in (34) that the compound Poisson process J is independent of the standard
Brownian motions W and Z. The initial conditions for the processes X̃ and Y will be denoted
by x0 and y0, respectively.

It is not hard to see that

(35) X̃t = x0 exp

{
μt− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdWs +

Nt∑
i=1

Ui

}
.

The validity of the equality in (35) follows from the Doléans-Dade formula (see, for example,
[25]).

The Heston model with double exponential jumps is a mixed stochastic model. Indeed,
using formula (35), we can split the process X̃ into the product of the following processes:

(36) X
(1)
t = x0 exp

{
μt− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdWs

}
and

(37) X
(2)
t = exp

{
Nt∑
i=1

Ui

}
.

We have X(1) = X, where X is the stock price process in the Heston model described by (29),

and for every t ≥ 0, the following inequality holds: E[X
(2)
t ] <∞ (see Remark 8 below).
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We will next formulate our main results concerning the asymptotic behavior of the stock
price density in the Heston model with double exponential jumps. We first consider the case
of the perturbed Heston model where the jump part dominates.

Theorem 10. Fix t > 0, and suppose 1 + η1 < A3. Then the following asymptotic formula
holds for the stock price density Dt in the Heston model with double exponential jumps:

Dt(x) =
1

2
√
π
mη1(D

(1)
t )(η1λtp)

1
4 exp

{
η2λtq

η1 + η2
− λt

}
(log x)−

3
4

× exp{2
√
η1λtp

√
log x}x−η1−1

(
1 +O

(
(log x)−

1
2

))
(38)

as x→ ∞. Here D
(1)
t is the density of the random variable X

(1)
t defined by (36).

Theorem 11. Fix t > 0, and suppose Ã3 > η2 − 1. Then the following asymptotic formula
holds for the stock price density Dt in the Heston model with double exponential jumps:

Dt(x) =
1

2
√
π
m−η2(D

(1)
t )(η2λtq)

1
4 exp

{
η1λtp

η1 + η2
− λt

}(
log

1

x

)− 3
4

× exp

{
2
√
η2λtq

√
log

1

x

}
xη2−1

(
1 +O

((
log

1

x

)− 1
2

))
(39)

as x→ 0.
Remark 2. The symbols mη1(D

(1)
t ) and m−η2(D

(1)
t ) in formulas (38) and (39) stand for

the moments of the marginal density D
(1)
t (see (6)). Formula (38) becomes meaningless if

1+η1 = A3. Indeed, if the previous equality holds, then mη1(D
(1)
t ) = ∞ (use (30)). Similarly,

if Ã3 = η2 − 1, then m−η2(D
(1)
t ) = ∞ (use (31)), and formula (39) does not hold.

We will next explain how the density Dt behaves in the case where the Heston part
dominates.

Theorem 12. Fix t > 0, and suppose 1 + η1 > A3. Then the following asymptotic formula
holds for the stock price density Dt in the Heston model with double exponential jumps:

Dt(x) =
[
e−λt +mA3−1(H(t, ·))

]
B1x

−A3 exp{A2

√
log x}(log x)− 3

4
+ a

c2

×
(
1 +O

(
(log x)−

1
2

))
(40)

as x→ ∞.
Theorem 13. Fix t > 0, and suppose Ã3 < η2 − 1. Then the following asymptotic formula

holds for the stock price density Dt in the Heston model with double exponential jumps:

Dt(x) =
[
e−λt +m− ˜A3−1

(H(t, ·))
]
B̃1x

˜A3 exp

{
Ã2

√
log

1

x

}(
log

1

x

)− 3
4
+ a

c2

×
(
1 +O

((
log

1

x

)− 1
2

))
(41)

as x→ 0.
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Remark 3. Recall that the symbols mA3−1(μ
(2)
t ) and m− ˜A3−1(μ

(2)
t ) in formulas (40) and

(41) stand for the moments of the marginal distribution μ
(2)
t (see (6)). In the extreme case

where 1 + η1 = A3, formula (40) does not hold, since under the previous condition, we have

m− ˜A3−1
(μ

(2)
t ) = ∞ (use (57), (58), and (95)). Similarly, formula (41) is not valid if Ã3 = η2−1,

since in this case we have m− ˜A3−1(μ
(2)
t ) = ∞ (use (57), (58), and (96)).

Remark 4. In this remark, we provide explicit formulas for the constants appearing in
formulas (30) and (31) (see [13, 17]). Given s ≥ 1, define the explosion time for the moment
of order s by

T ∗(s) = sup {t ≥ 0 : E[Xs
t ] <∞} ,

and for any t > 0, let the s+ be the upper critical moment defined by

s+ = s+(t) = sup {s ≥ 1 : E[Xs
t ] <∞} .

For the Heston model, the explosion time T ∗ is explicitly known (see [4, 21]). The critical
moment, for fixed t, can then be determined from T ∗(s+(t)) = t. The previous equality shows
that s+(t) ≥ 1 is the generalized inverse of the function T ∗(·).

The lower critical moment is defined as follows:

s− = s−(t) = inf {s ≤ 0 : E[Xs
t ] <∞} .

