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Abstract

Kalai and Kleitman [6] established the bound nlog(d)+2 for the diameter of a d-dimensional
polyhedron with n facets. Here we improve the bound slightly to (n− d)log(d).

1 Introduction

A d-polyhedron P is a d-dimensional set in R
d that is the intersection of a finite number of

half-spaces of the form H := {x ∈ R
d : aTx ≤ β}. If P can be written as the intersection

of n half-spaces Hi, i = 1, . . . , n, but not fewer, we say it has n facets and these facets are
the faces Fi = P ∩Hi, i = 1, . . . , n, each affinely isomorphic to a (d− 1)-polyhedron with
at most n− 1 facets. We then call P a (d, n)-polyhedron.

We say v ∈ P is a vertex of P if there is a half-space H with P ∩ H = {v}. (A
polyhedron is pointed if it has a vertex, or equivalently, if it contains no line.) Two
vertices v and w of P are adjacent (and the set [v,w] := {(1 − λ)v + λw : 0 ≤ λ ≤ 1} an
edge of P ) if there is a half-space H with P ∩H = [v,w]. A path of length k from vertex v
to vertex w in P is a sequence v = v0, v1, . . . , vk = w of vertices with vi−1 and vi adjacent
for i = 1, . . . , k. The distance from v to w is the length of the shortest such path and is
denoted ρP (v,w), and the diameter of P is the largest such distance,

δ(P ) := max{ρP (v,w) : v and w vertices of P}.

We define
∆(d, n) := max{δ(P ) : P a (d, n)-polyhedron}

and seek an upper bound on ∆(d, n). It is not hard to see that ∆(d, ·) is monotonically non-
decreasing. Also, the maximum above can be attained by a simple polyhedron, one where
each vertex lies in exactly d facets. See, e.g., Klee and Kleinschmidt [12] or Ziegler [18]. A
related paper, Ziegler [19], gives the history of the Hirsch conjecture that ∆b(d, n) ≤ n−d,
where ∆b(d, n) is defined as above but for bounded polyhedra.

In the last few years, there has been an explosion of papers related to the diameters
of polyhedra and related set systems. Santos [14] found a counterexample to the Hirsch
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conjecture, later refined by Matschke, Santos, and Weibel [13]. Eisenbrand, Hähnle,
Razborov, and Rothkoss [3] showed that a slightly improved Kalai-Kleitman bound,
nlog(d)+1, held for a very general class of set families abstracting properties of the vertices
of d-polyhedra with n facets, which included the ultraconnected set families considered
earlier by Kalai [4]. (This improved bound, for polyhedra, was presented first in Kalai [5].)
Another class of set families was introduced by Kim [7]; adding various properties gave
families for which this bound held, or other families where the maximum diameter grew
exponentially. The latter result is due to Santos [15]. Earlier combinatorial abstractions of
polytopes include the abstract polytopes of Adler and Dantzig [1] (these satisfy the Hirsch
conjecture for n − d ≤ 5) and the duoids of [16, 17] (these have a lower bound on their
diameter growing quadratically with n − d). We also mention the nice overview articles
of Kim and Santos [8] (pre-counterexample) and De Loera [2] (post-counterexample).

Our bound (n−d)log(d) fits better with the Hirsch conjecture and is tight for dimensions
1 and 2. Also, more importantly, it is invariant under linear programming duality. A
pointed d-polyhedron with n facets can be written as {x ∈ R

d : Ax ≤ b} for some
n × d matrix A of full rank and some n-vector b. Choosing an objective function cTx
for c ∈ R

d gives the linear programming problem max{cTx : Ax ≤ b}, whose dual is
min{bT y : AT y = c, y ≥ 0}. The feasible region for the latter is affinely isomorphic to
a pointed polyhedron of dimension at most n − d with at most n facets, and equality is
possible. Hence duality switches the dimensions d and n− d.

2 Result

We prove

Theorem 1 For 1 ≤ d ≤ n, ∆(d, n) ≤ (n− d)log(d), with ∆(1, 1) = 0.

(All logarithms are to base 2; note that (n − d)log(d) = dlog(n−d) as both have logarithm
log(d) · log(n − d). We use this in the proof below.)

The key lemma is due to Kalai and Kleitman [6], and was used by them to prove the
bound nlog(d)+2. We give the proof for completeness.

Lemma 1 For 2 ≤ d ≤ ⌊n/2⌋, where ⌊n/2⌋ is the largest integer at most n/2,

∆(d, n) ≤ ∆(d− 1, n − 1) + 2∆(d, ⌊n/2⌋) + 2.