For fixed t > 0, the quantities

σ+ = − ∂T ∗(s)
∂s

∣∣∣∣
s=s+

and κ+ =
∂2T ∗(s)
∂s2

∣∣∣∣
s=s+

are called the upper critical slope and the upper critical curvature, respectively. Similarly, the
lower critical slope and curvature are defined by

σ− = − ∂T ∗(s)
∂s

∣∣∣∣
s=s−

and κ− =
∂2T ∗(s)
∂s2

∣∣∣∣
s=s−

,

respectively. In formula (30), the constants A1, A2, and A3 are given by

A1 =
1√
π
2−

3
4
− a

c2 y
1
4
− a

c2

0 c
2a
c2

− 1
2σ

− a
c2

− 1
4

+

× exp

{
−y0

(
cρs+ − b

c2
+

κ+
c2σ2+

)
− at

c2
(cρs+ − b)

}

×

⎧⎪⎨⎪⎩
2
√

(b− cρs+)2 + c2(s+ − s2+)

c2s+(s+ − 1) sinh
[
t
2

√
(b− cρs+)2 + c2(s+ − s2+)

]
⎫⎪⎬⎪⎭

2a
c2

,

A2 = 2
√

2y0c
−1σ

− 1
2

+ , A3 = s+ + 1.
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In addition, the constants Ã1, Ã2, and Ã3 in formula (31) are as follows:

Ã1 =
1

2
√
π
(2y0)

1/4−a/c2 c2a/c
2−1/2σ

−a/c2−1/4
−

× exp

{
−y0

(
s−ρc− b

c2
+

κ−
c2σ2−

)
− at

c2
(cρs− − b)

}

×
(

2
√
b2 − 2bcρs− + c2s−(1− (1− ρ2)s−)

c2s−(s− − 1) sinh t
2

√
b2 − 2bcρs− + c2s−(1− (1− ρ2)s−)

) 2a
c2

,

Ã2 = 2
√

2y0c
−1σ

− 1
2− , Ã3 = −(s− + 1).

The constants described above depend on the parameter t.
Remark 5. It follows from (30) and (31) that the interval (−A3, Ã3) belongs to the domain

of the Mellin transform MD
(1)
t .

We will prove Theorems 10–13 in section 5.

4. Smile asymptotics in the Heston model with double exponential jumps. In order to
create a risk-neutral environment, we assume that the following no-arbitrage condition holds
for the parameters in the perturbed Heston model:

(42) μ = λ

(
q

η2 + 1
− p

η1 − 1

)
.

Here we take into account that r = 0. Then the process X̃ defined by (35) is a martingale
(see [17, sect. 10.8]). The proof uses the mean-correcting argument (see, e.g., Lemma 10.40
in [17] or [26, pp. 79–80]). It will be assumed in the present section that condition (42) holds.

The call and put pricing functions C and P in the Heston model with double exponential
jumps are defined by C(T,K) = E[(X̃T −K)+] and P (T,K) = E[(K − X̃T )

+], respectively.
In the previous formulas, T is the maturity and K is the strike price. The implied volatility
I(T,K), T > 0, K > 0, in the Heston model with double exponential jumps is defined as
follows. Given T and K, the implied volatility I(T,K) is equal to the value of the volatility
σ = σ(T,K) in the Black–Scholes model such that C(T,K) = CBS(T,K, σ). Here the symbol
CBS stands for the call pricing function in the Black–Scholes model. In what follows, the
maturity T will be fixed, and we will consider the functions C, P , and I as functions of only
the strike price K.

The asymptotic behavior of the implied volatility I in the Heston model with double
exponential jumps will be characterized utilizing the asymptotic formulas for the stock price
densities provided in Theorems 10–13. We will start with the case of large strikes. Analyzing
the formulas in Theorems 10 and 12, we see that it is important to understand how the implied
volatility behaves if the stock price density DT satisfies the condition

(43) DT (x) = r1x
−r3 exp{r2

√
log x}(log x)r4

(
1 +O

(
(log x)−

1
2

))
as x→ ∞, where r1 > 0, r2 ≥ 0, r3 > 2, and r4 ∈ R.
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Theorem 14. Suppose condition (43) holds. Then the following asymptotic formula is valid
for the implied volatility:

I(K) =

√
2√
T
(
√
r3 − 1−√

r3 − 2)

√
log

K

x0
+

r2√
2T

(
1√
r3 − 2

− 1√
r3 − 1

)
+

2r4 + 1

2
√
2T

(
1√
r3 − 2

− 1√
r3 − 1

)
log log K

x0√
log K

x0

+

[
1√
2T

log

√
r3 − 1

√
r3 − 2(

√
r3 − 1−√

r3 − 2)

2
√
πr1

+
r22

4
√
2T

(
1

(r3 − 2)
3
2

− 1

(r3 − 1)
3
2

)]
1√

log K
x0

+
r2(2r4 + 1)

4
√
2T

(
1

(r3 − 2)
3
2

− 1

(r3 − 1)
3
2

)
log log K

x0

log K
x0

+O

(
1

log K
x0

)(44)

as K → ∞.
Proof. For the sake of simplicity, we assume x0 = 1. The proof in the general case is

similar.
It follows from (43), Corollary 7.13 in [17], and Theorem 8.10 in [17] that as K → ∞,

(45) C(K) =
r1

(r3 − 1)(r3 − 2)
(logK)r4 exp{r2

√
logK}K2−r3

(
1 +O

(
1√

logK

))
.

Therefore, as K → ∞,

log
1

C(K)
= log

(r3 − 1)(r3 − 2)

r1
− r4 log logK − r2

√
logK + (r3 − 2) logK

+O

(
1√

logK

)
.(46)

Moreover, the mean value theorem and (46) imply that

log log
1

C(K)
= log logK + log(A3 − 2) +O

(
1√

logK

)
as K → ∞. Next, using Theorem 9.16 in [17] with λ = r3 − 2 and Λ(K) =

√
logK, we get

(47) I(K) =

√
2√
T

[√
(r3 − 1) logK + L(K)−

√
(r3 − 2) logK + L(K)

]
+O

(
1

logK

)
as K → ∞, where

L(K) = −r2
√

logK −
(
r4 +

1

2

)
log logK + log

(r3 − 1)(r3 − 2)

r1

− log(r3 − 2) + log

√
r3 − 1−√

r3 − 2

2
√
πr3 − 1

.
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It follows from (47) that

I(K) =

√
2√
T

[
√
r3 − 1

√
logK

√
1 +

L(K)

(r3 − 1) logK
−√

r3 − 2
√

logK

√
1 +

L(K)

(r3 − 2) logK

]

+O

(
1

logK

)
(48)

as K → ∞. Now, using the formula
√
1 + h = 1 + 1

2h − 1
8h

2 + O
(
h3
)
, h → 0, in (48), and

making simplifications, we obtain formula (44) with x0 = 1.
This completes the proof of Theorem 14.
The next theorem characterizes the asymptotic behavior of the implied volatility at large

strikes in the Heston model with double exponential jumps.
Theorem 15. Let T > 0, and suppose 1 + η1 < A3. Then formula (44) holds with

r1 =
1

2
√
π
mη1(D

(1)
T )(η1λTp)

1
4 exp

{
η2λTq

η1 + η2
− λT

}
,

r2 = 2
√
η1λTp, r3 = η1 + 1, and r4 = −3

4
.

On the other hand, if 1 + η1 > A3, then formula (44) holds with

r1 =
[
e−λT +mA3−1(H(T, ·))

]
B1,

r2 = A2, r3 = A3, and r4 = −3

4
+
a

c2
.

Proof. Theorem 15 follows from Theorems 10, 12, and 14.
Remark 6. In the paper of Gao and Lee [14], an asymptotic formula with four terms and

an error estimate of order

(49) O
(
(logK)−

3
4

)
, K → ∞,

was found for the implied volatility in the negatively correlated Heston model (see [14, Cor.
8.1]). Using (30) and Theorem 14, we can obtain a sharper asymptotic formula with five
terms and an error estimate of order O

(
(logK)−1

)
as K → ∞. The fifth term in this formula

is of the form c log logKlogK . The previous expression tends to zero faster than the expression in
(49). The reason why the formula obtained in [14] contains a weaker error estimate is the
following. In the proof of their result, Gao and Lee used formula (4.2) from [13], which is
an asymptotic formula for the call pricing function in the Heston model with a relative error
estimate O((logK)−

1
4 ). However, formula (4.2) in [13] in our opinion contains a typo. More

precisely, the power −1
4 in the error estimate in that formula can be replaced by the power

−1
2 . Indeed, it suffices to integrate the expressions in formula (4.1) in [13] twice. Formula

(4.1) is an asymptotic formula for the stock price density in the negatively correlated Heston

model, containing a correct relative error estimate O((log x)−
1
2 ). In the presentation of the

results from [13] in the book [17], the asymptotic formula for the call pricing function in the
negatively correlated Heston model contains a correct error term (see formula (8.28) in [17]).
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Remark 7. The asymptotic behavior of the implied volatility at large strikes in Kou’s
model was studied in [29] and [15]. Since Kou’s model is the Black–Scholes model with double
exponential jumps, the jump part always dominates. Indeed, the decay of the stock price
density in the Black–Scholes model is log-normal, while the density of the exponential Lévy
part of Kou’s model decays as a regularly varying function. The authors of [15] obtain an
asymptotic formula for the implied volatility with four terms and an error estimate of order
O((logK)−

3
4 ) as in [14]. It is not hard to obtain a similar expansion with five terms and an

error estimate of order O
(
(logK)−1

)
as K → ∞, using Theorems 8, 19, and 14 established

in the present paper.
Our next goal is to characterize the asymptotic behavior of the implied volatility at small

strikes. Here we borrow various ideas used in section 9.7 of [17]. For the sake of brevity, we
again assume that x0 = 1. Set G(K) = KP

(
K−1

)
. Then G is a call pricing function. The

corresponding marginal densities are as follows:

(50) D̃T (x) = x−3DT

(
x−1

)
(see Remark 9.20 in [17]). Now, using Theorems 11 and 13, formula (50), and the fact that
I(K) = IG

(
K−1

)
(see Lemma 9.23 in [17]), we obtain the following assertion.

Theorem 16. Let T > 0, and suppose Ã3 > η2 − 1. Then the following formula holds for
the implied volatility in the Heston model with double exponential jumps:

I(K) =

√
2√
T
(
√
s3 + 1−√

s3)

√
log

x0
K

+
s2√
2T

(
1√
s3

− 1√
s3 + 1

)
+

2s4 + 1

2
√
2T

(
1√
s3

− 1√
s3 + 1

)
log log x0

K√
log x0

K

+

⎡⎣ 1√
2T

log

√
s3 + 1

√
s3(

√
s3 + 1−√

s3)

2
√
πs1

+
s22

4
√
2T

⎛⎝ 1

s
3
2
3

− 1

(s3 + 1)
3
2

⎞⎠⎤⎦ 1√
log x0

K

+
s2(2s4 + 1)

4
√
2T

⎛⎝ 1

s
3
2
3

− 1

(s3 + 1)
3
2

⎞⎠ log log x0
K

log x0
K

+O

(
1

log x0
K

)
(51)

as K → 0. In (51),

s1 =
1

2
√
π
m−η2

(
D

(1)
T

)
(η2λTq)

1
4 exp

{
η1λTp

η1 + η2
− λT

}
,

s2 = 2
√
η2λTq, s3 = η2, and s4 = −3

4
.