Proof: Let P be a simple (d, n)-polyhedron and v and w two vertices of P with
δP (v,w) = ∆(d, n). We show there is a path in P from v to w of length at most
the right-hand side above. If v and w both lie on the same facet, say F , of P , then
since F is affinely isomorphic to a (d − 1,m)-polyhedron with m ≤ n − 1, we have
ρP (v,w) ≤ ρF (v,w) ≤ ∆(d− 1,m) ≤ ∆(d− 1, n− 1) and we are done.

Otherwise, let kv be the largest k so that there is a set Fv of at most ⌊n/2⌋ facets with
all paths of length k from v meeting only facets in Fv. This exists since all paths of length
0 meet only d facets (those containing v), whereas paths of length δ(P ) can meet all n
facets of P . Define kw and Fw similarly. We claim that kv ≤ ∆(d, ⌊n/2⌋) and similarly
for kw. Indeed, let Pv ⊇ P be the (d,mv)-polyhedron (mv = |Fv | ≤ ⌊n/2⌋) defined by
just those linear inequalities corresponding to the facets in Fv. Consider any vertex t of
P a distance kv from v, so there is a shortest path from v to t of length kv meeting only
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facets in Fv. But this is also a shortest path in Pv, since if there were a shorter path, it
could not be a path in P , and thus must meet a facet not in Fv, a contradiction. So

kv = δPv
(v, t) ≤ ∆(d,mv) ≤ ∆(d, ⌊n/2⌋).

Now consider the set Gv of facets that can be reached in at most kv + 1 steps from v,
and similarly Gw. Since both these sets contain more than ⌊n/2⌋ facets, there must be a
facet, say G, in both of them. Thus there are vertices t and u in G and paths of length
at most kv + 1 from v to t and of length at most kw + 1 from w to u. Then

∆(d, n) = ρP (v,w)

≤ ρP (v, t) + ρG(t, u) + ρP (w, u)

≤ kv + 1 +∆(d− 1, n− 1) + kw + 1

≤ ∆(d− 1, n− 1) + 2∆(d, ⌊n/2⌋) + 2,

since, as above, G is affinely isomorphic to a (d− 1,m)-polyhedron with m ≤ n− 1. ⊓⊔
Proof of the theorem: This is by induction on d + n. The result is trivial for

n = d, since there can be only one vertex. Next, the right-hand side gives 1 for d = 1
(n = 2) and n− 2 for d = 2, which are the correct values. For d = 3, it gives (n− 3)log(3),
which is greater than the correct value n − 3 established by Klee [9, 10, 11]. (We could
make the proof more self-contained by establishing the d = 3 case from the lemma: a
general argument deals with n ≥ 13, but then there are seven more special cases to
check.) Below we will give a general inductive step for the case d ≥ 4, n − d ≥ 8.
Also, the result clearly holds by induction if n < 2d, since then any two vertices lie on
a common facet, so their distance is at most ∆(d − 1, n − 1). The remaining cases are
d = 4, 8 ≤ n ≤ 11; d = 5, 10 ≤ n ≤ 12; d = 6, 12 ≤ n ≤ 13; and d = 7, n = 14. All these
cases can be checked easily using the lemma, the equation ∆(d, d) = 0, and the equations
∆(5, 6) = ∆(4, 5) = ∆(3, 4) = ∆(2, 3) = 1.

Now we deal with the case d ≥ 4, n− d ≥ 8. For this, log(n− d) ≥ 3, so we have

∆(d, n) ≤ ∆(d− 1, n − 1) + 2 ·∆(d, ⌊n/2⌋) + 2

≤ (d− 1)log(n−d) + 2 · dlog(n/2−d) + 2

≤

(

d− 1

d

)log(n−d)

dlog(n−d) + 2 · dlog((n−d)/2) + 2

≤

(

d− 1

d

)3

dlog(n−d) +
2

d
· dlog(n−d) + 2

=

(

1−
3

d
+

3

d2
−

1

d3
+

2

d

)

dlog(n−d) + 2

≤

(

1−
1

d
+

3

4d
−

1

d3

)

dlog(n−d) + 2

≤ dlog(n−d) −
1

4d
· dlog(n−d) −

1

d3
· dlog(n−d) + 2

≤ dlog(n−d),

since each of the subtracted terms is at least one. This completes the proof. ⊓⊔
Acknowledgement Thanks to Günter Ziegler and Francisco Santos for several help-

ful comments on a previous draft.
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