On the other hand, if Ã3 < η2 − 1, then (51) holds with

s1 =
[
e−λT +mA3−1(H(T, ·))

]
B̃1,

s2 = Ã2, s3 = Ã3 + 1, and s4 = −3

4
+
a

c2
.
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5. Proofs of the main results. Our main objective in the present section is to prove
Theorems 10–13. We first establish several preliminary results, which are of independent
interest. The proofs of Theorems 10–13 will be completed at the end of subsection 5.3.

Set Tt =
∑Nt

i=1 Ui (see section 3 for the definition of Nt and Ui). The distribution μt of
the random variable Tt is given by

(52) dμt(y) = e−λtdδ0(y) +
[
G1(t, y)e

−η1yχ{y>0} +G2(t, y)e
η2yχ{y<0}

]
dy,

where y ∈ (−∞,∞) and δ0 is the delta-measure at y = 0. The functions G1 and G2 in the
previous formula are defined by

(53) G1(t, u) =

∞∑
k=0

aku
k, u > 0,

with

(54) ak =
ηk+1
1

k!

∞∑
n=k+1

πnPn,k+1,

and

G2(t,−u) =
∞∑
k=0

bku
k, u > 0,

with

(55) bk =
ηk+1
2

k!

∞∑
n=k+1

πnQn,k+1.

The numbers πn in the previous formulas depend on t. They are defined by π0 = e−λt and
πn = e−λt(λt)n(n!)−1 for all n ≥ 1. In addition, the numbers Pn,k and Qn,k are given by

(56) Pn,k =
n−1∑
i=k

(
n− k − 1
i− k

)(
n
i

)(
η1

η1 + η2

)i−k ( η2
η1 + η2

)n−i

piqn−i

for all 1 ≤ k ≤ n− 1, and

Qn,k =
n−1∑
i=k

(
n− k − 1
i− k

)(
n
i

)(
η1

η1 + η2

)n−i( η2
η1 + η2

)i−k

pn−iqi

for all 1 ≤ k ≤ n − 1. We also have Pn,n = pn and Qn,n = qn. Formula (52) can be derived
using Proposition B.1 in [22] (see the derivation in [19] or in section 10.8 of [17]).

It follows from (52) that the distribution μ
(2)
t of the random variable X

(2)
t satisfies

(57) dμ
(2)
t (x) = e−λtdδ1(x) +H(t, x)dx, x > 0.
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In (57), δ1 is the delta-measure at x = 1, the function H is defined by

(58) H(t, x) = H1(t, x)x
−η1−1χ{x>1} +H2(t, x)x

η2−1χ{0<x<1},

where

(59) H1(t, x) = G1(t, log x), x > 1,

and

(60) H2(t, x) = G2(t, log x), 0 < x < 1.

The next assertion provides useful approximations to the coefficients ak and bk appearing
in (54) and (55).

Theorem 17. There exist positive constants c1 and c2, independent of k, and such that

(61) 0 < ak − âk ≤ c1
âk
k + 1

, k ≥ 0,

and

(62) 0 < bk − b̂k ≤ c2
b̂k

k + 1
, k ≥ 0,

where

âk = exp

{
η2λtq

η1 + η2
− λt

}
(η1λtp)

k+1

k!(k + 1)!
, k ≥ 0,

and

b̂k = exp

{
η1λtp

η1 + η2
− λt

}
(η2λtq)

k+1

k!(k + 1)!
, k ≥ 0.

Proof. For i ≥ 1 and m ≥ i+ 1, put

γk+m,k+i =

(
m− 2
i− 1

)(
k +m
k + i

)(
η1

η1 + η2

)i−1( η2
η1 + η2

)m−i

pk+iqm−i.

It follows from (54) and (56) that for all k ≥ 1,

(63) ak =

∞∑
i=0

ak,i,

where

ak,0 =
ηk+1
1

k!
πk+1p

k+1

and

(64) ak,i =
ηk+1
1

k!

∞∑
m=i+1

πk+mγk+m,k+i
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for all i ≥ 1. We have

ak,0 + ak,1 = e−λt (η1λtp)
k+1

k!(k + 1)!

[
1 +

∞∑
m=2

1

(m− 1)!

(
η2λtq

η1 + η2

)m−1
]

= exp

{
η2λtq

η1 + η2
− λt

}
(η1λtp)

k+1

k!(k + 1)!
= âk.(65)

Therefore, (63), (64), and (65) imply the following:

0 ≤ ak − âk =
∞∑
i=2

ak,i

(66)

= e−λt (η1λtp)
k+1

k!(k + 1)!

∞∑
i=2

1

(k + i) · · · (k + 2)(i − 1)!

(
η1

η1 + η2

)i−1

pi−1

∞∑
m=i+1

(λt)m−1(m− 2)!

(m− i− 1)!(m− i)!

(
η2

η1 + η2

)m−i

qm−i

≤ β1
âk
k + 1

∞∑
i=2

1

i!(i− 1)!

(
η1

η1 + η2

)i−1

(λtp)i−1
∞∑
j=0

(λt)j+1(j + i− 1)!

j!(j + 1)!

(
η2

η1 + η2

)j+1

qj+1,

where β1 is a positive constant. For i ≥ 2 and j ≥ 1, we have

(j + i− 1)!

i!j!
≤ (j + i)i

i!
≤ β2e

i

(
1 +

j

i

)i

≤ β2e
i+j ,

where β2 is a positive constant. In the proof of the previous estimates, we used Stirling’s
formula. Now, it is not hard to see that the last double series in (66) converges, and it follows
from (66) that the estimate in (61) is valid. The proof of the estimate in (62) is similar.

This completes the proof of Theorem 17.
We will next further simplify formulas (61) and (62). Set

C1 =
η1λtp

2π
exp

{
η2λtq

η1 + η2
− λt

}
, B1 = η1λtp,

C2 =
η2λtq

2π
exp

{
η1λtp

η1 + η2
− λt

}
, B2 = η2λtq,

and consider the following sequences:

(67) d0 = C1, dk = C1
Bk

1e
2k

k2k+2
, k ≥ 1,

and

l0 = C2, lk = C2
Bk

2 e
2k

k2k+2
, k ≥ 1.
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Corollary 2. The following formulas hold:

(68) |ak − dk| ≤ α1

k + 1
dk, k ≥ 0,

and

(69) |bk − lk| ≤ α2

k + 1
lk, k ≥ 0,

where α1 and α2 are some positive constants.
Proof. We will need Stirling’s formula in the asymptotic form as follows:

(70) n! =
√
2πnn+

1
2 e−n

(
1 +O

(
1

n

))
as n→ ∞. It is not hard to see, using (61) and (70), that

ak = exp

{
η2λtq

η1 + η2
− λt

}
(η1λtp)

k+1

k!k!k(1 + 1
k+1)

(
1 +O

(
1

k

))
= exp

{
η2λtq

η1 + η2
− λt

}
(η1λtp)

k+1

k!k!k

(
1 +O

(
1

k + 1

))
=

1

2π
exp

{
η2λtq

η1 + η2
− λt

}
(η1λtp)

k+1 e2k

k2k+2

(
1 +O

(
1

k + 1

))
as k → ∞. This establishes (68). The proof of (69) is similar.

5.1. Properties of the functions H1 and H2. In the present subsection, we study the
asymptotic behavior of the functions H1 and H2 defined in (59) and (60). It will be shown
first that these functions are of slow variation with remainder.

Lemma 1. For every t > 0, the functions x �→ H1(t, x) and x �→ H2(t, x
−1) belong to the

Zygmund class Z.
Proof. Let us fix t > 0. Since the function x �→ H1(t, x) is increasing on x > 1, the

function φα(t, x) = xαH1(t, x), where α > 0, is also increasing. It remains to prove that the
function ψα(t, x) = x−αH1(t, x) is ultimately decreasing. We have

ψ′
α(t, x) = −αx−α−1G1(t, log x) + x−α−1G′

1(t, log x).

Therefore, the condition ψ′
α(t, x) ≤ 0 is equivalent to the condition

G′
1(t, log x)

G1(t, log x)
≤ α

for all x > xα, which in turn is equivalent to the condition

(71)
G′

1(t, log x)

G1(t, log x)
→ 0

as x→ ∞. Now it is clear that it suffices to prove (71).



ASYMPTOTIC ANALYSIS OF STOCK PRICE DENSITIES 179

Using the definition of the function G1, we obtain

(72)
G′

1(t, log x)

G1(t, log x)
=

∑∞
k=1 akk(log x)

k−1∑∞
k=0 ak(log x)

k
,

where the coefficients ak are defined by (54). It is not hard to see, using (61), that for all
k ≥ 2,

(73)
kak
ak−1

≤ c

k + 1

with some c > 0. Hence, for every ε > 0 there exists a positive integer kε such that kak ≤ εak−1

for all k > kε. It follows from (72) that

(74)
G′

1(t, log x)

G1(t, log x)
≤

∑kε
k=1 akk(log x)

k−1∑∞
k=1 ak(log x)

k
+ ε.

It is clear that for fixed ε the first term on the right-hand side of (74) tends to 0 as x → ∞.
Now, it is not hard to see that condition (71) holds.

This completes the proof of Lemma 1 for the function x �→ H1(t, x). The proof for the
function x �→ H2(t,

1
x) is similar.

Remark 8. It follows from (57), the fact that Z ⊂ R0, and Lemma 1 that the process

t �→ X
(2)
t is an integrable process.

Lemma 2. For every t > 0, the functions x �→ H1(t, x) and x �→ H2(t, x
−1) belong to the

class Rg
0, where the function g is given by g(x) = (log x)−

1
2 .

Proof. The function x �→ H1(t, x) is an increasing differentiable function from the Zygmund
class. Therefore, it suffices to prove that there exists c̃ > 0 such that

(75)
xH ′

1(t, x)

H1(t, x)
≤ c̃(log x)−

1
2

for all x > x0 (see Corollary 1 and (10)). It is easy to see that the estimate in (75) is equivalent
to

(76)
G′

1(t, log x)

G1(t, log x)
= O

(
(log x)−

1
2

)
as x→ ∞.

We have

G′
1(t, log x)

G1(t, log x)
= (log x)−1

∑∞
k=1 akk(log x)

k∑∞
k=0 ak(log x)

k

= (log x)−1

∑[
√
log x]

k=1 akk(log x)
k +

∑∞
k=[

√
log x]+1 akk(log x)

k∑∞
k=0 ak(log x)

k

≤ (log x)−
1
2 + (log x)−1

∑∞
k=[

√
log x]+1 akk(log x)

k∑∞
k=0 ak(log x)

k
.(77)
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Next, using (73) in (77), we obtain

G′
1(t, log x)

G1(t, log x)
≤ (log x)−

1
2 + (log x)−1

∑∞
k=[

√
log x]+1

cak−1

k+1 (log x)k∑∞
k=1 ak(log x)

k

≤ (log x)−
1
2 + c(log x)−

3
2

∑∞
k=[

√
log x]+1 ak−1(log x)

k∑∞
k=1 ak(log x)

k

= O
(
(log x)−

1
2

)
as x→ ∞. This establishes estimate (76).

The proof of Lemma 2 in the case of the function x �→ H1(t, x) is thus completed. For the
function x �→ H2

(
t, 1x

)
, the proof is similar.

Recall that G1(t, ·) =
∑∞

k=0 aku
k (see (53)), where the coefficients ak are given by (54).

Define two auxiliary functions G̃1(t, ·) and Ĝ1(t, ·) as

G̃1(t, u) =
∑
k=0

dku
k and Ĝ1(t, u) =

∞∑
k=0

dk
k + 1

uk,

where u ≥ 0 and the sequence d is given by (67). Then (68) implies that

|G1(t, u)− G̃1(t, u)| ≤ α1Ĝ1(t, u).

The functions G̃1 and Ĝ1 are defined as sums of certain power series. Our next goal is
to compare these functions with some standard functions. Analyzing the structure of the
coefficients dk, we guess that the following family of functions may be useful:

(78) λs,r(u) = s cosh(r
√
u) =

∞∑
k=0

d̃ku
k, u ≥ 0, r > 0, s > 0,

where

d̃k = s
r2k

(2k)!
.

It is clear that d̃0 = s. Moreover, using Stirling’s formula, we see that

d̃k = s
r2ke2k

2
√
π22kk2k+

1
2

(
1 +O

(
1

k

))
as k → ∞. Next, comparing the coefficients dk and d̃k, we see that if we set

(79) s = 2
√
πC1 and r = 2

√
B1,

then

(80) |dk − (k + 1)−
3
2 d̃k| ≤ δ1(k + 1)−

5
2 d̃k

for some δ1 > 0 and all k ≥ 0. Finally, it follows from (68) and (80) that the coefficients ak
and d̃k satisfy the condition

(81) |ak − (k + 1)−
3
2 d̃k| ≤ δ2(k + 1)−

5
2 d̃k

for some δ2 > 0 and all k ≥ 0.
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5.2. The Riemann–Liouville integrals. In this subsection, we consider only fractional
integrals of functions given by everywhere convergent power series with positive coefficients.
Let f(u) =

∑∞
n=0 cnu

n be a function on R such that cn > 0 for all n ≥ 0 and the function
F (z) =

∑∞
n=0 cnz

n is an entire function on C. For α < 0, the Riemann–Liouville fractional
integral Dαf is defined as follows:

(82) Dαf(u) =
1

Γ(−α)
∫ u

0
f(y)(u− y)−α−1dy.

Then the following formula is valid:

(83) Dαf(u) = u−α
∞∑
n=0

cn,αcnu
n,

where

cn,α =
Γ(n+ 1)

Γ(n− α+ 1)

(see the definition of the Riemann–Liouville integral in [24, sect. 5] and [24, sect. 3, formula
(3.2)]). We will next characterize the asymptotic behavior of the sequence cn,α. Using the
asymptotic formula for the Gamma function, that is, the formula

Γ(u) =
√
2πuu−

1
2 e−u

(
1 +O

(
1

u

))
as u→ ∞, we obtain

cn,α =
e|α|(n+ 1)n+|α|+ 1

2

(n+ |α|+ 1)n+|α|+ 1
2 (n+ 1)|α|

(
1 +O

(
1

n

))

= e|α|
(

n+ 1

n+ |α|+ 1

)n+|α|+1 (n+ |α|+ 1)
1
2

(n+ 1)
1
2

1

(n+ 1)|α|

(
1 +O

(
1

n

))

= e|α|
(
1− |α|

n+ |α|+ 1

)n+|α|+1 1

(n+ 1)|α|

(
1 +O

(
1

n

))
as n→ ∞.

It is not hard to prove that for every c > 0,(
1− c

x

)x
= e−c

(
1 +O

(
1

x

))
as x→ ∞. Therefore,

cn,α =
1

(n+ 1)|α|

(
1 +O

(
1

n+ 1

))
as n→ ∞, and hence

(84)
1

(n+ 1)|α|
= cn,α

(
1 +O

(
1

n+ 1

))
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as n→ ∞. Since

cn,α
n+ 1

=
Γ(n+ 1)

(n+ 1)Γ(n+ |α|+ 1)
≤ c

Γ(n+ 1)

(n + |α|+ 1)Γ(n + |α| + 1)
= c

Γ(n+ 1)

Γ(n+ |α|+ 2)
= cn,α−1,

formula (84) implies that there exists a constant δ3 > 0 for which

(85)

∣∣∣∣ 1

(n+ 1)|α|
− cn,α

∣∣∣∣ ≤ δ3cn,α−1

for all n ≥ 0.
Our next goal is to combine various estimates for the coefficients obtained above.
Lemma 3. There exists a constant δ4 > 0 such that∣∣∣ak − ck,− 3

2
d̃k

∣∣∣ ≤ δ4ck,− 5
2
d̃k

for all k ≥ 0.
Proof. It follows from (81), (84), and (85) that∣∣∣ak − ck,− 3

2
d̃k

∣∣∣ ≤ ∣∣∣ak − (k + 1)−
3
2 d̃k

∣∣∣+ ∣∣∣ck,− 3
2
− (k + 1)−

3
2

∣∣∣ d̃k
≤ δ2(k + 1)−

5
2 d̃k + δ3ck,− 5

2
d̃k ≤ δ4ck,− 5

2
d̃k.

This completes the proof of Lemma 3.
The following assertion can be easily derived from (53), (78), and (83).
Theorem 18. There exists a positive constant c such that

(86)
∣∣∣G1(t, u)− u−

3
2D− 3

2λs,r(u)
∣∣∣ ≤ cu−

5
2D− 5

2λs,r(u)

for all u > 0. In (86), the values of the parameters r and s are chosen according to (79).
It follows from Theorem 18 that in order to understand the asymptotic behavior of the

function G1(t, u) as u → ∞, we have to study how the fractional integrals appearing in (86)
behave for large values of u. Using (78) and (82), we obtain

u−
3
2D− 3

2λs,r(u) =
s

Γ
(
3
2

) ∫ 1

0
cosh(r

√
yu)(1− y)

1
2 dy

=
s

Γ
(
3
2

) ∫ 1

0
er

√
uzz(1− z2)

1
2 dz +

s

Γ
(
3
2

) ∫ 1

0
e−r

√
uzz(1− z2)

1
2 dz(87)

and

u−
5
2D− 5

2λs,r(u) =
s

Γ
(
5
2

) ∫ 1

0
cosh(r

√
yu)(1 − y)

3
2dy

=
s

Γ
(
5
2

) ∫ 1

0
er

√
uzz(1− z2)

3
2dz +

s

Γ
(
5
2

) ∫ 1

0
e−r

√
uzz(1− z2)

3
2dz.(88)
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We have

(89)

∫ 1

0
e−r

√
uzz(1− z2)

1
2 dz =

∫ 1
2

0
+

∫ 1

1
2

= O
(
u−1

)
.

Indeed, the third integral in (89) is O(e−
1
2
r
√
u), while the second integral can be estimated,

using the integration by parts twice. Similarly,

(90)

∫ 1

0
e−r

√
uzz(1 − z2)

3
2 dz = O

(
u−1

)
as u→ ∞. In addition,∫ 1

0
er

√
uzz(1−z2) 1

2dz = er
√
u

∫ 1

0
er

√
u(z−1)z(1−z2) 1

2 dz = er
√
u

∫ 1

0
e−r

√
uy(1−y)(2−y) 1

2 y
1
2 dy.

For small values of y, we have (1− y)(2− y) 1
2 y

1
2 =

√
2y

1
2 + c1y

3
2 + · · · . Using Watson’s lemma

(see [10, p. 103]), we obtain

(91)

∫ 1

0
er

√
uzz(1− z2)

1
2dz = er

√
u

[√
2Γ

(
3

2

)
r−

3
2u−

3
4 +O

(
u−

5
4

)]
as y → ∞. Similarly,

(92)

∫ 1

0
er

√
uzz(1− z2)

3
2 dz = er

√
u

[
2

3
2Γ

(
5

2

)
r−

5
2u−

5
4 +O

(
u−

7
4

)]
as y → ∞.

5.3. Completion of the proofs of the main results. We will first formulate and prove
one of the main technical results of the present paper.

Theorem 19. Let H1(t, ·) and H2(t, ·) be the functions defined by (59) and (60), respec-
tively. Then the following asymptotic formulas hold:

H1(t, x) =
1

2
√
π
(η1λtp)

1
4 exp

{
η2λtq

η1 + η2
− λt

}
(log x)−

3
4

× exp{2
√
η1λtp

√
log x}

(
1 +O

(
(log x)−

1
2

))
(93)

as x→ ∞, and

H2(t, x) =
1

2
√
π
(η2λtq)

1
4 exp

{
η1λtp

η1 + η2
− λt

}(
log

1

x

)− 3
4

× exp

{
2
√
η2λtq

√
log

1

x

}(
1 +O

((
log

1

x

)− 1
2

))
(94)

as x→ 0.
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Proof. Formula (93) follows from formulas (86)–(92). Here we take into account that the
values of the parameters r and s are given by (79). The proof of formula (94) uses the same
ideas, and we leave it as an exercise for the interested reader.

Theorem 19 allows us to characterize the asymptotic behavior of the absolutely continuous

part H of the distribution μ
(2)
t of the random variable X

(2)
t . Recall that

dμ
(2)
t (x) = e−λtdδ1(x) +H(t, x)dx, x > 0,

where
H(t, x) = H1(t, x)x

−η1−1χ{x>1} +H2(t, x)x
η2−1χ{0<x<1}

(see (57)). It is clear from Theorem 19 that the following assertion holds.
Corollary 3. For every t > 0,

H(t, x) =
1

2
√
π
(η1λtp)

1
4 exp

{
η2λtq

η1 + η2
− λt

}
(log x)−

3
4

× exp{2
√
η1λtp

√
log x}x−η1−1

(
1 +O

(
(log x)−

1
2

))
(95)

as x→ ∞, and

H(t, x) =
1

2
√
π
(η2λtq)

1
4 exp

{
η1λtp

η1 + η2
− λt

}(
log

1

x

)− 3
4

× exp

{
2
√
η2λtq

√
log

1

x

}
xη2−1

(
1 +O

((
log

1

x

)− 1
2

))
(96)

as x→ 0.
We are finally ready to complete the proof of Theorems 10–13. Recall that we denoted

by D
(1)
t the stock price density in the Heston model. The distribution μ

(2)
t of the random

variable exp{Tt} has a singular component at x = 1 (see (57)). However, we can still use a
formula similar to formula (1) to estimate Dt. We have

(97) Dt(x) = e−λtD
(1)
t (x) +D

(1)
t

M
� H(t, ·)(x).

Our next goal is to apply Theorem 8 to characterize the asymptotic behavior of the last

term in (97). We put U(x) = D
(1)
t (x), ρ = −η1− 1, l(x) = H1(t, x), f(x) = H(t, x), σ = −A3,

τ = Ã3, and h(x) = 0. Then, σ < ρ < τ . Indeed, the condition 1 + η1 < A3 is equivalent to

σ < ρ. In addition, since Ã3 > −1 (use the integrability of the function D
(1)
t and (31)), we

have ρ < τ . Now, taking into account Remark 5 and Lemma 2, we see that the conditions in
the formulation of Theorem 8 hold. It follows that

(98) D
(1)
t

M
� H(t, ·)(x) =MD

(1)
t (−η1 − 1)x−η1−1H1(t, x)

(
1 +O

(
(log x)−

1
2

))
as x→ ∞. Finally, it is not hard to see that (30), (95), (97), (98), and the condition 1+η1 < A3

imply formula (38).
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This completes the proof of Theorem 10.
The proof of Theorem 11 is similar to that of Theorem 10. It is based on Theorem 9, (31),

(58), Lemma 2, (96), and (97). We leave filling in the details to the interested reader.
Theorems 12 and 13 can be derived from formulas (32), (33), and (97), using Theorems 8

and 9.

6. More applications. The example discussed in this section is a stochastic stock price
model that is a mixture of the Heston model with a special exponential Lévy model. The
log-price process in the perturbing model is the Lévy process with normal inverse Gaussian
marginals (the NIG process). We will characterize the asymptotic behavior of the implied
volatility at large strikes in the perturbed Heston model mentioned above. The behavior at
the small strikes can be characterized similarly.

The normal inverse Gaussian distribution and the NIG process were introduced by
Barndorff-Nielsen in [6] and [7], respectively (see also [8]). For the sake of simplicity, we
will consider only symmetric centered NIG processes. The general case can be dealt with

similarly. Let α > 0 and δ > 0; let W
(α)
t = Wt + αt, t ≥ 0, be a Brownian motion with drift;

and let A be the inverse Gaussian process given by At = inf{s > 0 : W
(α)
s = δt}. Consider

also an independent standard Brownian motion W̃t, t ≥ 0. Then the NIG process is defined
by Yt = W̃At , t ≥ 0. The parameter α controls the tail heaviness of marginal distributions,
while δ is the scale parameter.

Let us consider a mixed model Xt = X
(1)
t X

(2)
t , t ≥ 0, where X(1) is the price process in

the Heston model defined in (29), while X(2) = exp{Yt}. As before, we denote by D
(k)
t the

distribution density of the random variable X
(k)
t , k = 1, 2, and by D̃

(2)
t the density of Yt.

There exists a closed-form expression for the density D
(2)
t . The modified Bessel function

K1 of the third kind will be needed in what follows. This function is defined by

K1(z) =
1

2

∫ ∞

0
exp

{
−z
2
(u+

1

u
)

}
du.

Denote by (γ, 0, ν) the Lévy triplet associated with the process Y . It is known that

γ =
2αδ

π

∫ 1

0
K1(αx)dx

and

ν(dy) =
αδ

π

K1(α|y|)
|y| dy.

The following formula holds for the density D̃
(2)
t :

D̃
(2)
t (y) = k(t)

K1(α
√
y2 + δ2t2)√

y2 + δ2t2
,

where

k(t) =
αδteαδt

π
.
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Therefore,

D
(2)
t (x) =

k(t)

x

K1(α
√

(log x)2 + δ2t2)√
(log x)2 + δ2t2

for all x > 0. The previous formulas can be found in [26]. It is known that

K1(z) =

√
π

2z
e−z

(
1 +O

(
1

z

))
as z → ∞ (see formula 9.7.2 in [1]). It follows that

(99) D
(2)
t (x) =

k(t)

x

√
π

2α

exp
{
−α√(log x)2 + δ2t2

}
((log x)2 + δ2t2)

3
4

(
1 +O

(
1

log x

))
as x→ ∞.

Since for every A > 0 and α > 0,

1

((log x)2 +A)
3
4

=
1

((log x)2)
3
4

(
1 +O

(
1

log x

))
and

exp
{
−α

√
(log x)2 +A

}
= exp

{
−α

√
(log x)2

}(
1 +O

(
1

log x

))
as x→ ∞, formula (99) implies that

(100) D
(2)
t (x) = k(t)

√
π

2α
x−α−1(log x)−

3
2

(
1 +O

(
1

log x

))
as x→ ∞.

It is not hard to see, using formulas (100) and (32), that for A3 < α+ 1, the Heston part
of the mixed model dominates, while for α+1 < A3, the NIG part dominates. Our next goal
is to apply Theorem 14 to the Heston+NIG model. The no-arbitrage condition for this model
is

(101) α ≥ 1 and μ = δ(
√
α2 − 1− α),

where μ is the drift parameter in the Heston model. Recall that we assume that r = 0.
Condition (101) can be obtained, using the mean-correcting argument (see the references in
the beginning of section 4) and an explicit formula for the characteristic function of the NIG
distribution (see [7]; see also [26, sect. 5.39)]).

Theorem 20. Suppose the no-arbitrage condition in (101) holds, and let A3 < α+1. Then
formula (44) is valid for the implied volatility in the Heston+NIG model with

r1 = mA3−1

(
D

(2)
T

)
B1,

r2 = A2, r3 = A3, and r4 = −3
4 + a

c2
. In addition, if α + 1 < A3, then formula (44) is valid

with

r1 = k(t)

√
π

2α
mα

(
D

(1)
T

)
,
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r2 = 0, r3 = α+ 1, and r4 = −3
2 .

Theorem 20 follows from (32), (100), Theorem 8, and Theorem 14. A similar theorem
can be obtained in the case where K → 0. We leave the formulation and the proof of such a
theorem as an exercise for the interested reader.

Remark 9. The methods developed in the present paper are rather universal. They can be
used to approximate the stock price density and the implied volatility in many mixed stochastic
models. For instance, we can replace the Heston model with jumps by the Stein–Stein model
with jumps (see [17] for a discussion of the asymptotic behavior of the stock price density
in the Stein–Stein model) and also use jump processes different from the double exponential
process or the NIG process. We need only to know appropriate asymptotic formulas with error
estimates for the marginal distributions of the jump process, and such formulas are readily
available.
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